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Abstract

The spatial propagation of complex populations can depend on some structuring vari-

ables. In particular, recent developments in microscopy have revealed the impact of

bacteria heterogeneity on the population motility. Biofilms of Myxococcus xanthus bacte-

ria have been shown to be structured in clusters of various sizes, which remarkably, tend

to move faster when they consist of a larger number of bacteria. We propose a minimal

reaction-diffusion discrete-size structure model of a population of Myxococcus with two

possible cluster sizes: isolated and paired bacteria. Numerical experiments show that

this model exhibits travelling waves whose propagation speed depends on the increased

motility of clusters, and the exchange rates between isolated bacteria and clusters. No-

tably, we present evidence of the existence of a characteristic threshold level θ∗ on the

ratio between cluster motility and isolated bacteria motility, which separates two distinct

regimes of propagation speed. When the ratio is less or equal than θ∗, the propagation

speed of the population is constant with respect to the ratio. However, when the ratio

is above θ∗, the propagation speed increases. We also consider a generalised model with

continuous-size structure, which also shows the same behaviour. We extend the model

to include interactions with a resource population, which show qualitative behaviours in

agreement to the biological experiments.
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1 Introduction

Recent developments in high-throughput cell segmentation techniques have allowed mi-

crobiologists to closely follow complexly structured bacterial populations [1]. Interactions

between individuals, both cooperative and competitive, and the emergence of subpopu-

lations with distinct behaviours, have revealed the effects that this underlying structure

might have across the different scales of the population dynamics [2, 3]. One important

aspect that might be affected is the way they explore their surroundings.

One interesting example of this is the behaviour of Myxococcus xanthus, a species

of motile predatory bacteria found in soil which forms multicellular biofilms to prey on

other microorganisms [4]. Thanks to high-throughput microscopy techniques, it has been

shown that this biofilm has not a homogeneous structure, but is in fact composed of

bacteria clusters of various sizes, from isolated individuals, to large swarms of closely

packed bacteria. In particular, recent works have shown that these clusters can exhibit

distinct motility behaviours, which depend on their size and composition. This affects

the macroscopic motility of the biofilm during the predatory incursions [5].

In particular, the cluster structure of M. xanthus populations has been shown to

be determined by the phenotypic heterogeneity among individual cells [5]. Indeed, M.

xanthus cells are capable to switch between two different motility regimes, namely: the

adventurous A-motility, and the social S-motility, which result from the expression of

two distinct sets of genes [6]. A-motile cells can glide over the surface, using a complex

protein machinery that anchors and pushes the cell forward. S-type motion, on the other

hand, is contact-dependent. S-motile cells move thanks to the projection of pili, hair-

like structures that grow from the cell and can attach to other cells or the surrounding

extracellular matrix, to then retract and drag the cell. This movement depends on the

presence of a key component of the extracellular matrix: the exopolysaccharides (EPS).

EPS is secreted and left as a chemical trail by M. xanthus as it moves, which allows the

adhesion and cohesion of cells, thus favouring the emergence of swarms of bacteria which

move collectively.

Importantly, the proportion of A-motile and S-motile cells, and therefore, the distribu-
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tion of the cluster sizes, has been shown to impact the fitness of M. xanthus populations.

On the one hand, predation is initiated by pioneer A-motile cells that explore the area

around the colony first. On the other hand, the collective motion of S-motile cells can

increase the efficiency of predation, since killing is contact-dependent [7]. Therefore, both

motility systems play synergistic roles [5].

In this work, we aim to study the impact of cellular cohesion on the global motility

of the population. In particular, we will focus on population dynamics in which indi-

viduals have an advantage when coagulating (social synergy), which is expressed as a

higher motility. To that extent, we will consider some structured population models, with

a spatial position variable and a structuring variable which corresponds to the cluster

size. Clusters of different sizes may grow, divide, and coagulate, and based on previous

observations, larger clusters will diffuse at higher rates [8].

The paper is organised as follows. In Section 2 we present the various models that

we will study. First, we present a “discrete” model in which we only consider two cluster

sizes: singletons of isolated A-motile bacteria, and clusters of two S-motile bacteria. Next,

we present a continuous cluster-size model that generalises this model, accounting for

the possibility to produce, through fragmentation and coagulation, clusters of any size.

Finally we consider a derived predator-prey model, where the bi-type clustered population

introduced in the first model will interact with a prey population of E. coli. In Section

3, we study theoretically and numerically the discrete model. In Section 4 and Section 5,

we do the same for respectively the continuous model and the predator-prey model.

2 Proposed models and main results

2.1 Discrete size model

Let us consider first a minimal model in which we have isolated bacteria (i.e. clusters

of size one) and paired bacteria (clusters of size two) that move in the real line. We

suppose that both species are well mixed and call p1(x, t) the density of isolated bacteria,

and p2(x, t) the density of clusters of size two, at a given location in space x ∈ R and

at a given time t ≥ 0. We suppose that p1 and p2 solve the following system of two
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reaction–diffusion partial differential equations:

∂tp1 = θ1∆p1 − τ1p
2
1 + 2τ2p2 + αp1

(
1− p

K

)
, (1)

∂tp2 = θ2∆p2 +
τ1
2
p21 − τ2p2, (2)

with p the total number of bacteria, p = p1 + 2p2.

The first terms in the right-hand side of Equations (1) and (2) are diffusion terms,

and describes respectively the spatial random movement of isolated bacteria and clusters

of bacteria. We assume that θ2 > θ1, i.e. clusters spread faster than isolated bacteria.

The second term τ1p
2
1 represents the coagulation of isolated bacteria, which happens at

rate τ1 > 0 and changes two isolated bacteria into one cluster of size two. The term τ2p2

corresponds to the fragmentation of clusters of size two, which happens at rate τ2 > 0

and produces two isolated bacteria. Moreover, we assume that only isolated bacteria

can divide. This growth term is assumed to be logistic, with growth rate α > 0 and

carrying capacity of the environment K. The model (1)-(2) is an extension of the Fisher-

KPP model [9, 10], which reduces to the Fisher-KPP equation when τ1 = τ2 = 0 and

p2(t = 0, ·) = 0. In that case, the propagation minimal speed is well known to be given

by c∗ = 2
√
αθ1.

Numerical simulations of this system, presented in Section 3, suggest the existence of

travelling waves solutions for all positive parameters. Moreover, we observe two distinct

regimes separated by a constant threshold level θ∗ for the ratio θ2/θ1. When θ2/θ1 < θ∗,

the critical speed of the travelling wave of p is equal to the critical speed c∗ = 2
√
αθ1 of the

equation (1) without coagulation and fragmentation. When θ2/θ1 > θ∗, the critical speed

of the travelling wave becomes strictly larger than this value. There are two possible

explanations for this phenomenon: the existence of an anomalous speed [11] and the

nonlinear interaction of the coagulation term. For the first phenomenon, the increase in

speed is caused by the linear terms of the system, and mainly by the coupling induced by

the fragmentation term. In the second case, the increase is explained by the presence of the

nonlinear coagulation term, in which case the propagation front being referred to as pushed

waves. Conversely, when the front is determined linearly, the front is called a pulled front.

A formal definition of pulled and pushed waves in the context of the inside dynamics of
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the population can be consulted in [12]. In a subsequent work not reported in this article

[13], we show that, for θ2/θ1 > θ⋆, the numerical speed of the traveling wave does not

correspond to the anomalous linear speed. Therefore, in this article we numerically study

the transition between pulled and pushed fronts. In biological terms, we conclude that

when the motility of clusters is significant enough with respect to the motility of isolated

bacteria, the collective behaviour of M. xanthus allows the whole population to propagate

faster than in the asocial case. We also study the system theoretically and numerically

under the assumptions τ1, τ2 → +∞. In this case, the system reduces to a scalar equation.

2.2 Continuous cluster-size model

Empirically, the cluster structure of M. xanthus swarms can vary from lonely scout cells

to thousands of densely packed social bacteria. We can extend the model (1)-(2) to a

general Diffusion-Growth-Fragmentation-Coagulation model, described by (3)-(6), where

we define ρ(t, x, z) as the density at position x ∈ R and time t ≥ 0 of clusters of size

z ∈ [0, zmax] (or more precisely, the total mass or volume of the cluster, which is a

continuous variable), with zmax ∈ R+
⋆ ∪ {+∞} the maximum admissible size. The model

is defined by the following integro-differential equation:

∂tρ(t, x, z) = ∂xx [θ(z)ρ(t, x, z)]−∂z [v(z,m(t, x))ρ(t, x, z)]+F [ρ](t, x, z)+G[ρ](t, x, z), (3)

with

F [ρ](t, x, z) = 2

∫ zmax

z

β(z′)k(z′, z)ρ(t, x, z′) dz′ − β(z)ρ(t, x, z), (4)

G[ρ](t, x, z) = 1

2

∫ z

0

γ(z − z′, z′)ρ(t, x, z − z′)ρ(t, x, z′) dz′

− ρ(t, x, z)

∫ zmax−z

0

γ(z′, z)ρ(t, x, z′)dz′, (5)

and

m(t, x) =

∫ zmax

0

z′ρ(t, x, z′) dz′. (6)
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As before, the first term in (3) corresponds to the spatial diffusion of the clusters.

The diffusion coefficient of a cluster is a function of its size. The second term in (3) is a

transport term representing the growth of cluster size through cell division within each

cluster. The function v(z,m) ≥ 0 is the instantaneous growth speed of a cluster of size z

when the total mass at its spatial position ism, as defined by (6). In z = 0, we assume this

speed to be zero, hence no condition is required at this boundary. Notice that the division

mechanism conveyed by this term is different than the one considered in (1)-(2), conveyed

by a proliferation term. Indeed, we made the simplifying assumption that a dividing

bacterium will necessarily increase the size of its cluster. We assume that this speed is

zero for clusters of maximal size, zmax. The third term in (3), defined in (4), corresponds

to the fragmentation of clusters, which occurs at a fragmentation rate β(z) ≥ 0, which

is a function of the cluster size. When a cluster of size z′ fragments, it produces two

clusters of respective sizes z and z′ − z with probability k(z′, z)dz = k(z′, z′ − z)dz. The

first term in (4) corresponds to the creation of clusters of size z by the fragmentation

of a cluster of larger size, while the second term corresponds to the loss of clusters of

size z due to fragmentation into clusters of smaller sizes. Finally, the last term in (3)

corresponds to the coagulation of clusters, as defined by the operator in (5). Two clusters

of respective sizes z and z′ coagulate at a rate γ(z, z′), which we call the coagulation rate.

We assume that the coagulation rate is symmetrical, γ(z, z′) = γ(z′, z). The first term in

(5) corresponds to the creation of clusters of size z through the coagulation of clusters of

sizes z′ and z − z′, with z′ < z. The second term corresponds to the loss of clusters of

size z through coagulation with clusters of any other size.

The existence of travelling waves in spatial models with continuous structure has

been studied by various authors in many particular cases (for example [14, 15, 16, 17]).

However, to our knowledge, the existence of travelling waves in structured populations

involving a coagulation operator is being studied numerically for the first time in this work.

For the presented numerical simulations, we select specific functions for the fragmentation,

division, and coagulation rates. For these specific choices, we exhibit numerically the

existence of travelling waves connecting the null function to the stationary solution of the

problem without spatial diffusion. As for the discrete model, we notice the existence of
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a diffusion coefficient value corresponding to a threshold. That is, for a smaller diffusion

coefficient, the wave speed is constant with respect to this parameter and for a larger

value, the wave speed increases.

2.3 Predator-resource model

M. xanthus are predator bacteria. This predation is initiated by isolated cells known as

scouts, which explore the surroundings of the colony to identify potential nutrient sources

[18]. Their attack strategy depends on several parameters, but it depends crucially on the

prey density [19]. This way, as prey become scarce, M. xanthus increase their scouting

capabilities. Once the prey has been found, they can switch behaviours to start killing the

prey and consuming the nutriments released by the prey. Although the exact mechanism

used by M. xanthus to kill its prey is not fully understood, it is known that cell killing

can only occur in close proximity to M. xanthus (contact-dependent) [20, 21]. Moreover,

cluster size structure also play an important role in predation. While the forefront of the

assault is mainly constituted by singletons or small groups of scouts, the rear of the front

consists of rather large clusters exhibiting distinct macroscopic behaviours, called swarms

[5].

To model this phenomenon, we propose a new model in which we assume the existence

of two additional bacterial types: diffusive individuals, which move around alone or in

clusters, and eating individuals, consisting of isolated bacteria and clusters capable to kill

and consume the prey, but remaining immobile. This supplementary structure gives a

total of four subtypes. For this model, we consider a two-dimensional space. We denote by

ρD1 (x, y, t) the density of isolated bacteria in the diffusing state, and ρE1 (x, y, t) the density

of isolated bacteria in the eating state, which are solutions to the following equations

∂t ρ
D
1 = θ1∆ρD1 + αDρ

D
1 (1− ρ)− τDE

1 (e)ρD1 + τED
1 (e)ρE1 − τ1(ρ

D
1 )

2 + 2τ2ρ
D
2 , (7)

∂t ρ
E
1 = αE(ρ

E
1 + 2ρE2 )(1− ρ) + τDE

1 (e)ρD1 − τED
1 (e)ρE1 − τ1(ρ

E
1 )

2 + 2τ2ρ
E
2 . (8)

On the other hand, the density of clusters of two bacteria in diffusing state, ρD2 (x, y, t),
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and those which eat, ρE2 (x, y, t), are given by

∂t ρ
D
2 = θ2∆ρD2 +

τ1
2
(ρD1 )

2 − τ2ρ
D
2 − τDE

2 (e)ρD2 + τED
2 (e)ρE2 , (9)

∂t ρ
E
2 = τDE

2 (e)ρD2 − τED
2 (e)ρE2 +

τ1
2
(ρE1 )

2 − τ2ρ
E
2 . (10)

As previously we are interested in the situation in which clusters have got an enhanced

motility, so θ2 > θ1. Finally, the density of the prey, which is supposed to be immobile,

is given by

∂t e = −δ1ρ
E
1 − δ2ρ

E
2 , (11)

with δ1 and δ2 being the consumption rates of the prey by, respectively, isolated predatory

bacteria in the “eating” state and clusters of predatory bacteria in the “eating” state. In

our model, the prey bacteria corresponds solely to a resource. We do not focus on its

own dynamics but on its interaction with the predatory bacteria. We assume that the

dispersion of the prey is negligible.

In equations (7) and (8) we define ρ as the total of predatory bacteria, i.e. ρ = ρE1 +

ρD1 +2ρE2 +2ρD2 . The model (7)-(11) is schematized in figure 1. We assume that the change

between the “diffusion” state and the “eating” state is dependent on the local amount

of prey. Diffusing bacteria can change state with a certain rate τDE
i , and conversely

bacteria become diffusing with a rate τED
i , with i = 1 or i = 2 which corresponds to

the size of the cluster. For this model, we assume that a bacteria in a cluster of two

bacteria consuming the prey can divide to produce an isolated bacteria. We assume

that bacteria that consume have a significant division advantage compared to isolated

bacteria that disperse (αE > αD). The transitions between the clusters of two bacteria

and the isolated bacteria are the same as in the previous model. The proliferation terms

are assumed to be logistic with a carrying capacity dependent on the total number of

bacteria, ρ. For the model (7)-(11), the Laplacian operator only depends on space, i.e.,

∆u(x, y, t) = ∂xxu(x, y, t) + ∂yyu(x, y, t). This term corresponds to the movement of

bacteria. For the biological reasons mentioned above, it is assumed that the clusters of

two bacteria have a faster diffusion than the isolated bacteria, i.e. θ2 > θ1.
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ρE1

ρE2

ρD1

ρD2

τDE
1 (e)

τED
1 (e)

τ1 τ2 τ1 τ2
τDE
2 (e)

τED
2 (e)

+αE(ρ
E
1 + 2ρE2 )(1− ρ)

+αDρ
D
1 (1− ρ)

θ1

θ2

Figure 1: Schematic representation of the model (7)-(11)

We assume that the rates of transitions between the “diffusion” and the “eating” state

are linearly dependent on the density of the prey e, i.e. τDE
i and τED

i are given by

τDE
i (e) = τDE

i e, and τED
i (e) = τED

i (emax − e), (12)

with emax the maximum in space of e(x, y, t = 0). As the density of the prey e decreases

over time, emax corresponds to the maximum of e in both time and space.

We perform a numerical analysis of this model. Simulations for different parameters

show that the model exhibits similarities with the biological experiments of predation by

the Myxococcus xanthus bacterium. We notice that, as expected, the sociability and the

strong diffusion of the clusters play an important role in the speed of predation.

3 Discrete size model

3.1 Some properties of the mathematical model (1),(2)

We consider the equivalent nondimensional system given by

∂τρ1 = ∂χχρ1 − k1ρ
2
1 + 2k2ρ2 + ρ1 (1− ρ) , (13)

∂τρ2 = θ∂χχρ2 +
1

2
k1ρ

2
1 − k2ρ2, (14)
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where ρi(χ, τ) = pi(x, t)/κ for i ∈ {1, 2}, χ =
√

α/θ1x, τ = αt, θ = θ2/θ1, k1 = Kτ1/α

and k2 = τ2/α are the only three free parameters.

This model has a unique spatially homogeneous positive equilibrium point ρ⋆ =

(ρ⋆1, ρ
⋆
2), given by

ρ⋆1 = 1− 2ρ⋆2, and ρ⋆2 =
2k1 + k2 −

√
k2(4k1 + k2)

4k1
,

with ρ⋆1 + 2ρ⋆2 = 1.

The point (0, 0) is another equilibrium point of the system (13)-(14). Linearising

around these equilibrium points, we obtain the following Jacobian matrices

J(0, 0) =

(
1 2k2
0 −k2

)
, and, J(ρ⋆1, ρ

⋆
2) =

(
−2k1ρ

⋆
1 − ρ⋆1 2k2 − 2ρ⋆1

k1ρ
⋆
1 −k2

)
.

The point (0, 0) is unstable while the point ρ⋆ is stable, therefore we are in a monostable

case.

Asymptotics in fast fragmentation-coagulation regime.

In order to simplify the theoretical study of the system (13)-(14), we consider the limit

where both rates k1 and k2 tend towards infinity at the same speed (in the sense that

k1/k2 < +∞ and k2/k1 < +∞ ). This means that both cluster fragmentation and the

coagulation of isolated bacteria occur at the same time scale, which is much faster than

the growth and diffusion time scale. Equation (14) can be written

∂tρ2 − θ∆ρ2 = k1

(
1

2
ρ21 −

k2
k1

ρ2

)
. (15)

Since k1 → +∞, we must have 1
2
ρ21 − k2

k1
ρ2 = 0 in the RHS of Eq. (15). Then, recalling

that ρ = ρ1 + 2ρ2 we obtain

ρ1 = f(ρ) :=
−1 +

√
1 + 4k1

k2
ρ

2k1
k2

.

Therefore, since 2ρ2 =
k1
k2
ρ21 =

k1
k2
f(ρ)2, adding equations (13) and (14) yields

∂tρ−∆ϕ(ρ) = F (ρ), (16)
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with ϕ(ρ) := f(ρ) + θ k1
k2
f(ρ)2 and F (ρ) := f(ρ)(1 − ρ). Note that now F (p) = 0 if and

only if p = 0 or p = 1 which are the only spatially homogeneous states. Differentiating

twice the functions ϕ and F leads to

ϕ′′(x) =
2k1 (θ − 1)

(4k1x+ k2)
√

1 + 4k1
k2
x

and F ′′(x) = −2
3k1x+ k1 + k2

(4k1x+ k2)
√

1 + 4k1
k2
x
.

Thereby, F is concave, positive and verifies F (0) = F (1) = 0. Moreover, we have that

ϕ is convex if θ > 1.

For the equation ∂tρ− θ∆ρ = F (ρ) with F concave, the minimal speed front is given

by c∗ = 2
√

θF ′(0) (see for instance [10]). On the other hand, the nonlinear diffusion

term of Eq. (16) does not allow to directly apply this theory. Instead, we approach

numerically the minimal speed employing a shooting method [22]. The method is based

on the analysis of the phase plane (ρ, (ϕ(ρ))′). We start by looking for solutions of the

form

ρ(x, t) = p(x− ct), (t, x) ∈ R2,

with c the unknown front speed that we want to determine. We are interested in solutions

connecting the equilibrium state p = 1 (in −∞) with the equilibrium state p = 0 (in +∞).

Then, from (16), we obtain

−cp′ − (ϕ(p))′′ = F (p), (17)

and if we set q = (ϕ(p))′ we obtain the following system
p′ =

1

ϕ′(p)
q,

q′ =
−c

ϕ′(p)
q − F (p),

lim
ξ→−∞

p(ξ) = 1, lim
ξ→+∞

p(ξ) = 0.

So the problem is to find the wave speed c ∈ R and the C2 wave profile p : R −→ [0, 1]

that solves the previous system. For this, we perform a shooting method. We choose a

certain value of c, small enough, and simulate the associated heteroclinic orbit solution

p. If, at any point, p becomes negative, we reject the value of c and try a larger one,

until obtaining an admissible profile. We will compare this speed with the one obtained

by numerical simulations of the population dynamics. The method used and the results

are given in the next paragraph and Figure 2, which is discussed further below.
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3.2 Numerical simulations

We simulate Eq. (13)-(14) using a splitting method with a semi-implicit finite difference

scheme. That is, we split the diffusion and reaction terms into two separate steps. For the

first one, we use an implicit numerical scheme, and for the latter, we use the Runge-Kutta

4 explicit scheme.

Using this method, we numerically approximate solutions of (13)-(14) for different

values of the cluster’s relative diffusion coefficient θ > 1 and for equal fragmentation

and coagulation rates k = k1 = k2 = k. We vary both k and θ to study whether

the total population density ρ behaves as a wave of the form ρ(x, t) = u(x − ct) with

u(ξ) ∼ exp(−λξ). This exponential decay is observed in the Fisher-KPP equation and

is expected from the study of the heterocline in the phase plane. The coefficient λ is

the rate of exponential decay towards the stable state 0 and gives the form of the front.

When we observe numerically that the density p indeed admits travelling wave solutions,

we extract the values of c and λ from the simulated solutions of (13)-(14). The methods

used are explained below.

Firstly, to obtain the wavespeed we compute at each time-step, n∆t, the estimator ĉn

defined by

ĉn :=
J∑

j=1

ρn(xj)− ρn−1(xj)

∆t
∆x, (18)

where {xj = j∆x}j∈{0,...,J} is the space grid and ρn is an approximation of ρ(j∆x, n∆t).

As ∆x,∆t → 0, ĉn is consistent with the wavespeed. Indeed, if we suppose that we have

wave solutions which are of the form ρ(t, x) = u(x− ct), with u(ξ) → 1 as ξ → −∞, and

u(ξ) → 0 as ξ → +∞, then ∂tρ = −c∂xρ. Integration of this equation with respect to x

gives

c =

∫ +∞

−∞
∂tρ(t, x)dx. (19)

Equation (18) is then a finite difference discretization of the time derivative and the spatial

integral in the latter expression.

Secondly, the value λ of the exponential decay constant is computed by fitting an

exponential curve to the wavefront, using a least squares estimator.
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coagulation rates k = k1 = k2. A. Wavefront propagation speed c as a function of θ and
k. Contour levels are also indicated along the coloured heatmap. The speed is obtained
using (18). The critical value of c = 2 is reached near the ordinate θ = 3, highlighted in
red. B. Exponential decay rate λ of the total population wavefront. The line θ = 2 + k
corresponds to the regime change expected by the heuristic (Appendix A). C. Value of the
wavefront speed c as a function of the clusters’ diffusion coefficient θ, for various values
of k (solid line). The value predicted by the shooting method described in Section 3.1 in
the limit k → +∞ is also presented (dotted line).
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Fig. 2 presents the results of c (panels A and C) and λ (panel B) extracted for

θ ∈ [0, 30] and k1 = k2 = k ∈ [0, 15]. We recall that in the Fisher-KPP case, we

have c = 2 and λ = 1. In particular, these values correspond to the regime where the

cluster structure does not affect the propagation speed of the population. Fig. 2-A and

2-C shows the existence of a critical diffusion coefficient θ∗ near the value θ = 3 such

that for all θ < θ∗ the wave speed corresponds to the Fisher-KPP speed, and, for all

θ > θ∗, the speed is strictly larger than the Fisher-KPP speed. In the latter case, the

speed of propagation is determined by the whole front, including the clusters of bacteria,

which therefore contribute to the overall acceleration. To summarise, if the diffusion

coefficient of the clusters is sufficiently larger than the diffusion coefficient of isolated

bacteria (around 3 times larger), the whole population advances faster than in the Fisher-

KPP case. Moreover, the value of this critical θ∗ appears to be a constant for all k > 0,

so this regime switch seems to be independent of the fragmentation-coagulation rate.

The analysis of the exponential decay of the front λ can shed light on the regime

switching in speed. Fig. 2-B shows that the critical Fisher-KPP value of λ = 1 is reached

in our simulations around two lines: first, around the constant θ = 3, which corresponds

to the observed threshold for the speed regimes; and second, around the line θ = 2+k. In

particular, some heuristic calculations make it possible to explain formally this threshold

(see Appendix A). However, it is observed that this line is not associated with a change

of regime in the speed.

Finally, in Fig.2-C we can see the value of c approximated by the shooting method in

the asymptotic k → +∞. These results, obtained trough a completely different numerical

approach, confirm the independence of the threshold θ∗ with respect to k and also help

validate the results obtained from our numerical scheme.

4 Continuous cluster-size model

We make the following assumptions about the functions of the model (3)-(6)

γ(z′, z) = γz′z.1z+z′≤zmax , β(z) = βz, v(z,m) = αz(1−m/κ), k(z′, z) =
1

z′
1z′>z,

(20)
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for z ∈ [0, zmax], with γ > 0 a constant coagulation rate by squared unit of size, β > 0

a constant fragmentation rate by unit of size, κ > 0 a carrying capacity with respect to

the sum of the individual sizes of the population, and α > 0 some constant growth rate

by unit of size, and m is the total mass of the system as defined by Eq. (6). We assume

that the function v is increasing to model the fact that the larger a cluster is, the higher

the probability that one of its bacteria divides. In particular, when m ≈ 0, the function

v becomes linear, and each bacterium in a cluster has the same probability of dividing.

To begin with, we assume that the diffusion coefficient is defined by

θ(z) = θ1, for all z ∈ [0, zmax] . (21)

Under the assumptions (20) and (21), we have the following equation for the moment of

order 1,

∂tm = θ1∂xxm+mα(1−m/κ). (22)

Note that Eq. (22) corresponds to a Fisher-KPP equation, which admits traveling wave

type solutions. Searching for a travelling wave solution for the model (3)-(6), we define the

variable ξ(t, x, z) = x− c(z)t, where c(z) is a function of z corresponding to the unknown

invasion speed. We denote p the wave profile given by

ρ(t, x, z) = p(ξ(z), z), (23)

with the following limits

p(−∞, z) = f(z), p(+∞, z) = 0̃(z), (24)

where 0̃ corresponds to the null function and f(z) to a stationary stable solution of the

following system

∂tq(t, z) = −∂z [αz(1−M(t)/κ)1z<zmax(z)q(t, z)] +F [q](t, z)+G[q](t, z), ∀z ∈ (0, zmax),

(25)

with

M(t) =

∫ zmax

0

z′q(t, z′) dz′.
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Moreover, we have limt→+∞ M(t) → κ. Under the assumption M ≡ κ, equation (25)

simplifies to the following coagulation-fragmentation equation.

∂tq(t, z) = F [q](t, z) + G[q](t, z). (26)

In the article [23], under the assumption zmax = +∞, the authors derive the existence

of the equilibrium profile for different assumptions than those in (20) regarding the func-

tions β and γ. Nevertheless, as specified in Remark 5.2 of this article and in the article

[24], it is possible to extend this result to our assumptions to obtain the profile of the

stationary solution f(z).

According to our numerical simulations, the equilibrium profile in the wake of the

invasion front corresponds well to the stationary numerical solution of equation (26). For

numerical simulations, we extended the method presented in Section 3.2.

In figure 3-A, we observe an example of a traveling wave type solution for the model

(3)-(6). The initial data was chosen to be ρ(x, z, 0) = f̃(z)1x≤30, where f̃(z) is the

numerical solution of the equation (25). Between times t = 30 and t = 50, the state

f̃(z) spatially invades the null state. According to our numerical simulations, for these

parameter values, the speed of the traveling wave solutions of the equation (23) appears

to be independent of z and is similar to the speed of the traveling waves of the moment of

order 1 given by the equation (22). Traveling waves for the term m are illustrated in panel

B of Figure 3. The colorimetry represents the progression of time, blue for t = 0 and red

for t = 80. For this initial data, it is known that the selected speed of the traveling wave

for m corresponds to the critical wave speed, i.e. 2
√
αθ. In theory, if the system (3)-(6)

admits solutions of traveling waves, the moments have them too. Moreover, the speed of

the traveling waves of the moments is necessarily less than or equal to the speed of the

traveling wave of the model (3)-(6).

Now, for the biological reasons mentioned above, we assume that θ is an increasing

function of z. For numerical reasons, we define θ as

θ(z) =

{
θ1 , si z ≤ s,

θ2 , si z > s,
(27)

with θ1, θ2 two positive constant such that θ2 > θ1 and s a positive constant.
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Figure 3: A. Example of a traveling wave for the model (3)-(6) under the assumptions
(20) and (21). The state f(z) spatially invades the state 0̃(z) for all z. Concerning the
initial data, we assume that, at time t = 0, the density is given by ρ(x, z, 0) = f(z)1x≤x0

with some positive constant x0. The parameter values are θ1 = 1, α = 1, β = 1, γ = 1,
κ = 1. B. Representation over time of the numerical solutionm(x, t). The color represents
the time, blue t = 0 to red t = Tend and the colorimetry is linear. The initial data and
parameter values are the same as above.
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Figure 4: Speed of the traveling wave of the equation (22), obtained by numerical
simulations, for different θ2, under assumption (27). Similarly to the discrete model, there
is a threshold θ̃2 such that for all θ2 ≤ θ̃2 the speed of the wave is cKPP = 2

√
αθ1 = 2,

and for θ2 > θ̃2, the speed becomes strictly higher than the speed cKPP. The parameter
values are similar to those in Figure 3.

The figure 4 corresponds to the evolution of the numerical speed of the traveling wave

of the moment of order 1 as a function of θ2, for the model (3)-(6) with θ defined by (27).

Once again, we observe, the existence of a threshold θ̃2. Indeed, for θ2 ≤ θ̃2, we notice

that the speed of the traveling wave seems to be very close to the speed cKPP = 2
√
θ1α

and becomes strictly larger for θ2 > θ̃2. For θ2 sufficiently large (larger than the interval

θ in Figure 4), we notice that the growth is of order
√
θ2, similar to the discrete model

(1)-(2).
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5 Resource-predator model

Figure 5 corresponds to the numerical simulation of the system (7)-(11) which takes into

account two types of bacteria. The first type ρEi is immobile and can consume its prey,

while the second ρDi diffuses. The density of the prey, for example E. coli, is shown in red.

The green color corresponds to the density of diffusing bacteria ρD1 + 2ρD1 , and in blue

the bacteria that consume the prey, ρE1 + 2ρE1 . The initial data, represented in the figure

5 (top panel) are chosen to be as close as possible to the biological experiments. At first

the bacteria are in the “diffusion” state, looking for prey. Some of the diffusing bacteria

will, on contact with the prey, change state to become bacteria that consume the prey.

This behavior tends to reduce the spread of predation in areas with high prey density.

For example, the propagation of predatory bacteria is faster in the middle of E. coli than

on these edges with a higher initial density (See Figure 5 lower left panel). Gradually, the

prey will be consumed and will disappear.

To understand the importance of sociability in predator propagation, we define a

model similar to the system (7)-(11) for which isolated bacteria cannot regroup to form

a cluster. The model is defined by
∂t ρ

D
1 = θ1∆ρD1 + αDρ

D
1 (1− ρ)− τDE

1 (e)ρD1 + τED
1 (e)ρE1 ,

∂t ρ
E
1 = τDE

1 (e)ρD1 − τED
1 (e)ρE1 + αEρ

E
1 (1− ρ),

∂t e = −δ1ρ
E
1 ,

ρ = ρD1 + ρE1 .

(28)

In the figure 6 we observe the importance of sociability on the speed of predation.

The left part corresponds to the numerical simulation of the model (28) at time t = 0

and at time t = 8 and on the right it corresponds to the numerical simulation of the

system (7)-(11) at the same times. For both simulations we take similar initial data and

parameters shared by both models have the same values. Under these assumptions, we

observe in Figure 6 (bottom panel) that for the (7)-(11) model, the prey, shown in red, is

consumed faster.

The speed of predation is strongly correlated with the value of the parameter θ2.

Contrary to the previous model, the lesser advantage given to clusters has an effect on

the predation speed. The figure 7 corresponds to two numerical simulations of the system
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Figure 5: Numerical simulations of the model (7)-(11), under the assumption (12). The
density of bacteria that diffuse, ρD1 + 2ρD2 , is represented in green and the density of
bacteria that consume the prey, ρE1 + 2ρE2 , is represented in blue. The prey density, e,
is represented in red. The initial data are shown in the top panel, they are chosen to be
as close as possible to the biological experiments. The initial distribution of predatory
bacteria is assumed to be homogeneous on a circle, while the initial distribution of prey
is assumed to be arranged on a circle with a higher density at the edges. At time t = 0,
there are no predatory bacteria in the “eating” state. The bottom panel represents the
densities at time, t = 8, where predatory bacteria have spread and reached the prey, which
then began to consume the prey. The parameter values for this numerical simulation are
θ1 = 1, θ2 = 2, αD = 1, αE = 3, τ1 = 2, τ2 = 1, τDE

1 = τDE
2 = 1, τED

1 = τED
2 = 1,

δ1 = δ2 = 2.
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Figure 6: The distribution of E. coli at time t = 0 (top) and t = 8 (bottom) is represented
in red, for the model (28) (left) and for the model (7)-(11) (right). For both simulations,
we assume the linear transition hypothesis (12). We assume that there are no advan-
tages/disadvantages other than diffusion, therefore δ2 = δ1, τ

ED
2 = τED

1 and τDE
2 = τDE

1 .
Under this assumption, predation is faster for the model (7)-(11) than for the model (28).
The values of the parameters are the same as in figure 5.
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Figure 7: Numerical simulations of the model (7)-(11) with different diffusion coefficients.
The distribution of E. coli is represented in red at time t = 8 with the same initial data.
The coefficient θ is defined as the ratio of θ2 and θ1, i.e. θ := θ2/θ1 and corresponds to the
advantage/disadvantage of cluster diffusion. For the simulation on the left, we assume
that θ = 1 and for the simulation on the right we assume that θ = 6. The values of the
other parameters are the same for both simulations and are those in figure 5.

(7)-(11) at time t = 8 for two different coefficients θ2. The other parameter values and the

initial data are similar. The prey density, represented in red, is much lower for a larger θ2

coefficient. We observe that the speed of predation is an increasing function of θ := θ2/θ1,

for θ > 1.

6 Conclusions and perspectives

We studied the effect of social behaviour on the motility of Myxococcus xanthus popu-

lations. Previous in vitro experiments have shown that the capacity to form clusters of

bacteria that move collectively begets an enhanced predation efficiency. Our numerical

experiments shed some light on this phenomenon. We have first considered a minimal

model in which isolated bacteria are able to form clusters of two bacteria that diffuse

collectively. The simulations suggest that when the clusters diffuse at least 3 times faster
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than the isolated individuals, the speed of propagation of the whole population is larger

than the critical Fisher-KPP speed. Otherwise, if clusters do not diffuse fast enough, the

speed of the population is limited by the propagation speed of isolated individuals. The

threshold separating these two regimes seems to be unique and independent of the rates of

fragmentation and coagulation. In particular, using a shooting method, the same regime

separation was found numerically in the asymptotic case of infinitely fast fragmentation

and coagulation.

We also considered two extensions. First, we studied a continuous cluster-size model

expressed as an integro-differential equation with fragmentation and coagulation oper-

ators. Under biologically relevant parameterizations for these operators, we show that

the total sum of cluster sizes (first order moment) of the structured population exhibit

travelling waves whose speed is also characterised by a threshold in the diffusion coeffi-

cient, below which the speed coincides with Fisher-KPP critical speed. This result seems

to extend the regime separation observed in the discrete case to a more general class

of population dynamics. In this case, as the population wavefront advances, the cluster

structure of the rear of the wave is distributed according to the steady-state distribution

of cluster sizes, and the travelling wave connects the steady-state to the null function.

Finally, we considered an extended model in which both isolated and clustered bacteria

have the ability to switch towards an eating state when they encounter a positive density

of prey. However, they become immobile in this state. With the purpose of observing the

effect of clusters in the predatory efficiency, we compared the propagation fronts obtained

in presence and absence of clustering. Numerical simulations indicate that the prey is

consumed faster when bacteria are allowed to cluster. In this case, the speed of predation

is an increasing function of the ratio of the diffusion coefficients of clusters and isolated

bacteria.

Regime separation in the discrete case, particularly in the fast fragmentation-coagulation

asymptotic, can motivate some theoretical investigations that are not explored here. For

example, approaches relying in the variational characterisation of the wave speed can be

adapted to obtain bounds on the diffusion threshold θ∗. The numerical simulations can

also be extended to include some more realistic cases, taking into account the complex
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cluster structure of swarms and scouts.
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Appendix A Heuristics on the θ = 2+k threshold line

We give some explanations on the critical threshold θ = 2+k observed in Fig. 2-B at which

λ = 1. To that extent, we assume the existence of a wavefront solution ρ(t, x) = ρ(x− ct)

with unknown speed c. Let ξ = x− ct. PDE system (13)-(14) reduces to the following

system of second-order ODE on the variable z:
−c∂ξρ1 = ∂ξξρ1 − k1ρ

2
1+2k2ρ2 + ρ1 (1− ρ) ,

−c∂ξρ2 = θ∂ξξρ2 +
1
2
k1ρ

2
1 − k2ρ2,

ρ = ρ1 + 2ρ2.

Now, let’s suppose that in the forefront of the population the number of isolated individ-

uals and clusters is such that we are under the following hypothesis

(H0) : ρ21 ≪ ρ2 ≪ ρ1.
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Under (H0), the first ODE becomes

−cρ1 = ∂ξξρ1 − ρ1.

This is equivalent to the linearisation of Fisher-KPP Equation, for which the critical speed

is c = 2. Moreover, the solution profile is of the form ρ1(z) = C1 exp(−λξ), with λ = 1.

Now, let’s come back to the second ODE and replace ρ1. We get

−c∂ξρ2 − θ∂ξξρ2 + k2ρ2 =
k1
2
C2

1e
−2λξ.

We solve this equation finding a solution of the form

ρ2(ξ) = Ae−µξ +Be−2λξ.

In particular, for the particular solution, the constant B is such that(
2λc− 4θλ2 + k2

)
B =

k1
2
C2

1 .

Thus, at the critical value λ = 1 we obtain

(2c− 4θ + k2)B =
k1
2
C2

1 ,

which for 2c− 4θ + k2 ̸= 0 begets

B =
C2

1k1
2 (2c− 4θ + k2)

.

On the other hand, for the constant µ, we have:

cµ− θµ2 + k2 = 0.

Thus, for ∆ = c2 + 4θk2 > 0, we obtain the solutions:

µ± =
−c±

√
c2 + 4θk2

−2θ
=

c∓
√
c2 + 4θk2
2θ

.

Since µ+ < 0, we consider only the solution with µ = µ−. The critical transition

should occur when H0 is not verified anymore, and thus the nonlinear effects are not

negligible. In particular, when we are just at the threshold level, we also have the critical

Fisher-KPP values µ = 1 and c = 2 which gives√
1 + θk2 = θ − 1,

from which we derive the relation θ = 2 + k2. Therefore we should expect that, at fixed

k2, (H0) is violated for all θ > 2 + k2.
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