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A FABER-KRAHN-TYPE INEQUALITY FOR THE

LAPLACIAN WITH DRIFT UNDER ROBIN BOUNDARY

CONDITION

FRANÇOIS HAMEL AND EMMANUEL RUSS

Abstract. We prove a Faber-Krahn-type inequality for the Laplacian
with drift under Robin boundary condition, provided that the β param-
eter in the Robin condition is large enough. The proof relies on a com-
pactness argument, on the convergence of Robin eigenvalues to Dirichlet
eigenvalues when β goes to infinity, and on a strict Faber-Krahn-type
inequality under Dirichlet boundary condition. We also show the ex-
istence and uniqueness of drifts v satisfying some L∞ constraints and
minimizing or maximizing the principal eigenvalue of −∆ + v · ∇ in a
fixed domain and with a fixed parameter β > 0 in the Robin condition.
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1. Introduction

Throughout this paper, d ≥ 1 is an integer. For all x ∈ Rd, denote by |x|
the Euclidean norm of x and define

er(x) :=
x

|x|
for all x ∈ Rd \ {0} .
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2 F. HAMEL AND E. RUSS

Let Ω ⊂ Rd be a bounded domain (connected open set) of class C2, with
outward unit normal ν on ∂Ω. If v ∈ L∞(Ω,Rd) is a bounded measurable
vector field, set

‖v‖∞ := ‖|v|‖∞ .
We are interested in the principal eigenvalue of the operator −∆ + v · ∇

in Ω under Robin boundary condition on ∂Ω. More precisely, let β > 0.
By [15, Theorem A.4] and Krein-Rutman theory [2], there exists a principal

eigenvalue λβ1 (Ω, v) of the problem

(1.1)


−∆ϕβΩ,v + v · ∇ϕβΩ,v = λβ1 (Ω, v)ϕβΩ,v in Ω,

∂ϕβΩ,v
∂ν

+ βϕβΩ,v = 0 on ∂Ω.

This principal eigenvalue is simple, the corresponding eigenfunction ϕβΩ,v
is positive in Ω by [2, Theorem 4.5], and none of the other eigenvalues
corresponds to a positive eigenfunction (see the discussion after [15, Theo-

rem 1.3]). By W 2,p elliptic regularity ([15, Theorem A.29]), the function ϕβΩ,v
belongs to W 2,p(Ω) for all p ∈ [1,∞) and then to C1,α(Ω) for all α ∈ (0, 1).
The first line in (1.1) is therefore understood almost everywhere in Ω, while
the second line is understood in the classical sense. We usually norma-

lize ϕβΩ,v by

(1.2) max
Ω

ϕβΩ,v = 1.

Moreover, there holds

λβ1 (Ω, v) > 0.

The C2 smoothness of ∂Ω is used to derive the regularity of ϕβΩ,v. So is it
in some arguments of the proofs of the following main results. We leave as
an open question the derivation of Faber-Krahn-type inequalities for weaker
formulations of (1.1) under weaker assumptions on ∂Ω.

Fix τ ≥ 0 and m > 0. We are interested in the infimum of λβ1 (Ω, v)
when Ω and v vary under the constraints |Ω| = m (throughout the paper,
|A| denotes the n-dimensional Lebesgue measure of A for all measurable sets
A ⊂ Rd) and

(1.3) ‖v‖∞ ≤ τ.

In the sequel, Ω∗ stands for the Euclidean ball centered at 0 such that
|Ω∗| = |Ω|.

Our main result states that, when Ω is not a ball, λβ1 (Ω, v) is (strictly)
greater than the corresponding quantity in Ω∗ when v = τ er, provided
that β is large enough:

Theorem 1.1. Let Ω ⊂ Rd be a bounded C2 domain and τ ≥ 0. Assume
that Ω is not a ball. Then there exist β0 > 0 and ε > 0 with the following
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property:

(1.4)
∀β ≥ β0, ∀ v ∈ L∞(Ω,Rd) such that ‖v‖∞ ≤ τ,

λβ1 (Ω, v) ≥ λβ1 (Ω∗, τer) + ε.

When τ = 0, i.e. when −∆+v ·∇ = −∆ is merely (minus) the Laplacian,
it was proved in [9, 10, 13, 14] that, for all β > 0, the following Bossel-Daners
inequality is satisfied:

(1.5) λβ1 (Ω, 0) ≥ λβ1 (Ω∗, 0),

and equality holds if and only if Ω = Ω∗ up to translation. When τ 6= 0,
Theorem 1.1 provides on the one hand a quantified strict inequality if Ω is
not a ball, but the conclusion is only established above some threshold for β,
contrary to [10, Theorem 1.1], and it actually can not hold for all β > 0,
since

lim
β→0

λβ1 (Ω, v) = lim
β→0

λβ1 (Ω∗, τer) = 0

for each v ∈ L∞(Ω,Rd) (as follows from Lemma 2.2 below). On the other
hand, when Ω = Ω∗, the uniqueness part in Theorem 1.3 below ensures

that, for all v ∈ L∞(Ω∗,Rd) with ‖v‖∞ ≤ τ , if v 6= τer, then λβ1 (Ω∗, v) >

λβ1 (Ω∗, τer) for all β > 0.
The following question nevertheless remains open:

Open problem 1.2. Let Ω ⊂ Rd be a bounded C2 domain, τ ≥ 0 and
v ∈ L∞(Ω,Rd) with ‖v‖∞ ≤ τ . Does the inequality

λβ1 (Ω, v) ≥ λβ1 (Ω∗, τer)

hold for all β > 0 ?

Recall that, under Dirichlet boundary condition, it was proved in [17,
Theorem 1.1] and [18, Remark 6.9] that, whenever (1.3) holds,

(1.6) λD1 (Ω, v) ≥ λD1 (Ω∗, τer),

where λD1 (Ω, v) stands for the principal eigenvalue of −∆ + v · ∇ under
Dirichlet boundary condition. Moreover, equality holds in (1.6) if and only
if, up to translation, Ω = Ω∗ and v = τer. The inequalities (1.4)-(1.6) are
called Faber-Krahn-type inequalities. This terminology originates from the
results of Faber [16] and Krahn [22, 23], who proved that

λD1 (Ω, 0) ≥ λD1 (Ω∗, 0),

with equality if and only if, up to translation, Ω = Ω∗. The latter in-
equality means that a radially symmetric membrane which is fixed at its
boundary has the lowest fundamental tone among all equimeasurable mem-
branes, answering a conjecture of Rayleigh [29] set in dimension d = 2. Since
these pioneering papers, much work has been done on various related opti-
mization eigenvalue problems for elliptic operators, for instance on higher
eigenvalues or functions of the eigenvalues of −∆ under Dirichlet boundary
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condition [3, 4, 6, 11, 12, 26, 27, 28, 32], under Neumann boundary condi-
tion [28, 30, 31], or for the first eigenvalue of ∆2 under boundary conditions

ϕ = ∂ϕ
∂ν = 0 on ∂Ω [5, 25]. We refer to the surveys [7, 20, 21] for many more

references on these topics.
The second main result deals with an optimization problem when the

domain Ω is fixed and v varies under the constraint (1.3). Define, for all
β > 0 and τ ≥ 0 given:

(1.7) λβ(Ω, τ) := inf
¶
λβ1 (Ω, v) : ‖v‖∞ ≤ τ

©
and

(1.8) λ
β
(Ω, τ) := sup

¶
λβ1 (Ω, v) : ‖v‖∞ ≤ τ

©
.

We claim that these lower and upper bounds are positive real numbers,
are uniquely reached and provide an identity relating the optimizing vector
fields and the corresponding eigenfunctions:

Theorem 1.3. [Optimization in fixed domains] Let Ω ⊂ Rd be a bounded
C2 domain, τ ≥ 0 and β > 0.

(1) There exists a unique v ∈ L∞(Ω,Rd) meeting ‖v‖∞ ≤ τ such that

λβ(Ω, τ) = λβ1 (Ω, v). One has |v(x)| = τ for almost every x ∈ Ω.

Moreover, if ϕ := ϕβΩ,v is the corresponding eigenfunction, then

(1.9) v(x) · ∇ϕ(x) = −τ |∇ϕ(x)| for almost every x ∈ Ω.

Lastly, if λ ∈ R and φ ∈
⋂

1≤p<∞W
2,p(Ω) satisfy

(1.10)

{ −∆φ− τ |∇φ| = λφ and φ ≥ 0 in Ω,
∂φ

∂ν
+ βφ = 0 on ∂Ω,

and maxΩ φ = 1, then λ = λβ(Ω, τ) and φ = ϕ in Ω.

(2) Similarly, there exists a unique v ∈ L∞(Ω,Rd) meeting ‖v‖∞ ≤ τ

such that λ
β
(Ω, τ) = λβ1 (Ω, v). One has |v(x)| = τ for almost every

x ∈ Ω. Moreover, if ϕ := ϕβΩ,v is the corresponding eigenfunction,
then

(1.11) v(x) · ∇ϕ(x) = τ |∇ϕ(x)| for almost every x ∈ Ω.

Lastly, if λ ∈ R and φ ∈
⋂

1≤p<∞W
2,p(Ω) satisfy

(1.12)

{ −∆φ+ τ |∇φ| = λφ and φ ≥ 0 in Ω,
∂φ

∂ν
+ βφ = 0 on ∂Ω,

and maxΩ φ = 1, then λ = λ
β
(Ω, τ) and φ = ϕ in Ω.

(3) If Ω = Ω∗, then v = τ er, v = −τ er in Ω∗ and the functions ϕ and ϕ
are radially decreasing in Ω∗.
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Remark 1.4. Notice that, in part (1) of Theorem 1.3, from elliptic regu-
larity theory applied to (1.10), since φ and |∇φ| belong to C0,α(Ω) for all

α ∈ (0, 1), the function φ belongs to C2,α
loc (Ω) for all α ∈ (0, 1), and the first

line of (1.10) holds in the classical sense in Ω. Similarly, in part (2), the

solution φ of (1.12) belongs to C2,α
loc (Ω) for all α ∈ (0, 1), and the first line

of (1.12) holds in the classical sense in Ω.

We point out that similar properties had been derived in [17, 18] for the

extremal quantities λ(Ω, τ) and λ(Ω, τ) defined like λβ(Ω, τ) and λ
β
(Ω, τ)

in (1.7)-(1.8) with the Dirichlet eigenvalues λ1(Ω, v) instead of the Robin

ones λβ1 (Ω, v). The asymptotic behavior as τ → +∞ of the eigenfunctions
associated with λ(Ω, τ) was analyzed in [19].

The paper is organized as follows. In Section 2, we provide comparisons
results between Robin, Dirichlet and Neumann eigenvalues in a fixed do-
main and for a given drift, and prove convergence of the Robin eigenvalues
when β → +∞ (resp. when β → 0) to the corresponding Dirichlet (resp.
Neumann) eigenvalues. Section 3 is devoted to the proof of Theorem 1.3.
Finally, we establish Theorem 1.1 is Section 4.

2. Comparisons and convergence results between Robin,
Dirichlet and Neumann principal eigenvalues

This section is concerned with some comparisons and convergence results
for Robin and Dirichlet principal eigenvalues in a given domain Ω. The
results will be used in the proofs of the main Theorems 1.1 and 1.3.

We first start with an auxiliary comparison lemma between sub- and
super-solutions.

Lemma 2.1. Let µ ∈ R, β ≥ 0, and v ∈ L∞(Ω,Rd). Let ψ,ϕ ∈ W 2,p(Ω)
for all 1 ≤ p < ∞, such that ψ ≥ 0 and ϕ ≥ 0 in Ω, ‖ψ‖∞ = ‖ϕ‖∞ = 1,
and ®

−∆ψ + v · ∇ψ ≥ µψ a.e. in Ω,

−∆ϕ+ v · ∇ϕ ≤ µϕ a.e. in Ω.

Assume also that

∂ψ

∂ν
+ βψ ≥ 0 ≥ ∂ϕ

∂ν
+ βϕ on ∂Ω.

Then ψ = ϕ in Ω.

Proof. The argument is reminiscent of the proof of [17, Lemma 2.1]. Re-
member first that ψ and ϕ belong to C1,α(Ω) for all α ∈ (0, 1). Furthermore,
ψ > 0 in Ω from the interior strong maximum principle (otherwise, ψ would
be identically 0 in Ω, contradicting ‖ψ‖∞ = 1). Observe now that ψ > 0
on ∂Ω. Indeed, if there exists x0 ∈ ∂Ω such that ψ(x0) = 0, then the Hopf

lemma shows that ∂ψ
∂ν (x0) < 0, which is impossible by the boundary condi-

tion satisfied by ψ. Thus, being continuous in Ω, ψ is bounded below by a
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positive constant, so that there exists γ > 0 such that γψ > ϕ in Ω. Define

γ∗ := inf {γ > 0 : γψ > ϕ in Ω}

and w := γ∗ψ−ϕ. Note that, since ϕ ≥ 0 in Ω and ‖ϕ‖∞ = 1, γ∗ > 0. The
function w is nonnegative in Ω,

∂w

∂ν
+ βw ≥ 0 on ∂Ω

and

−∆w + v · ∇w − µw ≥ 0 a.e. in Ω.

If w > 0 in Ω, then, as before, w is bounded below by a positive constant
in Ω, so there exists δ > 0 such that w > δϕ in Ω, which entails in turn

γ∗

1 + δ
ψ > ϕ in Ω,

contradicting the definition of γ∗, since γ∗ > 0. Therefore, there exists
x0 ∈ Ω such that w(x0) = 0, and since w ≥ 0 in Ω, the strong maximum
principle indicates that w(x) = 0 everywhere in Ω and then in Ω by conti-
nuity, meaning that γ∗ψ = ϕ in Ω. The condition ‖ϕ‖∞ = ‖ψ‖∞ = 1 finally

yields ϕ = ψ in Ω. �

Let now Ω ⊂ Rd be a bounded C2 domain and v ∈ L∞(Ω,Rd). Denote
by λD1 (Ω, v) the principal eigenvalue of−∆+v·∇ in Ω under Dirichlet bound-
ary condition and by ϕDΩ,v ∈

⋂
1≤p<∞W

2,p(Ω) the corresponding principal

eigenfunction (which is positive in Ω) normalized by∥∥∥ϕDΩ,v∥∥∥∞ = 1.

We will show that the map β 7→ λβ1 (Ω, v) is increasing in (0,∞) and con-
verges to λD1 (Ω, v) at infinity, and to 0 (that is, the principal eigenvalue of
−∆ + v · ∇ in Ω under Neumann boundary condition) as β → 0:

Lemma 2.2. Let Ω ⊂ Rd be a bounded C2 domain and v ∈ L∞(Ω,Rd).
Then the map β 7→ λβ1 (Ω, v) is increasing in (0,+∞). Furthermore,

(2.1) lim
β→+∞

λβ1 (Ω, v) = λD1 (Ω, v).

and

lim
β→0

λβ1 (Ω, v) = 0.

Proof. Let 0 < β1 < β2 and assume by way of contradiction that λβ2
1 (Ω, v) ≤

λβ1
1 (Ω, v). Set ϕ1 := ϕβ1

Ω,v and ϕ2 := ϕβ2

Ω,v. Both functions ϕ1 and ϕ2 are

positive in Ω and they satisfy®
−∆ϕ1 + v · ∇ϕ1 = λβ1

1 (Ω, v)ϕ1 a.e. in Ω,

−∆ϕ2 + v · ∇ϕ2 = λβ2
1 (Ω, v)ϕ2 ≤ λβ1

1 (Ω, v)ϕ2 a.e. in Ω,
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together with

(2.2)
∂ϕ1

∂ν
+ β1ϕ1 = 0 =

∂ϕ2

∂ν
+ β2ϕ2 >

∂ϕ2

∂ν
+ β1ϕ2 on ∂Ω.

Lemma 2.1 applied with (µ, β, ψ, ϕ) := (λβ1
1 (Ω, v), β1, ϕ1, ϕ2) then entails

ϕ1 = ϕ2 in Ω, contradicting the strict inequality in (2.2). Finally,

λβ1
1 (Ω, v) < λβ2

1 (Ω, v),

and the map β 7→ λβ1 (Ω, v) is increasing in (0,+∞).

Let now β > 0 and assume by way of contradiction that λβ1 (Ω, v) ≥
λD1 (Ω, v). Both functions ϕβΩ,v and ϕDΩ,v are positive in Ω and they satisfy{

−∆ϕβΩ,v + v · ∇ϕβΩ,v = λβ1 (Ω, v)ϕβΩ,v a.e. in Ω,

−∆ϕDΩ,v + v · ∇ϕDΩ,v = λD1 (Ω, v)ϕDΩ,v ≤ λ
β
1 (Ω, v)ϕDΩ,v a.e. in Ω.

Furthermore, the Hopf lemma implies that
∂ϕD

Ω,v

∂ν < 0 on ∂Ω, whence

(2.3)
∂ϕβΩ,v
∂ν

+ βϕβΩ,v = 0 >
∂ϕDΩ,v
∂ν

+ βϕDΩ,v on ∂Ω.

Lemma 2.1 applied with (µ, β, ψ, ϕ) := (λβ1 (Ω, v), β, ϕβΩ,v, ϕ
D
Ω,v) then entails

ϕβΩ,v = ϕDΩ,v in Ω, contradicting the strict inequality in (2.3) (or the fact

that ϕβΩ,v > 0 = ϕDΩ,v on ∂Ω). Finally,

λβ1 (Ω, v) < λD1 (Ω, v)

for all β > 0.
Let us now turn to the proof of (2.1). Pick up any increasing sequence

(βk)k∈N of positive real numbers with limk→+∞ βk = +∞ and set λk :=

λβk1 (Ω, v) for all k ∈ N. The sequence (λk)k∈N is increasing and bounded
above by λD1 (Ω, v) and therefore converges to some µ ≤ λD1 (Ω, v). For all k,

if ϕk is defined as ϕk := θkϕ
βk
Ω,v with θk > 0 such that ‖ϕk‖L2(Ω) = 1, then

(2.4)

{ −∆ϕk + v · ∇ϕk = λkϕk a.e. in Ω,
∂ϕk
∂ν

+ βkϕk = 0 on ∂Ω.

We claim that the sequence (ϕk)k∈N is bounded in H1(Ω). Indeed, for all
k ∈ N,

λk

ˆ
Ω
ϕ2
k = −

ˆ
Ω
ϕk∆ϕk +

ˆ
Ω

(v · ∇ϕk)ϕk

=

ˆ
Ω
|∇ϕk|2 −

ˆ
∂Ω
ϕk
∂ϕk
∂ν

+

ˆ
Ω

(v · ∇ϕk)ϕk

=

ˆ
Ω
|∇ϕk|2 + βk

ˆ
∂Ω
ϕ2
k +

ˆ
Ω

(v · ∇ϕk)ϕk.
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From this, we derive, for all ε > 0,

(2.5)

ˆ
Ω
|∇ϕk|2+βk

ˆ
∂Ω
ϕ2
k ≤ λk

ˆ
Ω
ϕ2
k + ‖v‖∞

ˆ
Ω
ϕk |∇ϕk|

≤
Å
λk +

1

2ε
‖v‖∞

ãˆ
Ω
ϕ2
k +

ε

2
‖v‖∞

ˆ
Ω
|∇ϕk|2 .

Provided ε ‖v‖∞ < 2, recalling that the sequences (λk)k∈N and (‖ϕk‖L2(Ω))k∈N
are bounded, one obtains that the sequence (ϕk)k∈N is bounded in H1(Ω),
that is, there is M ∈ R+ such that

‖ϕk‖H1(Ω) =
√
‖ϕk‖2L2(Ω)

+ ‖ |∇ϕk| ‖2L2(Ω)
≤M

for all k ∈ N. Therefore, there exists ϕ ∈ H1(Ω) such that, up to a subse-
quence,

(2.6)
ϕk ⇀ ϕ weakly in H1(Ω), ϕk → ϕ strongly in L2(Ω),

ϕk → ϕ a.e. in Ω,

as k → +∞, whence

(2.7) ‖ϕ‖L2(Ω) = 1 and ϕ ≥ 0 a.e. in Ω.

Moreover, since limk→+∞ βk = +∞, (2.5) shows that

(2.8) lim
k→+∞

tr(ϕk) = 0 strongly in L2(∂Ω),

where tr : H1(Ω) → L2(∂Ω) denotes the trace operator. Since this trace
operator is compact from H1(Ω) to L2(∂Ω) with the topologies induced by
the norms (see [24, Corollary 18.4]), and since ϕk ⇀ ϕ weakly in H1(Ω) as
k → +∞, it follows that tr(ϕk) → tr(ϕ) strongly in L2(∂Ω) as k → +∞,
whence tr(ϕ) = 0 by (2.8), meaning that ϕ ∈ H1

0 (Ω). Consider now ψ ∈
C∞c (Ω). One hasˆ

Ω
∇ϕ · ∇ψ +

ˆ
Ω

(v · ∇ϕ)ψ = lim
k→+∞

ˆ
Ω
∇ϕk · ∇ψ +

ˆ
Ω

(v · ∇ϕk)ψ

= lim
k→+∞

λk

ˆ
Ω
ϕkψ

= µ

ˆ
Ω
ϕψ,

which means that ϕ is an H1
0 (Ω) weak solution of®

−∆ϕ+ v · ∇ϕ = µϕ in Ω,

tr(ϕ) = 0 on ∂Ω.

Elliptic H2 and W 2,p estimates show that ϕ ∈ W 2,p(Ω) for all 1 ≤ p < ∞,
and, since ϕ ≥ 0 in Ω and ‖ϕ‖L2(Ω) = 1, the strong maximum principle
entails that ϕ > 0 in Ω. Thus, by uniqueness of the principal eigenvalue of
−∆ + v · ∇ under Dirichlet boundary condition, one gets that

µ = λD1 (Ω, v),
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which ends the proof.

Lastly, let us investigate the limit of λβ1 (Ω, v) as β → 0. Pick up any
decreasing sequence (βk)k∈N of positive real numbers with limk→+∞ βk = 0

and set λk := λβk1 (Ω, v) for all k ∈ N. The sequence (λk)k∈N is decreasing
and bounded below by 0, and therefore converges to some λ ≥ 0. For all k,

if ϕk is defined as ϕk := θkϕ
βk
Ω,v with θk > 0 such that ‖ϕk‖L2(Ω) = 1, then as

above (2.4)-(2.5) still hold and there exists ϕ ∈ H1(Ω) satisfying (2.6)-(2.7),
up to a subsequence. Pick now any ψ ∈ H1(Ω). For all k ∈ N, one has

λk

ˆ
Ω
ϕkψ =

ˆ
Ω
∇ϕk · ∇ψ + βk

ˆ
∂Ω
ϕkψ +

ˆ
Ω

(v · ∇ϕk)ψ.

But βk → 0 as k → +∞ and the sequence (tr(ϕk))k∈N is bounded in L2(∂Ω)
(since so is (ϕk)k∈N in H1(Ω)). Hence, by (2.6), the passage to the limit as
k → +∞ in the above formula leads to

λ

ˆ
Ω
ϕψ =

ˆ
Ω
∇ϕ · ∇ψ +

ˆ
Ω

(v · ∇ϕ)ψ.

In other words, ϕ is an H1(Ω) weak solution of{ −∆ϕ+ v · ∇ϕ = λϕ in Ω,
∂ϕ

∂ν
= 0 on ∂Ω.

Elliptic H2 and W 2,p estimates show that ϕ ∈ W 2,p(Ω) for all 1 ≤ p < ∞,
and by (2.7) the strong maximum principle and Hopf lemma entail that
ϕ > 0 in Ω. Thus, by uniqueness of the principal eigenvalue of −∆ + v · ∇
under Neumann boundary condition, one gets that λ = 0. The proof of
Lemma 2.2 is thereby complete. �

3. Optimization of the principal eigenvalue in a fixed domain

This section is devoted to the proof of Theorem 1.3.

Proof of Theorem 1.3. Part 1. We first focus on the infimum problem and
begin with the existence part. Let (vk)k∈N be a sequence of vector fields in
L∞(Ω,Rd) such that ‖vk‖∞ ≤ τ for all k and

lim
k→+∞

λβ1 (Ω, vk) = λβ(Ω, τ).

For all k ∈ N, define λk := λβ1 (Ω, vk) and let ϕk := ϕβΩ,vk be the correspond-

ing eigenfunction, normalized with maxΩ ϕk = 1. Since (vk)k∈N is bounded

in L∞(Ω,Rd) and the sequence (λk)k∈N is bounded, W 2,p elliptic estimates
([15, Theorem A.29]) show that the sequence (ϕk)k∈N is bounded in W 2,p(Ω)
for all 1 ≤ p < ∞. Up to a subsequence, there exist ϕ ∈

⋂
1≤p<∞W

2,p(Ω)

and f ∈ L∞(Ω) such that, as k → +∞,

ϕk ⇀ ϕ weakly in W 2,p(Ω)
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for all 1 ≤ p <∞,
ϕk → ϕ strongly in C1,α(Ω)

for all α ∈ (0, 1), and

vk · ∇ϕk
∗
⇀ f weak-∗ in L∞(Ω).

As a consequence,

−∆ϕ+ f = λβ(Ω, τ)ϕ a.e. in Ω

and
−∆ϕ− τ |∇ϕ| ≤ λβ(Ω, τ)ϕ a.e. in Ω.

Moreover, ϕ ≥ 0 in Ω, ‖ϕ‖∞ = 1 and

∂ϕ

∂ν
+ βϕ = 0 on ∂Ω.

Define now v ∈ L∞(Ω,Rd) by

(3.1) v(x) :=

 −τ
∇ϕ(x)

|∇ϕ(x)|
if ∇ϕ(x) 6= 0,

0 if ∇ϕ(x) = 0.

Notice that ‖v‖∞ ≤ τ , which entails that λβ(Ω, τ) ≤ λβ1 (Ω, v). On the one
hand,

(3.2) −∆ϕ+ v · ∇ϕ = −∆ϕ− τ |∇ϕ| ≤ λβ(Ω, τ)ϕ ≤ λβ1 (Ω, v)ϕ a.e. in Ω.

On the other hand, ϕβΩ,v > 0 in Ω,

∂ϕβΩ,v
∂ν

+ βϕβΩ,v = 0 =
∂ϕ

∂ν
+ βϕ on ∂Ω

and ‖ϕβΩ,v‖∞ = 1. Lemma 2.1 applied with (µ, β, ψ, ϕ) := (λβ1 (Ω, v), β, ϕβΩ,τ , ϕ)
yields

ϕβΩ,v = ϕ in Ω.

As a consequence, all inequalities in (3.2) are equalities and

λβ(Ω, τ) = λβ1 (Ω, v).

Furthermore, since ϕ ∈W 2,p(Ω) for each 1 ≤ p <∞, it follows that

|∇(∂xiϕ)| × 1{∂xiϕ=0} = 0 a.e. in Ω

for each 1 ≤ i ≤ d, where ∂xiϕ := ∂ϕ
∂xi

, whence

∆ϕ× 1{∇ϕ=0} = 0 a.e. in Ω.

Since −∆ϕ + v · ∇ϕ = λβ1 (Ω, v)ϕ > 0 a.e. in Ω, one gets that the set
{x ∈ Ω : ∇ϕ(x) = 0} is negligible. Therefore, in addition to v·∇ϕ = −τ |∇ϕ|
a.e. in Ω, (3.1) also entails that |v(x)| = τ for almost every x ∈ Ω. The
vector field v := v and the function

ϕ := ϕ = ϕβΩ,v
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then fulfill the required conclusions of part 1 of Theorem 1.3.
Let us now turn to the uniqueness result in part 1 of Theorem 1.3. Assume

that w ∈ L∞(Ω,Rd) is such that ‖w‖∞ ≤ τ and λβ1 (Ω, w) = λβ(Ω, τ). One
has

(3.3)

{
−∆ϕβΩ,v + w · ∇ϕβΩ,v ≥ −∆ϕβΩ,v − τ |∇ϕ

β
Ω,v| = λβ(Ω, τ)ϕβΩ,v,

−∆ϕβΩ,w + w · ∇ϕβΩ,w = λβ(Ω, τ)ϕβΩ,w,

a.e. in Ω, together with

∂ϕβΩ,v
∂ν

+ βϕβΩ,v = 0 =
∂ϕβΩ,w
∂ν

+ βϕβΩ,w on ∂Ω.

Furthermore, both functions ϕβΩ,v and ϕβΩ,w are positive (in Ω), with L∞

norms equal to 1. Lemma 2.1 applied with

(µ, β, ψ, ϕ) := (λβ(Ω, τ), β, ϕβΩ,v, ϕ
β
Ω,w),

and the vector field w instead of v, then entails

ϕβΩ,v = ϕβΩ,w in Ω.

Consequently, the first line in (3.3) then yields

w · ∇ϕβΩ,v = −τ |∇ϕβΩ,v| a.e. in Ω,

that is, w · ∇ϕ = −τ |∇ϕ| a.e. in Ω. Since ∇ϕ 6= 0 a.e. in Ω and ‖w‖∞ ≤ τ ,
one concludes that

w = −τ ∇ϕ
|∇ϕ|

a.e. in Ω,

that is, w = v a.e. in Ω.
Lastly, let λ ∈ R and φ ∈

⋂
1≤p<∞W

2,p(Ω) satisfy{ −∆φ− τ |∇φ| = λφ and φ ≥ 0 in Ω,
∂φ

∂ν
+ βφ = 0 on ∂Ω,

and maxΩ φ = 1. Define q ∈ L∞(Ω,Rd) by

q(x) :=

 −τ
∇φ(x)

|∇φ(x)|
if ∇φ(x) 6= 0,

0 if ∇φ(x) = 0.

Notice that ‖q‖∞ ≤ τ . Since −τ |∇φ| = q · ∇φ a.e. in Ω, the nonnegativity
of φ and the uniqueness of the pair of principal eigenvalue and principal
normalized eigenfunction imply that

λ = λβ1 (Ω, q) ≥ λβ(Ω, τ), and φ = ϕβΩ,q in Ω.
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Both functions φ = ϕβΩ,q and ϕ = ϕβΩ,v are positive in Ω with L∞ norms
equal to 1, and they satisfy

(3.4)

{
−∆ϕβΩ,q + v · ∇ϕβΩ,q ≥ −∆ϕβΩ,q − τ |∇ϕ

β
Ω,q| = λβ1 (Ω, q)ϕβΩ,q,

−∆ϕβΩ,v + v · ∇ϕβΩ,v = λβ(Ω, τ)ϕβΩ,v ≤ λ
β
1 (Ω, q)ϕβΩ,v,

a.e. in Ω, together with

∂ϕβΩ,q
∂ν

+ βϕβΩ,q = 0 =
∂ϕβΩ,v
∂ν

+ βϕβΩ,v on ∂Ω.

Lemma 2.1 applied with (µ, β, ψ, ϕ) = (λβ1 (Ω, q), β, ϕβΩ,q, ϕ
β
Ω,v) then entails

ϕβΩ,q = ϕβΩ,v in Ω,

that is, φ = ϕ = ϕ in Ω. Furthermore, all inequalities in (3.4) are equalities
and

λβ(Ω, τ) = λβ1 (Ω, q),

whence λ = λβ(Ω, τ). All properties in part 1 of Theorem 1.3 have now
been proved.

Part 2. Notice that, for all v ∈ L∞(Ω), λβ1 (Ω, v) ≤ λD1 (Ω, v) by Lemma 2.2.
Since

sup
v∈L∞(Ω,Rd), ‖v‖∞≤τ

λD1 (Ω, v) < +∞

by [8, Proposition 5.1], [17, Theorem 1.5] or [18, Theorem 6.6], it follows that

the quantity λ
β
(Ω, τ) defined in (1.8) is a real number. Then, arguments

similar to those in part 1 above yield the conclusions of part 2.

Part 3. Consider now the case Ω = Ω∗ and denote

φ := ϕβΩ∗,τer .

This function φ is positive in Ω∗, it is of classW 2,p(Ω∗) for all 1 ≤ p <∞, and
maxΩ∗ φ = 1. For any R ∈ O(d) (the group of orthogonal transformations

in Rd), the function φ ◦ R satisfies the same equation as φ in Ω∗ and the
same boundary condition on ∂Ω∗. The uniqueness of the pair of eigenvalue
and principal normalized eigenfunction then entails that φ ◦ R = φ in Ω∗

for any R ∈ O(d), that is, φ is radially symmetric in Ω∗. Let R denote the
radius of Ω∗. For any σ ∈ (0, R], there holds

−∆φ+ τer · ∇φ = λβ1 (Ω∗, τer)φ > 0

almost everywhere in {x : |x| ≤ σ} and φ is constant on the sphere {y :
|y| = σ}. The weak maximum principle then implies that φ(x) ≥ φ(y) for
all |x| ≤ |y| = σ, and the Hopf lemma even yields er · ∇φ(y) < 0 for all
|y| = σ. As a conclusion, φ is radially decreasing and

τer · ∇φ = −τ |∇φ|
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everywhere in Ω∗ \ {0} and the function φ then fulfills (1.10) in Ω∗ with

λ := λβ1 (Ω∗, τer). It then follows from the last result of part 1 of the present
theorem that

λβ(Ω∗, τ) = λβ1 (Ω∗, τer),

and the uniqueness of the vector field minimizing λβ1 (Ω∗, v) implies that
v = τer.

By denoting ψ := ϕβΩ∗,−τer , one proves similarly that ψ is radially de-

creasing and one still has τer · ∇ψ = −τ |∇ψ|, that is, −τer · ∇ψ = τ |∇ψ|,
everywhere in Ω∗ \ {0}. Part 2 of the present theorem then implies that

λ
β
(Ω∗, τ) = λβ1 (Ω∗,−τer)

and v = −τer. The proof of Theorem 1.3 is thereby complete. �

4. Proof of the minimization result

Let us now prove Theorem 1.1. Arguing by contradiction, assume that
the conclusion does not hold. There exist then a sequence (βk)k∈N of
positive numbers such that limk→+∞ βk = +∞ and a sequence of vector
fields (vk)k∈N such that, for all k ∈ N, ‖vk‖∞ ≤ τ and

(4.1) λβk1 (Ω, vk) < λβk1 (Ω∗, τer) +
1

k + 1
.

For all k ∈ N, write

ϕk := ϕβkΩ,vk
and λk := λβk1 (Ω, vk).

One has  −∆ϕk + vk · ∇ϕk = λkϕk a.e. in Ω,
1

βk

∂ϕk
∂ν

= −ϕk on ∂Ω.

Lemma 2.2 shows that λk ≤ λD1 (Ω, vk) for all k ∈ N, while [8, Proposi-
tion 5.1] ensures that the sequence (λD1 (Ω, vk))k∈N is bounded (recall that
‖vk‖∞ ≤ τ for all k ∈ N). Furthermore, each λk is a positive real num-
ber. Therefore, the sequence (λk)k∈N is bounded. Arguing as in the proof
of Lemma 2.2, one concludes that the sequence (ϕk)k∈N is then bounded

inH1(Ω), which entails that the sequence (tr(ϕk))k∈N is bounded inH
1
2 (∂Ω).

Therefore, together with the boundedness of the sequence (1/βk)k∈N, [1,
Theorem 15.2] implies that the sequence (ϕk)k∈N is bounded in W 2,2(Ω), and
a bootstrap argument therefore shows that (ϕk)k∈N is bounded in W 2,p(Ω)
for all 1 ≤ p < ∞. Thus, there exist µ ∈ R, ϕ ∈

⋂
1≤p<∞W

2,p(Ω) and

f ∈ L∞(Ω) such that, up to a subsequence,

lim
k→+∞

λk = µ,

ϕk ⇀
k→+∞

ϕ weakly in W 2,p(Ω) and ϕk →
k→+∞

ϕ strongly in C1,α(Ω)
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for all 1 ≤ p <∞ and all α ∈ (0, 1), and

vk · ∇ϕk ⇀ f weakly-∗ in L∞(Ω).

Furthermore, as in the proof of Lemma 2.2, there holds tr(ϕk) → 0 as
k → +∞ strongly in L2(∂Ω). One therefore has

−∆ϕ+ f = µϕ a.e. in Ω,
ϕ ≥ 0 in Ω,
tr(ϕ) = 0 on ∂Ω,
max

Ω
ϕ = 1

and f ≥ −τ |∇ϕ| a.e. in Ω, so that

−∆ϕ− τ |∇ϕ| ≤ µϕ a.e. in Ω.

Define

v(x) :=

 −τ
∇ϕ(x)

|∇ϕ(x)|
if ∇ϕ(x) 6= 0,

0 if ∇ϕ(x) = 0,

so that ‖v‖∞ ≤ τ and

−∆ϕ+ v · ∇ϕ ≤ µϕ a.e. in Ω.

Let now ψ := ϕDΩ,v, so that ψ > 0 in Ω and

−∆ψ + v · ∇ψ = λD1 (Ω, v)ψ a.e. in Ω.

If µ < λD1 (Ω, v), then

−∆ϕ+ v · ∇ϕ ≤ µϕ ≤ λD1 (Ω, v)ϕ a.e. in Ω,

and [17, Lemma 2.1] implies that ϕ = ψ in Ω, therefore µ = λD1 (Ω, v), a
contradiction. Finally,

λD1 (Ω, v) ≤ µ.

But (4.1) and Lemma 2.2 imply that

µ ≤ λD1 (Ω∗, τer),

and one therefore obtains

λD1 (Ω, v) ≤ λD1 (Ω∗, τer),

which contradicts the “equality” statement in [17, Theorem 1.1] since Ω is
not a ball. This concludes the proof of Theorem 1.1. �
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2006.

[21] A. Henrot, ed. Shape optimization and spectral theory, De Gruyter Open, Warsaw,
2017.



16 F. HAMEL AND E. RUSS
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