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A Faber-Krahn inequality for the
Laplacian with drift under Robin

boundary condition ∗

François Hamel a, Emmanuel Russ a

a Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France

Abstract

We prove a Faber-Krahn inequality for the Laplacian with drift under Robin
boundary condition, provided that the β parameter in the Robin condition is
large enough. The proof relies on a compactness argument, on the convergence
of Robin eigenvalues to Dirichlet eigenvalues when β goes to infinity, and on
a strict Faber-Krahn inequality under Dirichlet boundary condition. We also
show the existence and uniqueness of drifts v satisfying some L∞ constraints
and minimizing or maximizing the principal eigenvalue of −∆ + v ·∇ in a fixed
domain and with a fixed parameter β > 0 in the Robin condition.
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1 Introduction

Throughout this paper, d ≥ 1 is an integer. For all x ∈ Rd, denote by |x| the
Euclidean norm of x and define

er(x) :=
x

|x|
for all x ∈ Rd \ {0} .

∗This work has been supported by the French Agence Nationale de la Recherche (ANR), in the
framework of the ReaCh project ANR-23-CE40-0023-02.
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Let Ω ⊂ Rd be a bounded domain (connected open set) of class C2, with outward
unit normal ν on ∂Ω. If v ∈ L∞(Ω,Rd) is a bounded measurable vector field, set

‖v‖∞ := ‖|v|‖∞ .

We are interested in the principal eigenvalue of the operator −∆+v ·∇ in Ω under
Robin boundary condition on ∂Ω. More precisely, let β > 0. Then, by [15, Theo-
rem A.4] and Krein-Rutman theory [2], let λβ1 (Ω, v) denote the principal eigenvalue
of the problem  −∆ϕβΩ,v + v · ∇ϕβΩ,v = λβ1 (Ω, v)ϕβΩ,v in Ω,

∂ϕβΩ,v
∂ν

+ βϕβΩ,v = 0 on ∂Ω.
(1.1)

This principal eigenvalue is simple, the corresponding eigenfunction ϕβΩ,v is positive
in Ω and none of the other eigenvalues corresponds to a positive eigenfunction (see the
discussion after [15, Theorem 1.3]). By W 2,p elliptic regularity ([15, Theorem A.29]),
the function ϕβΩ,v belongs to W 2,p(Ω) for all p ∈ [1,∞) and then to C1,α(Ω) for all
α ∈ (0, 1). The first line in (1.1) is therefore understood almost everywhere in Ω.
The Hopf lemma shows that ϕβΩ,v > 0 on ∂Ω, which, in turn, implies that

min
Ω
ϕβΩ,v > 0.

We usually normalize ϕβΩ,v by

max
Ω

ϕβΩ,v = 1. (1.2)

Moreover, there holds
λβ1 (Ω, v) > 0.

Fix τ ≥ 0 and m > 0. We are interested in the infimum of λβ1 (Ω, v) when Ω
and v vary under the constraints |Ω| = m (throughout the paper, |A| denotes the
n-dimensional Lebesgue measure of A for all measurable sets A ⊂ Rd) and

‖v‖∞ ≤ τ. (1.3)

In the sequel, Ω∗ stands for the Euclidean ball centered at 0 such that |Ω∗| = |Ω|.
Our main result states that, when Ω is not a ball, λβ1 (Ω, v) is (strictly) greater

than the corresponding quantity in Ω∗ when v = τ er, provided that β is large enough:

Theorem 1.1. Let Ω ⊂ Rd be a bounded C2 domain and τ ≥ 0. Assume that Ω is
not a ball. Then there exist β0 > 0 and ε > 0 with the following property:

∀ β ≥ β0, ∀ v ∈ L∞(Ω,Rd) such that ‖v‖∞ ≤ τ, λβ1 (Ω, v) ≥ λβ1 (Ω∗, τer) + ε. (1.4)

When τ = 0, i.e. when −∆ + v · ∇ = −∆ is merely (minus) the Laplacian, it was
proved in [9, 10, 13, 14] that, for all β > 0,

λβ1 (Ω, 0) ≥ λβ1 (Ω∗, 0) (1.5)
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and equality holds if and only if Ω = Ω∗ up to translation. When τ 6= 0, Theorem 1.1
provides on the one hand a quantified strict inequality if Ω is not a ball, but the con-
clusion is only established above some threshold for β, contrary to [10, Theorem 1.1],
and it actually can not hold for all β > 0, since

lim
β→0

λβ1 (Ω, v) = lim
β→0

λβ1 (Ω∗, τer) = 0

for each v ∈ L∞(Ω,Rd) (as follows from Lemma 2.2 below). On the other hand,
when Ω = Ω∗, the uniqueness part in Theorem 1.2 below ensures that, for all v ∈
L∞(Ω∗,Rd) with ‖v‖ ≤ τ , if v 6= τer, then λβ1 (Ω∗, v) > λβ1 (Ω∗, τer) for all β > 0.

The following question nevertheless remains open:

Open problem 1. Let Ω ⊂ Rd be a bounded C2 domain, τ ≥ 0 and v ∈ L∞(Ω,Rd)
with ‖v‖∞ ≤ τ . Does the inequality

λβ1 (Ω, v) ≥ λβ1 (Ω∗, τer)

hold for all β > 0 ?

Recall that, under Dirichlet boundary condition, it was proved in [17, Theo-
rem 1.1] and [18, Remark 6.9] that, whenever (1.3) holds,

λD1 (Ω, v) ≥ λD1 (Ω∗, τer), (1.6)

where λD1 (Ω, v) stands for the principal eigenvalue of −∆ + v · ∇ under Dirichlet
boundary condition. Moreover, equality holds in (1.6) if and only if, up to translation,
Ω = Ω∗ and v = τer. The inequalities (1.4)-(1.6) are called Faber-Krahn type
inequalities. This terminology originates from the results of Faber [16] and Krahn [21,
22], who proved that

λD1 (Ω, 0) ≥ λD1 (Ω∗, 0),

with equality if and only if, up to translation, Ω = Ω∗. The latter inequality means
that a radially symmetric membrane which is fixed at its boundary has the lowest
fundamental tone among all equimeasurable membranes, answering a conjecture of
Rayleigh [27] set in dimension d = 2. Since these pioneering papers, much work
has been done on various related optimization eigenvalue problems for elliptic oper-
ators, for instance on higher eigenvalues or functions of the eigenvalues of −∆ under
Dirichlet boundary condition [3, 4, 6, 11, 12, 24, 25, 26, 30], under Neumann boun-
dary condition [26, 28, 29], or for the first eigenvalue of ∆2 under boundary conditions
ϕ = ∂ϕ

∂ν
= 0 on ∂Ω [5, 23]. We refer to the surveys [7, 20] for many more references

on these topics.
The second main result deals with an optimization problem when the domain Ω

is fixed and v varies under the constraint (1.3). Define, for all β > 0 and τ ≥ 0 given:

λβ(Ω, τ) := inf
¶
λβ1 (Ω, v) : ‖v‖∞ ≤ τ

©
(1.7)

and
λ
β
(Ω, τ) := sup

¶
λβ1 (Ω, v) : ‖v‖∞ ≤ τ

©
. (1.8)
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We claim that these lower and upper bounds are positive real numbers, are uniquely
reached and provide an identity relating the optimizing vector fields and the corre-
sponding eigenfunctions:

Theorem 1.2. [Optimization in fixed domains] Let Ω ⊂ Rd be a bounded C2 domain,
τ ≥ 0 and β > 0.

1. There exists a unique v ∈ L∞(Ω,Rd) meeting ‖v‖∞ ≤ τ such that λβ(Ω, τ) =

λβ1 (Ω, v). One has |v(x)| = τ for almost every x ∈ Ω. Moreover, if ϕ := ϕβΩ,v is
the corresponding eigenfunction, then

v(x) · ∇ϕ(x) = −τ |∇ϕ(x)| for almost every x ∈ Ω. (1.9)

Lastly, if λ ∈ R and φ ∈
⋂

1≤p<∞W
2,p(Ω) satisfy{ −∆φ− τ |∇φ| = λφ and φ ≥ 0 in Ω,

∂φ

∂ν
+ βφ = 0 on ∂Ω,

(1.10)

and maxΩ φ = 1, then λ = λβ(Ω, τ) and φ = ϕ in Ω. Notice that, from elliptic

regularity theory applied to (1.10), since φ and |∇φ| belong to C0,α(Ω) for all
α ∈ (0, 1), the function φ belongs to C2,α

loc (Ω) for all α ∈ (0, 1), and the first line
of (1.10) holds in the classical sense in Ω.

2. Similarly, there exists a unique v ∈ L∞(Ω,Rd) meeting ‖v‖∞ ≤ τ such that

λ
β
(Ω, τ) = λβ1 (Ω, v). One has |v(x)| = τ for almost every x ∈ Ω. Moreover, if

ϕ := ϕβΩ,v is the corresponding eigenfunction, then

v(x) · ∇ϕ(x) = τ |∇ϕ(x)| for almost every x ∈ Ω. (1.11)

Lastly, if λ ∈ R and φ ∈
⋂

1≤p<∞W
2,p(Ω) satisfy{ −∆φ+ τ |∇φ| = λφ and φ ≥ 0 in Ω,

∂φ

∂ν
+ βφ = 0 on ∂Ω,

(1.12)

and maxΩ φ = 1, then λ = λ
β
(Ω, τ) and φ = ϕ in Ω. As for (1.10), the

function φ then belongs to C2,α
loc (Ω) for all α ∈ (0, 1), and the first line of (1.12)

holds in the classical sense in Ω.

3. If Ω = Ω∗, then v = τ er, v = −τ er in Ω∗ and the functions ϕ and ϕ are
radially decreasing in Ω∗.

We point out that similar properties had been derived in [17, 18] for the extremal

quantities λ(Ω, τ) and λ(Ω, τ) defined like λβ(Ω, τ) and λ
β
(Ω, τ) in (1.7)-(1.8) with

the Dirichlet eigenvalues λ1(Ω, v) instead of the Robin ones λβ1 (Ω, v). The asymptotic
behavior as τ → +∞ of the eigenfunctions associated with λ(Ω, τ) was analyzed
in [19].
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The paper is organized as follows. In Section 2, we provide comparisons results
between Robin, Dirichlet and Neumann eigenvalues in a fixed domain and for a given
drift, and prove convergence of the Robin eigenvalues when β → +∞ (resp. when
β → 0) to the corresponding Dirichlet (resp. Neumann) eigenvalues. Section 3 is
devoted to the proof of Theorem 1.2. Finally, we establish Theorem 1.1 is Section 4.

2 Comparisons and convergence results between

Robin, Dirichlet and Neumann principal eigen-

values

This section is concerned with some comparisons and convergence results for Robin
and Dirichlet principal eigenvalues in a given domain Ω. The results will be used in
the proofs of the main Theorems 1.1 and 1.2.

We first start with an auxiliary comparison lemma between sub- and super-
solutions.

Lemma 2.1. Let µ ∈ R, β ≥ 0, and v ∈ L∞(Ω,Rd). Let ψ, ϕ ∈ W 2,p(Ω) for all
1 ≤ p <∞, such that ψ ≥ 0 and ϕ ≥ 0 in Ω, ‖ψ‖∞ = ‖ϕ‖∞ = 1, and®

−∆ψ + v · ∇ψ ≥ µψ a.e. in Ω,

−∆ϕ+ v · ∇ϕ ≤ µϕ a.e. in Ω.

Assume also that
∂ψ

∂ν
+ βψ ≥ 0 ≥ ∂ϕ

∂ν
+ βϕ on ∂Ω.

Then ψ = ϕ in Ω.

Proof. The argument is reminiscent of the proof of [17, Lemma 2.1]. Remember first
that ψ and ϕ belong to C1,α(Ω) for all α ∈ (0, 1). Furthermore, ψ > 0 in Ω from
the interior strong maximum principle (otherwise, ψ would be identically 0 in Ω,
contradicting ‖ψ‖∞ = 1). Observe now that ψ > 0 on ∂Ω. Indeed, if there exists
x0 ∈ ∂Ω such that ψ(x0) = 0, then the Hopf lemma shows that ∂ψ

∂ν
(x0) < 0, which is

impossible by the boundary condition satisfied by ψ. Thus, being continuous in Ω, ψ
is bounded below by a positive constant, so that there exists γ > 0 such that γψ > ϕ
in Ω. Define

γ∗ := inf {γ > 0 : γψ > ϕ in Ω}

and w := γ∗ψ− ϕ. Note that, since ϕ ≥ 0 in Ω and ‖ϕ‖∞ = 1, γ∗ > 0. The function
w is nonnegative in Ω,

∂w

∂ν
+ βw ≥ 0 on ∂Ω

and
−∆w + v · ∇w − µw ≥ 0 a.e. in Ω.
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If w > 0 in Ω, then, as before, w is bounded below by a positive constant in Ω, so
there exists δ > 0 such that w > δϕ in Ω, which entails in turn

γ∗

1 + δ
ψ > ϕ in Ω,

contradicting the definition of γ∗, since γ∗ > 0. Therefore, there exists x0 ∈ Ω such
that w(x0) = 0, and since w ≥ 0 in Ω, the strong maximum principle indicates that
w(x) = 0 everywhere in Ω and then in Ω by continuity, meaning that γ∗ψ = ϕ in Ω.
The condition ‖ϕ‖∞ = ‖ψ‖∞ = 1 finally yields ϕ = ψ in Ω.

Let now Ω ⊂ Rd be a bounded C2 domain and v ∈ L∞(Ω,Rd). Denote by λD1 (Ω, v)
the principal eigenvalue of −∆+v ·∇ in Ω under Dirichlet boundary condition and by
ϕDΩ,v ∈

⋂
1≤p<∞W

2,p(Ω) the corresponding principal eigenfunction (which is positive
in Ω) normalized by ∥∥ϕDΩ,v∥∥∞ = 1.

We will show that the map β 7→ λβ1 (Ω, v) is increasing in (0,∞) and converges to
λD1 (Ω, v) at infinity, and to 0 (that is, the principal eigenvalue of −∆ + v · ∇ in Ω
under Neumann boundary condition) as β → 0:

Lemma 2.2. Let Ω ⊂ Rd be a bounded C2 domain and v ∈ L∞(Ω,Rd). Then the
map β 7→ λβ1 (Ω, v) is increasing in (0,+∞). Furthermore,

lim
β→+∞

λβ1 (Ω, v) = λD1 (Ω, v). (2.1)

and
lim
β→0

λβ1 (Ω, v) = 0.

Proof. Let 0 < β1 < β2 and assume by way of contradiction that λβ2

1 (Ω, v) ≤
λβ1

1 (Ω, v). Set ϕ1 := ϕβ1

Ω,v and ϕ2 := ϕβ2

Ω,v. Both functions ϕ1 and ϕ2 are positive

in Ω and they satisfy®
−∆ϕ1 + v · ∇ϕ1 = λβ1

1 (Ω, v)ϕ1 a.e. in Ω,

−∆ϕ2 + v · ∇ϕ2 = λβ2

1 (Ω, v)ϕ2 ≤ λβ1

1 (Ω, v)ϕ2 a.e. in Ω,

together with

∂ϕ1

∂ν
+ β1ϕ1 = 0 =

∂ϕ2

∂ν
+ β2ϕ2 >

∂ϕ2

∂ν
+ β1ϕ2 on ∂Ω. (2.2)

Lemma 2.1 applied with (µ, β, ψ, ϕ) := (λβ1

1 (Ω, v), β1, ϕ1, ϕ2) then entails ϕ1 = ϕ2

in Ω, contradicting the strict inequality in (2.2). Finally,

λβ1

1 (Ω, v) < λβ2

1 (Ω, v),

and the map β 7→ λβ1 (Ω, v) is increasing in (0,+∞).
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Let now β > 0 and assume by way of contradiction that λβ1 (Ω, v) ≥ λD1 (Ω, v).
Both functions ϕβΩ,v and ϕDΩ,v are positive in Ω and they satisfy®

−∆ϕβΩ,v + v · ∇ϕβΩ,v = λβ1 (Ω, v)ϕβΩ,v a.e. in Ω,

−∆ϕDΩ,v + v · ∇ϕDΩ,v = λD1 (Ω, v)ϕDΩ,v ≤ λβ1 (Ω, v)ϕDΩ,v a.e. in Ω.

Furthermore, the Hopf lemma implies that
∂ϕD

Ω,v

∂ν
< 0 on ∂Ω, whence

∂ϕβΩ,v
∂ν

+ βϕβΩ,v = 0 >
∂ϕDΩ,v
∂ν

+ βϕDΩ,v on ∂Ω. (2.3)

Lemma 2.1 applied with (µ, β, ψ, ϕ) := (λβ1 (Ω, v), β, ϕβΩ,v, ϕ
D
Ω,v) then entails ϕβΩ,v =

ϕDΩ,v in Ω, contradicting the strict inequality in (2.3) (or the fact that ϕβΩ,v > 0 = ϕDΩ,v
on ∂Ω). Finally,

λβ1 (Ω, v) < λD1 (Ω, v)

for all β > 0.
Let us now turn to the proof of (2.1). Pick up any increasing sequence (βk)k∈N of

positive real numbers with limk→+∞ βk = +∞ and set λk := λβk1 (Ω, v) for all k ∈ N.
The sequence (λk)k∈N is increasing and bounded above by λD1 (Ω, v) and therefore
converges to some µ ≤ λD1 (Ω, v). For all k, if ϕk is defined as ϕk := θkϕ

βk
Ω,v with

θk > 0 such that ‖ϕk‖L2(Ω) = 1, then{ −∆ϕk + v · ∇ϕk = λkϕk a.e. in Ω,
∂ϕk
∂ν

+ βkϕk = 0 on ∂Ω.
(2.4)

We claim that the sequence (ϕk)k∈N is bounded in H1(Ω). Indeed, for all k ∈ N,

λk

ˆ
Ω

ϕ2
k = −

ˆ
Ω

ϕk∆ϕk +

ˆ
Ω

(v · ∇ϕk)ϕk

=

ˆ
Ω

|∇ϕk|2 −
ˆ
∂Ω

ϕk
∂ϕk
∂ν

+

ˆ
Ω

(v · ∇ϕk)ϕk

=

ˆ
Ω

|∇ϕk|2 + βk

ˆ
∂Ω

ϕ2
k +

ˆ
Ω

(v · ∇ϕk)ϕk.

From this, we derive, for all ε > 0,ˆ
Ω

|∇ϕk|2 + βk

ˆ
∂Ω

ϕ2
k ≤ λk

ˆ
Ω

ϕ2
k + ‖v‖∞

ˆ
Ω

ϕk |∇ϕk|

≤
Å
λk +

1

2ε
‖v‖∞

ãˆ
Ω

ϕ2
k +

ε

2
‖v‖∞

ˆ
Ω

|∇ϕk|2 .
(2.5)

Provided ε ‖v‖∞ < 2, recalling that the sequences (λk)k∈N and (‖ϕk‖L2(Ω))k∈N are
bounded, one obtains that the sequence (ϕk)k∈N is bounded in H1(Ω), that is, there

is M ∈ R+ such that ‖ϕk‖H1(Ω) =
»
‖ϕk‖2

L2(Ω) + ‖ |∇ϕk| ‖2
L2(Ω) ≤ M for all k ∈ N.

Therefore, there exists ϕ ∈ H1(Ω) such that, up to a subsequence,

ϕk ⇀ ϕ weakly in H1(Ω), ϕk → ϕ strongly in L2(Ω) and ϕk → ϕ a.e. in Ω, (2.6)

7



as k → +∞, whence

‖ϕ‖L2(Ω) = 1 and ϕ ≥ 0 a.e. in Ω. (2.7)

Moreover, since limk→+∞ βk = +∞, (2.5) shows that

lim
k→+∞

tr(ϕk) = 0 strongly in L2(∂Ω), (2.8)

where tr : H1(Ω) → L2(∂Ω) denotes the trace operator. Since this trace operator
is continuous from H1(Ω) to L2(∂Ω) with the topologies induced by the norms, and
since ϕk ⇀ ϕ weakly in H1(Ω) as k → +∞, it follows that tr(ϕk) ⇀ tr(ϕ) weakly
in L2(∂Ω) as k → +∞. Finally, since tr(ϕk) → 0 strongly in L2(∂Ω) as k → +∞
by (2.8), one gets that tr(ϕ) = 0, meaning that ϕ ∈ H1

0 (Ω).
Consider now ψ ∈ C∞c (Ω). One has

ˆ
Ω

∇ϕ · ∇ψ +

ˆ
Ω

(v · ∇ϕ)ψ = lim
k→+∞

ˆ
Ω

∇ϕk · ∇ψ +

ˆ
Ω

(v · ∇ϕk)ψ

= lim
k→+∞

λk

ˆ
Ω

ϕkψ

= µ

ˆ
Ω

ϕψ,

which means that ϕ is an H1
0 (Ω) weak solution of®
−∆ϕ+ v · ∇ϕ = µϕ in Ω,

tr(ϕ) = 0 on ∂Ω.

Elliptic H2 and W 2,p estimates show that ϕ ∈ W 2,p(Ω) for all 1 ≤ p <∞, and, since
ϕ ≥ 0 in Ω and ‖ϕ‖L2(Ω) = 1, the strong maximum principle entails that ϕ > 0
in Ω. Thus, by uniqueness of the principal eigenvalue of −∆ + v · ∇ under Dirichlet
boundary condition, one gets that

µ = λD1 (Ω, v),

which ends the proof.
Lastly, let us investigate the limit of λβ1 (Ω, v) as β → 0. Pick up any decreasing se-

quence (βk)k∈N of positive real numbers with limk→+∞ βk = 0 and set λk := λβk1 (Ω, v)
for all k ∈ N. The sequence (λk)k∈N is decreasing and bounded below by 0, and
therefore converges to some λ ≥ 0. For all k, if ϕk is defined as ϕk := θkϕ

βk
Ω,v with

θk > 0 such that ‖ϕk‖L2(Ω) = 1, then as above (2.4)-(2.5) still hold and there exists
ϕ ∈ H1(Ω) satisfying (2.6)-(2.7), up to a subsequence. Pick now any ψ ∈ H1(Ω). For
all k ∈ N, one has

λk

ˆ
Ω

ϕkψ =

ˆ
Ω

∇ϕk · ∇ψ + βk

ˆ
∂Ω

ϕkψ +

ˆ
Ω

(v · ∇ϕk)ψ.
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But βk → 0 as k → +∞ and the sequence (tr(ϕk))k∈N is bounded in L2(∂Ω) (since
so is (ϕk)k∈N in H1(Ω)). Hence, by (2.6), the passage to the limit as k → +∞ in the
above formula leads to

λ

ˆ
Ω

ϕψ =

ˆ
Ω

∇ϕ · ∇ψ +

ˆ
Ω

(v · ∇ϕ)ψ.

In other words, ϕ is an H1(Ω) weak solution of{ −∆ϕ+ v · ∇ϕ = λϕ in Ω,
∂ϕ

∂ν
= 0 on ∂Ω.

Elliptic H2 and W 2,p estimates show that ϕ ∈ W 2,p(Ω) for all 1 ≤ p < ∞, and
by (2.7) the strong maximum principle and Hopf lemma entail that ϕ > 0 in Ω. Thus,
by uniqueness of the principal eigenvalue of −∆ + v · ∇ under Neumann boundary
condition, one gets that λ = 0. The proof of Lemma 2.2 is thereby complete.

3 Optimization of the principal eigenvalue in a

fixed domain

This section is devoted to the proof of Theorem 1.2.

Proof of Theorem 1.2. Part 1. We first focus on the infimum problem and begin with
the existence part. Let (vk)k∈N be a sequence of vector fields in L∞(Ω,Rd) such that
‖vk‖∞ ≤ τ for all k and

lim
k→+∞

λβ1 (Ω, vk) = λβ(Ω, τ).

For all k ∈ N, define λk := λβ1 (Ω, vk) and let ϕk := ϕβΩ,vk be the corresponding

eigenfunction, normalized with maxΩ ϕk = 1. Since (vk)k∈N is bounded in L∞(Ω,Rd)
and the sequence (λk)k∈N is bounded, W 2,p elliptic estimates ([15, Theorem A.29])
show that the sequence (ϕk)k∈N is bounded in W 2,p(Ω) for all 1 ≤ p < ∞. Up to a
subsequence, there exist ϕ ∈

⋂
1≤p<∞W

2,p(Ω) and f ∈ L∞(Ω) such that, as k → +∞,

ϕk ⇀ ϕ weakly in W 2,p(Ω)

for all 1 ≤ p <∞,
ϕk → ϕ strongly in C1,α(Ω)

for all α ∈ (0, 1), and

vk · ∇ϕk
∗
⇀ f weak-∗ in L∞(Ω).

As a consequence,
−∆ϕ+ f = λβ(Ω, τ)ϕ a.e. in Ω

and
−∆ϕ− τ |∇ϕ| ≤ λβ(Ω, τ)ϕ a.e. in Ω.

9



Moreover, ϕ ≥ 0 in Ω, ‖ϕ‖∞ = 1 and

∂ϕ

∂ν
+ βϕ = 0 on ∂Ω.

Define now v ∈ L∞(Ω,Rd) by

v(x) :=

 −τ
∇ϕ(x)

|∇ϕ(x)|
if ∇ϕ(x) 6= 0,

0 if ∇ϕ(x) = 0.
(3.1)

Notice that ‖v‖∞ ≤ τ , which entails that λβ(Ω, τ) ≤ λβ1 (Ω, v). On the one hand,

−∆ϕ+ v · ∇ϕ = −∆ϕ− τ |∇ϕ| ≤ λβ(Ω, τ)ϕ ≤ λβ1 (Ω, v)ϕ a.e. in Ω. (3.2)

On the other hand, ϕβΩ,v > 0 in Ω,

∂ϕβΩ,v
∂ν

+ βϕβΩ,v = 0 =
∂ϕ

∂ν
+ βϕ on ∂Ω

and ‖ϕβΩ,v‖∞ = 1. Lemma 2.1 applied with (µ, β, ψ, ϕ) := (λβ1 (Ω, v), β, ϕβΩ,τ , ϕ) yields

ϕβΩ,v = ϕ in Ω.

As a consequence, all inequalities in (3.2) are equalities and

λβ(Ω, τ) = λβ1 (Ω, v).

Furthermore, since ϕ ∈ W 2,p(Ω) for each 1 ≤ p <∞, it follows that

|∇(∂xiϕ)| × 1{∂xiϕ=0} = 0 a.e. in Ω

for each 1 ≤ i ≤ d, where ∂xiϕ := ∂ϕ
∂xi

, whence

∆ϕ× 1{∇ϕ=0} = 0 a.e. in Ω.

Since −∆ϕ + v · ∇ϕ = λβ1 (Ω, v)ϕ > 0 a.e. in Ω, one gets that the set {x ∈ Ω :
∇ϕ(x) = 0} is negligible. Therefore, in addition to v · ∇ϕ = −τ |∇ϕ| a.e. in Ω, (3.1)
also entails that |v(x)| = τ for almost every x ∈ Ω. The vector field v := v and the
function

ϕ := ϕ = ϕβΩ,v

then fulfill the required conclusions of part 1 of Theorem 1.2.
Let us now turn to the uniqueness result in part 1 of Theorem 1.2. Assume that

w ∈ L∞(Ω,Rd) is such that ‖w‖∞ ≤ τ and λβ1 (Ω, w) = λβ(Ω, τ). One has®
−∆ϕβΩ,v + w · ∇ϕβΩ,v ≥ −∆ϕβΩ,v − τ |∇ϕ

β
Ω,v| = λβ(Ω, τ)ϕβΩ,v,

−∆ϕβΩ,w + w · ∇ϕβΩ,w = λβ(Ω, τ)ϕβΩ,w,
(3.3)
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a.e. in Ω, together with

∂ϕβΩ,v
∂ν

+ βϕβΩ,v = 0 =
∂ϕβΩ,w
∂ν

+ βϕβΩ,w on ∂Ω.

Furthermore, both functions ϕβΩ,v and ϕβΩ,w are positive (in Ω), with L∞ norms equal

to 1. Lemma 2.1 applied with (µ, β, ψ, ϕ) := (λβ(Ω, τ), β, ϕβΩ,v, ϕ
β
Ω,w), and the vector

field w instead of v, then entails

ϕβΩ,v = ϕβΩ,w in Ω.

Consequently, the first line in (3.3) then yields

w · ∇ϕβΩ,v = −τ |∇ϕβΩ,v| a.e. in Ω,

that is, w · ∇ϕ = −τ |∇ϕ| a.e. in Ω. Since ∇ϕ 6= 0 a.e. in Ω and ‖w‖∞ ≤ τ , one
concludes that

w = −τ ∇ϕ
|∇ϕ|

a.e. in Ω,

that is, w = v a.e. in Ω.
Lastly, let λ ∈ R and φ ∈

⋂
1≤p<∞W

2,p(Ω) satisfy{ −∆φ− τ |∇φ| = λφ and φ ≥ 0 in Ω,
∂φ

∂ν
+ βφ = 0 on ∂Ω,

and maxΩ φ = 1. Define q ∈ L∞(Ω,Rd) by

q(x) :=

 −τ
∇φ(x)

|∇φ(x)|
if ∇φ(x) 6= 0,

0 if ∇φ(x) = 0.

Notice that ‖q‖∞ ≤ τ . Since−τ |∇φ| = q·∇φ a.e. in Ω, the nonnegativity of φ and the
uniqueness of the pair of principal eigenvalue and principal normalized eigenfunction
imply that

λ = λβ1 (Ω, q) ≥ λβ(Ω, τ), and φ = ϕβΩ,q in Ω.

Both functions φ = ϕβΩ,q and ϕ = ϕβΩ,v are positive in Ω with L∞ norms equal to 1,
and they satisfy®

−∆ϕβΩ,q + v · ∇ϕβΩ,q ≥ −∆ϕβΩ,q − τ |∇ϕ
β
Ω,q| = λβ1 (Ω, q)ϕβΩ,q,

−∆ϕβΩ,v + v · ∇ϕβΩ,v = λβ(Ω, τ)ϕβΩ,v ≤ λβ1 (Ω, q)ϕβΩ,v,
(3.4)

a.e. in Ω, together with

∂ϕβΩ,q
∂ν

+ βϕβΩ,q = 0 =
∂ϕβΩ,v
∂ν

+ βϕβΩ,v on ∂Ω.
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Lemma 2.1 applied with (µ, β, ψ, ϕ) = (λβ1 (Ω, q), β, ϕβΩ,q, ϕ
β
Ω,v) then entails

ϕβΩ,q = ϕβΩ,v in Ω,

that is, φ = ϕ = ϕ in Ω. Furthermore, all inequalities in (3.4) are equalities and

λβ(Ω, τ) = λβ1 (Ω, q),

whence λ = λβ(Ω, τ). All properties in part 1 of Theorem 1.2 have now been proved.

Part 2. Notice that, for all v ∈ L∞(Ω), λβ1 (Ω, v) ≤ λD1 (Ω, v) by Lemma 2.2. Since

sup
v∈L∞(Ω,Rd), ‖v‖∞≤τ

λD1 (Ω, v) < +∞

by [8, Proposition 5.1], [17, Theorem 1.5] or [18, Theorem 6.6], if follows that the

quantity λ
β
(Ω, τ) defined in (1.8) is a real number. Then, arguments similar to those

in part 1 above yield the conclusions of part 2.

Part 3. Consider now the case Ω = Ω∗ and denote

φ := ϕβΩ∗,τer .

This function φ is positive in Ω∗, it is of class W 2,p(Ω∗) for all 1 ≤ p < ∞, and
maxΩ∗ φ = 1. For any R ∈ O(d), the function φ ◦ R satisfies the same equation
as φ in Ω∗ and the same boundary condition on ∂Ω∗. The uniqueness of the pair of
eigenvalue and principal normalized eigenfunction then entails that φ ◦ R = φ in Ω∗

for any R ∈ O(d), that is, φ is radially symmetric in Ω∗. Let R denote the radius
of Ω∗. For any σ ∈ (0, R], there holds

−∆φ+ τer · ∇φ = λβ1 (Ω∗, τer)φ > 0

almost everywhere in {x : |x| ≤ σ} and φ is constant on the sphere {y : |y| = σ}.
The weak maximum principle then implies that φ(x) ≥ φ(y) for all |x| ≤ |y| = σ,
and the Hopf lemma even yields er · ∇φ(y) < 0 for all |y| = σ. As a conclusion, φ is
radially decreasing and

τer · ∇φ = −τ |∇φ|
everywhere in Ω∗ \ {0} and the function φ then fulfills (1.10) in Ω∗ with λ :=
λβ1 (Ω∗, τer). It then follows from the last result of part 1 of the present theorem
that

λβ(Ω∗, τ) = λβ1 (Ω∗, τer),

and the uniqueness of the vector field minimizing λβ1 (Ω∗, v) implies that v = τer.
Similarly, by denoting ψ := ϕβΩ∗,−τer , one proves similarly that ψ is radially de-

creasing and one still has τer ·∇ψ = −τ |∇ψ|, that is, −τer ·∇ψ = τ |∇ψ|, everywhere
in Ω∗ \ {0}. Part 2 of the present theorem then implies that

λ
β
(Ω∗, τ) = λβ1 (Ω∗,−τer)

and v = −τer. The proof of Theorem 1.2 is thereby complete.
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4 Proof of the minimization result

Let us now prove Theorem 1.1. Arguing by contradiction, assume that the conclusion
does not hold. There exist then a sequence (βk)k∈N of positive numbers such that
limk→+∞ βk = +∞ and a sequence of vector fields (vk)k∈N such that, for all k ∈ N,
‖vk‖∞ ≤ τ and

λβk1 (Ω, vk) < λβk1 (Ω∗, τer) +
1

k + 1
. (4.1)

For all k ∈ N, write
ϕk := ϕβkΩ,vk

and λk := λβk1 (Ω, vk).

One has  −∆ϕk + vk · ∇ϕk = λkϕk a.e. in Ω,
1

βk

∂ϕk
∂ν

= −ϕk on ∂Ω.

Lemma 2.2 shows that λk ≤ λD1 (Ω, vk) for all k ∈ N, while [8, Proposition 5.1] ensures
that the sequence (λD1 (Ω, vk))k∈N is bounded (recall that ‖vk‖∞ ≤ τ for all k ∈ N).
Furthermore, each λk is a positive real number. Therefore, the sequence (λk)k∈N
is bounded. Arguing as in the proof of Lemma 2.2, one concludes that the se-
quence (ϕk)k∈N is then bounded in H1(Ω), which entails that the sequence (tr(ϕk))k∈N
is bounded in H

1
2 (∂Ω). Therefore, together with the boundedness of the sequence

(1/βk)k∈N, [1, Theorem 15.2] implies that the sequence (ϕk)k∈N is bounded in W 2,2(Ω),
and a bootstrap argument therefore shows that (ϕk)k∈N is bounded in W 2,p(Ω) for
all 1 ≤ p < ∞. Thus, there exist µ ∈ R, ϕ ∈

⋂
1≤p<∞W

2,p(Ω) and f ∈ L∞(Ω) such
that, up to a subsequence,

lim
k→+∞

λk = µ,

ϕk ⇀
k→+∞

ϕ weakly in W 2,p(Ω) and ϕk →
k→+∞

ϕ strongly in C1,α(Ω)

for all 1 ≤ p <∞ and all α ∈ (0, 1), and

vk · ∇ϕk ⇀ f weakly-∗ in L∞(Ω).

Furthermore, as in the proof of Lemma 2.2, there holds tr(ϕk) → 0 as k → +∞
strongly in L2(∂Ω). One therefore has

−∆ϕ+ f = µϕ a.e. in Ω,
ϕ ≥ 0 in Ω,
tr(ϕ) = 0 on ∂Ω,
max

Ω
ϕ = 1

and f ≥ −τ |∇ϕ| a.e. in Ω, so that

−∆ϕ− τ |∇ϕ| ≤ µϕ a.e. in Ω.

Define

v(x) :=

 −τ
∇ϕ(x)

|∇ϕ(x)|
if ∇ϕ(x) 6= 0,

0 if ∇ϕ(x) = 0,
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so that ‖v‖∞ ≤ τ and
−∆ϕ+ v · ∇ϕ ≤ µϕ a.e. in Ω.

Let now ψ := ϕDΩ,v, so that ψ > 0 in Ω and

−∆ψ + v · ∇ψ = λD1 (Ω, v)ψ a.e. in Ω.

If µ < λD1 (Ω, v), then

−∆ϕ+ v · ∇ϕ ≤ µϕ ≤ λD1 (Ω, v)ϕ a.e. in Ω,

and [17, Lemma 2.1] implies that ϕ = ψ in Ω, therefore µ = λD1 (Ω, v), a contradiction.
Finally,

λD1 (Ω, v) ≤ µ.

But (4.1) and Lemma 2.2 imply that

µ ≤ λD1 (Ω∗, τer),

and one therefore obtains
λD1 (Ω, v) ≤ λD1 (Ω∗, τer),

which contradicts the “equality” statement in [17, Theorem 1.1] since Ω is not a ball.
This concludes the proof of Theorem 1.1. �
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Faber-Krahn et de l’inégalité de Cheeger. C. R. Acad. Sci. Paris Sér. I Math., 302:47–
50, 1986.

[10] D. Bucur and D. Daners. An alternative approach to the Faber-Krahn inequality for
Robin problems. Calc. Var. Partial Differ. Equ., 37(1-2):75–86, 2010.

[11] D. Bucur and A. Henrot. Minimization of the third eigenvalue of the Dirichlet Lapla-
cian. Proc. Royal Soc. London Ser. A, 456:985–996, 2000.

[12] S.-Y. Cheng and K. Oden. Isoperimetric inequalities and the gap between the first and
second eigenvalues of an euclidean domain. J. Geom. Anal., 7:217–239, 1997.

[13] D. Daners. A Faber-Krahn inequality for Robin problems in any space dimension.
Math. Ann., 335:767–785, 2006.

[14] D. Daners and J. Kennedy. Uniqueness in the Faber-Krahn inequality for Robin prob-
lems. SIAM J. Math. Anal., 39:1191–1207, 2007/08.

[15] Y. Du. Order structure and topological methods in nonlinear partial differential equa-
tions. Vol. 1. Maximum principles and applications, volume 2 of Ser. Partial Differ.
Equ. Appl. Hackensack, NJ: World Scientific, 2006.

[16] G. Faber. Beweis, dass unter allen homogenen Membranen von gleicher Fläche und
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