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Abstract—Using spatiotemporal data can increase forecasting
accuracy for distributed energy resources such as wind farms,
solar power plants, and electric vehicle charging stations. The
underlying forecasting models assume that data are shared by
the different data owners, which is not always feasible because
of privacy and confidentiality constraints. Existing methods for
privacy-preserving data-sharing are based mainly on linear or
non-linear univariate models. This is quite limiting concerning
the potential of non-linear multivariate forecasting approaches,
since these models can be computationally more efficient than
univariate approaches and can learn non-linear relationships.
This paper introduces a new federated forecasting approach
implementing a multivariate non-linear learning scheme based
on decision trees while enabling fully decentralized computation.
Results show higher predictive performance than existing linear
or univariate energy forecasting models while preserving privacy.

Index Terms—Distributed energy resources, Energy Forecast-
ing, Federated Learning, Resilience, Privacy constraints

I. INTRODUCTION

The digitalization of power systems and the Internet of
Things enable data collection from many sources. This wealth
of data improves the forecasting accuracy of, for example,
renewable energy sources (RES) production [1], [2] and the
electricity demand of electric vehicles (EV) at charging sta-
tions, [3] by leveraging spatiotemporal information and conse-
quently improving decisions in power systems. Using existing
measurements from neighboring RES plants, wind farms [1],
or photovoltaic (PV) plants [2] improves the predictability of
their output by up to 20% for next 6 hours ahead. However,
data are usually owned by different actors who are unwill-
ing to share information for privacy and business reasons.
Additionally, the data stem from heterogeneous sources, and
their availability is not always guaranteed. Addressing these
issues in a combined approach requires efficient computa-
tion strategies. Across all fields, the approach for privacy-
preserving data-sharing is typically federated learning (FL)
[4]. FL can be separated into ”horizontal” federated learning,
which solves the problem of data scarcity via data-sharing,
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and ”vertical” federated learning (VFL), which utilizes the
information provided by the different data owners to increase
the accuracy of the prediction. A common example of VFL
in distributed energy resources (DER) is data-sharing between
different EV-charging stations in a city to predict the load
demand more accurately [3].

In the frame of DER forecasting, a linear VFL model was
developed by [1] based on distributed, decentralized privacy-
preserving multivariate regression. However, many exogenous
variables display non-linear relationships with the target vari-
able (e.g., predicted wind speed vs. active wind power), which
can be approximated by applying dedicated transformations
like cubic splines. Nevertheless, this requires an exact under-
standing of the relationship beforehand and is computationally
infeasible for numerous heterogeneous exogenous variables.

Therefore, non-linear models, which can capture these rela-
tionships by design, are better candidates for VFL-based DER
forecasting. The superior leveraging of spatiotemporal infor-
mation by non-linear models is shown in an unencrypted data-
sharing setting for load-forecasting at EV-charging stations
in [3], [5]. The two common structures are gradient-boosted
tree models (GBT) and neural-network (NN) based models.
NN-based models have seen attempts to use homomorphic-
encryption approaches, which are infeasible regarding com-
putation time [6], and differential privacy, which lowers the
accuracy [7].

Consequently, we focus on GBT-based implementations
whose algorithm is a natural fit for VFL [8] because it iterates
over each feature separately. Additionally, as discussed in
[9], tree-based methods are more resilient than NN structures
and require less fine-tuning. Furthermore, they take a native
approach to handling missing data by choosing a default direc-
tion [10]. Missing data are not usually considered in federated
applications. Hence, trees are more attractive for applications
where reliability, missing data in the application itself, and
ease of usage are essential, like power systems. The most
popular implementation for VFL based on the extreme boosted
Gradient Trees (XGB) [10] approach is SecureBoost [11].
The authors propose a univariate lossless approach applying
homomorphic encryption. The choice of encryption leads to
high computation time and privacy issues due to its complexity



and handling of split instances [12].
A GBT-based univariate VFL model is presented in [13],

which masks the instances and utilizes secret-sharing for a
lossless,more computationally effective approach. Neverthe-
less, univariate trees tend to overfit and do not scale efficiently
at inference [14]. Thus, a multivariate federated approach
seems more suitable to derive DER production or consumption
forecasts at multiple sites using local information.

A multivariate extension of Secureboost [11] is proposed
in [15], but the extension does not address the security issue
of sharing too much information in regard to the instances.
The extension is based on the multivariate unencrypted GBT
approach of [14]. In this paper, we propose a model that trans-
lates the univariate approach of [13] into a multivariate, faster,
decentralized model, fitting the requirements of distributed
forecasting in DER settings. We present a short summary in
Table I, highlighting our contributions.

II. RELATED WORK AND CONTRIBUTIONS

Our contributions can be summarized as follows.
• We combine and extend the univariate federated approach

of [13] and the multivariate unencrypted approach of
[14] to achieve a multivariate federated, decentralized
tree model. This model is lossless, taking advantage of
the properties of secret-sharing [16] to achieve a low
computation time.

• We remove the encrypted optimization step of the weight
calculation by utilizing the multivariate approach to cal-
culate the respective weights for each party indepen-
dently.

• We adopt the histogram-based binning method standard
to lightgbm [17] in a secret-sharing setting. This allows
us to calculate instances based on differences and faster
binning.

• We analyze a naive approach to dealing with missing data
in a data-sharing setting.

To the best of our knowledge, this is the first work combining
advancements in both areas by introducing a multivariate
secret-sharing tree method for DER forecasting.

In the next section, we present the methodology, starting
with an introduction of our setting, followed by a presentation
of the encryption method based on secret-sharing and the
developed learning model based on gradient-boosted trees.

III. METHODOLOGY

A. Background

It is assumed that there are D ∈ N data owners. Let O
describe the set of D owners, with Om denoting owner m ∈
[D]. Each owner Om owns a feature matrix Xm ∈ RN×pm

with N ∈ N observations and pm ∈ N features. P =
∑

m∈[D]

pm

describes the total number of features. The respective target
is Ym ∈ RN . Following the general setting, we discuss the
encryption technique of secret-sharing. Let x, y ∈ R belong
to the owners O1 and O2, respectively, and serve as example
variables throughout this article. We denominate an encrypted

value as < x >. Suppose O1 wants to encrypt x. O1 sends a
random share < x >m∈ R to each other data owner Om ∈
O \O1, and constructs its own share as
< x >1= x −

∑
m∈[D]\1

< x >m . Conversely, the decryption is

defined as dec(< x >) =
∑

m∈[D]

< x >m= x.

In secret-sharing, it is possible to perform addition and
multiplication with encrypted < x > and < y > . We can
perform x+y = dec(< x > + < y >) = dec(< x+y >) and
x⊙ y = dec(< x > ⊗ < y >) where ⊗ describes the secret-
sharing multiplication as defined by [13]. Additionally, secret-
sharing possesses commutative, associative, and distributive
properties for addition and multiplication and can be vector-
ized [13]. However, division is impossible and yet necessary
in a GBT-based model.

We propose the following modifications to the multiplica-
tion process, which allows us to include a dynamic coordinator
in the group of data owners.

Suppose that among D owners, owners O1 and O2, intend
to multiply x and y, respectively, such that x · y = z. First,
a coordinating owner Oc is selected from O \ {O1, O2}. Oc

returns its shares of x and y to O1 and O2, respectively. Then,
Oc creates a beaver triplet, a, b, c ∈ R such that a ∗ b = c.
Next Oc shares a, b, and c. The remaining owners perform
the multiplication as defined in [13]. Afterward, O1 shares
part of its share with Oc. Therefore, the multiplication is
completed. Hence, we have reduced the number of participants
and decentralized the process.

All the aforementioned properties of secret-sharing lead to
Lemma III.1 and Corollary (Cor) III.1.

Lemma III.1. Let k, l ∈ RN be two vectors, sI ∈ RN be an
indicator vector representing instance space I and λ > 0 and
q > 1. Let D ∈ N describe the number of data-owners. Then,
the following equation holds and is privacy-preserving.(∑

i∈I
ki

)2

∑
i∈I

li + λ
=
∑

m∈[D]

(< q >m ⊗
(

N∑
i=1

(< k >m ⊗ < sI >m)i

)

⊗
(

N∑
i=1

(< k >m ⊗ < sI >m)i

)
⊗ < (

1

q · (
∑
i∈I

li + λ)
) >m), (1)

with < ( 1

q·
∑
i∈I

li+λ
) >m build via constructing

∑
m∈[D]

< q >m

⊗(
N∑
i=1

(< sI >
m ⊗ < l >m)i+ < λ >m).

Proof. The proof follows from applying the commutative and
distributive properties of secret-sharing. Both multiplications
with q result in a multiplication with one and, therefore, do not
change the result but enable a privacy-preserving restoration
of the divisor.

Lemma III.1 removes the need to circumvent division,
which is usually inaccurate or computationally expensive.

Cor III.1 allows parallel histogram-based binning and cal-
culations on shares of data owners by enabling purely local



TABLE I: Summary of VFL Models in DER-Settings
Model Decentralized Multivariate Computationally feasible Non-linear learning Lossless encryption

Lasso ADMM [1] ✓ ✓ ✓ ✓
Secureboost [11] ✓ ✓

MPFED-XGB [13] ✓ ✓ ✓
Proposed Model ✓ ✓ ✓ ✓ ✓

share manipulations to construct the right side of instances and
the right side of histograms by building the difference between
the entire instance/histogram and the left instance/histogram,
respectively.

Corollary III.1. For three values x, y, z with x, y ∈ R with
z = x + y, it holds that if < x > and < z > are encrypted
then < y >=< z > − < x >=< z − x > and therefore
< y >m=< z >m − < x >m, ∀m ∈ [D].

B. Federated Multivariate Tree Model

Data-sharing in DER applications is collaborative. There-
fore, we assume a semi-honest setting [18]. This means owners
will follow the protocol but try to infer as much information
from others as possible. Furthermore, joining based on a pre-
agreement to collude against one owner violates this assump-
tion [19]. If one assumes that owners will not follow the
protocol, measures like zero-knowledge-proofs are necessary
[20].

Commonly, for VFL, there are active data owners Oa which
own feature matrices Xa and target data Ya, and passive data
owners Op which only provide additional information via their
respective feature matrices Xp. In our setting, each owner is
an active owner. Therefore, the output dimension is defined
by the number of data owners. Algorithm 1 gives a high-level
overview of the real-world application.

Algorithm 1 Systematic steps of the frame work
Inputs: On each data owner Om ∈ O private data in the

form of Xm and Ym.
Output: Trained multivariate treemodel for joint predic-

tion.
1: Draw up a contractual agreement on the targets and period.
2: Establish communication protocols, hyperparameters, e.g.

the number of trees T.
3: for Tree t ∈ [T ] do
4: for node in t do
5: Perform joint encrypted gain calculation Alg. 3.
6: Build tree node.
7: end for
8: Calculate loss using the current ensemble.
9: end for

10: Perform joint predictions Fig. 2.

C. Multivariate Encrypted Extreme Gradient Boosted Trees

A multivariate tree (MV-Tree) matches the input vector
x ∈ RP to a corresponding leaf w ∈ RD, denoted as f(x).

Hence, a prediction can be made as

ŷ =

T∑
t=1

ft(x), (2)

which is the sum of the T regression trees.
XGB [10] optimizes the loss via an additive method by

adding a (T +1)th tree. Furthermore, the authors add regular-
ization in the form of punishing the number of trees (γ ≥ 0)
and the complexity of the trees with λ > 0. Here, we present
the work of [14] to extend it to our privacy-preserving use case.
The loss function has to be twice differentiable and convex.
Simplifying via the 2nd order Taylor-Approximation gives us
the objective for the (t+ 1)th prediction,

Lt+1 =

N∑
i=1

l(ŷi,yi)+(g)Ti w+
1

2
wT (H)iw+

λ

2
|| w ||22 +γ·T.

(3)
In this case (g)i ∈ RD are the gradients and (H)i ∈ RD×D

the Hessian matrix of L belonging to the ith sample and ŷi.
According to [10], we transform the loss function to a function
of the leaves. Suppose I is the instance space belonging to the
optimal leaf w⋆. Equation (4) gives the solution for w⋆. This is
a direct generalization of the univariate case [14]. However, the
dimensionality of (H)i makes an inversion computationally
infeasible.

Hence, the choice of the loss function is essential. If the
loss function is separable, the gradients become independent.
Therefore, the Hessian matrix becomes diagonal and easily
invertible. We can calculate the leaf-weight of Oj by solving
(5) [14].

w⋆ = −

∑
i∈I

(H)i + λIDD

−1

·

∑
i∈I

(g)i

 . (4)

w⋆
j = −

∑
i∈I

(gj)i∑
i∈I

(hj)i + λ
. (5)

IV. EXTENSION TO A PRIVACY-PRESERVING SETTING

Considering our privacy-preserving setting, this implies the
following. In the DER setting, the common loss functions for
regression and classification are the l2-loss function and bi-
nary cross-entropy, respectively. Both are additively separable
by definition. Furthermore, and imperative for the privacy-
preserving aspect, calculating gradients and Hessians does
not require any interaction between the parties. This property
allows us to apply the following procedures for calculating the
weights and gains at each split point. Each data owner only
requires the information of the instance space I to calculate



their weight independently. Thus, each jointly constructed
tree stops at the leaf’s parent. The calculation of encrypted
<

∑
i∈I

(gj)i > and <
∑
i∈I

(hj)i > for owner Oj requires Cor

III.1, as we operate on the whole instance space. Algorithm
2 shows the calculation of the weights. Let < s > describe
the encrypted indicator vector, identifying the instance, and
let therefore < gj >∈ RN and < hj >∈ RN describe the
encrypted vectors of the gradients and the Hessians of owner
Oj containing all samples.

Algorithm 2 Calculation of weights
Inputs: On each data owner Om ∈ O, < s >m, < gj >

m,
< hj >

m∈ RN ∀Oj ∈ O, λ > 0.
Output: wj on each data owner Oj

j ∈ [D].
1: for Oj ∈ O in parallel do
2: Perform < s > ⊗ < gj >
3: =< gjs > and < s > ⊗ < hj >=< hjs > .

4: Perform on all data owners in parallel <
∑
i∈I

(gj)i >
m=

N∑
i=1

< gjs >
m
i and <

∑
i∈I

(hj)i >
m=

N∑
i=1

< hjs >
m
i .

5: Perform <
∑
i∈I

(hj)i > + < λ > .

6: Perform < q > ⊗ <
∑
i∈I

(gj)i > and

7: < q > ⊗ < (
∑
i∈I

(hj)i + λ) > .

8: Restore q ·
∑
i∈I

(gj)i and q · (
∑
i∈I

(hj)i + λ) on the

respective owners.
9: end for

10: Each owner Oj calculates wj = −
∑
i∈I

(gj)i∑
i∈I

(hj)i+λ
in parallel.

In a GBT-based model, the algorithm searches the maximum
gain over all possible splits proposed by the partitions of the
instance space by each owner, feature, and bin, respectively
[10]. Suppose the proposed split partitions the current instance
space I into IR and IL then the gain would be:

gain =
∑

m∈[D]


(∑
i∈IL

(gm)i

)2

∑
i∈IL

(hm)i+λ
+

(∑
i∈IR

(gm)i

)2

∑
i∈IR

(hm)i+λ
−

(∑
i∈I

(gm)i

)2

∑
i∈I

(hm)i+λ

− γ. (6)

Thus, we illustrate how this process is combined with
privacy preservation.

The gain at each node is the sum of the individual owners’
gains. However, this information is sensitive. Therefore, denote
the overall gain as gain and the individual gain as gainindv .
We can calculate the gain of an instance I as
gain =

∑
m∈[D]

< gain >m, with < gain >m=∑
indv∈[D]

< gainindv >m by applying Cor III.1.

The individual gain can be calculated as in (7).

< gainindv >m=< Leftproposedsplit >m +

< Rightproposedsplit >m − < Instance >m . (7)

γ is omitted as it can be tuned globally. Here
Leftpropsedsplit, Rightproposedsplit, and Instance
represent the respective summands in (6). The
Leftproposedsplit and the Instance split can be
calculated using Lemma III.1. Utilizing Cor III.1 to compute
Rightproposedsplit lowers the computational complexity.
Therefore, the gain can be computed losslessly and encrypted.
Once calculated in an iteration, the gains are restored to the
respective feature owners. Afterwards, the owners broadcast
their local maxima to determine the global maximum. The
owner with the maximum stores this information securely,
encrypting the proposed left instance space. All other owners
store the fact that they do not possess the node.

Then, a multiplication between the encrypted instance and
the proposed left side is performed. The right instance is
constructed via Cor III.1. Algorithm 3 and Fig. 1 explain the
algorithm. Let Binst describe the left-side binnings proposed
by data owner Ot.

Node Split -
Values 
Owner 1

Split-
Values
Owner 2

Split-
Values 
Owner 3 

1 𝑋1 > 0.2 - -

2 - 𝑋4 > 0.3 -

3 - - 𝑋6 > 0.8

4 𝑋2 > 0.8 - -

5 - 𝑋4 > 0.9 -

Jointly built tree Look up table

1

2

4

3

5𝑊1

𝑋 = [0.3,0.3,0.5,0.8,0.3,0.1]

Owner 1 Owner 2 W Weight Owner 3 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑣𝑒𝑐𝑡𝑜𝑟 𝑋 

Path-based on 𝑋 

𝑊2 𝑊3

𝑊4

𝑊5 𝑊6

Fig. 1: Tree built through collaboration (left) and the
corresponding lookup table (right), where the information is
stored locally on each owner.

The prediction process is based on [13]. Each data owner
traverses the tree using the knowledge in its possession,
eliminating possible paths if they own the node. A possible
leaf is denoted by 1, and an impossible leaf is denoted by
0. Multiplying each of these leaf indicator vectors returns the
definitive leaf. We perform this unencrypted as the weights are
stored and calculated independently. An example can be seen
in Fig. 2.

V. NUMERICAL EXPERIMENTS

A. Data Description

We evaluate the experiments on the public windpower
dataset of the Gefcom forecasting challenge 2014 [21]. We
chose a cluster of four farms out of the ten available farms
(Farm 1-4) to evaluate the performance of the models in



Algorithm 3 Calculation of split
Inputs: On each data owner Om ∈ O, < s >m, < gi >

m,
< hi >

m ∀Oi ∈ O, λ, binj ∀j ∈ Binst
∀Ot ∈ O.
Output: < sL > and < sR > for the node children on the

left and right side, respectively.
1: On each owner Om set localgains = ∅.
2: for Ot ∈ O do
3: Choose one owner to serve as the constructor of q and

fulfill the role of coordinator Oc.
4: for bin ∈ Binst do
5: Encrypt < bin >
6: Calculate < Leftproposedsplit >,

< Rightproposedsplit > and < Instance > for
each O ∈ O .

7: On each data owner Om ∈ O perform
< gain >m=

∑
i∈[D]

< Leftproposedsplit >m
i

+ < Rightproposedsplit >m
i − < Instance >m

i .
8: Restore gain and add it to localgains.
9: end for

10: end for
11: On all data owners Om ∈ O. Calculate localmax =

max(localgains).
12: Find Bestsplit = max(localmax).
13: if Bestsplit > γ then
14: Owner of Bestsplit notes down feature, bin, and split

value, and encrypts the respective bin as < sleft > .
The other owners note that they do not possess infor-
mation about this split.

15: Perform < s > ⊗ < sleft >=< sL > and
16: < sR >=< s > − < sL > .
17: Return < sL > and < sR > and perform the splits

again.
18: else
19: This node is a leaf, and all owners perform leaf calcu-

lations.
20: end if

Paths according to
Owner 2 

𝐼𝐷1 = [0,0,0,1,1,1]

Paths according to
Owner 1 

𝐼𝐷2 = [0,1,1,1,1,0] 𝐼𝐷3 = [1,1,1,1,0,0]

W Weight 𝐼𝐷1 ∙ 𝐼𝐷2 ∙ 𝐼𝐷3 = 0,0,0,1,0,0 ⇒  𝑊4

Every owner selects 𝑾𝟒 

𝑊4

1

3

5

𝑊5 𝑊6

𝑊4

1

2

4

3

5

𝑊2 𝑊5𝑊3

𝑊4

1

2

4

3

𝑊1

𝑊2 𝑊3

Paths according to
Owner 3 

Fig. 2: Identifying the leaf during the joint prediction step.

a sharing setting. The farms are located in Australia, but
their precise location is unknown. The dataset includes hourly
power production observations normalized by the respective
wind farm’s nominal capacity. Furthermore, the predicted
windspeed, at 10m and 100m, in the u and v directions at
the locations of the windfarms are provided. The observed
timespan is two years, from January 1, 2012, to November
30, 2013. We selected the first year as a training set and
also performed 12-fold cross-validation on it for the hyper-
parameter tuning. The second year serves as the test set. After
feature selection, we choose the six most recent observations.
When including the numerical weather predictions (NWP), we
provide the linear model with cubed windspeeds, as it allows
a fairer comparison. A sliding window approach is applied
where the model is trained on 12 months of observations and
predicts the next month.

B. Model details and Evaluation metric

The models evaluated are the linear-encrypted Lasso-VAR
model presented by [1], an implementation of an unencrypted
MV-Tree [22], a data-sharing univariate XGB [10], a data-
sharing random-forest [23] and a non-sharing version of the
Lasso-AR for benchmarking [1]. The machine utilized has an
i7-2300 MHz processor and 32GB of RAM. The MV-Tree was
trained using the 8GB NVIDIA RTX A2000 GPU (Graphics
Processing Unit). Our evaluation metrics are the Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE).

C. Hyperparameter Tuning

We tune the hyperparameters of our tree-based models using
Bayesian-Optimization with the Optuna package [24], as a grid
search is infeasible. Optuna’s strategy yields better results than
a completely random grid search. The linear models are tuned
with a hyperparameter grid.

D. Results

First, we evaluate the benefit of data-sharing. The feature
importance of lagged power observations at the different farms
in our MV-tree is shown in Fig. 3, as a function of the
prediction horizon. For the 1-h horizon, the most recent lagged
production of each farm ’(t − 1)’ is the most important
feature, and there is little difference between farms. For further
horizons, the feature ’(t − 1)’ of Farm 3 dominates over the
other farms, and the importance of older lags increases slightly.
This shows that the MV-tree selects the relevant spatiotemporal
information for each horizon.

Fig. 4 evaluates the improvement of Lasso-VAR and MV-
Tree compared to a non-collaborative Lasso-AR only utilizing
information of the target site, looking at RMSE and MAE.
Table II gives a full comparison of the RMSE without NWP.

The effect of data-sharing is evident by the fact that all
models outperform the non-data-sharing linear model, most
clearly when comparing both linear approaches. It is observed
that non-linearity without specific non-linear input variables is
not always superior, but the gradient-based models are superior
in performance to the linear and non-linear models by up



Fig. 3: MV-Tree feature importance at different hourly horizons, only using past observations. Feature importances sum to
100% for each horizon.
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Fig. 4: Improvement of forecasting metrics of the multivariate methods vs. the non-collaborative Lasso-AR. Left: RMSE (%),
Right: MAE (%).

to 4%. Even though the performance of MV-Tree and XGB
is similar, the multivariate model outperforms the univariate
model at farms 3 and 4, where data-sharing is employed the
most. When analyzing the impact of NWP, we can see an
improvement of up to 40% by the tree model and up to 15%
by the linear models. The MV-Tree model outperforms the
Lasso-VAR at later horizons in every metric except the MAE,
excluding NWP. We assume this is due to the tree’s tendency
to overfit. They capture outliers better but are slightly wrong
more often. Resilience to outliers is crucial in DER real-world
applications. Fig. 5 verifies the losslessness of the encrypted
model on three farms.

E. Resilience analysis

In real-world spatiotemporal applications, data are com-
monly complete during training but may have missing features
during predictions [26]. A data owner, e.g., a wind farm, might
be unavailable due to operational issues. Default directions are
used in [10] to address this problem. We evaluate the impact

of farms that are missing during the joint prediction if the
default direction for missing is always left. The results are
shown in Fig. 6. Compared to the impact on the linear model,
the proposed model is more resilient, as the default direc-
tions handle the missing data more effectively. The proposed
algorithm belongs to the regularized boosted trees and is,
therefore, by design, resilient to common problems in machine
learning. This includes vanishing gradients, which are avoided
due to the regularization, and the problem of local minima,
which is avoided by convexity and tuning. Finally, there are
no mathematical errors, e.g. division by zero. This is due to
the choice of λ > 0 and q > 1.

F. Comparison of Sparsification between the Univariate and
Multivariate Approaches

For tree-based models, it is difficult to analyze sparsity.
Therefore, we compare the number of different features used
and their average weight. Both are consistent for univariate
and MV-Tree models over all horizons. The multivariate model



TABLE II: Overview of average RMSE errors for hourly horizons 1 to 9, without NWP-data. ⋆ means the improvement is
statistically significant according to the Diebold-Mariano test [25].

Model h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9
Lasso-AR 0.0980 0.1487 0.1816 0.2065 0.2263 0.2425 0.2566 0.2679 0.2780

Lasso-VAR 0.0962 0.1436 0.1729 0.1947 0.2119 0.2260 0.2380 0.2484 0.2576
XGB 0.0975 0.1438 0.1725 0.1933 0.2093 0.2221 0.2327 0.2411 0.2489

Random Forest 0.0988 0.1466 0.1763 0.1976 0.2140 0.2266 0.2374 0.2457 0.2527
MV-Tree 0.09783 0.1436⋆ 0.17213⋆ 0.1923⋆ 0.2081⋆ 0.2211⋆ 0.2313⋆ 0.2399⋆ 0.2472⋆
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Fig. 5: Verification of losslessness of encrypted model on
three farms.
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Fig. 6: Impact of farms missing during the inference process.

utilizes each feature on horizons until hour 5 and afterward
up to 17 out of 24, while the univariate model utilizes three
different features on average. The average weight for the MV-
Tree is 0.0047 and 0.3777 for the univariate model. We can
conclude the multivariate tree modifies less per iteration, but
the univariate models reduce the input more effectively.

G. Security Analysis

For the general discussion of the privacy of secret-sharing,
we refer to the analysis of [13]. We assume, contrary to [13],
that the coordinator or coordinating owner Oc is willing to

collude1. First, restoring an encrypted value requires all shares.
This can only be achieved if shares are exchanged, hence,
during the multiplication step. Suppose, as in Section III-A,
that owners O1 and O2 want to multiply x and y. x can
only be restored if: < x >1= e −

∑
i∈[D]\{1,c}

< x >i +a can be

solved, as owner O1 will not share < x >1 and < a >1 .
From the multiplication protocol [13], e is publicly known,
hence colluding owners require a and all but one share of x.
Hence, all owners except O1 are required: Recall that only
Oc can know a. We assign Oc dynamically, and the number
of multiplications is significantly greater than the number of
owners D as discussed in SectionV-H. Therefore, over all
iterations, every owner will be Oc for every owner. This allows
two scenarios: First, there is a pre-agreement to collude against
one specific owner and restore their shares. This violates the
semi-honest setting [19] and, if detected, would lead to said
owner leaving the process. Second, as Oc is dynamic, all
owners agree to collude against everyone and have to assume
that they are themselves colluded against, all privacy is lost,
and that the sharing will be stopped if collusion is detected.

In conclusion, the current protocol is threatened if D − 1
owners collude. However, this violates the settings’s assump-
tions.

A possible problem for federated tree models is if one
data owner owns one direct path, as they can restore the
instance space [13]. Univariate models force the first split to be
performed by the active party to prevent a passive party from
owning a direct path. This does not apply to a multivariate
setting. Instead, we propose that if an owner owns a direct
path, then we choose the second-highest gain at the leaf parent
node. We do not currently perform this step.

H. Complexity Analysis

For the discussion of the unencrypted setting, we refer
to [22] and [14]. Comparison with homomorphic encryption
models is omitted, as [13] demonstrates the superior compu-
tational efficiency of secret-sharing models.

Let depth describe the tree depth, N the number of samples,
B the number of bins, D the number of data owners, T
the total number of trees, and P the total number of input
features. We benchmark our model’s complexity versus a D-
times applied application of the model in [13]. The inference
process requires O(Tdepth +D) operations due to the need
to multiply indicator vectors. For the univariate model, this

1Collusion: Secret or illegal cooperation or conspiracy in order to deceive
others.



entails O(D · (Tdepth + D)) operations. Furthermore, it
requires secret-sharing multiplication, while our data owners
have their weights stored unencrypted locally. In the training
phase, we compare the number of multiplications as they are
the only limiting factor and the most time-consuming [13].
For a full tree, the univariate framework of [13] requires at
worst O((2depth − 1)D(2P + 9P ⌈log2B⌉+ 9⌈log2P ⌉+ 14))
multiplications. Our model utilizing Cor III.1 requires at
worst O((2depth − 1)(10D)) multiplications. This is due to
the utilization of randomization, allowing division. Addition-
ally, by calculating the overall gain via Cor III.1, we avoid
multiplications. This shows the advantage of the proposed
model in terms of complexity. Furthermore, the design suits
GPU implementations due to high parallelizability and the
avoidance of complex operations.

VI. CONCLUSION AND FUTURE WORKS

Finding a good trade-off between the potential benefits of
data-sharing and computational and privacy-imposed burdens
remains a key challenge. Furthermore, encryption faces the
problem of being computationally expensive. This work re-
moves the need for complex division approaches in federated
tree models by combining two encryption techniques. Ad-
ditionally, we extend the secret-sharing approach to a more
computationally effective setting in a multivariate model while
maintaining a high level of privacy. Hence, we address the
need for a lossless multivariate model that can capture non-
linear relationships. In addition, the resilience to missing data
is natively given.

In our future work, we intend to address the security limits
by modifying the secret-sharing algorithm by assigning Oc

differently and changing the beaver triplet. Also, we aim to
address scalability by developing a GPU implementation and
adapting online and transfer learning. Further steps include
reducing the complexity via targeted projections [22]. Lastly,
we aim to include passive parties for relevant public data, e.g.,
seasonal information.
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[3] F. B. Hüttel, I. Peled, F. Rodrigues, and F. C. Pereira, “Deep spatio-
temporal forecasting of electrical vehicle charging demand,” 2021.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,
“Communication-Efficient Learning of Deep Networks from Decen-
tralized Data,” in Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, ser. Proceedings of Machine
Learning Research, A. Singh and J. Zhu, Eds., vol. 54. PMLR, 20–22
Apr 2017, pp. 1273–1282.

[5] Y. Amara-Ouali, Y. Goude, B. Hamrouche, and M. Bishara, “A bench-
mark of electric vehicle load and occupancy models for day-ahead fore-
casting on open charging session data,” ser. e-Energy ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 193–207.

[6] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee,
J. Lee, D. Yoo, Y.-S. Kim, and J.-S. No, “Privacy-preserving machine
learning with fully homomorphic encryption for deep neural network,”
IEEE Access, vol. 10, pp. 30 039–30 054, 2022.

[7] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[8] Y. Liu, Y. Kang, T. Zou, Y. Pu, Y. He, X. Ye, Y. Ouyang, Y.-Q. Zhang,
and Q. Yang, “Vertical federated learning: Concepts, advances, and
challenges,” IEEE Transactions on Knowledge and Data Engineering,
pp. 1–20, 2024.

[9] T. Januschowski, Y. Wang, K. Torkkola, T. Erkkilä, H. Hasson, and
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