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Highlights

Derivation of weakly hydrodynamic models in the Dupuit-Forchheimer regime

Martin Parisot

• We derive a new hydrodynamic reduced model of the groundwater waves
problem within the Dupuit-Forchheimer regime.

• We show that the new model satisfies a energy dissipation law.

• We proposed few simplified models for specific regime, small bedrock
variation and weakly non-linear water table.

• We realized a linear analysis of the new models and show the relevance of
the new models for intermediate wave numbers.

• We propose entropy-satisfying numerical scheme of the new model and
illustrate the differences between the solutions of the models.
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Abstract

The current study is dedicated to the formal derivation of a hierarchic of asymp-
totic models that approximate the groundwater waves problem within the Dupuit-
Forchheimer regime, over a regular, non-planar substratum. The derivation
methodology employed bears resemblance to the techniques utilized in hier-
archic of asymptotic models for approximating the water waves problem in the
shallow water regime. Mathematically speaking, the asymptotic models mani-
fest as nonlinear, non-local diffusion equations. We identify an energy dissipa-
tion law inherent to these models, thereby bolstering the physical validity and
confidence in the proposed framework. A numerical strategy is proposed that
preserved at the discrete level the energy dissipation.

Keywords: Groundwater waves, Dupuit-Forchheimer regime, Unconfined
aquifer, Non-hydrostatic model, Finite volume method, Entropy satisfying
scheme

1. Introduction

The current study is dedicated to the formal derivation of a hierarchic of
asymptotic models that approximate the groundwater waves problem within
the Dupuit-Forchheimer regime, over a regular, non-planar substratum. The
groundwater waves problem pertains to the mathematical representation of
the phreatic water’s evolution, with a specific focus on neglecting the unsat-
urated vadose zone dynamics over an unconfined aquifer. In recent years, the
groundwater waves problem has garnered significant attention from both re-
searchers and practicing engineers. This heightened interest can be attributed
to various factors, notably climate change, increasing demands on water re-
sources, pumping activities, and challenges related to saltwater intrusion in
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coastal regions. Mathematically, the groundwater waves problem is charac-
terized as a three-dimensional free-surface problem, with flow dynamics gov-
erned by Darcy’s law. However, for applications on large spatial scales, direct
numerical simulations of the groundwater waves problem often become com-
putationally prohibitive. To circumvent these challenges, especially in the con-
text of shallow aquifers, the groundwater waves problem can be effectively sim-
plified through a vertically integrated modeling approach, leading to the Dupuit-
Forchheimer model [1]. Despite its utility, the Dupuit-Forchheimer model ex-
hibits limitations, particularly in scenarios where vertical velocities are non-
negligible. This inadequacy becomes pronounced in the presence of drainage
or injection processes [2, 3]. Additionally, the model’s efficacy is compromised
when confronted with steep bedrock slopes or boundary conditions mandating
a significant slope for the water table.

To address these limitations, enhanced models have been introduced in the
literature [4, 5], which are formulated based on Hilbert expansions centered
around the Dupuit-Forchheimer regime. While these refined models adeptly
capture experimental outcomes for minor fluctuations in the groundwater waves,
they exhibit deficiencies when confronted with more abrupt variations. Specif-
ically, in such scenarios, the amplitude of high-frequency components esca-
lates, and the energy of the model increase, see §5. Furthermore, it is pertinent
to acknowledge several studies that have delineated analytical solutions, par-
ticularly in the context of stationary solutions [6, 7].

The foundation of this study rests upon recognizing the parallels between
the groundwater waves problem and the water waves problem [8], as well as be-
tween the Dupuit-Forchheimer regime and the shallow water regime. This ob-
servation has already been made in [9]. The water waves model pertains to the
mathematical representation of the evolution of a free-surface incompressible,
irrotational, and inviscid fluid, governed by the Euler equations. This model
is instrumental in describing phenomena such as river or coastal flows. In the
context of shallow flows, the water waves problem can be effectively stream-
lined through a vertically integrated modeling approach, leading to the shal-
low water model [10]. To enhance the fidelity of wave propagation within this
regime, a hierarchical series of models has been introduced [11]. In §3, our
endeavor focuses on deriving analogous models for the Dupuit-Forchheimer
regime. We justify the derived models based on key mathematical properties,
namely the mass conservation law, the energy dissipation law, and the decay
rate of each model. Mass conservation is a fundamental requirement for ap-
plications in water resource management. The energy dissipation law is crucial

2



x

z η (t , x)

B (x)

D (x) h (t , x)
H

a

b

L

u (t , x, z)

w (t , x, z)

u (t , x)

w (t , x)

Figure 1: Illustration of model unknowns and characteristic lengths.

for ensuring the long-term stability of a model and serves as a foundational step
in analyzing its well-posedness. Moreover, enforcing its discrete counterpart
enables the development of robust numerical schemes that validate the accu-
racy of the approximations. Finally, the decay rate provides a basis for com-
paring different models and serves as a criterion for selecting the most suitable
model depending on the water table dynamics.

Mathematically speaking, the asymptotic models characterizing the Dupuit-
Forchheimer regime are classified as nonlinear, non-local diffusion equations
[12]. These models bear resemblance to various existing formulations present
in the scientific literature. Notable analogues include the Patlak-Keller-Segel
equations [13, 14], the Schurtz-Nicolai model [15, 16, 17, 18], the Stokes-Brinkman
model [19, 20], and the non-local Exner model [21]. It is imperative to under-
score that the computational analysis and numerical solution of these models
pose significant challenges, as highlighted in the literature. In §6, we introduce
a appropriate numerical strategy to describe the behavior of solutions of the
new models. Importantly, this numerical approach ensures the preservation of
energy dissipation at the discrete level, as shown in Proposition 5.

2. Hydrodynamic model in porous media

2.1. Governing equations

Consider a flow of an incompressible fluid within a porous medium. Let
S (x, z) denote the porosity of the porous medium, defined as the ratio of the
volume of voids to the total volume within each elementary volume. Addition-
ally, let 0 ≤ s (t , x, z) ≤ S (x, z) represent the fluid saturation, which is the ratio
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of the volume occupied by the fluid to the total volume within each elementary
volume. The saturation s (t , x, z) is governed by a conservation law, i.e.

∂t s +∇· (su)+∂z (sw) = 0 (1)

where u (t , x, z) ∈ Rd represents the horizontal fluid velocity, while w (t , x, z) ∈
R represents the vertical fluid velocity. We further postulate that the bottom
boundary of the porous medium is characterized by a specified elevation func-
tion B (x), commonly referred to as the bedrock where a non-penetration con-
dition is enforced i.e.

u|z=B ·∇B −w|z=B = 0. (2)

Within the porous medium, the fluid flow is governed by the Darcy’s law, which
establishes a relationship between the fluid velocity and the pressure field p (t , x, z),
i.e.

u =−κ∇p and w =−κ(
∂z p + g

)
(3)

with κ (x, z) > 0 represents the permeability of the porous medium, and g de-
notes the gravitational acceleration. One of the most challenging aspects of
modeling fluid flow in porous media lies in accurately describing the pressure
field p. In the present work, we focus on dynamics of the groundwater waves.
We will see in the next section, under the assumption of predominantly hor-
izontal flow, the pressure field becomes predominantly governed by the dy-
namics of the water table. This holds true even when considering the effects
of weakly hydrodynamic terms.

2.2. Dynamics of the groundwater waves

In this study, our primary focus is directed towards the dynamics of the
groundwater waves. We introduce an unknown elevation function, denoted
as η (t , x), which represents the water table. By definition, the flow under the
water table is assumed to be saturated, i.e.

s (t , x, z) =
{

0 , if z > η (t , x) ,
S (x, z) , if B (x) ≤ z ≤ η (t , x) .

(4)

The water table satisfies a kinematic equation given by

∂tη+u|z=η ·∇η−w|z=η = 0. (5)

Although it is beyond the scope of the current study, we mention here that con-
sidering the media above the water table as partially saturated in water would
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involve to add a source term in the kinematic equation. This source term en-
compasses both the water infiltration rate and the rising water attributed to
capillary action. As a consequence of (4), it is deduced that the subsurface flow
beneath the water table adheres to a divergence-free condition, expressed as

∇· (Su)+∂z (Sw) = 0. (6)

Also the pressure is assumed to be constant at the water table, i.e.e p
(
t , x,η (t , x)

)=
Pa . Equations (2), (3), (5) and (6) collectively formulate the model design as the
groundwater waves problem [22].

Let us first highlight that the groundwater waves problem conserve the vol-
ume of water. By vertically integrating (1) from the bedrock to the water table,
using Leibniz integral rules, and accounting for the non-penetration condition
(2) and the kinematic equation (5), the evolution of the water table is obtained
as

∂t V +∇· (V u
)= 0 (7)

where the water depth reads h (t , x) = η (t , x)−B (x), the water volume by unit
of surface given by

V (x,h) :=
∫ B(x)+h

B(x)
S (x, z) dz ≥ 0

and the mean horizontal velocity defined by

u (t , x) = 1

V (t ,h (t , x))

∫ B(x)+h(t ,x)

B(x)
S (x, z)u (t , x, z) dz.

Alternatively, some may express (7) in its non-conservative form as

S|z=h+B∂t h +∇·
(
Shu

)
= 0 (8)

where S denotes the mean porosity, defined as S (x,h) = V (x,h)
h ≥ 0.

Also, we highlight that the groundwater waves problem satisfies an energy
dissipation law. Specifically, by defining the energy as

E (x,h) = g
∫ B(x)+h

B(x)
S (x, z) z dz. (9)

To underscore the energy dissipation law, we also introduce the hydrodynamic
pressure as the deviation from the hydrostatic pressure, i.e.

q (t , x, z) = 1

µ

(
p (t , x, z)−Pa − g

(
η (t , x)− z

))
5



with the shallowness parameter µ ∈R is taken arbitrarily at this stage. Note that
by construction q

(
t , x,η (t , x)

) = 0. With this new variable, the Darcy law (3)
reads

u =−gκ∇(h +B)−µκ∇q and w =−µκ∂z q. (10)

Proposition 1. Let η be solution of the groundwater waves problem (2), (3), (5)
and (6). Then the potential energy (9) satisfies the following dissipation law

∂tE +∇·
(∫ B+h

B

(
g (h +B)+µq

)
Su dz

)
=−

∫ η

B

S

κ

(|u|2 +w 2) dz.

Proof. The derivative of the energy with respect to the water depth is given by

∂hE (x,h) = g (h +B)S|z=h+B .

Multiplying (8) by the potential g (h +B), we obtain

0 = g (h +B)
(
S|z=h+B∂t h +∇·

(
Shu

))
= ∂tE +∇·

(
g (h +B)Shu

)
− g Shu ·∇ (h +B) .

(11)

On the other hand, using the Darcy law (10) and the

S

κ

(|u|2 +w 2) = −g Su ·∇ (h +B)−∇· (µqSu
)−∂z

(
µqSw

)
+µq (∇· (Su)+∂z (Sw)) .

Using (6), the last term vanishes. By integrating the last equation and using
Leibniz integral rule, we get∫ B+h

B

S

κ

(|u|2 +w 2) dz = −g Shu ·∇ (h +B)−∇·
(
µ

∫ B+h

B
qSu dz

)
+µq|z=h+B S|z=h+B

(
u|z=h+B ·∇ (B +h)−w|z=h+B

)
−µq|z=B S

(
u|z=B ·∇ (B +h)−w|z=B

)
.

The two last terms vanish because the hydrodynamic pressure vanishes at sur-
face q|z=h+B = 0 and because of the non-penetration condition (2). Back to (11),
we conclude the dissipation law.

Last but not least, we delve into the analysis of the decay rate of the ground-
water wave model. The decay rate characterizes the time it takes for a small dis-
turbance to return to equilibrium as function of its wave number. This analysis
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is based on a a linearized version of the model. Moreover, all the parameters,
i.e. the permeability, the porosity and the substratum are considered constant,
i.e. ∇S =∇κ=∇B = 0 and ∂zS = ∂zκ= 0. This analysis bears resemblance to the
dispersion relation analysis employed in water waves problem [23]. Such dis-
persion relations have proven instrumental in comparing and evaluating the
asymptotic shallow water models.

Let us turn our attention to the linearized groundwater waves problem. A
curl-free condition emerges as a consequence of Darcy’s equation (3), specifi-
cally

Curl

(
1

κ

(
u
w

))
= 0. (12)

From this, we deduce the existence of a potential φ (t , x, z) such that u (t , x, z) =
∇φ and w (t , x, z) = ∂zφ. The divergence-free condition (6) becomes∆φ+∂2

zφ=
0. At the free surface z = η, the kinematic equation (5) becomes ∂tη+∇φ ·
∇η−∂zφ= 0. The non-penetration equation over flat substratum (2) becomes
∂zφ = 0 at z = −D . The Darcy’s law (3) imply that φ = −κ(

p + g z
)
. Upon lin-

earizing around the state at rest
(
η,φ

)= (0,0), the linearized groundwater waves
problem is

∆φ+∂2
zφ = 0 ,
∂zφ = 0 , at z =−D

∂tφ+ gκ∂zφ = 0 , at z = 0.

We seek solutions to the linearized model (2.2), assuming the formφ(t , x, z) =
Φ (z)e i k·xe−λt , where k denotes the wave number and λ represents the decay
rate. Utilizing the first two equations, we conventionally ascertain that the
potential exponentially diminishes with depth. Specifically, the first equation
leads to the differential relation Φ′′−|k|2Φ= 0. Given the second equation, we
deduce that Φ(z) =C cosh(|k|(D + z)), where C is a constant depending on the
initial amplitude perturbation. Subsequently, the third equation results in the
relation

λ̃ (|kD|) = |kD| tanh(|kD|) (13)

where we introduce the normalized decay rate λ̃= D
gκλ.

3. Dupuit-Forchheimer regimes

The groundwater waves problem (2), (3), (5), (6) bears notable resemblance
to the well-established water waves problem [8]. While a curl-free condition is
introduced in the water waves problem, for the groundwater waves problem,
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Figure 2: Scheme of the hierarchy of models in the Dupuit-Forchheimer regime.

it emerges as a consequence of Darcy’s equation, see (12). The primary dis-
tinctions between the groundwater waves problem and the water waves prob-
lem lie in the spatial parameters κ and S. Analogous to the water waves prob-
lem, the groundwater waves problem poses significant computational chal-
lenges due to its three-dimensional nature and the presence of an unknown
free-surface boundary. Such intricacy necessitates the derivation of simplified
equation sets tailored to specific physical regimes, mimicking the approach
adopted for the water waves problem in the shallow water regime. Subsequently,
this study proceeds to close the model by approximating the mean horizontal
velocity within the Dupuit-Forchheimer regime, wherein the vertical dimen-
sion is considerably smaller compared to the horizontal dimension.

We define the fundamental length scales characterizing the flow dynamics.
Let H represents the characteristic water depth, L represents the characteris-
tic horizontal length, a represents the mean amplitude of water table fluctua-
tions, and b represents the mean amplitude of bedrock variations, as depicted
in Figure 1. The primary dimensional scale for pressure is established by the
hydrostatic pressure, expressed as P = g H . Leveraging the Darcy’s law, it is in-
ferred that the predominant velocity is given by U = K g H

L , where K represents
the characteristic permeability value, while the characteristic timescale of the

flow is defined as T = L
U = L2

K g H . The dimensionless parameters associated with
the shallowness of the flow, nonlinearity, and bedrock variations are denoted as
µ= H

L , ϵ= a
H , andβ= b

H , respectively. The Dupuit-Forchheimer regime is appli-
cable to shallow flows over sufficiently flat bedrocks, characterized by µ≪ 1. A
graphical representation illustrating the hierarchical relationship between the
subsequent models is provided in Figure 2.
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3.1. The hydrostatic Dupuit-Forchheimer model

Let us start by presenting the well-known asymptotic hydrostatic Dupuit-
Forchheimer model [1]. Utilizing the vertical component of Darcy’s law (3), it
becomes evident that the primary pressure aligns with the hydrostatic pressure,
yielding

p = g (h +B − z)+O
(
µ
)

.

Substituting this outcome into the horizontal component of Darcy’s law, it can
be deduced that the horizontal velocity is dictated by the gradient of the water
table

u =−gκ∇ (h +B)+O
(
µ
)

.

This velocity is solely influenced by z through the permeability κ. By vertical
integration, we obtain the hydrostatic Dupuit-Forchheimer model defined as

∂t V −∇· (gκV ∇(h +B)
)= 0 (DF0)

with the effective permeability reads κ (x,h) := 1
V (x,h)

∫ B(x)+h
B(x) S (x, z)κ (x, z) dz >

0. This model serves as a O
(
µ
)
-approximation of the groundwater waves model

(3), (6), and (7).
We emphasize that the model (DF0) adheres to an dissipation law of the

energy (9).

Proposition 2. Let h be solution of the hydrostatic Dupuit-Forchheimer model
(DF0). Then the potential energy (9) satisfies the following dissipation law

∂tE −∇·
(
g 2κSh(h +B)∇(h +B)

)
=−g 2κSh |∇(h +B)|2 .

Proof. Multiplying (DF0) by the potential g (h +B), we obtain

0 = g (h +B)
(
S|z=h+B∂t h −∇·

(
gκSh∇ (h +B)

))
= ∂tE −∇·

(
g 2κSh (h +B)∇ (h +B)

)
+ g 2κSh |∇ (h +B)|2

which confirms the previously stated result.

After a simple linearization of the hydrostatic Dupuit-Forchheimer model
(DF0), we straightforwardly derive the decay rate as λ̃ (|kD|) = |kD|2. The decay
rate of the hydrostatic Dupuit-Forchheimer model is a O

(
µ
)
-approximation of

the decay rate of the groundwater waves problem (13), confirming the deriva-
tion. We plot in Figure 3, the decay rate of the different models for comparison
purposes.
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3.2. Weakly hydrodynamic fully non-linear model

To enhance the accuracy of the models, we assume that the parameters
characterizing the porous media, namely the porosity S and permeability κ,
exhibit negligible variations in the vertical direction. Formally, this is expressed
as S (x, z) = S (x) and κ (x, z) = κ (x). Also considering the flow regular enough,
the horizontal velocity can be approximated as constant along the vertical di-
rection, up to a perturbation of order O(µ). Formally:

u (t , x, z) = u (x)+O
(
µ
)

.

Utilizing the divergence-free condition (6), we infer that the vertical velocity
predominantly varies linearly with respect to the vertical coordinate. Incorpo-
rating the non-penetration condition (2), the vertical velocity reads

w (t , x, z) = w|z=B −µ
z −B

S
∇·

(
Su

)
+O

(
µ2)=µ(

βu ·∇B − z −B

S
∇·

(
Su

))
+O

(
µ2)

which can be decomposed into its vertically averaged and deviation compo-

nents, w (t , x, z) = w (t , x)+ z−B− h
2

h w̃ (t , x)+O
(
µ2

)
where

w =µ
(
βu ·∇B − h

2S
∇·

(
Su

))
and w̃ =−µh

S
∇·

(
Su

)
. (14)

With the vertical velocity from (10), we deduce that the hydrodynamic pressure
exhibits primarily quadratic behavior with respect to the vertical coordinate

q (t , x, z) = B +h − z

h
qB +3

(z −B) (B +h − z)

h2

(
2q −qB

)+O
(
µ2)

where q(t , x) = 1
h(t ,x)

∫ η(t ,x)
B(x) q(t , x, z)d z represents the mean hydrodynamic pres-

sure, and the hydrodynamic pressure at the bedrock is denoted as qB (t , x) =
q (t , x,B (x)). A vertical integration and differentiation with respect to the verti-
cal axis of the vertical velocity in (10) yield

hw = κqB and hw̃ = 6κ
(
2q −qB

)
. (15)

Using (14), we can express the hydrodynamic pressure as

qB = µ

(
β

h

κ
u ·∇B − h2

2κS
∇·

(
Su

))
and q = µ

(
β

h

2κ
u ·∇B − h2

3κS
∇·

(
Su

))
+O

(
µ2) .

(16)
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By performing a vertical integration and applying the Leibniz integral rule, the
mean horizontal velocity equation reads

hu =−gκh∇ (h +B)−µκ(∇(
hq

)+βqB∇B
)

. (17)

Substituting (16) into (17), we obtain the weakly hydrodynamic fully non-linear
Dupuit-Forchheimer model defined as

∂t V −∇·
(
Sh

(
1+µ2Th,B

)−1 (
gκ∇ (h +B)

))= 0 (DFh,B )

where the operator Th,B (U ) is defined as

Th,b (U ) =αbU + κ

h
∇

(γh,b

κ
·U

)
− γh,b

Sh
∇·

(
SU

)
− κ

h
∇

(
ωh

κS
∇·

(
SU

))
(18)

with αb =β2∇b⊗∇b , γh,b =βh2

2
∇b and ωh = h3

3
.

This model serves as a O
(
µ3

)
-approximation of the groundwater waves model

(3), (6), and (7).
We emphasize that the model (DFh,B ) adheres to an dissipation law of the

energy (9).

Proposition 3. Let h be solution of the weakly hydrodynamic fully non-linear
Dupuit-Forchheimer model (DFh,B ). Then the potential energy (9) satisfies the
following dissipation law

∂tE +∇·
((

g (h +B)+µq
)

Shu
)
=−Sh

κ

(∣∣u∣∣2 +w 2 + w̃ 2

12

)
where the horizontal velocity, the vertical velocities and the hydrodynamic pres-
sures are reconstructed from the water depth as u (x,h) =−g

(
1+µ2Th,B

)−1 (
κ∇ (h +B)

)
,

(14) and (15) respectively.

Proof. Multiplying (DFh,B ) by the potential g (h +B), we obtain

∂t E +∇·
(
g (h +B)Shu

)
= g Shu ·∇ (h +B) .

The right-hand side can be estimated by multiplying (17) by u

g Shu ·∇ (h +B) =−Sh
∣∣u∣∣2

κ
−µ∇·

(
qShu

)
+µhq∇·

(
Su

)
−µβqB S∇B ·u.

11
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Figure 3: Decay rates corresponding to the linearized groundwater waves problem (13), to the
hydrostatic model (DF0), to the linearized second order Dagan model (20), to the linearized
third order Dagan model (21) and to the linearized hydrodynamic model (DFh,B ).

Similarly, by multiplying the two equations of (15) respectively by w and w̃ , we
obtain

Shw 2

κ
= qB Sw and

Shw̃ 2

κ
= 6S

(
2q −qB

)
w̃ .

Summing up the last three relations, we obtain

g Shu ·∇ (h +B) = −Sh

κ

(∣∣u∣∣2 +w 2 + w̃ 2

12

)
−µ∇·

(
Shqu

)
+q

(
µh∇·

(
Su

)
+Sw̃

)
−qB S

(
µβ∇B ·u −w + w̃

2

)
.

Given that the last two terms vanish due to (14), we can conclude the result.

Remark 1. The current study mainly concentrates on unbounded domains. How-
ever, it’s noteworthy to observe that the natural boundary conditions of the hy-
drodynamic models are established on u (or hu) rather than the water depth h.
Physically, this corresponds to imposing the flux at the boundary. Simulating a
fixed water depth at the boundary appears to be more intricate and is beyond the
scope of this study.

After a simple linearization of the hydrodynamic Dupuit-Forchheimer model

(DFh,B ), we straightforwardly derive the decay rate as λ̃ (|kD|) = |kD|2
1+ 1

3 |kD|2 . The

decay rate of the hydrodynamic Dupuit-Forchheimer model is a O
(
µ2

)
-approximation

of the decay rate of the groundwater waves problem (13), confirming the deriva-
tion.
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In Figure 3, the decay rates of each model are depicted. A significant differ-
ence in decay rates is observed at high frequencies among the models. Specif-
ically, while high frequencies are damped extremely rapidly in the linearized
hydrostatic model (DF0). Conversely, the high frequencies in the solution of
the linearized hydrodynamic model (DFh,B ) are damped at a bounded rate.
This observation suggests that the linearized hydrodynamic model described
by equation (DFh,B ) does not regularize the solution for discontinuous initial
conditions, unlike the hydrostatic model (DF0). The decay rates of the lin-
earized Dagan model (20) (see [4]) and the third order Dagan model (see §5)
are also depicted for comparison purposes. These results are described in the
corresponding section.

4. Simplified weakly hydrodynamic models

This section focuses on simplified versions of (DFh,B ), applicable when the
model is weakly nonlinear or when bedrock variations are small. Notably, these
simplified models retain the same decay rate as the original model (DFh,B ),
since the decay rate is derived under the assumptions of a flat bedrock and
linearization.

4.1. Fully non-linear small bedrock variation ε=O (1) and β=O
(
µ
)

In scenarios where the variations in bedrock are small, i.e. β≪ 1, the model
(DFh,B ) can be substantially simplified. Specifically, neglecting the terms in or-
der ofβ, the weakly hydrodynamic fully non-linear Dupuit-Forchheimer model
with small bedrock variations is expressed as

∂t V −∇·
(
Sh

(
1+µ2Th,0

)−1 (
gκ∇ (h +B)

))= 0 (DFh,0)

where the operator Th,0 (U ) is defined as (18) simply reads

Th,0 (U ) =−κ
h
∇

(
ωh

κS
∇·

(
SU

))
. (19)

This model serves as a O
(
µ2β,µ3

)
-approximation of the groundwater waves

model (3), (6), and (7).

We emphasize that the model (DFh,0) adheres to an energy dissipation law.
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Proposition 4. Let h be solution of the weakly hydrodynamic fully non-linear
model Dupuit-Forchheimer model with small bedrock variations (DFh,0). Then
the potential energy (9) satisfies the following dissipation law

∂t E +∇·
((

g (h +B)+µq
)

Shu
)
=−Sh

κ

(∣∣u∣∣2 + ŵ 2

3

)
where the horizontal velocity, the vertical velocities and the hydrodynamic pres-
sures are reconstructed from the water depth as u (x,h) =−g

(
1+µ2Th,B

)−1 (
κ∇ (h +B)

)
,

ŵ =−µh
S
∇·

(
Su

)
and q = h

3κ ŵ .

Proof. The proof is similar to the proof of Proposition 3.

4.2. Weakly non-linear large bedrock variation ε=O
(
µ
)

and β=O (1)
In scenarios where the variations in water table are small, i.e. ε ≪ 1, the

model (DFh,B ) can be substantially simplified. Specifically, the water depth can
be advantageously replaced by the mean depth defined as D (x) = H +B (x)−∫
ΩB (x) dx, see Figure 1, the weakly hydrodynamic weakly non-linear Dupuit-

Forchheimer model is expressed as

∂t V −∇·
(
Sh

(
1+TD,B

)−1 (
gκ∇ (h +B)

))= 0 (DFD,B )

where Th,b is defined in (18). This model serves as a O
(
µ2ε,µ3

)
-approximation

of the groundwater waves model (3), (6), and (7).

The advantage of the weakly non-linear model (DFD,B ) is that the opera-
tor TD,B remains independent of time, in contrast to the operator Th,B in the
model (DFh,B ). Indeed, the weakly non-linear model (DFD,B ) come with two
significant limitations, which have been previously discussed in the context of
reduced models for water waves problem. Firstly, the energy dissipation prop-
erties observed in fully non-linear models, as described by Proposition 3 and
Proposition 4, do not hold true for weakly non-linear models. Secondly, weakly
non-linear models encounter issues at dry fronts, where the mean depth D(x)
approaches zero.

4.3. Weakly non-linear small bedrock variation ε=O
(
µ
)

and β=O
(
µ
)

In scenarios where both the variations in water table and the variations of
bedrock are small, i.e. ε≪ 1 and β≪ 1, both simplifications can be carried out
simultaneously. The weakly non-linear model on small bedrock defined as

∂t V −∇·
(
Sh

(
1+TD,0

)−1 (
gκ∇ (h +B)

))= 0 (DFD,0)
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where Th,0 is defined in (19). This model serves as a O
(
µ2ε,µ2β,µ3

)
-approximation

of the groundwater waves model (3), (6), and (7).

5. Approximation of the non-local operator by Taylor expansion

It is noteworthy that the inverses of the operators Th,B (U ) and Th,0 (U ) can
be approximated for small µ using Taylor expansion techniques, maintaining
consistent modeling precision. Specifically, for the simplest weakly hydrody-
namic fully non-linear Dupuit-Forchheimer model on small bedrock (DFh,0),
the inverse can be expressed as(

1+µ2Th,0
)−1

(U ) =U +µ2κ

h
∇

(
ωh

κS
∇·

(
SU

))
+µ4κ

h
∇

(
ωh

κS
∇·

(
κS

h
∇

(
ωh

κS
∇·

(
SU

))))
+O

(
µ6) .

Truncated at order ofµ4, this reveals that the model introduced in [4, 9], defined
by

∂t V −∇·
(

gκS

(
h∇ (h +B)+µ2∇

(
ωh

κS
∇·

(
κS∇ (h +B)

))))
= 0. (20)

This model serves as a O
(
µ2β,µ3

)
-approximation of the groundwater waves

model (3), (6), and (7). Similarly, conducting the same computation with an
arbitrary bedrock yields the model proposed in [5], which serves as a O

(
µ3

)
-

approximation of the groundwater waves model (3), (6), and (7).
By applying a straightforward linearization to the Dagan model (20), we di-

rectly obtain the decay rate λ̃ (|kD|) = |kD|2 − |kD|4
3 . This decay rate serves as

an O
(
µ2

)
-approximation of the decay rate for the groundwater waves prob-

lem (13). However, for sufficiently large wave numbers, the decay rate becomes
negative, see Figure 3. This implies that the amplitude of large wave numbers
will be amplified, rendering the linearized Dagan model ill-posed unless spe-
cific assumptions are imposed on the initial data. Consistently with this obser-
vation, the energy (9) associated with solutions of the Dagan model (20) does
not exhibit a decreasing trend. Instead, it follows the balance law

∂tE −∇·
(
g 2κS

(
h2∇h +µ2 (h∇ (ωh∆h)−ωh∆h∇h)

))
=−g 2κS

(
h |∇h|2 −µ2ωh |∆h|2) .

For high wave numbers, the right-hand side is positive, implying an increase of
the energy of the high wave numbers.
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Expanding the non-local operator Th,B to higher orders, up toµ6-approximation,
may potentially enhance the stability and well-posedness of the model without
lost (neither gain) of approximation of the groundwater waves problem. Specif-
ically the third order Dagan model can be defined as

∂t V − ∇·
(

gκS

(
h∇ (h +B)+µ2∇

(
ωh

κS
∇·

(
Sκ∇ (h +B)

))))
− µ4∇·

(
gκS

(
∇

(
ωh

κS
∇·

(
κS

h
∇

(
ωh

κS
∇·

(
Sκ∇ (h +B)

))))))
= 0.

(21)

By applying a straightforward linearization to the third-order Dagan model (21),

we directly obtain the decay rate λ̃ (|kD|) = |kD|2 − |kD|4
3 + |kD|6

9 . This decay rate
provides an O

(
µ2

)
-approximation of the decay rate for the groundwater waves

problem (13). Notably, it remains positive for all wave numbers, see Figure 3. As
a result, the model is expected to be well-posed, even though it does not satisfy
an energy dissipation law. Nonetheless, the third order Dagan model presents
significant computational challenges, as it involves the numerical approxima-
tion of exceedingly high derivatives.

6. Numerical resolution

6.1. Numerical schemes and analysis

One of the primary applications of the Dupuit-Forchheimer model lies in
estimating groundwater waves elevations for long-term scenarios, spanning
periods of a year or even a decade. To carry out such simulations, it is im-
perative to employ an efficient numerical scheme devoid of time-step restric-
tions, which elucidates the prevalent adoption of implicit schemes for solv-
ing the hydrostatic Dupuit-Forchheimer equation (DF0). The hydrodynamic
Dupuit-Forchheimer models deviate from simple parabolic equations due to
the non-local operator Th,b. In this manuscript, our focus is solely on elemen-
tary boundary conditions, particularly the wall boundary condition u∂Ω ·n= 0
where n denotes the normal to the computational domain boundary. A thor-
ough investigation dedicated exclusively to boundary conditions for weakly hy-
drodynamic models seems essential, encompassing both continuous and dis-
crete approaches, to provide an appropriate solution.

Let us narrow our description of the discretization tailored for the weakly
dispersive fully non-linear model (DFh,B ). In our endeavor to devise an en-
tropy satisfying scheme, see Proposition 5, we opt not to discretize the scalar

16



form (DFh,B ) directly but rather its extended form encompassing (7), (10), (14),
and (15). Moreover, to ensure robust performance in scenarios where hydrody-
namic terms are negligible, our objective is to recover a conventional 3-points
scheme as the parameter µ tends to zero. To achieve this, we introduce a stag-
gered discretization approach.

We consider a tessellation T of the horizontal domain Ω ⊂ Rd , comprising
Card(T) star-shaped control volumes. Let k ∈T denote a control volume within
the tessellation, Fk represent the set of its faces, and mk denote its surface area.
Furthermore, for a given face f , its length is represented by m f , and its neigh-
boring control volume with respect to k is denoted by k f , i.e. k ∪k f = f . The
unit normal pointing outwards from face f to control volume k is denoted by

n
k f

k . The collection of all faces is denoted by F. We introduce the conventional
centered discrete differential operators. For a vectorial data discretized at the
faces, V⋆ = (V f ) f ∈F, the divergence on a primal cell k ∈T is defined as

∇δk ·V⋆ = 1

mk

∑
f ∈Fk

V f ·nk f

k m f (22)

For scalar data discretized across the cells, φ⋆ = (
φk

)
k∈T, the gradient in the

vicinity of a face f ∈ F is defined as

∇δf φ⋆ =
φk f −φk

δ f
n

k f

k . (23)

The characteristic length δ f depends on the type of meshes employed. For in-

stance, in 1D, δ f =
mk+mk f

2 , while for 2D triangles, δ f =
mk+mk fp

3m f
. Note that these

approximations assume the mesh to be relatively undistorted. For more gen-
eral meshes, the use of advanced schemes, such as the DDFV discretization,
becomes necessary, as discussed in [24, 25]. Furthermore, preserving the ker-
nel of Grad-Div operators at the discrete level poses non-trivial challenges, as
highlighted in [26].

We further introduce the following reconstructions. For scalar data dis-
cretized at the faces, ψ⋆ = (

ψ f
)

f ∈F, its reconstruction on a primal cell k ∈ T
is defined as [

ψ⋆
]

k = 1

mk

∑
f ∈Fk

ψ f
δ f m f

2
(24)

and for scalar data discretized across the cells, φ⋆ = (
φk

)
k∈T, its reconstruction
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at a face f ∈ F is given by [
φ⋆

]
f =

φk f +φk

2
. (25)

Lastly, time discretization is achieved using a time step δt , such that t n+1 =
t n +δt .

In this work, we propose a first-order scheme to illustrate the hydrodynamic
model (DFh,B ) and compare it with the hydrostatic model (DF0). Ensuring the
stability of a numerical scheme for (DFh,B ) is challenging due to the lack of
regularization for high wave numbers. To develop a robust scheme, we focus
on an entropy-satisfying approach based on the energy dissipation property
Proposition 3. The scheme is given by

un+1
f +µ2T

f
hn
⋆,B⋆

(
un+1
⋆

) = −gκ f ∇δf
(
hn+1
⋆ +B⋆

)
hn+1

k = hn
k − δt

Sk

∇δk ·
(
S⋆

[
hn
⋆

]
⋆un+1

⋆

) (DF L
h,B )

with the following discretization of the hydrodynamic operator (18)

T
f

h⋆,b⋆
(V⋆) =β2 κ f

[h⋆] f

[
h⋆

κ⋆S⋆

[
S⋆V⋆ ·∇δ⋆b⋆

]
⋆

]
f

∇δf b⋆

+β κ f

[h⋆] f

(
∇δf

( |h⋆|2
2κ⋆S⋆

[
S⋆V⋆ ·∇δ⋆b⋆

]
⋆

)
−

[ |h⋆|2
2κ⋆S⋆

∇δ⋆ ·
(
S⋆V⋆

)]
f

∇δf b⋆

)
− κ f

[h⋆] f
∇δf

( |h⋆|3
3κ⋆S⋆

∇δ⋆ ·
(
S⋆V⋆

))
.

(26)

To solve the numerical scheme (DF L
h,B ), we first compute the velocity un+1

f im-

plicitly by substituting the water depth hn+1
k using its corresponding scheme.

Once un+1
f is determined, the water depth hn+1

k is then computed explicitly. For
physical interpretation, it may be useful to compute the vertical velocities and
hydrodynamic pressures, even though they are not required for obtaining the
solution. The approximations of the vertical velocities w and w̃ on the control
volume k ∈T at time t n+1 are given from the horizontal velocity as

w n+1
k = µ

Sk

(
β

[
S⋆un+1

⋆ ·∇δ⋆B⋆
]

k
− hn

k

2
∇δk ·

(
S⋆un+1

⋆

))
and w̃ n+1

k = − µ

Sk

hn
k∇δk ·

(
S⋆un+1

⋆

)
.

(27)
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and the hydrodynamic pressures as

qn+1
B ,k = hn

k

κk
w n+1

k and qn+1
k = hn

k

2κk

(
w n+1

k + w̃ n+1
k

6

)
. (28)

As it is defined, the scheme is entropy-satisfying, i.e. it ensure the following
energy dissipation law.

Proposition 5. Let hn
k be the solution of the numerical scheme (DF L

h,B ). Then the

discrete potential energy Ek (h) = g Sk h
(

h
2 +Bk

)
adheres to the following dissipa-

tion law

Ek
(
hn+1

k

)+δt∇k ·
(
G n+1
⋆ +H n+1

⋆

)≤ Ek
(
hn

k

)
−δt

([
S⋆

[
hn
⋆

]
⋆

κ⋆

∣∣un+1
⋆

∣∣2

]
k

+ Sk hn
k

κk

(∣∣w n+1
k

∣∣2 +
∣∣w̃ n+1

k

∣∣2

12

))

where the numerical energy flux is given by

G n+1
f =

(
g

[
hn
⋆

]
f

[
hn+1
⋆ +B⋆

]
f +µ

[
hn
⋆qn+1

⋆

]
f

)
S f un+1

f

and the error in the numerical flux is

H n+1
f =µβ

δ2
f

4
S f un+1

f ·∇δf B⋆∇δf qn+1
B ,⋆ .

The proof is given in Appendix A.

It is worth noting that the scheme (DF L
h,B ) tends to the classical scheme of

the hydrostatic Dupuit-Forchheimer model

hn+1
k − gδt

Sk

∇δk ·
(
κ⋆S⋆

[
hn
⋆

]
⋆∇δ⋆

(
hn+1
⋆ +B⋆

))= hn
k (DF L

0 )

when the shallowness parameters µ vanishes.

6.2. Numerical results

To illustrate the solutions of the hydrodynamic models, we propose the fol-
lowing test case. We consider a one-dimensional computational domain Ω =
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[0,10] with a homogeneous mesh T = [1, N ]∩N and a spatial step δx = 10
N . The

substratum is defined by

B (x) =−1+βcos

(
7πx

10

)
.

We impose wall boundaries condition by setting u (t ,0) = u (t ,10) = 0. The ini-
tial condition is given by

h0 (x) = 1+ ε

2
tanh

(−50µ (x −5)
)

.

The parameters β, ε and µ are further defined to analyze the sensitivity of the
solution to these parameters.

6.2.1. Sensitivity analysis of numerical parameters

Let’s start our analysis by examining the behavior of the numerical scheme
under the simplest conditions, characterized by a flat bedrock with parameters
β= 0, ε= 1, and µ= 10−1. In Figure 4, we present the outcomes of the scheme
(DF L

h,B ) with a spatial discretization δx = 10−3 and varying time steps δt at three
distinct times. For comparative purposes, both the initial condition and the
solution computed with the hydrostatic model (DF L

0 ) with δt = δx are included.
A primary observation is the emergence of instabilities for large time steps,

specifically when δt ≥ 10−4. Importantly, these instabilities do not refute the
findings of Proposition 5, which asserts the unconditional stability of the so-
lution in the L2-norm. The temporal evolution of the normalized energy E (t )

E (0)
is depicted in Figure 5. Consistent with Proposition 5, the energy is decreas-
ing. Notably, at certain points in time, later for smaller time steps, the rate of
energy decay decreases, leading to the emergence of instabilities. The origins
of these instabilities remain unclear. To mitigate their occurrence, it would be
beneficial to investigate stability within the context of Total Variation Dimin-
ishing (TVD) norms. However, this exploration presents challenges at both the
discrete and continuous levels. Further insights from Figure 5 reveal that the
energy decay rate is more gradual for the hydrodynamic model during the ini-
tial period. Moreover, Figure 4 highlights that pronounced gradients persist
for extended durations as suggest by the linear analysis Figure 3. Nevertheless,
over extended time intervals, the hydrodynamic solution eventually converges
towards the hydrostatic solution.
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Figure 4: §6.2.1 – Water table elevations computed with δx = 10−3 using the hydrostatic model
(DF L

0 ) with δt = 10−3, the hydrodynamic scheme (DF L
h,B ), is plotted for varying time steps δt at

t = 10−2 (top line), t = 5 ·10−2 (middle line), and t = 10−1 (bottom line).

In Figure 6, we present the results obtained from various schemes for dif-
ferent spatial step sizes δx . The scheme (DF L

h,B ) is executed with a time step

set at δt = 10−5. The hydrostatic schemes (DF L
0 ) are executed with δt = δx .

We observe that the space step does not seem to have a significant impact on
the results of the hydrodynamic scheme (DF L

h,B ), unlike the hydrostatic scheme
(DF L

0 ), which might seem counterintuitive given the presence of strong gradi-
ents. Specifically, the scheme (DF L

h,B ) with δx = 10−1 produces outcomes that

align closely with the finer resolution using δx = 10−3, unlike the scheme (DF L
0 )

at time t = 10−2. This difference can be explained by the smaller time step used
for the hydrodynamic scheme (DF L

h,B ), and the fact the the schemes are second
order in space but only first order in time.
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Figure 5: §6.2.1 – Temporal evolution of the normalized energy E (t )
E (0) , for the scheme (DF L

h,B )

with µ= 10−1 and δx = 10−3, across various time steps δt , is depicted. Additionally, the energy
profile for the hydrostatic model (DF L

0 ) with a time step δt = δx is illustrated in red.

6.2.2. Sensitivity analysis of physical parameters
We now shift our focus to examining the responses of the various models as

the physical parameters undergo variations. For clarity and reduced spurious
oscillations, we will exclusively present results with δx = 10−3 using the scheme
(DF L

0 ) with δt = δx and the scheme (DF L
h,B ) with δt = 10−5.

On Figure 7, the results of the hydrostatic model (DF0) and the hydrody-
namic model (DFh,B ) are depicted for β = 0, ε = 1 and several values of µ. For
sufficiently small µ values, the hydrodynamic model (DFh,B ) closely aligns with
the hydrostatic model (DF0), see bottom line. However, for larger µ values, the
hydrodynamic model preserves the pronounced gradient of the water table for
a longer duration, a behavior consistent with the linear analysis illustrated in
Figure 3. Specifically, for µ = 1, top line of Figure 7, we observe that the initial
slope is mainly preserved, even as the amplitude of rapid variations in the water
table diminishes. This results in a front that expands into regions with a lower
water table level.

On Figure 8, the outcomes of the hydrostatic model (DF0), the fully non-
linear hydrodynamic model (DFh,B ), and the weakly non-linear hydrodynamic
model (DFD,B ) are presented for β = 0, µ = 10−1, and various values of ε. The
weakly non-linear hydrodynamic model (DFD,B ) is approximated using the nu-
merical scheme (DF L

h,B ), with the modification that the hydrodynamic opera-

tor T
f

D⋆,B⋆
(V⋆), defined in (26), is used in place of T

f
h⋆,B⋆

(V⋆). For sufficiently
small ε values, the weakly non-linear hydrodynamic model (DFD,B ) closely aligns
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Figure 6: §6.2.1 – Water table elevations computed using the schemes (DF L
h,B ) and (DF L

0 ) across

various spatial step sizes at t = 10−2 (top line), t = 5 ·10−2 (middle line), and t = 10−1 (bottom
line).

with the fully non-linear hydrodynamic model (DFh,B ), see bottom line. As ε
approaches 1, distinctions between the two models become more noticeable.
The divergence between the models becomes particularly pronounced when
water depth is minimal (we recall that the substratum is located at z = −1),
as depicted in the top line of Figure 8. Near dry regions, the solution from
the weakly non-linear hydrodynamic model (DFD,B ) exhibits a steeper pro-
file. Conversely, the fully non-linear hydrodynamic model (DFh,B ) encoun-
ters challenges in defining solutions within dry areas, where h = 0. While the
weakly non-linear hydrodynamic model (DFD,B ) provides well-defined solu-
tions in these regions, its applicability might be questionable.

On Figure 9, the results of the models (DF0), (DFh,B ), (DFD,B ), (DFh,0), and
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Figure 7: §6.2.2 – Water table elevations computed using the schemes (DF L
h,B ) and (DF L

0 ) at

t = 10−2, t = 5 ·10−2 and t = 10−1 for the parameters β = 0, ε = 1 and µ = 1 (top line), µ = 10−1

(middle line) and µ= 10−2 (bottom line).

(DFD,0) are displayed at time t = 10−1, with µ = 10−1, ε = 1, and various val-
ues of β. The models (DFh,0) and (DFD,0) are approximated using the numeri-

cal scheme (DF L
h,B ), with the hydrodynamic operators T

f
h⋆,0 (V⋆) and T

f
D⋆,0 (V⋆)

respectively, as defined in (26), replacing T
f

h⋆,B⋆
(V⋆). Even for β= 0.1, distinc-

tions between the solutions obtained from the small bedrock models (DFh,0)
and (DFD,0) and those from the arbitrary bedrock models (DFh,B ) and (DFD,B )
are evident. For larger values of β, it is observed that the water table obtained
with the small bedrock models (DFh,0) and (DFD,0) becomes non-monotonic,
unlike the water table derived from the arbitrary bedrock models (DFh,B ) and
(DFD,B ) (refer to x ∈ [4,5] in the top line of Figure 9). Consistent with prior
observations, the water table from the weakly non-linear models (DFD,B ) and
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Figure 8: §6.2.2 – Water table elevation obtained with the models (DF0), (DFh,B ) and (DFD,B ) at
t = 10−2, t = 5 ·10−2 and t = 10−1 for the parameters β= 0, µ= 10−1 and ε= 1.9 (top line), ε= 1
(middle line) and ε= 10−1 (bottom line).

(DFD,0) exhibits steeper gradients when the water depth is minimal. However,
in this scenario, it descends below the initial water table level, violating the
maximum principle with weakly non-linear models (DFD,B ) and (DFD,0). The
maximum principle is well-known for the hydrostatic model (DF0) but remains
unproven for the hydrodynamic model (DFh,B ). It has been demonstrated for
analogous but linear equation see [16]. The applicability of this principle to
its discrete counterpart remains an open question. It is worth noting that the
numerical simulations never violate the maximum principle with the hydrody-
namic model (DFh,B ).
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Figure 9: §6.2.2 – Water table elevation obtained with the models (DF0), (DFh,B ), (DFD,B ),
(DFh,0) and (DFD,0) at t = 10−1 with µ = 10−1, ε = 1 and β = 0.49 (top line) and β = 0.1 (bot-
tom line).

7. Conclusion

In this study, we have developed a hierarchy of reduced models tailored for
the groundwater waves problem within the Dupuit-Forchheimer regime, draw-
ing parallels with the shallow water regime in water waves problem. This ap-
proach incorporates the first-order effects of hydrodynamic pressure. Our pri-
mary model in this hierarchy is both non-linear and non-local in nature. It is
designed to accommodate arbitrary variations in both the water table and the
bedrock, while also adhering to an energy dissipation law. Furthermore, we
have crafted simplified versions of the model to cater to specific scenarios. In
the regime characterized by minor variations in bedrock, the non-local opera-
tor is notably simplified. In the regime characterized by minor variations in wa-
ter table, a linearization of the non-local operator can be reasonably used. To
provide a comprehensive understanding of the solution behaviors exhibited by
these models, we have conducted one-dimensional simulations, offering valu-
able insights into their performance and applicability.

While our numerical scheme successfully maintains energy dissipation at
the discrete level without imposing constraints on the time step, it does ex-
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hibit spurious instabilities when subjected to excessively large time steps. The
underlying causes of these instabilities remain elusive. A detailed analysis of
solution regularity could offer valuable insights to enhance the robustness of
our computational approach. Notably, numerical simulations indicate that the
fully non-linear model, even when applied over intricate bedrock configura-
tions, consistently preserves solution monotonicity over time. Preserving mono-
tonicity at the discrete level can significantly enhance the robustness of numer-
ical computations. However, it appears that the simplified models within our
hierarchy do not maintain this property. Ensuring the robustness of our nu-
merical strategy, particularly when dealing with large time steps, is imperative
for applications that encompass expansive space and time scales. Also intro-
ducing an a posteriori estimator to facilitate the convergence of the non-linear
problem could be a crucial advancement in this direction.

From a mathematical point of view, the derivation technics used in the re-
duction of water wave models, as presented in [8, 11], seems promising for
justifying our groundwater waves reduced models, especially when consider-
ing constant permeability and porosity. Another logical progression of this re-
search would involve exploring higher-order hydrodynamic models, akin to
those proposed for water waves problem [27, 28, 29]. Natural porous media
often consist of horizontal layers with varying compositions and properties. To
address this complexity, a layerwise model, following [30], could be explored.
Two significant challenges remain in this field that warrant attention. Firstly,
boundary conditions, particularly Dirichlet conditions for water depth, need
rigorous definition. This would not only validate the model but also facilitate
comparisons with analytical solutions and experimental data [6, 7]. Some re-
cent advancements in dispersive free surface models might offer insights that
are applicable to our context [31, 32]. Secondly, it’s evident that hydrodynamic
models are unsuitable in scenarios with discontinuous bottoms, unlike their
hydrostatic counterparts. A potential solution could involve space coupling
these two models, as previously demonstrated in related studies [17, 33]. Such
integrative approaches could potentially overcome this limitation and enhance
the applicability of the models in diverse real-world scenarios.
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Appendix A. Numerical analysis

Proposition 6. The discrete operators (22), (23), (24), and (25) exhibit the fol-
lowing duality property, commonly referred to as the summation-by-part (SBP)
property:

∇ f · ([φ⋆]⋆V⋆) = [V⋆ ·∇⋆φ⋆]k +φk∇ f ·V⋆. (A.1)

Proof. Upon direct computation, we find

∇δk ·
([
φ⋆

]
⋆V⋆

) = 1

mk

∑
f ∈Fk

φk f +φk

2
V f ·nk f

k m f

= 1

mk
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V f ·
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δ f
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k f
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φk

mk
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f ∈Fk

V f ·nk f

k m f

=
[

V⋆ ·∇δφ⋆
]

k
+φk∇δk ·V⋆.

Proof of Proposition 5. The proof closely follows the proof of Proposition 3. Mul-
tiplying the scheme on the water depth, second equation in (DF L

h,B ) by g Sk
(
hn+1

k +Bk
)

and using (A.1), we obtain

E n+1
k ≤ E n

k −δt∇δk · (g [hn
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Now let us remarque the second equation of (DF L
h,B ) can be written as[
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⋆

]
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[
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(
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(
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+β[
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B ,⋆

]
f
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)
with the discrete hydrodynamic pressure defined in (28) and the discrete verti-

cal velocities defined in (27). Multiplying the last equation by
S f

κ f
un+1

f , we obtain

g S f
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.
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Computing the cell reconstruction of the above equation and using (A.1), we
get

g
[

S⋆
[
hn
⋆
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⋆un+1
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Focusing on the last term, we write[
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Similarly, multiplying the two equations of (27) by Sk
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Combining all the equations, we conclude that the discrete energy is given by
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Using (27), the last two terms cancel out, leading us to conclude.
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