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Abbreviations: Kv: voltage gated potassium channels, AP: action potential, cRNA: 53 

complementary RNA, GV: conductance-voltage, IV: current-voltage, Inac-V: Inactivation-54 
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Abstract 59 

Ion channels mediate voltage fluxes or action potentials that are central to the functioning of 60 

excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) 61 

consists of two members (KCNB1 and KCNB2 genes) that encode KCNB1 and KCNB2 channels, 62 

respectively. These channels are major contributors to delayed rectifier potassium currents arising 63 

from the neuronal soma which modulate overall excitability of neurons. In this study, we identified 64 

several monoallelic pathogenic missense variants in the KCNB2 gene, in individuals with 65 

neurodevelopmental disorders and other neurological conditions such as epilepsy and autism. 66 

Recurrent dysmorphisms included a broad forehead, synophrys and digital anomalies. 67 

Additionally, we selected three variants where genetic transmission has not been assessed, from 68 

two epilepsy studies. We characterized channel properties of these variants by expressing them in 69 

oocytes of Xenopus laevis and conducting cut-open oocyte voltage clamp electrophysiology. Our 70 

datasets indicate no significant change in absolute conductance and conductance-voltage 71 

relationships of most disease variants as compared to wild type (WT), when expressed either alone 72 

or co-expressed with WT-KCNB2 (except for c.1141A>G, (p.Thr381Ala) and c.641C>T, 73 

(p.Thr214Met), which show complete abrogation of currents when expressed alone with the 74 

former exhibiting a left shift in activation midpoint when expressed alone or with WT-KCNB2). 75 

These variants, however, show collective features of increased inactivation shifted to 76 

hyperpolarized potentials. We suggest that the effects of the variants on channel inactivation may 77 

contribute to hyper-excitability of neurons, which leads to disease onset.  78 
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Introduction 79 

The shab-related KCNB sub-family of voltage-gated potassium (Kv) channels consists of two 80 

genes KCNB1 [MIM 600397] and KCNB2 [MIM 608164] that encode KCNB1 (Kv2.1) and 81 

KCNB2 (Kv2.2) channels, respectively1. KCNB1 is well documented as being ubiquitously 82 

expressed in several brain regions2. Characterization of KCNB2 expression in the brain, in 83 

comparison, is less defined due to discrepancies in KCNB2 cloning, and concurrent antibodies 84 

used in different studies3. Early studies professed mutual exclusivity of subcellular distribution of 85 

KCNB1 and KCNB2 in both principal and inhibitory neurons co-expressing them and by extension 86 

their roles in controlling neuronal excitability; KCNB1 is restricted to large clusters in the proximal 87 

dendrites and soma of neurons4,5, while KCNB2 is diffusely localized in neuronal dendrites6-8. 88 

However, recent reports have detailed KCNB2 expression to localise similarly to KCNB1 in 89 

cortical neurons although other neurons may express high levels of KCNB1 or KCNB2 but not 90 

both3,9,10. In addition to the cortical expression in the central nervous system, KCNB2 has also 91 

been identified in the medial nucleus of the trapezoid body11, the basal forebrain12,13 and the spinal 92 

cord14. Single-cell RNAseq data show a high expression in excitatory neurons as well as various 93 

types of interneurons (Allen Brain Map, Human MTG 10x SEA-AD dataset). 94 

KCNB1 and KCNB2, like other Kvs, are outward rectifiers, i.e., they conduct K+ from the cytosol 95 

to the extracellular space and provide repolarizing currents that return a depolarized neuron back 96 

to the resting state. These channels activate and inactivate slowly compared to the depolarizing 97 

sodium currents. Activation is achieved at suprathreshold voltage during an action potential (AP). 98 

Such slow activation and inactivation kinetics prolong the duration of KCNB-mediated K+ 99 

conductance; these properties are instrumental to their regulation of repolarization and 100 
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hyperpolarization phases of an action potential15,16. Consequently, KCNBs help determine 101 

interspike interval, AP amplitude and AP firing fidelity during high frequency firing11,17-20. 102 

Assigning these effects to neuronal excitability on homotetrameric complexes of either KCNB1 or 103 

KCNB2 is a simplified view. KCNB1 and KCNB2 have been shown to form heterotetrameric 104 

complexes both in vitro and in vivo3,9 . In addition, KCNB channels co-assemble with the 105 

electrically silent KvS channels and auxiliary β-subunits to form heterotetrameric protein 106 

complexes that display drastically different biophysical and pharmacological properties as 107 

compared to their homotetetrameric counterparts21,22. In addition to their role in mediating K+ 108 

conductance, KCNB1 and KCNB2 also exist as non-conducting clusters caused by the formation 109 

of ER/plasma membrane junctions that have numerous functions such as inter-organelle 110 

communication and calcium signalling, to name a few2. 111 

Over 29 distinct pathogenic variants in KCNB1 gene that either truncate or alter the protein 112 

sequence of the KCNB1 channels have been identified in individuals suffering from early onset 113 

developmental and epileptic encephalopathies [MIM 616056] 23,24. The KCNB1 variants that were 114 

functionally characterized were shown in non-native systems to exhibit a multitude of effects on 115 

channel activity such as abolished channel function, reduced current density, deficits in voltage 116 

sensing, loss in ion selectivity and gain of inward cation conductance24-27. Expression of some of 117 

these variants in cortical neurons led to reduced repetitive firing properties26. Of note, KCNB1 KO 118 

(KCNB1−/−) mice have preserved brain anatomy, and do not exhibit spontaneous epileptic seizures, 119 

or visual or motor impairment28. Hippocampal slices of these mice, however, exhibit drug-induced 120 

hyperexcitability and stimulation-induced epileptiform activity. Interestingly, homozygous mice 121 

expressing a KCNB1 variant (p.G379R) developed spontaneous seizures as well as proconvulsant- 122 
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and handling-induced seizures along with being hyperactive, impulsive and having reduced 123 

anxiety29. 124 

In this study, we identified several variants in the KCNB2 gene in individuals with 125 

neurodevelopmental disorders that has not been associated with a Mendelian genetic disorder in 126 

humans in OMIM previously. Most exhibited developmental delays while some also had epilepsy, 127 

ADHD, and autism. In addition, we screened the Epi25K dataset and another epilepsy cohort and 128 

identified three additional candidate variants. We performed electrophysiological characterization 129 

of these variants in oocytes from Xenopus laevis. Our data suggests that most KCNB2 variants 130 

show common features of increased channel inactivation with the voltage dependence shifted to 131 

hyperpolarized potentials. Based on these observations, we hypothesize that the effects of the 132 

variants on channel inactivation may contribute to reduced KCNB2 availability, leading to hyper-133 

excitability of neurons and to disease onset. 134 

  135 
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Materials and Methods 136 

Clinical and genetic investigations 137 

Variants were identified by trio sequencing of probands. Exome sequencing methods have been 138 

described elsewhere (see following references for individuals 130, 231, 332, 433, 534, 635 and 736. The 139 

cohort was assembled with the help of Matchmaker Exchange platform tools37. All clinical 140 

information is shared in accordance with local institutional ethical review boards and is in 141 

accordance with the ethical standards of the responsible committee on human experimentation 142 

(institutional and national) and proper informed consent. A consent for the publication of the 143 

photographs included here was obtained from parents or legal guardians. 144 

Molecular Biology and Channel Expression. 145 

Oocytes from Xenopus laevis were surgically obtained as described elsewhere38. The human 146 

KCNB2 (NM_004770.3) cDNA in pcDNA3.1(+) N-terminus HA tag was purchase at Genescript 147 

(Clone ID: OHu25595C). All variants were introduced in KCNB2 construct using the QuikChange 148 

Lightning site-directed mutagenesis kit (Agilent Technologies, USA) and were subcloned in 149 

pcDNA3.1 containing no tag using EcoR1/XhoI restriction sites. The variants and primers 150 

(rev/fwd) are listed in Table S1. To generate high quality and high copy number plasmids, the 151 

plasmids were amplified using the CopyCutter EPI400 competent bacteria (Lucigen) to decrease 152 

insert toxicity and avoid non-desired additional mutations. cRNA was generated by linearizing the 153 

plasmids with a restriction enzyme (DraIII) and using the plasmid template for in vitro 154 

transcription using the mMESSAGE mMACHINE™ T7 ULTRA Transcription Kit (Thermo 155 

Fisher Scientific, U.S.A.). For functional expression of the KCNB2 channels, either 1 ng of WT 156 
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or individual mutant cRNA or 0.5 ng each of WT and one of the mutant cRNA was injected into 157 

oocytes and incubated for 12-24 h at 18°C to allow for channel expression.  158 

Electrophysiology 159 

Voltage clamping experiments were performed with a CA-1B amplifier (Dagan Corporation, 160 

U.S.A.). Currents were recorded in the cut-open oocyte voltage-clamp configuration39. The 161 

external solution used for ionic current recordings contained (in mM): 5 KOH, 110 N-methyl-D-162 

glucamine (NMDG), 10 HEPES, and 2 Ca(OH)2, pH adjusted to 7.1 with methanesulfonic acid 163 

(MES). The internal solution contained (in mM): 115 KOH, 10 HEPES, and 2 EDTA, pH adjusted 164 

to 7.1 with MES. The oocytes were placed in a three-part chamber (upper, middle and bottom) 165 

containing the external solution. Oocyte membrane exposed in the bottom chamber was 166 

permeabilized with 0.2% saponin in internal solution for 30s-1 min for direct current injection into 167 

the oocyte. Saponin was washed out and bottom chamber filled with internal solution. 168 

Conductance and inactivation of KCNB2 variants were recorded using the protocols illustrated in 169 

Fig. 3 and Fig. 5. Both conductance-voltage relation (GV) and Inactivation-voltage relation (Inac-170 

V) was fit to a sum of two Boltzmann relation of the form G/Gmax = Minimum + (Amplitude1-171 

Minimum)/(1 + exp((V50(1)-X)/k1)) + (Amplitude2-Amplitude1)/(1 + exp((V50(2)-X)/k2)) and 172 

I/Imax = Maximum + (Amplitude1-Maximum)/(1 + exp((V50(1)-X)/k1)) + (Amplitude2-173 

Amplitude1)/(1 + exp((V50(2)-X)/k2)), respectively. The decision to use this fit was based on its 174 

fidelity and does not necessarily model the underlying processes. Reversal potential for KCNB2 175 

variants were determined using the deactivation protocol illustrated in Fig.4. The external and 176 

internal solutions used for these recordings are described in Fig.4. The concomitant current-voltage 177 

relation was fit to a straight line (linear regression) between -90 and -50 mV; the x-intercept was 178 
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tabulated as the reversal potential. All data was acquired using the AnalysisX2 software 179 

(Département de physique, Université de Montréal, Canada) and analyzed and compiled using 180 

MatlabR2022a (The MathWorks, Inc., U.S.A.). Data shown are mean ± SD with n > 5 from at 181 

least two independent injections. 182 

Molecular dynamics 183 

We created an in silico homology model of full-length KCNB2 based on the known structure of 184 

the Kv1.2/2.1 chimera40. The model was generated using alphafold241. The variants discussed here 185 

in the manuscript were introduced into the homology structure and the channels set into an in silico 186 

membrane containing: outer leaflet: POPC:POPE:DPSM in a molar ratio of 59:9:32 and inner 187 

leaflet: POPC:POPE:POPS:DPSM:POPI in a molar ratio of 25:38:16:14:7. The system was set in 188 

water containing 150mM KCl at a temperature of 300K using charmm-gui42-44. The different 189 

mutant channels as well as the wildtype channel were equilibrated and simulated in silico for 100 190 

ns using NAMD45.  191 

  192 
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Results 193 

Clinical characteristics 194 

The clinical phenotypes of the six individuals with de novo or dominantly transmitted variants in 195 

KCNB2 are outlined in Table 1. Five variants were de novo, and one was inherited from a 196 

symptomatic father. Proband 7 inherited the variant from an unaffected mosaic father. The age at 197 

last evaluation ranged from 21 months of life to 18 years. Individuals were born at term and had 198 

normal birth growth parameters. Growth parameters, at last visit, were within the normal range in 199 

all individuals.  200 

All seven individuals presented with global developmental delay. Six were diagnosed with 201 

intellectual disability. Three individuals presented with mild autistic traits while two were too 202 

young to make an autistic spectrum disorder (ASD) diagnosis. Two individuals were medicated 203 

with Levetiracetam for seizures. Two individuals had hypotonia including one with ataxic cerebral 204 

palsy. One individual was diagnosed with attention deficit/hyperactivity disorder (ADHD).  205 

Five individuals presented with various facial dysmorphisms (Fig.1). Synophrys was observed in 206 

two individuals. A broad forehead was noted in two individuals. Hand anomalies were described 207 

in four individuals with one presenting with clinodactyly and another with nail hypoplasia. Mild 208 

blepharoptosis, beaked nose, flat mid face, frontal bossing, full lower lip, tongue protrusion and 209 

high palate were noted in one individual each. 210 

 211 
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Ophthalmological anomalies were found in four individuals. One individual presented with 212 

cortical vision impairment, Duane syndrome, hyperopia, astigmatism, and cataracts. Delayed 213 

visual maturation, myopia or severe strabismus were found in the other three individuals. 214 

Two individuals had heart anomalies, notably one with aortic dilation and one with an abnormal 215 

trabeculation of the left ventricular myocardium. Two individuals had genitourinary 216 

malformations: one with a neurogenic bladder and the other with a suggestion of a slight shawl 217 

scrotum. 218 

One individual was diagnosed with diabetes, gingival fibromatosis, low bone density, and 219 

oropharyngeal dysphagia. That individual (Proband 1 1, with the c.1141A>G, (p.Thr381Ala) 220 

variant) seemed to have more extensive involvement than the others (Supplemental Note: Case 221 

Reports), and her phenotype overlapped partially with Zimmerman-Laband (ZLS, [MIMs 135500, 222 

616455, 618658]) and DOORS [MIM 220500] syndromes, which are neurodevelopmental 223 

disorders with epilepsy (treated with Levetiracetam) and hypoplasia of the terminal phalanges and 224 

nails. Of relevance, some of us have previously reported pathogenic variants in potassium channels 225 

KCNH1 [MIM 603305] and KCNN3 [MIM 602983] in ZLS [MIMs 135500, 618658]46,47, and 226 

vacuolar ATPase subunit ATP6V1B2 [MIM 606939] in ZLS [MIM 616455] and DOORS 227 

syndrome46,48.  228 

To identify additional candidate variants, we searched epilepsy study data. A missense variant 229 

(c.724G>A, (p.Ala242Thr)) was identified in an individual with Sudden Unexpected Death in 230 

Epilepsy (SUDEP), from a SUDEP study49. Additionally, c.472A>G, (p.Thr158Ala) was 231 

identified in two individuals with NAFE (non-acquired focal epilepsy, [MIM 604364, 245570]), 232 

and c.1124C>T, (p.Ala375Val) in one individual with GGE (genetic generalized epilepsy, [MIM 233 
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600669]), all from the Epi25 exome study variant server50. The variants were selected as they were 234 

absent in gnomAD and affected highly conserved residues. Additional clinical details or parental 235 

samples for segregation of the variants were not available to us, thus there is more uncertainty 236 

(compared to the 6 first variants identified) regarding the involvement of the variants in the 237 

neurological phenotypes of the individuals. 238 

Using ACMG criteria51 through the Varsome Classifier52, all variants were predicted to be 239 

pathogenic or likely pathogenic (see criteria used in Table S2). The gnomAD missense tolerance 240 

score53 for KCNB2 is relatively high with a Z score of 2.25 (range -5 to 5) since there were 511 241 

expected missense variants but only 368 were observed. We have assessed the tolerance of each 242 

affected amino acid to missense variants using Metadome54, and all amino acids are intolerant to 243 

missense variants, with scores in table S2 and the tolerance landscape of the proteins in figure S1. 244 

Additionally, table S2 shows the pathogenicity prediction and conservation scores obtained from 245 

Ensembl’s Variant Effect Predictor for various commonly used tools55. 246 

Effect of KCNB2 Variants on Functional Expression and Activation Kinetics 247 

The topology of a KCNB2 monomer, like that of other Kv channels, consists of a N-terminus, 248 

hexahelical transmembrane domain including a pore-helix (P-loop ion selectivity filter) and a C-249 

terminus (Fig. 2A). Most of the amino acids mutated in the KCNB2 variants characterized in this 250 

study are highly conserved in homologous proteins across different species (Fig. 2B) and in human 251 

KCNB1 (not shown). The exception is amino acid position 646 (hKCNB2), which exists as alanine 252 

in some species (including humans) and co-incidentally as valine in others.  3D protein structures 253 

of KCNB2 and distribution of the variants characterised in this study are shown in tetrameric (top 254 
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view, Fig. 2C) and monomeric configuration (side view, Fig. 2D) based on the homology model 255 

of the known structure of the Kv1.2/2.1 chimera40. 256 

To assess biophysical properties and functional expression of the KCNB2 mutants, the cRNAs 257 

generated from the plasmids encoding the individual mutants were injected into oocytes of 258 

Xenopus laevis either alone (1 ng) or in equal amounts with WT-KCNB2 (0.5 ng each). 16-24 259 

hours post-injection, the currents were studied using the cut-open oocyte voltage clamp technique. 260 

To record absolute amplitudes of K+ conductance, the channels were held at -90 mV followed by 261 

a depolarising pulse to 100 mV for 200 ms (Fig. 3A). Most variants, when expressed either alone 262 

or with WT, did not show a significant change in current amplitudes when compared to WT. 263 

Exceptions are the c.641C>T, (p.Thr214Met) and c.1141A>G, (p.Thr381Ala) variants; these 264 

mutants showed complete and strong abrogation of K+ conductance, respectively (Fig. 3B). K+ 265 

conductance was rescued when the mutants were co-expressed with WT-KCNB2 (Fig. 3D). The 266 

c.641C>T, (p.Thr214Met) variant, when co-expressed with WT-KCNB2, and the c.994T>G, 267 

(p.Tyr332Asp) variant, when expressed alone, show significant reduction in current amplitudes as 268 

compared to WT-KCNB2 (Fig. 3B and 3D, Table 2). 269 

We next characterised the activation properties of the KCNB2 variants by analyzing their 270 

conductance-voltage (GV) relationship. Conductance can be inferred from the tabulation of the 271 

isochronal current amplitudes at the beginning of the -20 mV step in Fig. 3A. The representative 272 

raw traces of the corresponding currents are presented from an oocyte that either expresses the 273 

individual variants alone (top) or co-expresses both the individual variant and WT (below). The 274 

c.641C>T, (p.Thr214Met)variant was excluded from the GV analyses due to lack of any activation 275 

currents by this mutant. The GV datasets (Fig. 3C and 3E) were best fitted by a sum of two 276 
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Boltzmann distribution that generated two activation midpoints (V50(1) and V50(2)) and two 277 

corresponding slope factors (k1 and k2, respectively). These parameters are compiled in Table 2. 278 

Of all variants, GV profiles of c.1141A>G, (p.Thr381Ala) and c.994T>G, (p.Tyr332Asp) channels 279 

showed significant differences when compared to those of WT. However, while c.1141A>G, 280 

(p.Thr381Ala) channels showed a ∼20 mV shift to hyperpolarized potentials in activation V50(1) 281 

compared to WT, c.994T>G, (p.Tyr332Asp) was shifted by 5 mV to depolarized potentials. The 282 

other mutants did not show significant differences compared to WT, although higher k1 values 283 

were observed for the c.911G>A, (p.Arg304Gln) variant. In affected individuals, the variants 284 

would be expressed with WT-KCNB2 in a heterozygous manner. We therefore tested the effect 285 

on co-expression. While the effects were similar, the voltage dependence and slope of activation 286 

was attenuated in the heteromeric as opposed to homomeric expression. This is indicative of 287 

difference in activation properties of c.911G>A, (p.Arg304Gln), c.994T>G, (p.Tyr332Asp) and 288 

c.1141A>G, (p.Thr381Ala) as compared to WT, but it is notable that the effects were not 289 

conserved throughout the mutants nor were the effects consistent among the variants. 290 

KCNB2 variants show no effect on reversal potential of the channel. 291 

We next investigated if the mutations in KCNB2 affect the reversal potential of the channel. To 292 

do this, we looked at currents evoked by the deactivation protocol illustrated in Fig.4A under 293 

conditions of high external NMDG+/Na+ and low K+ and high internal K+ and low NMDG+/Na+. 294 

The deactivation protocol involves channel opening of the variants at +50 mV followed by the 295 

deactivation of the channel at different voltages ranging from +50 mV to -120 mV. The raw traces 296 

shown in Fig.4B are representative of an oocyte expressing WT-KCNB2. The ensuing current 297 

voltage relationship from this protocol leads to the determination of the reversal potential of the 298 
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channel, representative of the voltage with no net current. As shown in Fig. 4C and D, the reversal 299 

potential of all KCNB2 variants lies between -60 to -80 mV (Table S3), which is closer to the 300 

equilibrium potential of K+. These results indicate that potassium conductivity by the variants is 301 

unaffected in the presence of Na+ or NMDG+ both extra- and intracellularly. 302 

KCNB2 variants show greater extent of inactivation when compared to WT-303 

KCNB2 304 

Many Kv channels undergo inactivation either during subthreshold depolarization (referred to as 305 

closed state inactivation) or during suprathreshold membrane depolarization (referred to as open-306 

state inactivation)56. Shab-related KCNB channels are characterised by slow inactivation that 307 

strongly influences duration of action potentials during repetitive high frequency firing of different 308 

neuronal subsets. To assess voltage dependence and extent of this inactivation, we employed the 309 

protocol illustrated in Fig. 5A; the bold lines in the protocol correspond to the raw traces shown in 310 

Fig. 5B and C when the variants are expressed either alone or with WT-KCNB2, respectively. 311 

Both WT-KCNB2 and the variants exhibit slow inactivation as described previously17,57 during 312 

sustained depolarizations at +40 mV for up to 20 s.  313 

We next assessed and compared voltage-dependence of inactivation of WT-KCNB2 and the 314 

variants. All KCNB2 variants exhibit U-shaped inactivation profiles (Fig. 5D and E) as described 315 

previously56,58. Such profiles are indicative of increased inactivation at negative potentials, which 316 

is overcome by channel opening at more depolarized potentials because of increased open 317 

probability. To determine the mean free energy required to trigger closed state inactivation, we 318 

fitted the data between -150 mV to 10 mV with the sum of two Boltzmann’s equations. As 319 

compared to WT, most-variants, when co-expressed with WT, show a shift to hyperpolarized 320 
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potentials of the inactivation characteristics (Fig.5E and Table 3). These effects are even more 321 

pronounced when the variants are expressed in the absence of WT, indicating these amino acid 322 

substitutions contribute to voltage dependency of inactivation (Fig.5D and Table 3). Most variants 323 

also showed an increase in the slope factors of the Boltzmann relations k1 and k2 (Table 3), 324 

especially c.911G>A, (p.Arg304Gln). The slope factors k can be written as ratio of thermal energy 325 

and  electrical energy per Volt (RT/zF with R: universal gas constant, T: temperature, z the 326 

apparent gating charge and F the Faraday constant), indicating that, in these variants, the apparent 327 

electrical charge z driving inactivation was reduced. By comparing the extent of inactivation 328 

exhibited by the variants with respect to WT (Fig. 5F), most variants showed increased inactivation 329 

with the exception of c.1141A>G, (p.Thr381Ala). c.994T>G, (p.Tyr332Asp), when expressed 330 

alone, showed the greatest extent of inactivation (~35% more inactivation as WT, Fig.5F). It was 331 

remarkable, however, that this effect disappeared in the presence of WT-KCNB2. 332 

Similar to the activation kinetics, where c.1141A>G, (p.Thr381Ala) showed a distinct phenotype 333 

with fast inactivation at high depolarizations, this variant showed a behaviour distinct to the other 334 

variants that we characterized. c.1141A>G, (p.Thr381Ala) opens transiently followed by quick 335 

inactivation to a new baseline (Fig. 3A). To check if this variant persists in this inactivated state, 336 

we kept the channel open for longer time with our inactivation protocol. As shown in the raw traces 337 

represented in Fig. 5G, oocytes expressing WT-KCNB2 (black trace) showed increasing 338 

inactivation with time whereas oocytes expressing the c.1141A>G, (p.Thr381Ala) variant did not 339 

show inactivation in addition to the rapid inactivation of the open state (blue trace, Fig. 5G, zoomed 340 

in Fig.5H) in the 20s post opening of the channel. In contrast, c.1141A>G, (p.Thr381Ala)increases 341 

in current indicating that channels are recovered from inactivation (Fig. 5I, cf. dashed WT black 342 

fit from Fig. 5D and E to c.1141A>G, (p.Thr381Ala) blue data points).  The data suggests that 343 
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there are two types of inactivation in the c.1141A>G, (p.Thr381Ala) mutant, closed state 344 

inactivation – typical for KCNB2 – and a very rapid open state inactivation. Because of the rapid 345 

open state inactivation, we cannot clearly determine how many channels are expressed, which 346 

explains the low currents observed in Fig. 3A. The rapid inactivation is abolished when co-347 

expressed with WT-KCNB2. The heteromers exhibited activation amplitudes (Fig. 3D) and extent 348 

of inactivation (Fig. 5F) similar to those expressing WT alone (Tables 2 and 3). 349 

In contrast to activation and functional expression, that resulted in variable phenotypes among the 350 

variants, an increased inactivation, both in voltage dependence and extent, was common to all 351 

variants studied in this work. This communality emphasizes the importance of channel inactivation 352 

for the development of the disease. 353 

Discussion 354 

Human homologues of the Drosophila shab family are the KCNB family of voltage-gated 355 

potassium channels that contain two known members: KCNB1  and KCNB2. Variants in the 356 

KCNB1 gene have been identified in individuals suffering from early onset developmental and 357 

epileptic encephalopathies23. In this study, we identified several variants in the KCNB2 gene 358 

clinically and from the Epi25 and other epilepsy cohorts. This study is the first to identify a 359 

channelopathy due to genetic alterations in KCNB2. The variants identified clinically are in 360 

children and are mostly de novo (except for c.1937C>T, (p.Ala646Val) which is inherited). 361 

Individuals harboring these variants exhibit a wide array of neurological disorders. Most 362 

individuals exhibit delays in either global development, motor milestones or speech/language. 363 

These individuals also displayed intellectual disabilities and different dysmorphisms. Dysmorphic 364 

facial features were variable across individuals, with synophrys and broad forehead being most 365 
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common.  Functional characterization of the KCNB2 variants revealed a unifying feature: all 366 

variants have reduced KCNB2 channel function achieved either by reduced functional expression 367 

(c.641C>T, (p.Thr214Met), c.994T>G, (p.Tyr332Asp) and c.1141A>G, (p.Thr381Ala)) and by 368 

increased extent of inactivation occurring at more hyperpolarized potentials compared to WT. We, 369 

therefore, provide a compelling etiological basis for the onset of the neurological disorders in 370 

individuals with mutations in KCNB2. 371 

KCNB channels are delayed rectifying channels, i.e., the channels activate and conduct K+ under 372 

depolarized membrane potentials and undergo slow inactivation. Activation and inactivation of 373 

KCNB channels, like most Kv channels, are regulated by two mechanisms governed by structural 374 

rearrangements of the protein referred to as “gating”: activation gating and inactivation gating59. 375 

Activation gating occurs when voltage sensing S1-S4 domains of Kv channels sense membrane 376 

depolarization and undergo conformational changes. These structural changes are communicated 377 

to the pore domain by electromechanical coupling that leads to pore opening and channel 378 

conductance60. Inactivation gating involves structural transitions of Kv channels that act as 379 

intrinsic negative feedback to inhibit channel conductance and thereby availability, leading to 380 

modulation of cellular excitability. Kv2 channels exhibit U-type inactivation arising from pre-open 381 

activated but non-conductive channel states58. Such inactivation profiles entail a lower degree of 382 

inactivation at more depolarized potentials (hence the U-shape of voltage dependence). 383 

One of the variants with the most severe disease phenotype is the c.1141A>G, (p.Thr381Ala). 384 

The individual (Proband 1, Fig. 1 and Table 1) harboring this variant suffers from global 385 

developmental delay with intellectual disability, seizures, and diabetes (for more information, 386 

please refer to Supplemental Note: Case Reports). Electrophysiological properties of the variant 387 
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corroborate with the severity of the disease. When expressed alone, the current amplitude of the 388 

c.1141A>G, (p.Thr381Ala) variant is ~10% of that of WT (Fig. 3B and Fig. 5G) and is rescued 389 

when this variant is co-expressed with WT (Fig. 3D). Significant changes in activation midpoint 390 

of this variant are seen when expressed either alone or with WT (~20 and 5 mV shift in V50(1) to 391 

hyperpolarized potentials, respectively) and slope factor (increase in k1) is observed (Fig. 3C and 392 

E and Table 2). As mentioned above, normalised current-voltage relationship of inactivation, 393 

displayed in Fig. 5I, shows an increased recovery from inactivation with increasing voltage (cf. 394 

blue line for c.1141A>G, (p.Thr381Ala) and dashed black fit for WT). This inactivation profile is 395 

very similar to other channels that express the equivalent T→A variant. c.1141A>G, 396 

(p.Thr381Ala), present in the channel selectivity filter, is the conserved fourth residue of the 397 

TXXTXGYG signature sequence present in all K+ channels61. The hydroxyl group of this 398 

threonine contributes to one of the four K+ binding sites in potassium channels62. Variants of 399 

p.Thr381 equivalent positions in other Kv channels, including the closely related KCNB1, does 400 

not produce drastic loss of K+ conductance as seen with KCNB261,63,64. When the equivalent 401 

threonine in bacterial KcsA channel (T75) was mutated to a glycine, the rate of inactivation was 402 

slower by ~2 fold62. With a substitution to an alanine (identical to c.1141A>G, (p.Thr381Ala) in 403 

KCNB2 in this study), KcsA, Kv1.5 [MIM 176267] and Shaker channels all show a loss in C-type 404 

inactivation, indicating the importance of p.Thr381 equivalent threonine in these channels in 405 

allosteric coupling of the activation gate and the selectivity filter64. When Coonen et al. modified 406 

the equivalent residue to an alanine in KCNB1 (p.Thr377Ala) and Kv3.1 [MIM 176258] 407 

(p.Thr400Ala), the channel variants were resistant to inactivation thereby losing their U-shape 408 

profile as shown by their WT counterparts63. We also observe similar reduced inactivation of 409 

WT:p.Thr381Ala channels (Fig.5E, cyan trace). Given the involvement of potassium channels in 410 
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insulin secretion and the presence of diabetes in other potassium channelopathies (ATP-sensitive 411 

ones)65, it is interesting to note that the individual harboring the c.1141A>G, (p.Thr381Ala) 412 

mutation was diagnosed with childhood onset diabetes but was not found to have pancreas islet 413 

cell autoantibodies. It remains to be determined if diabetes is strongly associated with KCNB2 414 

variants once a larger cohort is established. Previous studies have shown that KCNB2 is expressed 415 

in human δ cells of the pancreatic islets66. Pharmacological inhibition of KCNB2 currents increase 416 

action potential duration and amplitude in these cells67 that leads to augmented somatostatin 417 

secretion and powerful inhibition of insulin secretion from pancreatic β cells68. The lack of 418 

functional expression of the KCNB2 c.1141A>G, (p.Thr381Ala) could potentially mimic KCNB2 419 

inhibition that leads to somatostatin-induced paracrine blocking of insulin secretion and onset of 420 

diabetes in the individual harboring this mutation. 421 

The affected individual harboring the c.641C>T, (p.Thr214Met) mutation (Proband 4, Fig. 1 and 422 

Table 1) exhibited delayed language milestones along with mild autistic traits in infancy, myopia 423 

and synophrys. p.Thr214 is present in the S1-S2 linker; this linker (by virtue of its length) has been 424 

shown in KCNA2 [MIM 176262] to be essential for N-glycosylation that influences their 425 

functioning, proper folding and trafficking to cell surface69,70. However, the S1-S2 linker 426 

glycosylation is not conserved in all Kv channels. The threonine present in position 214 in KCNB2 427 

is conserved in all human Kv channels71. The c.641C>T, (p.Thr214Met) variant, when expressed 428 

alone, leads to complete abrogation of K+ conductance (Fig. 3A and B). The lack of functional 429 

expression is rescued when the c.641C>T, (p.Thr214Met) variant is co-expressed with WT, albeit 430 

significantly lower than WT (Fig. 3D, Table 2). Such observations have also been reported in other 431 

Kv channels. Synthetic mutations in KCNA4 [MIM 176266] and KCNC1 [MIM 176258] and 432 

disease relevant mutations in KCNB1 of equivalent threonine residues caused intracellular 433 
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retention of the protein and little to no channel currents71-73. An alanine mutation to the equivalent 434 

threonine in KCNQ2 [MIM 602235] and KCNQ3 [MIM 602232] also yielded reduced potassium 435 

currents with drastic effects on voltage dependence and kinetics of activation and kinetics of 436 

deactivation74.  437 

The individual harboring the c.994T>G, (p.Tyr332Asp) (Proband 5, Fig. 1, Table 1 and 438 

Supplemental Notes: Case Reports)  mutation in KCNB2 exhibited global development delay with 439 

intellectual disabilities and facial dysmorphisms. The c.994T>G, (p.Tyr332Asp) mutation occurs 440 

in the S4-S5 linker of KCNB2. The S4-S5 linker provides electromechanical coupling between the 441 

voltage sensing and pore domains that leads to voltage gating of Kv channel function. The S4-S5 442 

linker is very dynamic; this flexible region present on the intracellular side undergoes 443 

conformational rearrangements not only during gating and late gating processes, but also during 444 

inactivation of some Kv channels75-78. Interestingly, this tyrosine present at the end of S4-S5 linker 445 

is conserved only in KCNB1 and KCNB2. These channels undergo slow inactivation as compared 446 

to other inactivating Kv channels. The c.994T>G, (p.Tyr332Asp) variant, when expressed alone 447 

or with WT, show minor effects on the coupling between the voltage sensor and pore domains; 448 

this is evident by the shift in the voltage dependence of conductance to hyperpolarized potentials 449 

in this variant compared to WT (Fig. 3 and Table 2). However, the major effect on the c.994T>G, 450 

(p.Tyr332Asp) mutation is the extent of inactivation observed in this variant (Fig.5D and 5F), 451 

which is the strongest among the mutants studied here (apart from maybe c.1141A>G, 452 

(p.Thr381Ala)). This effect on inactivation, however, is lost on co-expression of this variant with 453 

WT (Fig. 5E and 5F). This observation indicates a hitherto unappreciated role of the tyrosine 454 

residue at positions 328 and 332 respectively in KCNB1 and KCNB2 on the electromechanical 455 

coupling of their activation and in the inactivation of these channels. 456 
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c.911G>A, (p.Arg304Gln), present in the S4 of KCNB2, is one of many positively charged 457 

arginine and lysine residues present in the S4 that mediate sensitivity of the ion channel to voltage 458 

fluxes; movement of these positive charges in S4 during membrane depolarization cause 459 

conformational changes that lead to the opening of the central channel pore79,80. Variants of 460 

arginine residues within the S4 of Kv and several other ion channels have been described 461 

associated with different channelopathies23,80,81. Likewise, the individual harboring the c.911G>A, 462 

(p.Arg304Gln) mutation in KCNB2 (Proband 6, Fig. 1, Table 1 and Supplemental Notes: Case 463 

Reports) exhibited delayed motor, speech and language milestones along with autism spectrum 464 

disorder and ADHD. c.911G>A, (p.Arg304Gln) has significant effect on the slope factor k1 of 465 

channel activation (Table 2), in the absence or presence of WT, consistent with a reduction of the 466 

apparent gating charge in the S4 voltage sensor. This variant, either when expressed alone or with 467 

WT, unsurprisingly show significant and drastic effects of the voltage dependence and extent of 468 

inactivation (Fig. 5D-F, Table 3). 469 

One of the variants identified in this study is the c.1937C>T, (p.Ala646Val) mutation in the C-470 

terminus of KCNB2. The individual harboring this mutation in KCNB2 (Proband 3, Fig. 1, Table 471 

1 and Supplemental Notes: Case Reports) displayed onset of regression/neurodegenerative disease 472 

along with delayed motor, speech and language milestones. The c.1937C>T, (p.Ala646Val) 473 

variant, when co-expressed with WT or alone, increased inactivation and altered voltage 474 

dependence of inactivation (Fig. 5F, Table 3). The c.281G>A, (p.Gly94Glu) mutation was 475 

identified in an individual (Proband 2, Fig. 1, Table 1 and Supplemental Notes: Case Reports) with 476 

developmental and speech delay along with hypotonia and ataxia cerebral palsy. The other N-477 

terminus variant is the c.472A>G, (p.Thr158Ala) identified in two individuals with non-acquired 478 

focal epilepsy from the Epi25k exome study. Both the N-terminus variants show increase in extent 479 
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of inactivation, especially when expressed with WT (Fig. 5F). There is no precedence on the role 480 

of the N-terminus on the inactivation of KCNB2. Interestingly, previous work on exchanging N-481 

terminus of KCNB2 with that of Kv4.2 [KCND2, [MIM 605410]] accelerated inactivation of the 482 

KCNB2 chimera82. p.Gly94 is a glutamate at equivalent positions in Kv4.2 channels, just as one 483 

of our variants (c.281G>A, (p.Gly94Glu)). Detailed investigation on the role of both N and C-484 

termini on KCNB2 channel activity is therefore warranted.  485 

p.Ala375, like p.Thr381, is present in the pore domain and is located at the pore-helix preceding 486 

the selectivity filter of KCNB2. Variant of this residue to Valine (c.1124C>T, p.Ala375Val) in 487 

KCNB2, both in the absence or presence of WT, significantly enhances the extent of inactivation 488 

exhibited by these channels (Fig. 5D-F). This variant was identified in an individual with genetic 489 

generalized epilepsy from the Epi25 exome study. p.Ala375 is conserved in other Kv channels 490 

such as KCNB1, Kv1.5 and Shaker at equivalent positions, but not in KcsA, Kv4s and hERG 491 

channels. Introducing mutations at p.Ala375 equivalent positions in hERG-1 channel 492 

(p.Thr618Ala in Kv11.1/KCNH2 [MIM 152427]) and Kv1.5 (p.Ala473Thr in KCNA5, [MIM 493 

176267]) alters voltage dependence of inactivation in these channels83, suggesting the importance 494 

of p.Ala375 and analogous regions in the onset of inactivation in numerous Kv channels.  495 

In addition, we characterised the c.724G>A, (p.Ala242Thr) variant identified in a an individual 496 

with Sudden Unexpected Death in Epilepsy (Leu et al., 2015). p.Ala242 in KCNB2 is present in 497 

the S2 interspersed between two negatively charged glutamates at position 237 and 247. These 498 

glutamates in KCNB2 and equivalent positions in other ion channels are thought to interact with 499 

positive charge amino acids in the S4 voltage sensor during resting and activated channel states79. 500 

We speculate that amino acid substitutions of p.Ala242 ought to affect the voltage sensing of 501 
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KCNB2. This is evident in the significant changes in slope factors of the voltage-dependence of 502 

inactivation in KCNB2-p.Ala242Thr (with or without WT, Table 3) although no changes were 503 

observed in activation-voltage relationship of this variant as compared to WT (Fig. 2B-E, Table 504 

2). Of note, p.Ala242 is conserved in KCNB1 but is replaced by other non-polar aliphatic amino 505 

acids in other Kv channels such as Shaker or Kv1.5 (Isoleucine at equivalent positions) or Kv4s 506 

(Leucine/Methionine).  507 

Finally, we identified a seventh individual (Proband 7, Fig. 1, Table 1 and Supplemental Notes: 508 

Case Reports) harboring a c.827C>T, (p.Pro276Leu) mutation during the revision of this 509 

manuscript. It is inherited from an unaffected mosaic father, with the variant present in 10% of the 510 

reads in blood DNA.. The patient exhibited global developmental delay with moderate intellectual 511 

disability, refractory epilepsy and some behavioral issues. He is being treated with multiple anti-512 

seizure medications (for more information, please refer to Supplemental Note: Case Reports).  513 

Brain MRI of this patient showed prominent perivascular spaces.  514 

Conclusions 515 

We report variants in KCNB2 that are associated with a range of neurological disorders including 516 

autism and epilepsy. We show strong evidence that the de novo KCNB2 variants cause 517 

neurodevelopmental disorders and that these variants either significantly i) reduce the currents 518 

generated by these Kv channels, or ii) shift the voltage dependence of inactivation to 519 

hyperpolarized membranes and increase the extent of inactivation as compared to WT. 520 

inactivation, in general, is a cumulative effect that is most impactful when trains of stimulations 521 

do not allow for recovery from inactivation before the next stimulus58. The effect is a reduction of 522 

the available functional KCNB2 channels that shapes the duration and interspike intervals of action 523 

ACCEPTED MANUSCRIPT / CLEAN COPY



 27 

potentials, leading to changes in cellular excitability in neurons that express these variants. Further 524 

experiments in native systems are warranted to corroborate this hypothesis, which provides the 525 

underlying etiological basis of how KCNB2 dysfunction causes disease. Despite variation in the 526 

associated diseases, it is remarkable that all variants had a common underlying phenotype on the 527 

molecular level.  528 
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Tables 563 

Table 1. Main clinical features of the affected and phenotyped individuals. 564 

Proband 1 2 3 4 5 6 7 

KCNB2 

variant 

(NM_004770.

3) 

c.1141A>

G, 

(p.Thr381

Ala) 

c.281G>A

, 

(p.Gly94

Glu) 

c.1937C>T

, 

(p.Ala646

Val) 

c.641C>T, 

(p.Thr214

Met) 

c.994T>G, 

(p.Tyr332

Asp) 

c.911G>A, 

(p.Arg304

Gln) 

c.827C>T, 

(p.Pro276L

eu) 

Inheritance  de novo de novo Inherited de novo de novo de novo Mosaica 

Sex Female Male Female Male Female Male Male 

Age at last 

assessment 

5 years 2.5 years 3 years 18 years 21 months 9 years 15 years 

Medical history 

Brain 

anomalies 

(MRI results)  

+ N/A - N/A + N/A - 

Cardiac 

anomalies 
+ + - - N/A N/A - 

Urogenital 

anomalies 
+ + - - - - - 

Ophthalmolo

gical 

anomalies  

+ + - + + N/A - 

Growth and Development 

DD + + + + +b + + 

ID + N/A + + + + + 

Autistic 

features  

- N/AC - mild N/AC mild mild 

Epilepsy +d - - - - - +e 

Dysmorphisms 

Facial + + + - + + - 

Hand - + + - + + - 

Synophrys - + - + - - - 

Other features 

Hypotonia + +f - - - - - 

ADHD - - - N/A - + - 

Abbreviations are as follows: N/A: not available, DD: developmental delay, ID: Intellectual disability, ADHD: 

Attention-Deficit / Hyperactivity Disorder, Mosaica - Individual 7 and his father exhibited genetic mosaicism,  +b 

- severe, N/Ac - patient too young to make an autistic spectrum disorder (ASD) diagnosis, +d - seizure effectively 

treated with Levetiracetam, +e - multiple anti-seizure medication (refer to supplemental information), +f - 

Hypotonia with Ataxic cerebral palsy. Please refer to supplemental data for detailed case report for each patient. 
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 565 

Table 2. Activation properties of Kv2.2 variants 566 

Variants 

Without WT With WT 

 
Current 

Amplitu

des (+ 

S.D.) 

[µA] 

V50(1) 

(mV) 
k1 

V50(2) 

(mV) 
k2 

Current 

Amplit

udes (+ 

S.D.) 

[µA] 

V50(1) 

(mV) 
k1 

V50(2) 

(mV) 
k2  

WT 
47.7 + 

14.2 
-1.9 ± 5.4 6.7 ± 0.9 

24.4 ± 

5.9 

12.3 ± 

2.1 

47.7 + 

14.2 

-1.9 ± 

5.4 
6.7 ± 0.9 

24.4 ± 

5.9 

12.3 ± 

2.1 
 

p.Gly94

Glu 

45.8 + 

13.2 
-1.6 ± 5.8 6.7 ± 0.6 

24.5 ± 

4.4 

12.3 ± 

1.7 

46.5 + 

17.7 

-1.4 ± 

5.2 
6.7 ± 0.8 

26.1 ± 

10.7 

12.3 ± 

2.4 
 

p.Thr15

8Ala 

44.8 + 

14.7 
-5.6 ± 5.9 6.7 ± 0.8 

20.4 ± 

6.9 

12.1 ± 

2.0 

39.1 + 

12.6 

-2.2 ± 

5.7 
6.8 ± 0.6 

26.3 ± 

8.2 

13.8 ± 

2.3 
 

p.Thr21

4Met 

2.1 + 

2.6*** 
n.a. 

31.8 + 

7.9* 

5.0 ± 

2.9 
7.5 ± 0.6 

34.6 ± 

4.8* 

13.5 ± 

1.6 
 

p.Ala24

2Thr 

37.7 + 

10.3 
-6.6 ± 3.5 6.7 ± 0.5 

18.8 ± 

5.6 

12.3 ± 

1.4 

44.5 + 

11.6 

-3.9 ± 

5.4 
6.6 ± 0.5 

21.8 ± 

7.6 

11.8 ± 

1.9 
 

p.Arg30

4Gln 

40.6 + 

11.8 
-1.2 ± 3.0 

8.2 ± 

0.9** 

26.6 ± 

5.0 

13.4 ± 

2.1 

35.8 + 

6.9 

0.8 ± 

3.9 

7.7 ± 

0.4* 

27.4 ± 

5.2 

12.9 ± 

1.0 
 

p.Tyr33

2Asp 

25.5 + 

5.9** 

7.6 + 

3.2** 
7.1 + 0.6 

36.4 + 

5.2** 

13.9 + 

1.6 

48.5 + 

5.7 

4.4 ± 

2.8 
7.0 ± 1.1 

30.3 ± 

5.3 

10.8 ± 

1.8 
 

p.Ala37

5Val  

39.9 + 

5.2 
-6.4 ± 4.4 7.5 ± 0.9 

25.7 ± 

6.4 

14.0 ± 

2.9 

43.1 + 

10.8 

-3.3 ± 

6.2 
7.2 ± 0.9 

26.5 ± 

9.2 

13.8 ± 

2.2 
 

p.Thr38

1Ala 

7.9 + 

3.7*** 

-22.7 ± 

5.9*** 

14.3 ± 

0.9*** 

59.1 ± 

6.4*** 

14.0 ± 

3.6 

44.1 + 

12.4 

-7.3 ± 

1.6* 

10.3 ± 

1.3*** 

26.1 ± 

9.1 

12.0 ± 

4.9 
 

p.Ala64

6Val 

44.2 + 

10.0 
-3.3 ± 2.3 6.7 ± 0.6 

22.7 ± 

3.3 

13.3 ± 

1.7 

42.4 + 

12.9 

1.5 ± 

5.1 
6.2 ± 0.7 

27.8 ± 

5.5 

10.9 ± 

1.8 
 

* p<0.05, **p<0.01, *** p<0.001  via Kruskal Wallis one-way ANOVA with post hoc correction 567 

for multiple comparisons with Dunn’s post-hoc test.       568 

n.a. - not analysed; the amplitudes were too low to determine activation properties. 569 

 570 

 571 

 572 

 573 
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Table 3. Inactivation properties of Kv2.2 variants 574 

Variants 

Without WT With WT 

 

V50(1) (mV) k1 V50(2) (mV) k2 
V50(1) 
(mV) 

k1 
V50(2) 
(mV) 

k2  

WT 
-51.3 ± 
11.1 

11.6 ± 
5.0 

-19.9 ± 4.0 6.5 ± 1.6 
-51.3 ± 
11.1 

11.6 ± 
5.0 

-19.9 ± 
4.0 

6.5 ± 
1.6 

 

p.Gly94Gl
u 

-46.9 ± 
10.83 

10.7 ± 
4.9 

-23.5 ± 4.7 5.1 ± 0.8 
-41.3 ± 
13.4 

9.8 ± 5.0 
-24.0 ± 
4.0 

4.5 ± 
0.9 

 

p.Thr158
Ala 

-58.7 ± 
10.3 

11.9 ± 
3.4 

-29.5 ± 
4.4* 

5.7 ± 1.7 
-59.1 ± 
10.9 

13.5 ± 
3.7 

-29.2 ± 
9.5 

5.5 ± 
0.8 

 

p.Thr214
Met 

n.a. 
-34.6 ± 
5.0 

7.0 ± 2.1 
-18.5 ± 
0.8 

4.7 ± 
1.1 

 

p.Ala242T
hr 

-59.3 ± 5.9 
18.1 ± 
1.8* 

-30.4 ± 
2.2* 

6.4 ± 0.5 
-57.1 ± 
16.1 

15.4 ± 
2.7 

-25.3 ± 
3.8 

6.2 ± 
1.4 

 

p.Arg304
Gln 

-82.9 ± 
12.8** 

14.6 ± 
2.5 

-37.8 ± 
4.5*** 

7.1 ± 1.5 
-67.4 ± 
11.3 

18.8 ± 
2.1* 

-27.6 ± 
3.1 

6.8 ± 
0.5 

 

p.Tyr332
Asp 

-34.1 ± 
11.9 

6.5 ± 2.5 -16.8 ± 4.9 
4.3 ± 
1.0* 

-23.0 ± 
3.6* 

5.3 ± 2.1 
-11.0 ± 
0.9 

4.0 ± 
0.9* 

 

p.Ala375
Val  

-52.1 ± 9.4 9.7 ± 3.2 
-34.0 ± 
4.2*** 

3.9 ± 
1.0** 

-54.3 ± 
10.3 

15.0 ± 
5.2 

-29.8 ± 
4.3* 

6.0 ± 
1.6 

 

p.Thr381
Ala 

n.a. 
-60.0 ± 
11.5 

12.1 ± 
3.4 

-30.4 ± 
7.2* 

6.1 ± 
1.1 

 

p.Ala646
Val 

-64.7 ± 
14.2 

16.2 ± 
3.9 

-29.8 ± 6.7 6.2 ± 0.8 
-61.3 ± 
9.0 

13.3 ± 
2.2 

-28.3 ± 
3.0 

6.0 ± 
0.8 

 

 575 

* p<0.05, **p<0.01, *** p<0.001 via Kruskal Wallis one-way ANOVA with post hoc correction 576 

for multiple comparisons with Dunn’s post-hoc test.       577 

  578 

n.a. - not analysed; the amplitudes were too low in p.Thr214Met and recovery from inactivation 579 

was seen in p.Thr381Ala that prevented determination of their inactivation properties. 580 
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Figure legends 856 

Figure 1. Photographs of some of the affected individuals. 857 

Left) Individual 1 throughout the years. Photos and x-rays of her hands and feet, illustrating nail 858 

hypoplasia and aplasia, and terminal phalanx hypoplasia (brachytelephalangia). Right) Individual 859 

4, illustrating synophrys and nail hypoplasia. 860 

 861 

Figure 2. Schematic representation of mutations in Kv2.2 protein. A. Topology of Kv2.2 channel 862 

and schematic representation of distribution of KCNB2 point mutations. The mutations are in the 863 

following regions: c.281G>A, (p.Gly94Glu), c.472A>G, (p.Thr158A)la: N-terminus, c.641C>T, 864 

(p.Thr214Met): S1-S2 linker, c.724G>A, (p.Ala242Thr): S2, c.827C>T, (p.Pro276Leu): S3, 865 

c.911G>A, (p.Arg304Gln): S4, c.994T>G, (p.Tyr332Asp): S4-S5 linker, c.1124C>T, 866 

(p.Ala375Val) , c.1141A>G, (p.Thr381Ala): pore helix, c.1937C>T, (p.Ala646Val) – C terminus. 867 

B. Alignment of the mutated Kv2.2 amino acids across different species. Homology model and 868 

mutation distribution of Kv2.2 as a tetramer (Top view, C) and as a monomer (D) based on the 869 

known structure of the Kv1.2/2.1 chimera40. The model was generated using alphafold241.  870 

 871 

Figure 3. Activation properties of Kv2.2 variants. A. Activation currents from oocytes expressing 872 

WT-Kv2.2 and variant channels (expressed in the absence (top) and presence (below), see 873 

methods) were evoked by stepping from -90 mV to voltages ranging from -120 to +100 mV in 10 874 

mV increments for 100 ms. This was followed by a voltage step to -20 mV for 100 ms and back 875 

to -90 mv for 5 s to allow recovery of the channels to deactivated states (protocol illustrated in the 876 

left corner). c.641C>T, (p.Thr214Met) does not evoke anu currents. c.994T>G, (p.Tyr332Asp) 877 

show reduced currents. c.1141A>G, (p.Thr381Ala) shows transient channel opening followed by 878 

a rapid inactivation of ionic currents. B. Current-voltage (IV) relationship of Kv2.2 variants (left) 879 

and corresponding box plots of maximal current amplitudes measured at +100 mV (right). 880 

p.Thr214Met, p.Tyr332Asp and p.Thr381Ala show significant reduction in current amplitudes as 881 

compared to WT. C. Conductance-Voltage (GV) relationship of KCNB2 variants when expressed 882 

in oocytes alone. IV (D) and GV (E) relationship of Kv2.2 variants when co-expressed with equal 883 

amounts of WT. WT:p.Thr214Met show significant reduction in current amplitudes as compared 884 

to WT alone. GV curves were best fitted by a sum of two Boltzmann relations of the form G/Gmax 885 

= Bottom + (Top1-Bottom)/(1 + exp((V50(1)-X)/k1)) + (Top2-Top1)/(1 + exp((V50(2)-X)/k2)). The 886 

fitting parameters (V50(1),V 50(2), k1 , k2) for the GV activation relationships have been compiled in 887 

Table 2. Values are provided as means + S.D. from n > 6 oocytes per conditions from at least 2 888 

independent experiments. Statistical significance was tested by Kruskal Wallis one-way analysis 889 

of variance followed by Dunn’s post-hoc test comparing amplitudes of the different variants to 890 

WT. * p <0.05, ** p <0.01, *** p < 0.001. 891 

 892 

Figure 4. Reversal potential of Kv2.2 variants. A. For calculating the reversal potentials of the 893 

Kv2.2 variants, currents were evoked by stepping from -120 mV to +50 mV for 100 ms followed 894 
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by voltages ranging from -120 to +50 mV in 10 mV increments for 100 ms. This was followed by 895 

a voltage step to -120 mV for 20 ms and back to the holding potential of -90 mv for 5 s to allow 896 

recovery of the channels to deactivated states. The external and internal solutions used in these 897 

experiments contained K+ and either NMDG+ or Na+ in the concentrations mentioned in the figure. 898 

B. Representative raw traces of the reversal potential protocol in an oocyte expressing WT-Kv2.2 899 

in NMDG+ and K+ containing external and internal solutions. The resulting IV curves for this 900 

protocol of Kv2.2 variants alone (left) or co-injected with WT (right) in solutions containing either 901 

NMDG+ and K+ (C) or Na+ and K+ (D) are shown. The variants do not seem to alter the K+ 902 

selectivity of the channel pore (X-intercept data compiled with 95% C.I. in Table S3). 903 

 904 

Figure 5. Inactivation features of currents by KCNB2 variants. A. Protocol to measure voltage 905 

dependent inactivation in Kv2.2 variants. To measure inactivation, currents from oocytes 906 

expressing Kv2.2 variant channels were evoked by stepping from -90 mV to voltages ranging from 907 

-120 to +40 mV in 10 mV increments for 20 s. This was followed by a voltage step to +60 mV for 908 

100 ms and back to -120 mv for 5 s to allow recovery of the channels from inactivation. The raw 909 

traces from voltage steps highlighted in thickened line (-90 mV → 40 mV → 60 mV → 120 mV) 910 

are highlighted in (B) from oocytes expressing the individual variants alone or in from oocytes 911 

expressing both WT and a specific variant (C). c.641C>T, (p.Thr214Met) was excluded in B 912 

because of lack of any currents evoked by this variant. Currents evoked by c.1141A>G, 913 

(p.Thr381Ala) is represented and further explained below. The inactivation current-voltage (IV) 914 

relationship of these recordings are plotted in (D) and (E), respectively. The IV relationship was 915 

best fitted by a sum of two Boltzmann relations of the form I/Imax = Top + (Bottom1-916 

Top)/(1 + exp((V50(1)-X)/k1)) + (Bottom2-Bottom1)/(1 + exp((V50(2)-X)/k2)). The fitting parameters 917 

(V50(1),V 50(2), k1 , k2) for the IV relationships have been compiled in Table 3. F. The fitting 918 

function mentioned above also calculates the parameter “Bottom2”, which describes the extent of 919 

inactivation in these variants expressed either alone (top) or with WT (below). The differences in 920 

extent of inactivation between the variants and WT (red dashed lines) were tested for significance 921 

using the Kruskal Wallis one-way analysis of variance followed by Dunn’s post-hoc test 922 

comparing amplitudes of the different variants to WT-KCNB2. * P < 0.05 , ** P < 0.01 ,*** P < 923 

0.001. Values are provided as means + S.D. from n > 6 oocytes per conditions from at least 2 924 

independent experiments. G. Representative current trace of an oocyte expressing only the 925 

p.Thr381Ala variant (blue trace) or only WT (black trace). p.Thr381Ala expressing oocytes show 926 

diminished currents (blue trace) in the inactivation protocol as compared to WT, in a manner like 927 

the activation protocol in Fig. 2 and Fig. 3. H represents the raw traces of the inactivation protocol 928 

of residual currents of the p.Thr381Ala variant. I. The IV relationship of the p.Thr381Ala mutation 929 

(blue line) shows recovery of inactivation with increasing voltages as opposed to WT (dashed fit 930 

representing the fit to WT IV shown in D and E). 931 

 932 
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Supplemental Note: Case Reports 

Proband 1 

KCNB2 variant: c.1141A>G, p.Thr381Ala, de novo  

Method of Identification: Trio exome and sanger sequencing 

Patient information: The patient exhibited global developmental delay, hypotonia and 

intellectual disability but no autistic traits. The disease phenotype overlapped partially with 

Zimmerman-Laband and DOORS syndromes, which are neurodevelopmental disorders 

with epilepsy and hypoplasia of the terminal phalanges and nails. She also exhibited 

dysmorphisms that included abnormal nails, mild blepharoptosis, beaked nose, flat 

midface, open mouth, drooling, full lower lip. She has no family history. She was born at 

term by C-section. Birth weight was 2.79 kg and length was 48 cm. The patient age at 

last visit was 5 years with a height of 107.5 cm and a weight of 19.7 kg. She exhibited 

epileptic seizures with effective treatment with Levetiracetam. Her MRI exhibited 

prominence of the anterior horn of lateral ventricle and 3rd ventricle and decreased 

bilateral hippocampus. She exhibited aortic dilation and neurogenic bladder. Other clinical 

features include diabetes, cataract, gingival fibromatosis, cortical vision impairment, 

Duane syndrome, hyperopia, astigmatism, low bone density, oropharyngeal dysphagia, 

cataract, and low bone density. 

Proband 2 

KCNB2 variant: c.281G>A, p.Gly94Glu, de novo 

Method of Identification: Whole exome and Trio whole genome sequencing 

Patient information: The patient, at two years of age, exhibited developmental delay but 

was making slow progress. He rolled at 6 months, sat at 2 years (propped), and could sit 

independently (but not stand unsupported) at 2.5 years. He exhibited language delay but 

made sounds and coos at 2.5 years. At this age, the patient is too young to assess for 

intellectual disability and autistic traits and no seizures were noted. Neurological 

assessment revealed Hypotonic/ataxic cerebral palsy per neurology. He also exhibited 

dysmorphisms that included synophrys and full lashes, single transverse palmar crease 

on one side, high palate and clinodactyly. The patient had no immediate family history, 

but there are some still births in extended family (maternal side) and a maternal cousin 

with possible autism spectrum disorder. The patient was born at 38 5/7 weeks to a G1 

P0->1 mother with appropriate prenatal care and no exposures reported. Fetal ultrasound 

was normal except for concern for small cerebellum. Birth weight was 3.152 kg, length 

was 50.8 cm, head circumference was 32.3 cm and APGAR score of 7/8. Age at last visit 

was 2.5 years with weight of 14.8 kg (77th percentile based on CDC boys 2-20 years), 

height of 98 cm (94th percentile), and head circumference of 48.7 cm (33rd percentile). 

Other anomalies include bbnormal trabeculation of left ventricular myocardium and slight 
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shawl scrotum. Other clinical features include delayed visual maturation and bilateral 

sensorineural hearing loss. 

Proband 3 

KCNB2 variant: c.1937C>T, p.Ala646Val, Inherited 

Method of Identification: Trio whole exome and whole genome sequencing 

Patient information: The patient exhibited delayed motor milestones, speech and 

language delay, apraxia, weakness, easily fatigue, irritability, regression, intellectual 

disability, and other neurodevelopmental disorders but no autistic traits. No seizures were 

noted. She also exhibited macrocephaly, deep set eyes, broad forehead, horizontal 

palpebral fissures, thin upper lips, tapered fingers and puffy feet. The patient inherited the 

mutation from her father in an autosomal dominant manner who was symptomatic with 

pneumothorax, pain, hypotonia, joint pain, weakness, fatigue and clumsiness. Her brother 

was also symptomatic who was positive for neurodevelopmental disorder, abnormal EEG, 

hypotonia, pain, and apraxia. The patient was born at term by C-section. Her birth growth 

parameters are unavailable. Her age at last visit was 3 years (in 2020) with a head 

circumference of 52 cm (98% percentile). Other clinical features include microscopic 

hematuria, episodic edema, and rashes.  

Proband 4 

KCNB2 variant: c.641C>T, p.Thr214Met, de novo 

Method of Identification: Trio whole exome sequencing 

Patient information: The patient was born at term with a weight of 4.24 kg, length of 53 

cm and head circumference of 37 cm. He started walking at 17 months and exhibited 

language delay, intellectual disability, and mild autistic traits in infancy. No seizures were 

noted. He also exhibited synophrys, nail hypoplasia and myopia. The patient had no 

family history, and the age of last visit was 18 years. His growth parameters at this stage 

included a weight of 64 kg, height of 183 cm and head circumference of 59.5 cm. 

Proband 5 

KCNB2 variant: c.994T>G, p.Tyr332Asp, de novo 

Method of Identification: Trio whole exome sequencing 

Patient information: The patient exhibited severe global developmental delay and 

intellectual disabilty. According to BSID-III, she exhibited motor development p1.8, 

cognitive development index of 64% (cognitive age of 9 months at age 15.7 months) and 

language index of 72%. She couldn’t walk independently yet with no speech and proximal 

hypertonia. Slow progress was observed with no regression. . Patient exhibited 

dysmorphisms in the hands and in the head. The latter included frontal bossing, 

suggestion of macrocephaly (but not on measurement) and broad forehead. She was 

born at term by C-section and had normal birth weight (3.335 kg). Her age at last visit 
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was 21 months with head circumference of 49.5 cm (+1SD). She has a family history of 

hypertension and obesity. Brain anomalies include delayed myelination, T2 abnormalities 

in basal ganglia (hyperintensity in globus pallida or hypo-intensity of other ganglia), small 

volume of thalamus, subtle increased volume of lateral and 3rd ventricles and peripheral 

CSF, small corpus callosum (especially the posterior part), subtle small volume of 

adenohypophysis, small cerebellar hemisphere on the left side and cyst in the left 

temporal side. Other neurological features include tongue protrusion, severe strabismus 

and retinal 'bear tracks'. 

Proband 6 

KCNB2 variant: c.911G>A, p.Arg304Gln, de novo 

Method of Identification: Trio whole exome sequencing 

Patient information: The patient exhibited delayed motor milestones, speech and 

language delay with intellectual disability and autistic traits. Other neurological features 

include ADHD, mood disorder and aggressive behavior. Facial dysmorphisms include 

double hair whorl, malar flattening, long philtrum, up-slanting palpebral fissures, 

epicanthal folds and broad nasal tip. He also had tapered fingers and short toes. He was 

born at term by vaginal delivery and had a birth weight of 3.28 kg. His age and height at 

last visit were 9 years and 135.9 cm, respectively. Family history included mental health 

issues in paternal uncle and paternal grandmother. 

Proband 7 

KCNB2 variant: c.827C>T, p.Pro276Leu, mosaic in proband (47T, 72C) 

Method of Identification: Trio whole exome sequencing 

Patient information: The patient exhibited normal motor development with language 

delay and moderate intellectual disability. He had behavioural issues that were treated 

with Risperidone, Fluoxetine, Guanfacine and methylphenidate. He suffers from drug-

resistant focal and generalized seizures (Age of onset: 3 years and 9 months) that show 

multifocal abnormalities with frontal predominance on EEG. Previous anti-seizure 

medications (ASM) include Ethosuximide, VPA, perampanel, topiramate, clobazam, 

rufinamide, memantine, levetiracetam, IVIG; Current ASM include Lamotrigine, 

Oxcarbazepine, Sulthiame, Vagal Nerve Stimulator and Diazepam prn. Other 

neurological features include diadochokiensia with monopedal stand more insecure on 

the left. No brain abnormalities were detected except for non-specific prominent 

perivascular spaces. He was born at term, Apgar score of 2-6-9 with no perinatal 

complications. His age at last visit was 15 years with the head circumference of 51.7 cm, 

height of 150.6 cm and weight at 52 kg. Family history was unremarkable; the father was 

mosaic with sequencing reads for both T and C nucleotides (17T, 192C). 

 

 

ACCEPTED MANUSCRIPT / CLEAN COPY



 

 

 

 

 

 

Figure S1. Metadome's missense tolerance landscape for KCNB2 (NM_004770.2). All 

amino acids are intolerant to missense variants (scores in Table S2). 
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Table S1. Primers used for mutagenesis. 

 

KCNB2 (NM_004770.3) 
variants 

Forward primer Reverse primer 

c.281G>A, p.Gly94Glu aaatggaagtgaaggcttctggatgccgatcaaag ctttgatcggcatccagaagccttcacttccattt 

 

c.472A>G, p.Thr158Ala cgctctcgcatagcctctgcctctcgc gcgagaggcagaggctatgcgagagcg 
 

 

c.641C>T, p.Thr214Met ccattgctttgtctctcaatatgctgccggagc gctccggcagcatattgagagacaaagcaatgg 
 

 

c.724G>A, p.Ala242Thr tccatggtaaaccatgtaatacacacagcctccac gtggaggctgtgtgtattacatggtttaccatgga 
 

 

c.911G>A, p.Arg304Gln gaggatgcgcatgatttggaagatctggaccac gtggtccagatcttccaaatcatgcgcatcctc 
 

 

c994T>G, p.Tyr332Asp tttcacccttaggcggagtgacaatgaattgggct agcccaattcattgtcactccgcctaagggtgaaa 
 

 

c.1141A>G, p.Thr381Ala tcaccatagccaacagcggtcatggtgatggtg caccatcaccatgaccgctgttggctatggtga 
 

 

c.1124C>T, p.Ala375Val ggtcatggtgatggtgacccaccaaaatgatgc gcatcattttggtgggtcaccatcaccatgacc 
 

 

c.1937C>T, p.Ala646Val ggggggcccctaactctttggtgctcttct agaagagcaccaaagagttaggggcccccc 
 

 
 

Table S2. Summary of in-silico predictions for all KCNB2 variants reported in our study 

 

ACMG classification of variants (not taking into account functional data presented here), 

metadome amino acid missense tolerance scores and pathogenicity prediction and 

conservation scores obtained using Ensembl's VEP NB. Definition of acronyms and 

details on the scores with links and references for the tools can be found in the dbNSFP 

v4 "read me" file at https://usf.app.box.com/s/6yi6huheisol3bhmld8bitcon1oi53pm 

See excel file for data. 
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Table S3. Reversal potential of Kv2.2 variants 

 

 

 

 

 

Variants 

Without WT With WT Without WT With WT 

ES: 110 NMDG+, 5 K+; IS: 110 K+, 5 NMDG+ ES: 110 Na+, 5 K+; IS: 110 K+, 5 Na+ 

Vrev in mV (95% C.I.) 

WT -60.8 (-59.2 to -62.6) -63.8 (-61.7 to -65.9) 

G94E -65.3 (-60.8 to -70.1) -64.3 (-61.1 to -67.6) -67.6 (-62.8 to -72.8) -68.1 (-62.1 to -74.8) 

T158A -64.8 (-59.1 to -71.2) -62.9 (-58.3 to -68.0) -67.4 (-61.5 to -74.1) -70.0 (-61.3 to -80.5) 

T214M n.a. -58.0 (-52.9 to -63.5) n.a. -68.3 (-63.6 to -73.4) 

A242T -68.0 (-63.6 to -72.8) -72.9 (-66.7 to -79.9) -70.1 (-65.7 to -75.0) -70.7 (-62.0 to -81.1) 

R304Q -67.6 (-63.5 to -72.0) -65.0 (-58.6 to -72.1) -65.0 (-58.0 to -73.0) -70.7 (-65.5 to -76.4) 

Y332D -60.4 (-56.6 to -64.4) -56.6 (-53.4 to -60.0) -64.2 (-58.2 to -70.9) -64.0 (-57.9 to -70.7) 

A375V -71.2 (-64.9 to -78.3) -62.0 (-57.6 to -66.7) -81.6 (-75.5 to -88.6) -75.2 (-68.9 to -82.4) 

T381A -60.0 (-54.0 to -66.7)  -70.4 (-65.3 to -75.9) -60.7 (-55.9 to -66.0) -68.8 (-63.3 to -75.0) 

A646V -66.5 (-60.9 to -72.6) -66.7 (-62.9 to -70.8) -61.8 (-57.8 to -66.0) -69.9 (-64.0 to -76.5) 

n.a. - not analysed; the amplitudes were too low for determination of reversal potential. 

C.I. - Confidence Intervals 
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