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ABSTRACT
This paper1 presents Discriminative Part Network (DP-

Net), a deep architecture with strong interpretation capabil-
ities, which exploits a pretrained Convolutional Neural Net-
work (CNN) combined with a part-based recognition module.
This system learns and detects parts in the images that are
discriminative among categories, without the need for fine-
tuning the CNN, making it more scalable than other part-
based models. While part-based approaches naturally offer
interpretable representations, we propose explanations at im-
age and category levels and introduce specific constraints on
the part learning process to make them more discrimative.

Index Terms— image classification, part-based models,
interpretability.

1. INTRODUCTION

Since 2012, Deep Neural Networks (DNN) have been re-
popularized in the fields of computer vision and machine
learning. Deep learning methods are used to address almost
every single computer vision problem such as image classi-
fication, retrieval, detection, segmentation, etc. The ability
to transfer pre-trained representations learned on large anno-
tated datasets led to large improvements.

With most efforts dedicated to improving further these
methods, it is interesting to remember previous methods and
concepts that occur prior to the deep learning tsunami. For in-
stance, a large effort has been dedicated to Part-Based Models
(PBM) starting with the deformable part model [1]. Based on
these models, diverse strategies were later proposed to learn
a collection of discriminative parts [2, 3]. Global image rep-
resentations are further derived from the learned parts to per-
form recognition, while mainstream methods would aggre-
gate dense local representations instead [4].

With the re-popularization of deep learning, links between
part-based models and CNN architectures are discussed in
[5]. First, PBM started using pre-trained network to replace
previous feature extraction techniques [6, 7, 8]. Later, part
inspired architectures are introduced to target the problem
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017). Part of this work was performed using HPC resources from GENCI-
IDRIS (Grant 2020-AD011011853 and 2020-AD011013110).

of fine-grained classification [9, 10, 11] or scene recognition
[12], showing the benefit of such architectures on specific
datasets and tasks. Furthermore, ProtoPNet [13] and its ex-
tensions [14, 15, 16] provide new interpretability ability by
exploiting relations between categories and parts. However,
these architectures still need multiple training stages; can not
cope with large scale dataset as ImageNet [17]; require extra
annotations such as bounding boxes or part annotations; or do
not provide more interpretability than part-level visualization.

Our method is a part-based architecture that addresses
these limitations. Learning discriminative parts is performed
jointly with the classification. Unlike previous models, we
exploit a pretrained DNN to compute representations on a
number of random regions in images, in order to improve
simplicity and scalability. Parts are learned solely based on
image level labels, i.e. without any priors or bounding boxes.
Moreover, our model provides explanations of parts and clas-
sification decision, for a specific input or more broadly for
a category. Finally, we show that introducing a number of
constraints on the parts in the objective function helps dis-
covering more discriminative and relevant parts.

2. PREVIOUS WORKS

Early part-based approaches Most approaches define
parts as image regions that can help differentiate between
the categories. However, methods vary in how they select
these regions. The constellation model [18] and deformable
part model [1] are the original methods that model classes by
parts and their positions. Later approaches [2, 3, 19, 20, 6]
first learn the parts, then the decision function, based on parts
response. Parts are learned by identifying candidate regions
[2], using mean-shift algorithm [3], an iterative softassign
matching algorithm [19, 20], or boosting [6]. However Parizi
et al [7] jointly learns the parts and the category classifiers.

Our method also optimizes the final classification in a
single-stage optimization. We further study constraints on
parts inspired by these works [6, 20].

Part-inspired architecture Several recent part inspired
methods focus on fine-grained image classification. Most
of these methods follow detection architectures, as R-CNN
[21, 22], where detection and classification are learned al-
ternatively. Other works are based on attention models
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Fig. 1. Figure of the proposed architecture and its learned parameters U and V .

[23, 11, 24]. Recently, Chen et al [12] propose to build
protoype-agnostic scene layout, using graph convolutions
to encode parts and their relations. Also, Krause et al [25]
generate parts using co-segmentation and alignment.

ProtoPNet [13] propose to learn parts prototype in three
stages, which is soon improved by allowing shared parts
[14], negative parts [15] and more effective optimization
[16]. These recent methods are directly aligned with our
objectives, but their optimization remain complex with fine-
tuning of the backbone network, fixed size region, pruning
requirements, etc. Our method thus offer a simpler adaptable
architecture that can learn on large datasets.

Interpretability Interpretability recently receives a lot at-
tention [26]. Numerous methods consider models as black
boxes, and perform post-hoc interpretability. While other
methods aim at changing models, or representations, to make
them more transparent or easily understandable.

Some transparency can be obtained through parts. How-
ever, these methods can not easily link parts representation
with the decision, except for ProtoPNet [13], which is the first
work to propose visualizable parts and their contributions to
a decision at inference.

In our work, we also provide explainability at inference,
but at a lower computational cost. We also extend the posthoc
method CAM [27] to part models, enabling various levels of
interpretability. Finally, we study various constraints to pro-
vide both discriminative and interpretable parts.

3. DISCRIMINATIVE PARTS NN (DP-NET)

3.1. DP-net architecture

In a nutshell, the DP-net is a part-based architecture that in-
cludes: 1) a pretrained CNN, i.e. backbone, that produces
high-level descriptions of numerous (randomly selected) re-
gions in an input image, 2) a part layer that outputs a match-
ing score for every part-region pair, 3) a max-pooling that
encodes parts information in a dense vector representation,
and 4) a final classification layer, see Fig. 1. Using a pre-
trained CNN (that is not refined) and randomly selected re-

gions makes our method particularly simple, adaptable and
scalable.

In more details, when processing an input image I ∈ I, a
fixed number R of rectangular regions, R = {i1, ..., iR}, are
extracted and then described by a d−dimensional descriptor
vector output by a pretrained CNN, e.g. VGG19, ResNet50,
etc. The resulting matrix is defined as X ∈ Rd×R, whose rth

column is the descriptor of the rth region, xr = CNN(ir) ∈
Rd.

The part layer computes a matching score between re-
gions and parts that are represented as d−dimensional vectors
living in the same space as region descriptors. We note U ∈
RP×d the part layer weights, with up the representation of the
pth part. The output of this layer is defined as the score matrix
S ∈ RP×R with S = U ×X = (sp,r)p,r∈[1,...P ]×[1,...R] with
sp,r = up × xr. This score matrix is often referred to as the
assignment matrix as it relates extracted regions to the learned
parts. We further apply one-dimensional max-pooling, and
L2 normalization, to obtain a final ”bag-of-parts” (BOP)
embedding, introduced in [2] and used in most part-based
method. The bag-of-parts is a P -dimensional vector given as
input to a final classification layer, i.e. a fully connected layer,
with a softmax activation function, with weights V ∈ RC×P

where C denotes the number of classes. To summarize, for
an input image I , the model computes successively X , S, b
and o, as:

X = [CNN(i1(I)), ..., CNN(iR(I))], S = U ×X ,

b =

[
max
r∈R

(sp,r)

]
p∈[1,...P ]

, o = softmax(V × b).

3.2. Learning

Our model simply learns the part matrix U and the classifica-
tion layer V , through gradient descent, to minimize categori-
cal cross-entropy noted as CCCE(U, V ).

Actually the most important aspect of the learning lies in
constraints that are added through additional terms to the ob-
jective function, to improve interpretability. Here is a list of
desirable properties of the parts:

1) Parts should be complementary, i.e. parts should be dif-
ferent one from another.



2) Parts should cover as much as possible the diversity of
regions extracted from images.

3) Parts should be discriminative with respect to classes.
4) Parts should be specific to categories.
These properties can be satisfied by including additional

terms in the objective function. We note that property 3) is
already addressed by CCCE(U, V ).

Specifically, the first property is induced by enforcing
parts to be orthogonal one to another, simply adding to the ob-

jective function a term as C⊥(U) = − 1
P 2

P∑
i=1

P∑
j=1,j ̸=i

(uT
i uj)

2.

The second property can be rewritten as: we want ev-
ery region to be, as much as possible, assigned to one of
the parts, e.g. following [20]. This can be easily encour-
aged by minimizing the entropy of each column of the score
matrix S, matching regions to all parts. Thus, we define

CAssign(U) = −
R∑

r=1

P∑
p=1

sp,rlog(sp,r). Note that softmax

is first applied on the columns of the matrix S and each part
vector up is assumed to be l2-normalized for both C⊥(U) and
CAssign(U).

Finally, the last property is enforced by adding a con-
straint on the parameters of the classification layer V , by min-
imizing the contribution of parts that are not assigned to the
given class, as in [13]. Let q be the number of parts learned
per class, our class-specific (CS) constraint can be computed

as: CS(V ) = 1
P (C−1)

C∑
i=1

P∑
j=1,j /∈[q(i−1),qi]

Vi,j

Finally the learning is performed through the minimiza-
tion of the combined loss function:

C(U, V, Z) = CCCE(U, V ) + λ1C⊥(U)

+ λ2CAssign(U) + λ3CCS(U,Z)
(1)

3.3. Interpretability strategies

First of all, the learned part p can be simply characterized
by the region r, when this region produces the highest match
scores sp,r over the entire training set.

Secondly, we want to quantify the importance of the part
p for the detection of a particular class c. This measurement
can be obtained through the classification layers that takes as
input the bag-of-parts representation b, which consist in a sin-
gle score per part. Moreover, the output of the model is com-
puted as o = softmax(V × b) so that the prediction for class
c is oc = vc × b =

∑
p vc,p ∗ bp. The importance of part p

when predicting class c for a particular input image can then
be measured by vc,p ∗ bp.

At the class level, [13] proposed to interpret categories
by the participation of the learned parts in the decision. We
follow this idea and adapt here the popular Class Activation
Map (CAM) [27]. To measure the global importance of part
p to recognize class c, we want to compute an average of

this quantity over the training set. Yet, we found more in-
formative to weigh this quantity by the popularity f(p) of the
part among all classes. This frequency term is similar to the
TF.IDF weighting scheme from the seminal Vector Space
Model in text information retrieval. We thus compute the dis-
criminative power of part p for class c as:

d(p, c) =
∑

I∈I,yI=c

vc,p ∗ bp(I)
log(f(p))

(2)

where f(p) measures to which extent part p is frequently de-
tected in images of all classes. f(p) is computed as the num-
ber of classes having p in their most activated parts, measured
by vc,p ∗ bp. Given these statistics, given a class c, one can
visualize the typical regions that are associated with the top
parts maximizing d(p, c), by finding regions maximizing sp,r.

Finally, given an input image and a class c, one can use the
presented statistics to infer how the image regions participate
to the final classification. Specifically, we can first identify
the top-N most discriminative parts for the class c according
to Eq. (2). Then the top-M regions that activate these parts
are selected and can be highlighted to compute a heatmap, to
help explaining the decision of the model.

4. EXPERIMENTS

Datasets We study three datasets: CUB-200-2011 [28]
fine-grained classification of bird species, the MIT 67 Scenes
[29] dataset of indoor scenes, and the large ImageNet [17]
(ILSVRC 2012) dataset. Only image-level categories are
used and no data augmentation is performed.

Implementation details Each image is resized to 544×544
then given as input to a CNN: VGG-19 or ResNet-50, pre-
trained on ImageNet. From the output of the last convolu-
tional layer, we extract the feature maps covering R random
regions and perform average pooling on these features. We
set R = 500 for MIT and CUB and R = 100 for ImageNet.

To learn on MIT-67 and CUB-200, we perform 40 epochs
with Adam optimizer and a learning rate of 10−3. The learn-
ing rate is divided by 10 after each 10 epochs, reaching 10−6.
Since our input data is large, we build large batches of train-
ing data and perform 32 batch-level epochs. Concerning Im-
ageNet, we similarly perform 10 batch-level epochs and 4
epochs with learning rate set to 10−3.

Concerning constraints, after evaluation, the scaling con-
stants are set to λ1 = 10−2, λ2 = 10−3, and λ3 = 10−3.

Model performance We first show the benefits of using
the proposed DP-Net over global representation on the three
datasets and two networks, see Table 1. We learn 20, resp. 10,
parts per class for MIT and CUB, resp. ImageNet. The global
representation model computes global average pooling after
the last convolutional layer of the same network followed by



Method ISA parts [20] Our DP-Net
Dataset MIT MIT
Network VGG Places VGG Places RN50
Global 73.3 78.5 76.2 79.8 78.1
Parts 75.1 81.6 76.9 82.0 79.7

Dataset Birds ImageNet
Network VGG RN50 VGG RN50
Global 66.4 81.5 61.0 70.8
Parts 76.1 84.9 69.0 74.6

Table 1. Tables comparing our DP-Net with global represen-
tations on MIT, Birds, and ImageNet datasets using VGG and
ResNet. We note that parts are learned without constraints.

Dataset Constraints
wo ⊥ Assign CS

Birds 84.9 84.6 84.6 84.5
MIT 79.7 79.1 80.3 79.5

⊥+Assign CS+⊥ CS+Assign CS+⊥+Assign
Birds 85.1 84.4 84.3 85.0
MIT 80.3 78.8 79.9 80.5

Table 2. Accuracy obtained with ResNet 50 when using the
constraints defined in 3.2 (wo = without any constaint).

either a single, or two, FC layer. The best performing global
model is presented, as adding the second layer allows to com-
pare the model with the same number of parameters as DP-
Net. We observe that part methods significantly outperform
global models on most cases.The method is also compared to
the part-based method proposed in [20]. Our model performs
similarly but is simpler and more efficient.

Training on ImageNet is particularly interesting, as none
of the previous part-based method can cope with such a large
dataset. However, we note that the original models obtain bet-
ter scores than DP-Net and our global representation: 71.3%
and 74.9% accuracy for VGG-19 and ResNet-50. The per-
formance drop for global representation is explained by the
image dimension increase and global average pooling added
in the case of VGG.

As mentioned earlier, several constraints on parts are eval-
uated: orthogonality, assignment between regions and parts,
and class specific (CS) parts, see Table 2. These constraints
allow better interpretation of parts but there is no significant
alteration of the performance using these constraints.

Interpretability evaluation We illustrate how parts help
interpreting the DNN decision. First, Figure 2 shows the
three most discriminative parts for the ”casino” class of the
MIT dataset according to equation 2. We observe that con-
straints offer parts that look better aligned with categories.

Figure 3 shows examples of heatmaps, where the most

wo ⊥ Assign CS

Fig. 2. Three most important parts for the class Casino.

Fig. 3. Heatmap illustrations using test images of
classes Artstudio, Computer room, Casino and
Kindergarden on top row and most discriminant region
used to classify birds test images on second row.

discriminative regions are highlighted in yellow. We note that
the model focuses on semantically meaningful regions to take
its decision. Figure 3 also highlights the most discriminative
region used by the model to classify birds species. It is inter-
esting to see that our model finds distinctive characteristics of
species to recognize them: the long tail of the Florida Jay or
the grainy appearance of the Spotted Catbird’s chest.

5. CONCLUSION

This paper presents DP-Net, an approach using a pretrained
CNN to learn interpretable part representations. The neural
architecture is accurate, scalable, and can deal with a vari-
ety of image recognition problems. We introduce a number
of constraints to drive part learning to favour interpretabil-
ity of the model decisions. Our experiments show interest-
ing performance compared to standard global representations
systems, across several networks and multiple datasets. We
also provide evidence of the interpretability capabilities of
our model by visualizing parts, their discriminative capabil-
ities and their contribution in the decision.
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