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In modern democracies, the outcome of elections and referendums is often remarkably tight. The
repetition of these divisive events are the hallmark of a split society; to the physicist, however, it
is an astonishing feat for such large collections of diverse individuals. Many sociophysics models
reproduce the emergence of collective human behavior with interacting agents, which respond to
their environment according to simple rules, modulated by random fluctuations. A paragon of this
class is the Ising model which, when interactions are strong, predicts that order can emerge from a
chaotic initial state. In contrast with many elections, however, this model favors a strong majority.
Here, we introduce a new element to this classical theory, which accounts for the influence of opinion
polls on the electorate. This brings about a new phase in which two groups divide the opinion equally.
These political camps are spatially segregated, and the sharp boundary that separates them makes
the system size-dependent, even in the limit of a large electorate. Election data show that, over
the last 30 years, countries with more than about a million voters often found themselves in this
state, whereas elections in smaller countries yielded more consensual results. We suggest that this
transition hinges on the electorate’s awareness of the general opinion.

In May 2016, after a divisive campaign, the United
Kingdom voted to leave the European Union, with a ma-
jority of 51.9%—a close call indeed [e.g. 5]. Does this
mean that, as chance would have it, about half of British
voters were in favor of leaving, while the other half op-
posed? Opinion polls before the vote suggest a differ-
ent picture. In January 2011, Remainers where ahead of
Brexiteers by about 20 percentage points (pp), but this
gap fluctuated widely in the following polls, while slowly
shrinking on average [1]. At some point in 2013, the fluc-
tuations became comparable to the gap itself, and the
two curves that would decide the fate of the UK started
to routinely cross—the electorate had reached a polarized
opinion.

In fact, given a binary choice, the opinion of mod-
ern democracies often splits itself into remarkably even
parts [6]. During the 2020 presidential election in Poland,
for instance, opinion surveys showed a similar evolution:
over the last two weeks before election day, the polls re-
laxed towards equality (Fig. 1a). The actual election
yielded only a small margin to the winner, Andrzej Duda
(51.0% of the expressed votes). What leads a population
to distribute its votes so evenly between two political op-
tions? The null hypothesis, of course, is that every citizen
flips a coin to pick their favorite candidate.

Fig. 1b shows the geographical distribution of votes
during the same election. Essentially, the votes distribute
themselves into two main clusters: the Eastern part of
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the country voted for Andrzej Duda, whereas the West
voted for Rafał Trzaskowski, with smaller clusters around
cities. We take this clustering, a common feature of elec-
toral maps [e.g. 5, 7, 8], as a rebuttal of the null hypoth-
esis.

An alternative route is to represent an electorate as a
collection of interacting agents. There is little doubt, in-
deed, that our decisions depend on the opinion of others,
and on how closely we relate to them [9]. Right before
the era of desktop computers, for instance, Schelling [10]
reproduced the formation of segregated neighborhoods
with deterministic agents who choose their next abode
based on simple rules. The agents distribute themselves
on a grid, until an equilibrium is reached, which fea-
tures clusters of homogeneous population. These clus-
ters, however, remain small, because the agents’ decisions
are strictly deterministic, and based on local information
[11].

In the celebrated voter model [12], the opinion s of
each citizen can take two values (+1 or −1) and, at each
time step, every voter transmits its opinion to a ran-
domly chosen neighbor of theirs. At first, it certainly
seems rough (and slightly degrading) to reduce a citi-
zen’s political views to a two-state variable submitted to
such simplistic evolution rules. The collective behavior of
these mechanical citizens, however, is not trivial. In fact,
it depends crucially on the topology of the network that
connects the voters. When only neighbors are connected,
rough clusters form and diffuse through the network in
dimension two or less, but not in higher dimensions [13–
15]. When they exist, these clusters coarsen, until one
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FIG. 1. Polish presidential election in 2020. a Opinion polls
before the election. Source: Wikipedia contributors [1]. Blue
dots: opinion in favor of Andrzej Duda (App. A 1). Solid
blue line : average over 4-days bins (App. A 2). Blue circle:
election result. b Map of the election result in Polish counties
(powiat). Source: National Electoral Commission of Poland
[2]. The black dashed line shows the Prussian border in 1890
[3], virtually unchanged from 1815 to 1914 [4].

invades the entire domain, and the population eventu-
ally reaches unanimity. This is also true for the related
majority-rule model, wherein voters adopt the dominant
opinion of a random set of their neighbors [16].

This relaxation to consensus is not surprising if one as-
sumes that voters tend to align their opinion with their
neighbors (or friends). This is exactly what happens in
the Ising model, which was initially designed to repre-
sent a magnet, and later became the archetypal model of
phase transition [17, 18]. When thermal fluctuations are
small, the spins of a magnet align with each other, and
thus induce a macroscopic magnetic field. This ferromag-
netic behavior disappears above the Curie temperature,
as disorder takes over the system. The analogy with the
social behavior of humans (and fish, for that matter) was

recognized early [19], but the original Ising model, like
the voter model, cannot evenly split an electorate (un-
less the null hypothesis prevails).

One way to circumvent this limitation is to make voters
influence their neighbors’ in a deterministic way [20, 21].
A population of such voters ultimately reaches an ordered
equilibrium: either a complete consensus, or a gridlock
wherein every voter opposes their neighbors. In the last
scenario, the opinion is evenly split, but the initial state
needs to be finely tuned to ensure this outcome.

To prevent a single ordered phase to invade the en-
tire population, Nowak et al. [22] randomly alters the
bond between two voters after their opinion has flipped.
This disconnects some groups of voters from the major-
ity, and allows them to hold their views. The propagation
of politically-oriented information through a community
can also break cross-ideology ties; this rewiring is visible
in the network data of social media [23]. Another way to
maintain some cultural diversity is to strengthen the in-
fluence of like-minded individuals over each other, a pro-
cessed called “homophily” [14, 24–28]. A social network
can even evolve on its own, regardless of its users’ opin-
ion, as recommendation algorithms steers them toward
isolated communities [29]. These mechanisms, however,
do not favor any special partition of the opinion. For
this to happen, the voters need to be either marshaled,
or informed about the general opinion.

Opinion polls, when publicly available during an elec-
tion, can affect its outcome, for instance by enticing some
electors to cast their vote in a head-to-head election,
when they might not have cared to otherwise [30]. Tac-
tical considerations informed by opinion polls also enter
electoral dynamics [7]. When there are more than two
candidates, one might indeed prefer to use their vote to
evict a candidate they strongly dislike, and thus vote for
a contender that appears more likely to win than their
favorite. This might explain why two candidates often
take over the election, while the others are marginalized.

In binary elections, there can be no tactical voting;
opinion polls can still influence a voter’s decision, but
not for strategic reasons. Clearly, if all voters were purely
conformist, the polls would drive them towards unanim-
ity. Nonconformists, however, can drastically change the
propagation of trends and opinions in a population [31–
33]. Here, we add an element of nonconformity to the
Ising model, by assuming that voters tend to oppose the
general opinion, while remaining faithful to their friends.
In the words of social psychology, they have a negative
attitude toward the winning camp [34].

Pham et al. [35] and Korbel et al. [27] recently intro-
duced this tension between homophily and heterophily
(members of a group tend to oppose those of other
groups) in their glass-spin models. Evolving the connec-
tivity of the population according to the affinity between
two individuals, Korbel et al. [27] found that the popu-
lation spontaneously fragments into groups, the size of
which follows a realistic distribution.

In the model we propose here, heterophily also plays a
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key role, but every voter experiences it towards the entire
population. The average opinion, communicated by the
media, is perceived as the opinion of others—which every
voter would like to oppose. To fix ideas, we could call this
negative attitude towards the average opinion an anti-
establishment feeling, or an ingrained guard against the
rule of the majority. However, we shall not speculate
further about its psychological or cultural origin; rather,
we shall investigate its mathematical consequences, and
compare them to actual elections.

I. HERDING AND DISLIKE OF GENERAL
OPINION

Inspired by Nowak et al. [22] and Araújo et al. [7], we
represent an electorate with a population of N voters,
each holding one of two opposite opinions:

si = ±1, i ∈ {0, 1, . . . , N − 1} . (1)

The state of a voter is thus binary, like the spins of the
Ising model. With this definition, the general opinion is
the average of individual opinions:

s̄ =
1

N

N−1∑
i=0

si , (2)

and the fraction of the electorate that supports opinion
+1 is (s̄+ 1)/2.

We now define rules to evolve the electorate. To ex-
press them, we introduce a Hamiltonian H(s), with the
underlying idea that states for which H is large are un-
likely to occur spontaneously (s is the vector of dimen-
sion N that represents the state of the electorate). We
also want H to account for the influence of a voter’s
neighbors on their opinion, and for their sensitivity to
publicly-available poll results. A simple expression for
the Hamiltonian is

H = −
N−1∑
i,j=0

Jijsisj +Nεs̄2 , (3)

where Jij corresponds to the influence of voter j on voter
i, and ε is the sensitivity of a voter to general opinion.

The first term in Eq. (3) is common to all Ising mod-
els; here, it represents social impact [7, 22]. We assume
that Jij = Jji = 1/2 when voters i and j are socially
connected, and Jij = 0 otherwise. The structure of the
electorate can thus be represented by a lattice, in which
the nodes represent voters, and edges represent social
connections (Fig. 2b, for instance). Since J is a nonneg-
ative matrix, the corresponding term in the Hamiltonian
favors unanimity: the energy of the population (i.e. the
value of the Hamiltonian) decreases when connected vot-
ers agree.

The second term in Eq. (3), which reads

εNs̄2 = εs̄

N−1∑
i=0

si =
ε

N

N−1∑
i,j=0

sisj , (4)
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FIG. 2. a–f Numerical simulations on a 94-voters triangular
mesh. a, c, e: Evolution of the average opinion. a, c, e:
Examples of final state. Corresponding point shown on a, c
and e with black circles. g, h: Initial and final opinion of 335
voters distributed on a narrow-necked mesh (β = 30, ε = 1).
a, e, g: Initial opinions are randomly distributed with 90 % of
blue votes; c: 50% of blue votes.

is unusual, although similar ones have appeared in
some spin-glass models [notably in the cost function of
computer-chip layout, 36]. Here, it represents the impact
of opinion polls on the electorate. We assume ε to be pos-
itive, which means that, although voter i tends to agree
with their friends and neighbors, they prefer to oppose
general opinion, in proportion to −εs̄. Equivalently, one
can say that every possible pair of voters is coupled with
a small negative coefficient −ε/N .

As a simple limit case, we may consider an entirely
disconnected population (J vanishes). The Hamiltonian
then depends on the state of the electorate only through
s̄2. Such a population will tend to distribute its votes
evenly to minimize its energy (s̄ will be close to zero).
To the contrary, a well-connected population with no
sensitivity to opinion polls (ε = 0) will tend to vote
uniformly when fluctuations are weak, although discon-
nected groups might form clusters of opposed opinion.
In both cases, however, random fluctuations can perturb
the system away from the low-energy states.

We now return to a non-trivial Hamiltonian, which rep-
resents voters that are sensitive both to their neighbors’
opinion and to general opinion. To represent the influ-
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ence of neighboring voters on each other, we need to spec-
ify the connectivity matrix J. In line with earlier models
[12, 22], we assume that voters are distributed on a two-
dimensional lattice, such as the one of Fig. 2b—a crude
representation of electoral geography. As a result, the
connectivity matrix is sparse: voters that are far away
from each other on the lattice do not interact directly.
The only long-range interactions in the present model
are those that are mediated by opinion polls, through
which each voter is connected to the electorate as a whole.
A more realistic connectivity, perhaps, would involve a
scale-free distribution of interactions [21, 37, 38] but, to
keep things intuitive, we limit the present investigation
to networks in which connectivity essentially maps onto
geometrical distance.

Let us assume that each new issue of an opinion poll
triggers a debate in the population of voters. As a result
of this debate, some voter i changes their mind under
the combined influence of their neighbors and of the new
poll. How likely is the transition si 7→ −si? Obviously,
this likelihood should decrease with the associated energy
gain,

∆Ei = H(s)−H(Ti · s) , (5)

where the linear operator Ti realizes the transition si 7→
−si. In our model, ∆Ei is the only quantity that sys-
tematically influences a voter.

Of course, we cannot model a voter’s decision in a fully
deterministic way. Instead, we treat the complicated dy-
namics of electoral decision-making as random fluctua-
tions that are biased towards negative ∆Ei. We repre-
sent the strength of this bias with a positive parameter,
β, and assume that the probability pi that voter i change
their mind is a decreasing function of β∆Ei. Specifically,
we choose the algorithm of Glauber [39] to evolve the
electorate: at each step, we randomly pick a voter i and
flip their vote, also randomly, with probability pi. This
probability decreases exponentially with β∆Ei:

pi =
exp(−β∆Ei)

1 + exp(−β∆Ei)
. (6)

As visible in this expression, the units of the Hamlito-
nian do not really matter, provided the product βH is
dimensionless.

We then pick another voter, and repeat the procedure;
this loop defines an algorithm for the noise-driven evo-
lution of the electorate. A natural definition for time is
then t = nG/N , where nG is the number of iterations.
By this definition, at time t, each voter has been picked
t times on average.

After many iterations (t → ∞), Glauber dynamics
drives any Hamiltonian system toward the Boltzmann
distribution, wherein the probability of a given state s is
proportional to exp(−βH(s)). The analogy with classical
thermodynamics is now obvious, and justifies our calling
“energy” the value of the Hamiltonian. Similarly, we call
1/β the “temperature”, with the understanding that it

represents the propensity of a voter to follow their own
judgment rather than the opinion of others.

For illustration, when the temperature vanishes (β →
∞), the electorate is deterministic: voter i automatically
changes their mind when ∆Ei is negative, and sticks to
their opinion otherwise. Conversely, an infinite tempera-
ture (β → 0) means that every voter chooses their opin-
ion based only on their own judgment (at random, in
the present model). In between these two extremes, an
intermediate value of β portends richer dynamics.

II. SPLIT SOCIETY

We are now ready to numerically simulate the evo-
lution of our model. To do so, we first create a two-
dimensional, triangular lattice with 94 voters (Fig. 2b,
App. B). Each edge in this lattice corresponds to a pos-
itive element in the connectivity matrix J—two socially
connected voters.

We then run a first series of simulations without any
opinion poll (ε = 0, App. B). When the temperature
is large enough (1/β = 10, for instance), we find that
the opinion relaxes to about 50% (Fig. 2a). This is not
surprising, since voters are then indifferent to both their
neighbors and general opinion—at large temperature, the
model boils down to the null hypothesis. As it turns out,
the general opinion then behaves much like actual opinion
polls (Fig. 1a), but the opinions of individual voters are
scattered randomly across the network (Fig. 2b). The ab-
sence of any structure in this distribution indicates that
the connectivity of the electorate does not really matter
at high temperature.

The picture changes radically when we decrease the
temperature (1/β = 0.02, Fig. 2c,d), that is, when vot-
ers become unlikely to change their mind if that means
opposing their neighbors. As a result, even if we start
the simulation with evenly distributed votes, the popula-
tion now relaxes to unanimity. The resulting consensus
can be either of the two options, but most voters then
think alike. Such a population is ruled by the majority;
only seldom does some isolated voter dare opposing the
general opinion. If we want to represent a population in
which social connections matter, but which does not give
in to the majority altogether, we still lack an ingredient.

We now switch on the influence of opinion polls, by
setting ε = 1, while maintaining a low temperature
(1/β = 0.02, Fig. 2e,f). Like in the high-temperature
case, the average opinion relaxes to evenly-split votes, al-
though at the slower pace dictated by a low temperature.
Again, the evolution of the opinion resembles that of
Fig. 1a. However, the distribution of individual opinions
in this population is entirely different from that of Fig. 2b:
Like-minded voters gather into two clusters of compara-
ble size. The two camps are virtually unanimous, and
their sizes match each other almost perfectly—the epit-
ome of a split society. The rest of the paper focuses on
the existence and the properties of this new, split-society
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phase.

III. VOTE PATTERN AND SOCIAL RIFT

Although the coin-flipping electorate and the interact-
ing, poll-sensitive one both relax to 50 % (figures 2a, e),
the corresponding patterns on the connectivity lattice
look entirely different (figures 2b, f). These patterns, of
course, are only visible to an all-seeing observer, but an
individual voter would nonetheless be able to tell them
apart, based only on local perceptions. One measure of
these perceptions is the clustering coefficient, c, which is
the average proportion of a voter’s neighbors that share
their opinion. At high temperature, only half of them
agree (c = 0.5 ± 0.01 in the simulation, Fig. 2b). Con-
versely, in a split society, every voter is surrounded with
like-minded neighbors, with barely any contact with po-
litical opponents (c = 0.9±0.02)—except for those voters
who find themselves on the boundary between the two
camps (Fig. 2f).

Where does this boundary lies? On the disk lattice
of Fig. 2f, it often settles along a diameter. To fix its
position, we generate a peanut-shaped mesh, in which a
narrow neck separates the network into two equal parts
(Fig. 2g,h). This configuration creates a social rift: Vot-
ers are better connected to their own side of the network
than to the opposite side. This rift exists prior to the
election process; we now investigate how it expresses it-
self in the election result.

Starting the simulation with a biased opinion (90% of
blue votes initially, β = 30 and ε = 1), we find that
clusters of like-minded voters appear and begin to merge
(Fig. 2g,h). Over time, these clusters tend to split the
population into two compact camps of equal size, and the
boundary that separates them places itself right across
the neck of the mesh. This location, of course, minimizes
the length of the interface, and therefore minimizes the
energy of the population; in an hourglass filled with two
immiscible fluids, surface tension would favor the same
configuration.

Clearly, the symmetric mesh of Fig. 2g,h favors the
partition of the electorate into two equal camps. The
electorate’s connectivity and opinion polls thus concur to
bring the average opinion to 50 %. An assymetric mesh,
with one side larger than the other, would likely push
the average opinion away from 50 %—an example of the
connectivity’s influencing an election (we shall not in-
vestigate this phenomenon here). In a real population,
however, one can expect that the lines of weak connec-
tivity are many, and therefore that the system can find a
path along some of those lines that splits the electorate
into two equal parts.

At the scale of a country, social connections pertain, at
least partly, to geography. We can thus expect that the
spatial distribution of votes during an election bears the
mark of social connections. In 1815, for instance, Poland
was re-partitioned between Prussia, Austria and Russia,

and this partition still lingers on in Polish society [40].
If we superimpose the 1815 border to the 2020 electoral
map (dashed line in Fig. 1b), we find that they match
remarkably well. This phenomenon occurred in many
Polish elections, and is often attributed to cultural and
political differences between the three empires [4, 41].

The present model suggests a distinct interpretation,
whereby the social structure of present-day Poland bears
the mark of historical borders, across which people are
less likely to be connected—as visible, for instance, in
marriage statistics [42–44]. Like in the narrow-necked
lattice of Fig. 2h, the old borders would then be a favor-
able location for the interface between political camps.
The same mechanism might also account for the opposi-
tion between cities and rural areas around them (Fig. 1b).
This interpretation is entirely speculative at this stage,
but we take this resemblance with reality as encourage-
ment.

IV. FLUCTUATION-INDUCED PHASE
TRANSITION

The Ising model was introduced to explain the phase
transition that temperature induces in ferromagnetic ma-
terials [17, 18]; we therefore expect that the present elec-
tion model undergoes a similar transition.

We begin with the one-dimensional, periodic network
shown in Fig. 3a; when ε vanishes, this is the original
Ising model in one dimension. It has a simple analytical
solution which, in the thermodynamic limit (N → ∞),
shows no singular phase transition (black dashed lines in
Fig. 3c,e,g). As they should, our simulations conform to
this theory (blue dots in Fig. 3c,e,g): as β increases, the
energy density e (total energy divided by N) decreases
continuously, the clustering coefficient c increases, and
the general opinion s̄ fluctuates about zero.

When the opinion-polls term is introduced (ε = 1), not
much changes, although the fluctuations of the average
opinion at low temperature are reduced (pink dots in
Fig. 3c,e,g). The simulations therefore suggest that, in
one dimension, temperature induces no singular phase
transition in the present model, like in the original Ising
model.

In two dimensions, the Ising model can be solved only
in some specific cases [45] but, in general, it is known to
have a critical point at some finite, nonzero temperature.
On an infinite, regular, triangular lattice, the inverse crit-
ical temperature is βc = log(3)/4 [46, 47]. (Using a pe-
riodic square lattice does not change qualitatively the
results we report here, App. B 2.) In the absence of the
opinion-poll term (ε = 0), our numerical simulations on
an irregular, triangular mesh (N = 1046, Fig. 3b) show a
similar behavior (blue dots in Fig. 3d,f,h): upon increas-
ing β, the system acquires a spontaneous magnetization
near βc. An ordered phase then emerges, whereby the
general opinion takes one of two opposed, nonzero values
(s̄ = ±s∗, where s∗ is a positive function of β).
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FIG. 3. Fluctuation-induced transition. Left column: peri-
odic one-dimensionnal lattice (N = 1000, one out of ten nodes
shown). Right column: triangular lattice (N = 1046). a, b
Examples of equilibrium states. c–h Final stage of the numer-
ical simulation. Blue dots: no influence of the polls (ε = 0),
pink dots: polls matter (ε = 1). Black circles correspond to
states shown in a, b. Dashed black lines in c, e and g show
the exact solution [ε = 0, 17]. The dotted black lines in d,
f and h show the critical temperature for a regular, infinite,
triangular lattice, βc = log(3)/4.

Despite the small size of our numerical simulations
(N = 1046), the transition that occurs near the theo-
retical value of βc is sharp (Fig. 3h). Its rigorous char-
acterization, however, would require larger meshes; we
leave it for future investigations. Nonetheless, confident
that our small simulations behave qualitatively as they
should, we proceed with the introduction of opinion polls.

When the opinion-poll term is switched on (ε > 0), it
causes a drastic change in the ordered phase (ε = 1, pink
dots in Fig. 3d,f,h). Like in one dimension, the energy
density and the clustering coefficient are barely affected

by ε (a slight shift is visible at high β), but s̄ remains
small at any temperature (Fig. 3h). Above βc, two seem-
ingly ferromagnetic domains coexist, at the energetic cost
of maintaining an interface between them—a cost that
the opinion-poll term needs to balance. The next section
is devoted to this energy trade-off.

V. CONTINUOUS APPROXIMATION

We now assume that the temperature is low, and that
the population of voters is ordered: it has either reached
a consensus, or split into two camps. We can then rep-
resent it as a connected block of n voters which support
one opinion, and another, opposed block of N −n voters
(the size of either block can vanish). These blocks are
essentially uniform, but a small proportion p of isolated
voters can oppose the bulk of their own group (p is likely
to increase with temperature).

In App. C, we propose a continuous model which ap-
proximates the Hamiltonian, Eq. (3); here, we briefly
present the assumptions it is based on, and their implica-
tions. In the thermodynamic limit (N → ∞), and in two
dimensions, the two blocks are separated by a smooth in-
terface of length L. This interface has an energetic cost,
since it causes some voters to oppose their neighbors. On
a two-dimensional triangular lattice, the number of links
ni cut by this interface is, roughly, twice the number of
triangles that it crosses (App. C 2):

ni = 2

√
N

A
L , (7)

where A is the total area occupied by the population
of voters. This area is arbitrary, since only connectivity
matters, but it provides a scale for L.

This scaling is critical to the continuous approxima-
tion. On a regular square grid, for instance, only the
prefactor of Eq. (7) would change, and the continuous ap-
proximation would hold, although the anisotropy of the
grid would probably affect the orientation of the inter-
face. Conversely, on a scale-free network, the continuous
approximation cannot hold, and the split-society phase
might altogether disappear. On which class of meshes
can this phase form? This is yet an open question.

Returning to our triangular mesh, we need to estimate
the average energy associated to a link cut by the inter-
face. In general, there is no easy solution to this problem,
because the two phases include mavericks voters, the pro-
portion of which, p, increases near the critical tempera-
ture. When p becomes significant, the very definition of
the interface becomes ambiguous; we avoid this issue by
assuming that the temperature is low enough for maver-
icks to be ignored (p = 0 and s∗ = 1). The energy cost
associated to the boundary is then simply 2ni.

The next significant assumption is that, at low tem-
perature, the only relevant configuration is that which
minimizes the total energy. We thus neglect the entropic
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contribution of the fluctuations, in the spirit of the mean-
field theory. This turns our problem into a purely geo-
metrical optimization: For a given value of the general
opinion s̄, we look for the configuration that minimizes
L (App. C 3). Just like intuition suggests, the best pos-
sible shape for the interface is a circle which intersects
the boundary of the lattice at a right angle (or a collec-
tion of such circles). The relation between the length of
the optimal interface, Lmin, and the general opinion, s̄,
depends on the geometry of the lattice. (Similarly, the
interface between two immiscible liquids adjusts to the
shape of the container.)

To fix ideas, we represent the entire population with
a disk of radius unity—the geographical equivalent of
a physicist’s spherical cow (App. C 3). Elementary
trigonometry then yields an implicit formula which re-
lates the minimal length of the interface Lmin to the gen-
eral opinion s̄. Accordingly, we propose a continuous
approximation for the Hamiltonian, which we write as a
function of s̄ (App. C 4):

Hc (s̄) = εN

(
4

ε
√
Nπ

Lmin(s̄) + s̄2
)

. (8)

The state of the electorate is then found by minimizing
this expression with respect to s̄.

Figure 4a shows the rescaled energy density e/ε as a
function of the general opinion s̄, and the rescaled sen-
sitivity to polls ε

√
N . There are three energy valleys in

the (ε
√
N, s̄) plane (loci of local minima with respect to

s̄). Two of them, along s̄ = ±1, correspond to una-
nimity, whereas the the third one, along s̄ = 0, rep-
resents the split-society state, which exists only when
ε
√
N > 3π3/2/8. For small values of ε

√
N , the two una-

nimity states are global minima for the energy. As ε
√
N

increases, however, the system undergoes a first-order
transition and, when ε

√
N = 8/

√
π, the split-society

state becomes the global minimum (App. C 4). The pa-
rameter that controls the stability of each phase is thus
ε
√
N , which means that the existence of the split-society

phase depends not only on the sensitivity to the polls,
but also on the size of the electorate.

These results are based on an approximate, continu-
ous model. To check them, we use a series of numerical
simulations on triangular lattices (App. B); we find good
agreement with the continuous model (Fig. 4a). The nu-
merical simulations appear to switch from unanimity to
the split-society phase when N exceeds the transitional
number of voters, namely

Nt =
64

πε2
. (9)

Despite this good agreement, the above expression should
be treated with caution. Its prefactor, in particular, de-
pends on the geometry of the lattice. The scaling relation
Nt ∼ ε−2, however, is likely to hold in other networks
with a similar topology.

In summary, the split-society phase is thermodynam-
ically stable only when voters are sensitive enough to
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tions on a two-dimensional triangular mesh (β = 0.5). b Mag-
netization induced on a two-dimensional, triangular mesh by
an external field H. The population of voters is in the split-
society state. Dashed black line: continuous approximation,
Eq. (11).

opinion polls. Because this phase involves an interface,
its stability depends on the size of the electorate; we shall
make use of this dependence in Sec. VII, which is devoted
to actual elections. Before we do so, however, we first
need to consider fluctuations.

VI. SUSCEPTIBILITY AND FLUCTUATIONS

Thermal systems fluctuate, and the amplitude of their
fluctuations depends on their sensitivity to external
forces—their susceptibility. Identifying, let alone mea-
suring, some external forcing in an electorate is, at
best, challenging, but measuring fluctuations should be
straightforward.

Establishing the fluctuation-dissipation relation for the
Ising model has become a textbook exercise, and the
opinion-poll term does not affect this classical derivation
(App. C 5). It begins with the introduction of an addi-
tional term, −HNs̄, to the Hamiltonian of Eq. (3), where
H represents the intensity of an external magnetic field.
Here, this term serves a mathematical purpose, but one
can also propose a sociological interpretation for it. It
could represent a general preference for one of the two
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candidates, or the successful propaganda of one party.
Alternatively, the polls could be biased, and systemati-
cally evaluate the general opinion to s̄−H/ε instead of s̄
[48]; this would add the same term to the Hamiltonian.

Clearly, the equilibrium configuration of the electorate
will depend on H, and so will the general opinion s̄. As-
suming the system has reached the Boltzmann equilib-
rium, we find that the susceptibility χ0 reads (App. C 5):

χ0 ≡ ∂s̄

∂H

∣∣∣∣
H=0

= βNσ2
o , (10)

where σ2
o is the variance of the voters’ opinion—the am-

plitude of the fluctuations. Written in this form, the
susceptibility of the electorate seems unrelated to ε; in
reality, the sensitivity to polls will express itself through
σo.

To see this, we leave the realm of exact derivations,
and return to the continuum approximation of Sec. V.
Adding an external forcing, −HNs̄, to the approximate
Hamiltonian of Eq. (8) shifts the split-society valley ver-
tically in Fig. 4a. Elementary calculus yields

χ0 =
1

2ε
(11)

in the thermodynamic limit (N → ∞, App. C 5). To
validate this expression, we run numerical simulations on
triangular lattices; we find good agreement between the
two (Fig. 4b). Again, the numerical prefactor in Eq. (11)
depends on the topology of the lattice, but we expect the
scaling χ0 ∼ 1/ε to be generic.

Equation (11) shows how exotic the split-society phase
is. Like a magnet below the Curie temperature, it is an
ordered phase wherein the interactions between neigh-
bors overcome thermal fluctuations. Unlike the classical
ferromagnetic phase, however, its susceptibility remains
finite—in the fashion of the paramagnetic phase. In that
sense, the split-society phase is a hybrid.

In electoral terms, the susceptibility tells us how eas-
ily one political camp can expand at the expense of the
other. For instance, if the polls are biased, the camp that
appears to lose will grow, because voters will tend to op-
pose the winner. The actual opinion will thus shift in
proportion to the susceptibility of the split-society phase.
Through Eq. (10), this susceptibility should relate the
fluctuations of electoral results to the size of the elec-
torate.

VII. POPULATION SIZE

Opinion polls provide some insight about the fluctu-
ations of public opinion during an election campaign
(Fig. 1a) [49]. In particular, we can measure their vari-
ance σp but, because pollsters survey only a small subset
of the electorate, σp is not the variance of the opinion,
σo. To distinguish the two, we average the polls over
time, until their variance reaches a plateau, which we

interpret as σo (App. A 1). During the 2020 Polish presi-
dential election, for instance, we find σo ≈ 0.01 (0.5 pp).
This can only be an order-of-magnitude estimate, which
we now use to illustrate how the present model can be
compared to observations.

Combining the two expressions of the susceptibility de-
rived in Sec. VI, Eqs. (10) and (11), we find

βε =
1

2Nσ2
o

(12)

when the electorate is in the split-society state. In 2020,
16.4 million voters took part in the Polish presidential
election; we therefore estimate that βε ≈ 3 · 10−4. To
separate the ε from β, we now use the transitional size
Nt of the split-society state (Sec. V).

If the social temperature 1/β is low enough, the elec-
torate should be in an ordered state, and prone to the
phase transition of Fig. 4a. Accordingly, countries with
a small population would reach a near consensus during
an election, whereas larger ones would find themselves
in the split-society state. To check this, we collect the
result of 168 binary elections in 31 countries since 1990
(App. E 1). Countries where the electorate is less than
about a million voters tend to generate large margins of
victory (Fig. 5). Larger countries, on the other hand,
typically generate a margin of victory of about 7 pp. A
more careful analysis of the data confirms that a transi-
tional population size Nt = 106 indeed separates the data
into two classes with distinct distributions (App. E 3).

Looking at this empirical fact through the lens of the
present model, we can estimate the sensitivity to polls
with Eq. (9); we then find ε ≈ 0.005. This value means
that, for an average voter, the result of opinion polls mat-
ters about 200 times less than their friends’ and neigh-
bors’ opinion. This weak influence, however, accumulates
over the electorate, and can ultimately maintain an entire
population in the split-society state.

Combining this result with Eq. (12), we find a temper-
ature of β ≈ 0.07, about a quarter of the critical value
βc (Sec. IV). This estimate therefore suggests that β is
near the critical value, which means that the political
decisions of voters are, on average, balanced—a voter is
about as likely to be influenced by others as to make a
personal decision.

These estimates should be treated as preliminary, as
they are based on a small data set, and on several crude
approximations (a specific connectivity, identical voters
and constant parameters, to name a few). If confirmed,
however, they would indicate that electorates self-adjust
to criticality, through a mechanism that remains to be
elucidated.

VIII. CONCLUSION

Inspired by election results and electoral maps, we
have introduced the influence of opinion polls in a model
of interacting voters. The resulting system differs from
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(App. E 3).

the original Ising model only by a long-range interaction
term, but this elementary change allows the split-society
phase to emerge. This new phase is ordered, in the sense
that most voters share their neighbors’ opinion, but the
general opinion is evenly split. Opinion polls can thus
foster the emergence of two opposed camps.

The split-society phase has remarkable properties. In
particular, its susceptibility remains finite and indepen-
dent of temperature (unlike that of the classical ferromag-
netic state). In addition, the interface that splits the elec-
torate into two camps makes the system size-dependent,
and tends to place itself along preexisting fault lines in
the electorate.

These properties need to be better understood, and
formally established. A specially enticing endeavor is to
seek the exact partition function of a two-dimensional
electorate in the thermodynamic limit. This would yield
the critical temperature below which the split-society
state exists, and explain why the susceptibility of this
phase is constant (beyond the rudimentary reasoning of
Sec. V). The kinship of the present model with the orig-
inal Ising model suggests that these questions could be
addressed with the tools of statistical physics, at least to
some extent.

Does the split-society phase deserve its name? Its
most striking properties certainly match our perception
of what a split society is: two political camps of similar
strength stand face to face, with little connections be-
tween them. To reverse an election, only a small number
of marginal voters need to flip their allegiance, while the
bulk of the two camps stick to their opinion.

These features are familiar to the observer of modern

elections, but the present model needs a more rigorous
evaluation. In Sec. VII, we delineated a path towards
its comparison with observations. Among the numerical
estimates we propose, the transitional number of voters
Nt, above which the split-society phase appears, is prob-
ably the most robust. It is, after all, directly based on
election results, which are widely available and reliable
data. In itself, though, it is not an exacting test of the
model.

The evaluation of the two other parameters, the tem-
perature 1/β and the sensitivity to polls ε, is more fragile.
It relies on an accurate estimate of the opinion fluctua-
tions, and on the assumption that these parameters are
constant. Their value should be treated with caution,
but we find it at least encouraging that β is close to
one. Extreme values, indeed, would be unrealistic: every
voter would be either entirely disconnected from the oth-
ers (β → 0), or completely determined by them (β → ∞).

Finally, there is the connectivity network. We have
limited ourselves to a two-dimensional geometry for sim-
plicity, and for comparison with electoral maps. In re-
ality, social networks are more complicated (possibly
scale-free) and the notion of neighbors becomes hazy.
The pursuit of the split-society phase in complex net-
works promises an exciting mathematical quest—one
from which we might learn about ourselves.
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Appendix A: Polish presidential election of 2020

1. Opinion polls

The 2020 presidential election in Poland lasted from
June 10 to July 12. During the first round (until June
28), two candidates were selected for the vote of the sec-
ond round, which took place two weeks later. Various
polling organizations started probing the Polish opinion
about this configuration (A. Duda vs. R. Trzaskowski)
as early as May 14; Wikipedia contributors [50] have col-
lected this data, which we use here to probe the dynamics
of a binary election (Fig. 6a).

In total, 70 opinion polls make up this data set (we
drop an early poll from 2019); they are distributed over
the 59 days before the election. The polling rate is about
0.85 poll day−1 initially. It increases to 2.0 poll day−1

during the last 20 days before the second round (Fig. 6b).
Since the opinion appears to have converged at the time
of this transition, we limit our analysis to the polls made
less than 20 days before the election.
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c).

After relaxing to a value close to 50 %, the opinion polls
fluctuate around their average. We now try to separate,
in this fluctuation, the contribution of measurement noise
from the actual variability of the opinion.

2. Fluctuations

Over the last 20 days of the election, the standard de-
viation of the polls is σ ≈ 1.40 percentage point (pp),
slightly less than the measurement uncertainty we would

expect in a sample of 1000 voters, which is typical for
opinion polls [51]. This observation alone tells us that es-
timating the fluctuations of a population’s opinion based
on surveys is fraught with statistical traps.

Indeed, assuming that opinion polls are an unbiased,
but noisy, measure of the actual opinion, their variance,
σ2
p, and that of the opinion, σ2

o , should add up to the
total variance:

σ2 = σ2
p + σ2

o . (A1)

The opinion polls of Fig. 6a provide a direct estimate of
the first term only—which we find to be comparable to
what we expect σ2

p to be for a typical opinion survey.
To distinguish the fluctuations of the polls from those

of the opinion, we assume that the latter are correlated
in time, whereas the former are not. This assumption is
consistent with the Glauber dynamics: When the tem-
perature is low enough (large β), only a small fraction of
the population will change their mind between two polls.

If this assumption is true, and if the polls are frequent
enough, we should be able to reveal the slow evolution of
the opinion by assigning the data points to time bins of
varying size. This binning should allow us to reduce the
variability within each bin, and thus strip the time series
from the polling noise.

In practice, we calculate the variance within each bin,
σ2
b , and plot its average over bins, ⟨σ2

b ⟩, as a function of
the bin size (Fig. 6b). To estimate the uncertainty about
this quantity, we randomly pick three quarters of our
data, and bin the data again. Repeating this bootstrap-
ping procedure 1000 times, we find a standard deviation
of about 0.4 pp (20 % relative uncertainty).

As the bin size increases, the average variance in a bin
also increases (the variance of a bin that contains a single
data point vanishes). When the bin size reaches about
three days, the average variance ⟨σ2

b ⟩ seems to plateau
around 1.75 pp2, before it finally reaches the total vari-
ance σ2, after about 7 days. We interpret the first plateau
as the variance of the polls σ2

p. The rest, σ2 − σ2
p, pro-

vides us with an estimate of the opinion fluctuations:
σo ≈ 0.5pp (expressed in terms of the variance of s̄,
σo ≈ 0.01).

For the sake of consistency, we finally distribute the
data into 5-days bins (pink line in Fig. 6a, also in Fig. 1,
and calculate the variance of this binned data set—
hoping that it is rid of most of the measurement noise.
We then find σo ≈ 0.2pp.

Appendix B: Numerical simulations

1. Numerical procedure

To illustrate the theory and evaluate our approxima-
tions, we run simulations on one- and two-dimensional
lattices. The triangular lattices shown in Figs. 2 and 3,
and used in the simulations of Fig. 4, are generated with
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the mesher of FreeFem++ [52]. We then generate the
connectivity matrix J associated to these meshes, by set-
ting Jij = Jji = 1/2 when nodes i and j are connected,
and Jij = Jji = 0 otherwise. The resulting matrix is
sparse, since only neighboring nodes can be connected.
The circular mesh of Fig. 2b has 94 nodes. The boundary
of the peanut-shaped mesh of Fig. 2g,h is parameterized
by

r = 1 + 0.7 cos(2θ) , (B1)

where r and θ are the polar coordinates of a point along
the boundary. The mesh has 335 nodes.

We use the Glauber algorithm to evolve the state of
the system [39]. At each time step, after node i has been
picked randomly, the entire Hamiltonian is evaluated to
get the transition energy ∆Ei. Clearly, this algorithm is
not optimized for performance, but it serves its illustra-
tive purpose well. All numerical routines are available
online [53].

2. Fluctuation-induced phase transition

The one-dimensional lattice of Fig. 3a is made of 1000
nodes, each connected to exactly two neighbors. For
each run, log10 β is randomly picked from a uniform
distribution between −1 and 1. Each simulation runs
until t = 103. The two-dimensional, triangular lattice
of Fig. 3b has 1046 nodes; log10 β is randomly picked
between − log10 4 and log10 4. Simulations run until
t = 104.

To check whether this transition occurs in the tradi-
tional two-dimensional Ising model, we run similar sim-
ulations on a periodic square grid (Fig. 7a). When the
influence of the polls is switched off (ε = 0, blue dots
in Fig. 7a,c,e,g), we recover the classical phase transition
[45]. When polls matter (ε = 1, pink dots), a similar
transition seems to occur, but the general opinion s̄ (i.e.
the average magnetization) of the ordered phase vanishes.
This is the signature of the split-society phase.

In the split-society phase that occurs on a periodic
square grid (Fig. 7a), the boundary between the two do-
mains can lie anywhere on the grid. To break this sym-
metry, and reproduce the narrow-necked mesh of Fig. 2g,
h, we now consider a square grid wherein a series of
neighboring nodes are disconnected (Fig. 7b). The dis-
connected nodes separate the grid into two equal parts,
joined only through a bottleneck around the center of
the grid. This topology barely affects the phase tran-
sition (Fig. 7d,f,h) but, this time, the two domains of
the split-society phase tend to occupy each side of the
bottleneck, thus minimizing the length of the boundary
between them.
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3. First-order transition at low temperature

The simulations shown on Fig. 4 were made on three
triangular meshes of circular shape, with 116, 330 and
1045 nodes. In Fig. 4a the temperature is fixed to
β = 0.5, while log10(ε

√
N) is randomly picked between

log10 7 − 2 and log10 7 + 1. Each simulation runs until
t = 103. In Fig. 4b, β = 1 and ε is fixed to the value
indicated in the legend. The (rescaled) exterior mag-
netic field H/ε is picked randomly between −1/2 and
1/2. Each simulation is run until t = 103.
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Appendix C: Continuous limit

1. Political camps

We consider the Hamiltonian of Eq. 3 in the limit of
a large number of voters (N → ∞), when they are dis-
tributed on a two-dimensional lattice, such as the one
of Fig. 3b. In the presence of an external field H, this
Hamiltonian becomes

H = −
∑
i,j

Jijsisj +
ε

N

(∑
i

si

)2

−H
∑
i

si . (C1)

We want to approximate our system as a two-
dimensional continuum. To do so, we first consider that
the voters distribute themselves over a fixed domain. The
density of voters thus grows with N , and we can intro-
duce the local opinion s, which is some local average of
the opinions of nearby voters. By construction, in the
thermodynamic limit (N → ∞), s becomes a function of
position which can take any real value between −1 and
+1.

When the temperature is low enough, we expect that
the population of voters will form one or two homoge-
neous phases. In other words, the disk that represents
the population will be either covered with a single phase
of local opinion +s∗ or −s∗ (Fig. 2d), or split into two
phases of opposite opinions +s∗ and −s∗ (Fig. 2f). This
allows us to introduce the next simplification: We as-
sume that the local opinion s can take only two values,
+s∗ and −s∗. The local opinion s thus splits the main
domain into subdomains with distinct phases (political
camps).

Each phase represents a group of connected voters,
most of whom share a common opinion. Within each
phase, however, there are isolated voters whose opinion
oppose the majority of their group. As a result, s∗ can be
less than 1, especially when the temperature gets close
to its critical value. In fact, we expect these phases to be
essentially the same as those of the classical Ising model
(ε = 0) at low temperature.

We now return to the Hamiltonian of the original
model, Eq. (C1). Its first term accounts for the inter-
actions between neighbors. In the continuous limit, and
for an isotropic and homogeneous mesh, we expect this
contribution to be proportional to the length ℓ of the in-
terface separating two phases; we shall estimate this term
in the next section. As for the energy stemming from the
interaction of neighboring voters within each phase, it is
independent from the shape of the political camps, and
its density is the same in both camps. It can thus be
discarded as a constant contribution to the total energy.

The second and third terms of the Hamiltonian depend
on the system’s state only via the global opinion

s̄ =
1

N

N∑
i=1

si = s∗
(
2A

A
− 1

)
, (C2)
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where A is the area occupied by the phase of local opinion
s∗, and A is that of the whole domain. As a consequence,
the system’s energy depends essentially on the area of one
of the phases (A, for instance) and on the length of the
interface ℓ. Therefore, we can use these two parameters
(or, equivalently, s̄ instead of A) to describe the system—
this is our third, and last, simplification. Of course, these
parameters are not fully independent; when A vanishes,
for instance, ℓ must also vanish.

2. Interface energy

To calculate the energy increase associated to the in-
terface between two phases, we first need to estimate the
number of links that are crossed by this interface, and
then the energy associated to each link.

If, on average, the mesh is homogeneous and isotropic,
the number of links that an interface crosses, ni, does
not depend on the location of the interface, nor on its
orientation. In the thermodynamic limit (N → ∞), the
typical distance dN between nodes becomes infinitesimal.
Therefore, if the interface is smooth, it will appear as
a straight line at the scale of dN . In other words, ni

depends only on the interface’s length L, not on its shape.
We can thus calculate ni along any smooth path we like.

Let us consider a path that runs straight through an
isotropic and homogeneous triangular mesh, such as the
one of Fig. 8a. On average, this path will cut two edges
over a distance dN (the average distance between nodes).
This suggests ni ≈ 2L/dN . To estimate dN , we simply
take the square root of the inverse density of nodes: dN ≈√
A/N . Overall, we find Eq. (7). To test this estimate,

we generate a series of triangular mesh over a disk of
radius unity (A = π, Fig. 8a), and count the number of
edges that intersect a diameter (L = 2). We find that
Eq. (7) is in excellent agreement with the exact results
(Fig. 8b).
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We now need to evaluate the energy gain associated
to each link crossed by the interface. To do so, we first
consider that the whole domain is invaded by one of the
two phases. At a low enough temperature, the phase is
virtually homogeneous, and the general opinion is s∗ ≈ 1.
We then draw an interface, and flip all the nodes that
are on one side of the interface. For each link cut by the
interface, the average energy increase is

δE = 2 , (C3)

whereas the energy associated to the other links does not
change. When the temperature increases, we expect that
there will be more and more isolated voters who oppose
the opinion of their phase; s∗ would then decrease, and so
would the energetic cost of the interface. Hereafter, for
simplicity, we assume that the temperature is low enough
that s∗ = 1.

Understanding the structure of an interface in the two-
dimensional Ising model is an end in itself, which requires
a rigorous, dedicated investigation [54]. The simplistic
approach we use here will eventually break upon ap-
proaching the critical temperature. Before this happens,
however, we expect the continuous model to behave like
the original, discrete model, at least when N is large and
the temperature is well below criticality.

3. Hamiltonian of the continuous model

We can now combine equations (C1), (7), and (C3) to
write a Hamiltonian Hc for the continuous model:

Hc = 4

√
N

A
ℓ+ εNs̄2 −HNs̄ . (C4)

where one can use Eq. (C2) to replace s̄ with A.
From now on, we shall interpret this expression within

the framework of the mean-field theory. In other words,
we shall look for a configuration that minimizes the
Hamiltonian Hc (as opposed to the free energy of the
system). To do so, we need to relate the length ℓ of the
interface to the general opinion s̄ or, equivalently, to the
area A of one of the two political camps.

At low temperature, the population of voters will tend
to minimize its total energy, which we can treat as an
approximation of its free energy. If the approximations
of section C 1 hold, we need to minimize the Hamilto-
nian Hc with respect to the general opinion s̄ and the
length ℓ of the interface. Fortunately, we can minimize
the Hamiltonian in two steps: we first look for the min-
imum value of ℓ for a fixed value of s̄ (and thus A), and
then minimize the resulting Hamiltonian with respect to
s̄.

The first step of this procedure is a purely geometrical
problem, which is analogous to finding the shape of a
(two-dimensional) droplet of oil in water: surface tension
minimizes the length of the interface between the two
fluids. The droplet’s shape depends on the container’s,

and on the contact angle of the triple point (where the
interface joins the container). Here, for simplicity, we
assume that the domain is a disk of unit radius, and
therefore of area A = π (Fig. 9a). Our aim is then to
find the shape that minimizes the length ℓ of the interface
between two phases on this disk, for a fixed value of A
(the area of the first phase).

Based on the analogy with surface tension, we know
that this optimal droplet will be a portion of a disk
(Fig. 9a). This observation reduces our optimization
problem to two parameters: the radius of the droplet,
and the distance from its center to the center of the sys-
tem.

Our Hamiltonian is insensitive to the interface between
any of the two phases and the outside world (the border
of the country, black line in Fig. 9a). Pursuing the surface
tension analogy further, this observation corresponds to
neutral wettability, which implies that the contact angle
at the triple point is 90◦. Our optimization problem now
depends only on a single parameter, which we chose to
be the angle α formed by the centers of the two disks and
one of their intersections (Fig. 9).

We now need to identify the circles that intersect the
unit disk at a normal angle, and determine the area
A of the intersection and the length ℓmin of the inter-
face. Based on elementary geometry, we find that the
two quantities can be expressed as functions of α:

A =
π

2
− α+

α

(tanα)2
− 1

tanα
(C5)

ℓmin =
2α

tanα
. (C6)

We have thus parameterized the relation ℓmin(A)
(Fig. 9b). As expected, in the split-society state (s̄ = 0,
A = π/2, α → 0), the length of the interface is ℓmin = 2,
that is, the diameter of the unit disk.

4. Energy landscape

We are now ready to express the energy of the pop-
ulation as a function of the general opinion s̄ only. To
do so, we note that for a configuration to minimize the
Hamiltonian (C4), it needs to minimize the length ℓ of
the interface between the two phases. Thus, using rela-
tion (C2), the energy density ec of the population reads,
in the mean field theory,

ec
ε

=
1

ε∗
ℓmin

(π
2
(1 + s̄)

)
+ s̄2 − H

ε
s̄ , (C7)

where we have defined the (rescaled) sensitivity to polls
as

ε∗ =
ε
√
Nπ

4
. (C8)
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FIG. 9. Optimal droplet in a disk. a: Example of optimal
droplet (orange area), for s̄ = 3/4 (equivalently, A = π/8).
The small black square indicates a right angle. b: Relation
between the optimal length ℓmin and the droplet area A, equa-
tions (C6) and (C5).

To convert Eq. (C7) into Eq. 8, we simply need to choose
H = 0 and, for convenience, define

Lmin(s̄) = ℓmin

(π
2

(1 + s̄)
)
. (C9)

Let us first consider Eq. (C7) in the absence of any
external field (H = 0, Fig. 10). When the sensitivity
of the population to polls is small enough (blue curve,
Fig. 10), the energy reaches a maximum for s̄ = 0 (split-
society state), and two minima of equal depth for s̄ = ±1
(consensus). Above some transitional value, the max-
imum turns into a local minima (pink curve, Fig. 10).
This transition occurs when the second derivative of the
energy vanishes, that is, when

ε∗ = −π2

8
ℓ′′min

(π
2

)
. (C10)

Using equations (C5) and (C6), we find that there is a
local minimum at s̄ = 0 when ε∗ > 3π2/32. We now need
to know whether the minimum for s̄ = 0 is a global one.
This is easily achieved by evaluating Eq. (C7) at s̄ = 0
(then ℓmin = 2), and at s̄ = ±1 (then ℓmin = 0). We find
that the split-society state is a global minimum when
ε∗ > 2. This value, of course, relies on our assumption
that s∗ ≈ 1. At non-zero temperatures, the energy of the
interface should decrease, and s̄ gets bounded by −s∗

and +s∗; these changes will affect the stability of the
split-society state.

The above reasoning holds only for the global mini-
mum of the energy (thermodynamically stable state) but,
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FIG. 10. Energy landscape for a population of voters at low
temperature. The three curves represent Eq. (C7) with H =
0. The colored disks show the geometrical distribution of the
opposed phases (s̄ corresponds to the center of each disk).

as suggested by Fig. 10, there could also be local minima
(metastable states). A thorough investigation of the lat-
ter would require us to consider distinct droplets of the
same phase, or droplets away from any boundary. As
this would significantly complicate the analysis, we shall
not pursue this investigation here.

5. Susceptibility of the split-society state

We now turn our attention to the susceptibility of a
population: How does the general opinion s̄ change when
some external forcing H is applied to the electorate? We
limit ourselves to the split-society case (s̄ ≈ 0). Up to
second order, the population’s energy reads

ec
εN

≈ 2

ε∗
+

(
1− 3π2

32ε∗

)
s̄2 − H

ε
s̄ . (C11)

The application of an external field H thus shifts the
minimum of the population’s energy. This minimum can
be found by differentiating Eq. (C11) with respect to
s̄, which yields the susceptibility χ0 of the split-society
phase:

χ0 =
∂s̄

∂H

∣∣∣∣
s̄=0

=
1

2ε

(
1− 3π2

32ε∗

) . (C12)

As expected, the susceptibility diverges when the split-
society phase disappears (ε∗ → 3π2/32). In the thermo-
dynamic limit (N → ∞), or when the population is very
sensitive to polls (ε → ∞), the susceptibility takes the
simple form

lim
ε∗→∞

χ0 =
1

2ε
. (C13)
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The numerical simulations shown in Fig. 4b are compat-
ible with this approximate expression. In the next sec-
tion, in line with classical statistical physics, we relate
the susceptibility to the intensity of the fluctuations.

Appendix D: Fluctuation-dissipation relation

When its evolution is governed by the Glauber dynam-
ics, our discrete model relaxes to the Boltzmann equilib-
rium. A general consequence of this equilibrium is the
relation between the amplitude of the fluctuations, and
the susceptibility of the system to external forces—an
instance of the fluctuation-dissipation theorem [e.g., 55].

The Ising model we use yields this classic relation, in
the form of Eq. 10. The new term that we added to the
Hamiltonian, which accounts for the influence of opin-
ion polls, does not affect the textbook derivation of the
fluctuation-dissipation relation. To show this, we begin
with recalling the probability density in the Boltzmann
equilibrium:

ρ(s) =
exp (−βH(s))

Z
, (D1)

where the partition function Z reads

Z =
∑
{s}

exp (−βH(s)) . (D2)

The above summation applies to all possible configura-
tions of the electorate (the values of all si). From there,
it is just a matter of arithmetic to reach Eq. 10. Indeed,
the opinion of the electorate reads

s̄ =
1

N

∑
i

si . (D3)

For later convenience, we now introduce

M = Ns̄ , (D4)

and call this quantity “magnetic moment”, as is custom-
ary in the context of the original Ising model. The Hamil-
tonian H, as expressed in Eq. (C1), depends linearly on
the external field H, and the coefficient of this relation
is just the magnetic moment:

M = −∂H
∂H

. (D5)

This result is entirely independent from the term we have
introduced in the Hamiltonian (the impact of opinion
polls). Combining it with Eq. (D2) yields

1

Z
∂Z
∂H

= β⟨M⟩ (D6)

where the brackets denote the average over all configura-
tions:

⟨M⟩ =
∑
{s}

ρ(s)M(s) . (D7)

0

10

20

30

40

50

M
ar

gi
n 

of
 v

ict
or

y 
 [%

] a

0 10
Probability

density

b

N > Nc

N < Nc105 106 107 108

Electorate size N [number of voters]

0.0

0.5

1.0

p-
va

lu
e c

FIG. 11. a Margin of victory in quasi-binary elections as a
function of the electorate size (colored markers correspond to
Fig. 5). Dashed gray line: logarithmic binning of the same
data. Vertical dashed line: estimated transitional number of
voters Nt = 106. b Probability distribution of the margin
of victory. Blue (resp. pink) bars: population larger (resp.
smaller) than Nt. Blue dashed line: exponential distribution
fitted to electorates larger than 5 · 106 voters. c Probability
that the observed margin of victory for electorates smaller
than N is sampled from the exponential distribution of b
(p-value from Pearson’s chi-squared test over 3 bins). The
shaded area shows the standard deviation estimated by boot-
strapping (1000 random samples of 3/4 of the data set). The
dashed black line is p = 0.1 (90% confidence interval).

Differentiating the partition function once more, we get

1

Z
∂2Z
∂H2

= β2⟨M2⟩ . (D8)

Finally, differentiating Eq. (D6) with respect to H, and
combining the result with Eq. (D8) yields

∂⟨M⟩
∂H

= β
(
⟨M2⟩ − ⟨M⟩2

)
, (D9)

which we can rephrase in terms of the opinion’s variance
and susceptibility using equations (D4) and (C12):

χ = βNσ2
o . (D10)

In the absence of any external field (H = 0), χ becomes
χ0, and the above formula is Eq. 10.

Appendix E: Margin of victory

1. Election data

To compare the present model to observations, we fo-
cus on country-wide elections. We first select countries
that are either “full” or “flawed” democracies according to
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the Economist Intelligence Unit [56]. Among those, we
select countries where the head of either state or govern-
ment is chosen by direct election [57]. We then collect
election results with a Python routine [58] that parses
the dedicated Wikipedia web pages [e.g. 59]. After the
result of an election is collected, the routine fetches the
page of the previous election in the same country, and so
on until the election occurred before 1990 (or until the
series of elections ends).

We then need to ensure that each election was a binary
choice. To do so, we keep only elections for which the
scores of the two leading candidates sum up to the total
number of votes. (This condition is always satisfied in
some countries, like Poland or France, where the second
round of the presidential election involves only the two
candidates who lead the first round.) Finally, we keep
in our data set only countries for which there are more
than 3 binary election results (this allows us to estimate,
albeit roughly, the standard deviation of the result). In
total, we are left with 168 elections in 31 countries.

We call N1 and N2 the number of votes received by
the two leading candidates, and define the size of the
electorate as N = N1 +N2 (the actual electorate can be
a bit larger than N). For each election, the margin of
victory is then δ = |N1 − N2|/N . Figure 11a shows the
margin of victory, δ, as a function of the electorate size,
N , for the complete data set.

2. Probability distribution of the margin of victory

When the electorate is larger than a few million voters,
most elections are tight (Fig. 11a). Conversely, in smaller
countries (Iceland, Cape Verde and Monte Negro in our
data set), many elections lead to a landslide victory or a
near consensus. We now investigate this transition.

We first select the 65 elections whose electorate is
larger than 5 · 106 voters (large countries), and plot
the probability distribution of their result (blue bars in
Fig. 11b). The resulting histogram is well approximated
by an exponential distribution f :

f(δ) =
1

δl
exp (−δ/δl) (E1)

where δl ≈ 7.1% is the average margin of victory in large
countries (dashed blue line in Fig. 11b).

Equipped with this distribution of reference, we can
now look for the subset of our data to which it does not
apply. For illustration, the pink bars in Fig. 11b show the
distribution of the margin of victory in countries where
the electorate is smaller than 3 · 105 voters. It features
a peak around a margin of 45 %, and therefore does not
look like the exponential distribution of Eq. (E1).

3. Transitional population size

To locate the transition from consensus to tight elec-
tions, we look for the transitional number of voters, Nt,
below which the results are unlikely to be drawn from the
exponential distribution of Eq. (E1). Looking at figure
Fig. 11a, we expect that this number will lie somewhere
between 5 · 105 and 5 · 106 voters.

To refine this estimate, we pick a value for Nt, and
select the election whose electorate is smaller than this
value. We then distribute the results into 3 bins of equal
size between 0 and 50 %. Finally, we estimate the likeli-
hood of this 3-bins histogram based on the chi-square
distribution, assuming that the probability density is
Eq. (E1) (Pearson’s chi-squared test). We then evalu-
ate the corresponding p-value—the probability that the
difference between the histogram and the exponential dis-
tribution is at least what we find. This p-value is repre-
sented as a function of the transitional electorate size in
Fig. 11c.

When the guessed value of Nt is less than about 9 ·
105 voters, the p-value is consistently less than 0.1 (90%
confidence interval). In other words, this data is unlikely
to be a sample from Eq. (E1). Conversely, this conclusion
does not hold any more for larger values of Nt, except at
about 2.5 ·106 voters. Finally, we evaluate the robustness
of this result by bootstrapping (1000 random samples of
3/4 of the data set), and find that Nt lies between 6 · 105
and 3·106 voters (shaded area in Fig. 11c, 80% confidence
interval). In views of these results, we estimate Nt to
about a million voters.
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