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Cooling a quantum system to its ground state is important for the characterization of non-trivial
interacting systems, and in the context of a variety of quantum information platforms. In principle,
this can be achieved by employing measurement-based passive steering protocols, where the steering
steps are predetermined and are not based on measurement readouts. However, measurements, i.e.,
coupling the system to auxiliary quantum degrees of freedom, is rather costly, and protocols in which
the number of measurements scales with system size will have limited practical applicability. Here,
we identify conditions under which measurement-based cooling protocols can be taken to the dilute
limit. For two examples of frustration-free one-dimensional spin chains, we show that steering on a
single link is sufficient to cool these systems into their unique ground states. We corroborate our
analytical arguments with finite-size numerical simulations and discuss further applications.

I. INTRODUCTION

The ability to control many-body quantum systems
is a prerequisite for implementing quantum information
processing, but also, more generally, for advances across
quantum physics from atomic and molecular all the way
to condensed matter physics. Particular challenges are
to identify control strategies that are both scalable with
increasing system size and robust to parameter fluctua-
tions. The challenge of robustness can be addressed by
so-called quantum reservoir engineering [1] where cou-
pling to a reservoir induces desired dissipation. In the
long-time limit, the system can then be driven into a
predesigned target state, irrespective of the initial state.
For many-body quantum systems, this allows for prepar-
ing pure and possibly highly entangled states or driving
the system into non-trivial quantum phases [2–7].

When seeking to exploit engineered dissipation as a re-
source for, e.g., quantum computation [3, 4], one is often
faced with the problem that the required couplings with
the reservoir are difficult or even impossible to design.
In other words, natural dissipation processes may simply
not allow for the system-reservoir interactions needed for
a given target state [3]. An alternative is to leverage
quantum measurements to induce the desired dissipative
dynamics [8]. In quantum measurements, the quantum
system of interest is coupled to a “meter” (“detector”)
for a time during which the system and meter become
entangled (at least weakly), at which point the interac-
tion is switched off [9]. A textbook example is given
by a quantized electromagnetic field mode that interacts
with Rydberg atoms as “meters” [10]. Depending on the
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initial state of the atoms, the quantum system can be
cooled to zero temperature [10] or prepared in an entan-
gled state [11]. The concept of engineered environment
has found a wide range of applications, for instance, for
cooling a spin chain to the ground state by using a qubit
as a meter whose frequency is tuned to the lowest energy
gap [12]. It is also central to protocols based on homog-
enization of quantum systems [13, 14] and to “algorith-
mic” or digital cooling in quantum simulators [15–17].

For a single quantum degree of freedom interacting
with one or more meters, such as the electromagnetic
field mode interacting with a beam of atoms [10], any
desired state can be prepared with suitably optimized
classical drives [18]. As another example, combining
measurement-based dynamics with unitary evolution, it
is possible to steer a spin-1/2 system to any desired state
on or inside the Bloch sphere [19, 20]. Such a high level of
control cannot be expected for many-body quantum sys-
tems where the multipartite nature introduces competing
timescales and restrictions on the reachable states. For
example, only certain classes of states will be attainable
with quasi-local couplings [21, 22] and systems with frus-
trated local Hamiltonians are not amenable to passive
steering [23].

Quantum measurements can nevertheless be exploited
in multiple ways, which include, among many others, in-
ducing phase transitions [24–27], realizing cooling with
quantum hardware [28–32], protect quantum states and
dynamics [33–35], modifying the entanglement struc-
ture [36], or steering a quantum system from an arbitrary
initial state toward a chosen target state [19, 20, 37].

The Affleck-Lieb-Kennedy-Tasaki (AKLT) model [38,
39] has served as a major paradigm for both quantum
reservoir engineering [3] and measurement-induced dy-
namics, including state engineering [19, 40–44] in many-
body quantum systems; similar protocols have also been
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FIG. 1. Measurement-induced cooling of a many-body sys-
tem described by Hamiltonian H0 (shown as one-dimensional
for simplicity). (a) Setup as discussed in Ref. [19] with an
extensive number of detectors D, each one coupled to a pair
of sites. (b) Dilute cooling in the extreme limit of a single
detector D: The interplay between the local detector-system
coupling and possibly additional coherent interactions δH al-
lows for driving the system into the ground state of H0.

brought forward for the two-dimensional Kitaev model,
a spin liquid [45, 46]. In this respect, the AKLT model
and its relatives could be considered as very instrumental
tools that bridge the field of measurement-induced state
preparation with that of strongly correlated systems.

As much as versatility and robustness make
measurement-based control appealing, for many-
body quantum systems, this comes at a cost. The
first distinction is based on whether or not the mea-
surement outcomes are used for control [9]. In the
context of steering, this is referred to as passive [19]
vs active [37] steering, with passive steering including
measurement-induced cooling [19, 28, 44]. While active
steering may leverage decision-making policy [37, 47]
or optimization [48] to facilitate the approach of the
target state, the actual implementation of the feedback
requires additional resources, on top of the auxiliary
quantum systems serving as meters. For many-body
systems, this will quickly become challenging, if not
unfeasible. In fact, already for passive steering protocols,
one may wonder how far these can be pushed given their
requirement of the number of meters that is extensive in
system size, cf. Fig. 1(a).

Here, we adopt the perspective that detectors are a
precious resource whereas the ability to engineer (quasi-
local) interactions within a many-body system can be
taken as given, since this is a prerequisite to implement
the many-body model itself. The detectors are key to
realizing measurement-induced dynamics, but how many
are actually needed? For the paradigmatic AKLT model,
a chain of spin-1 particles, we show that measuring on a

single pair of two neighboring sites is sufficient to cool
the entire chain into its ground state, cf. Fig. 1(b). The
reason is that, for sufficiently large chains, the nearest-
neighbor couplings allow for propagating any excitation
to the measured link where the excitation is dissipated.
While the structure of the AKLT Hamiltonian is such
that it ensures the propagation for all conceivable ex-
citations, in general, this is, of course, not the case.
We, therefore, identify which quasi-local Hamiltonians
should be added to engineer the necessary population
flow and exemplify our theoretical framework for dilute
cooling of a many-body system with a second example,
the Majumdar-Ghosh model [49]. Finally, we discuss the
hierarchy of timescales for the excitation propagation and
localized measurements, in order to identify the scaling
of the cooling time with the system size, as well as time
dependence of cooling in the limit of infinite systems.
The remainder of the paper is organized as follows.

Section II presents the overall concept of measurement-
induced cooling, starting with a brief recap of passive
steeering [19] and its description in terms of a master
equation in Sec. II A. In Sec. II B, we introduce the no-
tions of local hot and cold subspaces on the link(s) that
shall be cooled. This gives rise to conditions on the
system-detector couplings to be permissible for a given
target state. Another key ingredient for many-body cool-
ing is the cooling rate and we explain how to estimate it
as a function of the system size in Sec. II C. In Sec. (III)
we analyze numerically two distinct models defined on fi-
nite chains, and demonstrate that cooling a single link is
sufficient to drive into the respective many-body ground
state.For the AKLT model, this is possible for sufficiently
large chains, as we discuss in Sec. III A, while we show
in Sec. III B, using the Majumdar-Ghosh model, that di-
lute cooling can also be used to selectively drive into one
state within a degenerate ground state manifold for suffi-
ciently large chains. Dilute cooling is not limited to these
two examples and we formulate a general framework in
Sec. IV. In Sec. IVA we formalize the condition to pre-
serve the target for all conceivable interactions within
the system. This, together with the corresponding condi-
tion on the system-detector couplings, allows us to state
necessary and sufficient conditions for dilute cooling in
Sec. IVB and IVC, respectively. With those conditions
at hand, we show how to prepare the AKLT state in small
chains in Sec. IVD. We summarize the general framework
for dilute measurement-induced cooling in the form of a
”recipe” in Sec. V before concluding in Sec. VI.

II. MEASUREMENT-INDUCED COOLING

We first briefly review the protocol of Ref. [19] for
steering the state of a quantum system from an arbitrary
initial state toward a chosen target state by coupling it
to an extensive number of auxiliary quantum degrees of
freedom (”detectors”) in Sec. II A. Then we lay the foun-
dations for dilute cooling by introducing the notions of
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cold and hot subspaces on the cooled sites in Sec. II B.
When reducing the number of detectors, a key question
is how fast the target state is approached and we discuss
in Sec. II C how to estimate the cooling rate (or time) to
reach the target state.

A. Recap of passive steering

For simplicity, the auxiliary quantum degrees of free-
dom are taken to be qubits. The total Hamiltonian for
the composition of system and detector is written as

H = Hs ⊗ Id +Hs-d + Is ⊗Hd (1)

where Hs, Hs−d, and Hd act respectively on the system
only, on the system and detector, and on the detector
only and Is (Id) is the identity operator on the system
(detector) Hilbert space. In the following, we drop the
explicit reference to the identity operators and work in
the interaction picture with respect to Hs + Hd. The
protocol consists of repeatedly performing the following
steps [19]:

1. Each detector qubit is prepared in a fixed pure
state, independent of the system state. Detector
and system are in the separable state ρd ⊗ ρs(t),
with ρd/s the state of the detector qubits, respec-
tively system, alone.

2. System and detector qubits are coupled during a
time interval δt. The time evolution generated by
the corresponding interaction Hs-d is given by

ρs-d (t+ δt) = e−iHs-dδtρd ⊗ ρs (t) e
iHs-dδt , (2)

where ρs-d denotes the joint state of the system and
detector qubits.

3. The interaction is switched off and the detector
qubits are discarded. This is equivalent to a pro-
jective measurement of the detector qubits, with an
unbiased average over all measurement outcomes.
The system state is then obtained by tracing out
the detector qubits,

ρs (t+ δt) = Trdρs-d (t+ δt) (3)

The dynamics of the system evolving under this proto-
col is obtained as follows [19]. For simplicity, we discuss
the derivation of the equation of motion for a single detec-
tor qubit; the extension to several detectors is straight-
forward. The choice of the initial state of the detector
qubit, |ϕ0⟩, induces a partition on the detector Hilbert
space Hd into two orthogonal subspaces, Hd = D0 ⊕D1,
with D0 spanned by |ϕ0⟩ and D1 = D⊥

0 spanned by |ϕ1⟩
such that ⟨ϕ0|ϕ1⟩ = 0. Likewise, the composite system-
detector Hilbert space H = Hs ⊗ Hd is partitioned into
subspaces

Hi = Hs ⊗Di (4)
for i = 0, 1 such that

H = H0 ⊕H1 . (5)

The system-detector interaction can be represented
as [50]

Hs-d =

(
0

√
γL̃†

√
γL̃ 0

)
, (6)

where γ parameterizes the coupling strength between sys-
tem and detector and is also referred to as the dissipation
rate. The non-Hermitian operators L̃, L̃† act on the sys-
tem whenever the detector state changes from |ϕ0⟩ to |ϕ1⟩
or vice versa. For sufficiently short intervals δt, Eq. (2)
can be expanded to second order in δt. Tracing out the
detector qubit results in

ρs (t+ δt)− ρs (t)

δt
= γδt

(
L̃ρs (t) L̃

† − 1

2

{
L̃†L̃, ρs (t)

})
.

(7)
Taking the limit of continuous measurements (δt → 0)

while keeping L = L̃
√
δt constant yields an equation

of motion for the reduced state of the system which
is of Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
form [51, 52]. The generalization to multiple detector
qubits is straightforward. In the Schrödinger picture, it
results in

d

dt
ρs (t) = L (ρs (t)) = −i [Hs, ρs (t)] + γ

∑

i

(
Liρs (t)L

†
i −

1

2

{
L†
iLi, ρs (t)

})
. (8)

The idea of passive steering is to choose the opera-
tors Li such that repeated system-detector interactions
in the long-time limit drive the system into the target
state ρ⊕, which is often (but not necessarily) the ground
state of the system Hamiltonian Hs. This is guaranteed

if ρ⊕ is the unique steady state of L since then any initial
state of the system is driven towards ρ⊕ [53]. Ideally, the
target state is pure, ρ⊕ = |ψ⊕⟩⟨ψ⊕|. Passive steering is
based on a predefined set of system-detector couplings,
which, in contrast to active steering, is not modified in
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the course of the protocol based on the detector read-
outs. When the measurement outcomes are completely
discarded (even for the termination of steering), such a
passive protocol is sometimes also referred to as blind
steering. In the context of measurement-based cooling,
such protocols can be dubbed “blind cooling”; this term
will be utilized throughout the paper.

B. Choice of jump operators

In order to understand how to engineer the system-
detector interactions, we determine which jump opera-
tors are permissible by asking that they leave the tar-
get state |ψ⊕⟩ invariant. For simplicity, we will focus
on one-dimensional lattices (“chains”), where the geo-
metrical locality of the jump operators is established by
involving neighborhoods of two adjacent sites which we
call a link (i, i+ 1). Our considerations are, however, not
restricted to one-dimensional systems, and the general-
ization to larger neighborhoods is straightforward. The
target state on a given link (i, i+ 1) is obtained by trac-
ing over all other sites,

ρ
(i,i+1)
⊕ =TrH∁

i
(ρ⊕) , (9)

where H∁
i ≡

⊗
j ̸=i,i+1 Hj denotes the tensor complement

to the local Hilbert space of the link, H(i,i+1). We seek
to cool (empty) all states on a given link (i, i+ 1) that

do not pertain to ρ
(i,i+1)
⊕ .

As a simple example, consider a qubit with target state
ρ⊕ = |0⟩⟨0|. Since |1⟩ does not pertain to ρ⊕, cooling via
L = σ− = |0⟩⟨1| would be permissible. We can formalize
this intuition via the support of ρ⊕. Defining the support
of a state ρ⊕ as

supp ρ = (ker ρ)
⊥
, (10)

the local Hilbert space H(i,i+1) of the link is partitioned
into a hot and a cold local subspace,

H(i,i+1) = V(i,i+1)
cold ⊕ V(i,i+1)

hot , (11a)

V(i,i+1)
cold = supp ρ

(i,i+1)
⊕ , (11b)

V(i,i+1)
hot =

(
V(i,i+1)
cold

)⊥
= ker ρ

(i,i+1)
⊕ . (11c)

We refer to V(i,i+1)
hot as hot because it contains all the

states which do not pertain to ρ
(i,i+1)
⊕ and therefore cool-

ing consists of emptying the hot subspace so that the

system’s state is in the cold local subspace V(i,i+1)
cold .

The partitioning of the local Hilbert space of the
cooled link into hot and cold subspaces leads to a natu-
ral way of choosing the jump operators: For every state

|ϕh,j⟩ ∈ V(i,i+1)
hot , we choose some state |ϕc,j⟩ ∈ V(i,i+1)

cold
such that Lj = |ϕc,j⟩⟨ϕh,j |. This choice ensures that
the jump operators Lj do nothing but cool, i.e., they

do not transfer population from the cold to the hot sub-
space or within the hot subspace, and they do not result
in pure dephasing, but transfer population into the cold
subspace.

This intuition can be formalized in terms of three con-
ditions. First, the operators L

(i,i+1)
j must be nilpotent,

i.e.,

(
L
(i,i+1)
j

)2

= 0 . (12a)

This ensures all eigenvalues of L
(i,i+1)
j to be 0. Other-

wise, L
(i,i+1)
j would possess at least one non-zero eigen-

value, implying existence of an invariant state. The sec-
ond property guarantees that only states from the cold
subspace are not affected by any of the jump operators:

∩j kerL(i,i+1)
j = V(i,i+1)

cold . (12b)

Moreover,

∑

j

image
(
L
(i,i+1)
j

)
⊆ V(i,i+1)

cold , (12c)

since then the jump operators only map states from the
hot subspace to the cold subspace but do not act within
the hot (respectively, cold) subspace.

C. Cooling rate

Designing the system-detector interaction that drives
the system into the desired target state is an important
first step. For practical applications of the protocol, the
time that is required to attain the target state shall be
faster than detrimental effects, that tend to heat up the
system. This is also relevant, in particular for many-body
systems. A key question is how this characteristic time
scales with the system size.

To quantify the approach of the target state, a suitable
figure of merit is needed. A natural choice is the Hilbert-
Schmidt overlap,

Doverlap = Tr (ρf ρ⊕) , (13)

between the obtained state ρf and the target state ρ⊕.
It is a suitable figure of merit as long as the target state
is pure [54]. This is the case here, and we will use it
throughout. For mixed states, one would need to consider
a true distance measure [54] such as the Hilbert-Schmidt

distance, DHS = 1
2 Tr

(
(ρ⊕ − ρf)

2
)
. Since we are inter-

ested in cooling, one could also consider the expectation
value of the system energy, relative to the targeted en-
ergy, i.e., Erels = Tr (Hsρf)− Tr (Hsρ⊕).
The rate of cooling is set by the spectral gap of the

Liouvillian, defined as ∆ = |Reλ1| where λ1 is the non-
zero eigenvalue of L with the real part closest to 0. The
gap sets the slowest rate of approach towards ρ0, which
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dominates in the asymptotic limit t → ∞. The larger
the gap, the faster the convergence towards ρ⊕. If there
exist multiple steady states, namely, there are multiple
right eigenvectors at eigenvalue 0, then ∆ = 0. In this
case for some initial states the dynamics will not converge
to ρ⊕, and blind cooling is not feasible. Uniqueness of
the steady state can be checked in terms of the algebraic
properties of the Hamiltonian H and the jump operators
Li [55].
Obtaining ∆ from exact diagonalization quickly be-

comes unfeasible, since the Liouvillian corresponds to a
d2 × d2-matrix for a system Hilbert space dimension d.
With the separation of the Hilbert space into cold and
hot subspaces introduced above in Sec. II B, and under
the assumption of a unique steady state, it is possible
to estimate the gap ∆ determining the cooling rate for
sufficiently small dissipation rates γ as

∆ ≲ ∆est, (14)

with the estimate ∆est deriving from the properties of
the Hamiltonian:

∆est ≡ 1

2
Q · γ , (15a)

Q ≡ min
ϵ
qϵ , (15b)

qϵ ≡ min
n

⟨ϵn|Phot|ϵn⟩ . (15c)

Here, ϵ labels the (possibly degenerate) eigenenergies of
H with the corresponding eigenspace spanned by |ϵn⟩,
where n runs over the degenerate eigenstates The pro-
jector Phot projects onto the “hot” subspace on the link

V(1,2)
hot , cf. Eq. (11c), assuming that this is the only link

that is cooled. With these definitions, Q in Eq. (15) gives
the minimum population that an excited eigenstate |ϵn⟩
can have in the hot subspace.

The estimate (15) is justified for sufficiently small dis-
sipation rate γ (cf. Appendix A),

γ ≪ N/dN , (16)

where N is the number of sites and d the Hilbert-space
dimension on a single site, and the Hamiltonian is of the
form H =

∑
iOi, with the spectrum of operators Oi

(which can act on site i and neighbouring sites) confined
to [0, 1], so that N/dN is the typical level spacing of the
Hamiltonian.

In our numerical studies of the examples below, we find
irrespective of γ that ∆est provides a bound for the gap,

∆ ≤ ∆est. (17)

We have not been able to prove this bound analytically,
yet it looks natural in the light of the following intuition:
the cooling rate is determined by the population of the
hot subspace (Q) times the dissipation rate (γ), yet may
actually be smaller since after local depopulation of the
hot subspace excitations need time to propagate to the
cooled link; at the same time coherent superpositions be-
tween the states of different energies evolve in time, as
they acquire relative phases — this justifies the focus on
the eigenstates of the Hamiltonian.

FIG. 2. (a) Schematic of the spin-1 AKLT chain with pe-
riodic boundary conditions. The projectors onto the Ji = 2

subspace for each nearest-neighbor link, P
(i,i+1)
J=2 , make up the

AKLT Hamiltonian. In its most extreme form, dilute cool-
ing acts on a single link only, via the five cooling operators

L
(i,i+1)
1,...,5 , cf. Eq. (19), with i taken to be i = 1. (b) Correlation

of the minimal eigenstate projection onto the hot subspace qϵ,
Eq. (15b), with energy ϵ for AKLT chains of increasing size.
The solid lines show the mean of qϵ for energy bins of size
∆E = 0.5 while the shaded background gives the standard
deviation. This correlation implies that in general low-lying
excitations will decay slower than higher energy ones.

III. REALIZATION OF SINGLE LINK
COOLING IN TWO FRUSTRATION-FREE SPIN

CHAINS

A. Cooling into the AKLT state for N ≥ 5 sites

The ground state of the AKLT model [38, 39] is a
paradigmatic example of a matrix product state, as well
as of a symmetry-protected topological phase [56]. In
the context of quantum engineering, it holds promise as
a resource state for measurement-based quantum com-
putation [57]. Measurement-assisted preparation of the
AKLT ground state has recently attracted much atten-
tion [19, 37, 41, 42, 58], as an illustration of proof-of-
principle protocols for engineering correlated many-body
states. We now show that measurement-induced cooling
into the AKLT ground state can be taken to the dilute
limit.

The AKLT model [38, 39], a one-dimensional chain
of spin-1 particles with nearest-neighbor interactions, cf.
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Fig. 2(a), is an example of a frustration-free system with
Hamiltonian given by the sum of non-commuting local
Hamiltonians. Periodic boundary conditions (PBC) im-
ply uniqueness of the ground state which is a valence
bond state such that on each bond between two neigh-
boring spins, there is no projection on the total spin-2
sector. The ground state of the whole chain is also the
ground state of each local term of the “parent Hamilto-
nian”. The latter property is what allows [59] for lo-
cal steering, i.e., each jump operator needs to act on
only one bond. Preparation of the AKLT ground state
with passive steering was shown in Ref. [19] for a total
number of detectors that is extensive in system size. In
that work, the passive steering protocol was employed
to a system of non-interacting spins-1. In the present
work, the measurement-induced dynamics is superim-
posed onto the system dynamics governed by its own in-
teracting Hamiltonian. We show that, remarkably, cool-
ing a single link is sufficient to drive into the AKLT
ground state for systems with N ≥ 5 sites and then dis-
cuss the special case of chain sizes N = 3, 4.
With the nearest-neighbor interaction, two neighbor-

ing spin-1 particles can form pairs of total spins Ji = 0, 1
or 2 where Ji is the quantum number associated to the

eigenvalues of
(
J⃗i

)2

, the square of the total spin operator

J⃗i ≡ S⃗i+ S⃗i+1. The AKLT Hamiltonian is defined as the

sum of the projectors P
(i,i+1)
J=2 on the Ji = 2 subspaces,

thereby penalizing them energetically,

HAKLT =

N∑

i=1

P
(i,i+1)
2 . (18)

To drive the system into the ground state of Eq. (18), a
possible choice of operators Li projects each Ji = 2 state
onto Ji = 0, 1 states [19],

L
(i,i+1)
1 = (|1, 1⟩⟨2, 2|)(i,i+1) , (19a)

L
(i,i+1)
2 = (|1, 1⟩⟨2, 1|)(i,i+1) , (19b)

L
(i,i+1)
3 = (|1, 0⟩⟨2, 0|)(i,i+1) , (19c)

L
(i,i+1)
4 = (|1,−1⟩⟨2,−1|)(i,i+1) , (19d)

L
(i,i+1)
5 = (|1,−1⟩⟨2, 2|)(i,i+1) , (19e)

where i labels the sites, |J,mJ⟩(i,i+1) denotes the state of

total spin Ji, formed from the spins on the sites i, i+ 1,
with projection quantum number mJ . We note that the
chosen jump operators are “compatible” with the Hamil-
tonian of the system in the sense that they do not affect
the ground state of the Hamiltonian.

Figure 3 shows how the system state approaches the
AKLT ground state as time evolves, for chain lengths
up to N = 10. Here, the five steering operators are ap-
plied to the link connecting sites 1 and 2. The state
overlap is calculated by averaging over Monte Carlo tra-
jectories [60] that unravel the GKSL equation (8), re-

0 500 1000 1500 2000

γ2t

−6

−4

−2

0

lo
g
( 1
−
〈ψ

(t
)|A

K
L
T
〉) N = 5

N = 6

N = 7

N = 8

N = 9

N = 10

FIG. 3. The logarithm of the overlap with the excited space
as a function of time. We observe an exponential approach
with time to the AKLT ground state |AKLT⟩ for weak cooling
(γ = 0.1) on a single link for several chain lengths N . The
overlap is obtained from solving Eq. (8) with the Monte Carlo
wave-function method (with the bar denoting the average over
the Monte Carlo trajectories). Dashed lines are linear fits and
their slope is used to extract the Liouvillian gaps.

sampling 10000 trajectories 500 times with the boot-
strap method [61]. Confidence intervals for Monte Carlo
sampling are smaller than the linewidths of the curves.
Figure 3 demonstrates an exponential approach of the
AKLT ground state for all chain lengths N . The gap ∆
is then easily extracted from the slopes in Fig. 3. As one
would expect, the approach of the ground state slows
down with chain length N , with a clear difference be-
tween even and odd numbers of sites where the ground
state is approached faster for even-length chains. This
will be further analyzed below, in terms of the gaps.

The overall possibility of dilute cooling and its depen-
dence on system size can be rationalized as follows. Di-
lute cooling is the result of an interplay between local
cooling and coherent non-local dynamics generated by
the interactions between neighboring sites in the Hamil-
tonian. While excitations of the chain that are distant
from the cooled link are not directly exposed to the jump
operators, the interactions propagate them through the
chain until they eventually reach the cooled link. Here,
cooling takes place, taking energy out of the system by
projecting the state onto an energetically lower subspace
(from J = 2 to J = 0, 1). If the state after the jump
is the target state, then nothing more happens since the
target state is left invariant by both the jump opera-
tors and the interactions. Otherwise, there still exists
an excitation somewhere along the chain, and the proce-
dure starts over by propagating the excitation through
the chain until it reaches the cooled link.

The interplay between dissipation and interaction-
induced coherent dynamics naturally introduces two
timescales: The dissipative timescale, given by the in-
verse local cooling rate, 1/γ, is independent of the system
size, whereas the time an excitation needs to propagate
to the cooled link scales with system size. It is this scal-
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FIG. 4. Liouvillian gap as a function of the AKLT chain size.
Gaps (with error bars) extracted from the numerical overlaps
in Fig. 3 are indicated with an ”x” marker, gap estimates
from Eq. (15) with an ”o” marker. A clear even-odd effect
with respect to the chain length is observed, with ∆ roughly
following a separate power law in the two cases. Fitting to
∆(N) = m ·N−α yields exponents αeven = 2.97, αodd = 1.87
and y-intersects meven = 52.3 · 10−2, modd = 17.5 · 10−3.

ing that explains the slowing down of the approach to
the AKLT state observed in Fig. 3.

The slower approach of the AKLT state with increasing
system size raises the question as to whether the target
state can be attained in the thermodynamic limit. This
is determined by the scaling of the Liouvillian gap ∆
with the chain length. For our finite-size numerics, we
have extracted the gaps from the linear fits in Fig. 3
and compare them to the Hamiltonian estimates (17) in
Fig. 4. We find a finite gap ∆ for chain sizes N ≥ 5,
indicating that cooling a single link drives the system
towards |AKLT⟩ for t→ ∞. The gap ∆ as a function of
system size roughly follows a power law for both even and
odd N but with different exponents α, cf. Fig. 4. While
small chains with even length yield a larger ∆ than odd
chains of comparable lengths, Fig. 4 also shows that ∆
decreases faster with growing even N than it does for odd
N .

Chains of size N = 3, 4 turn out to be a special case
in which single-link cooling fails. This is due to the ex-
istence of dark states: excited eigenstates which are also
steady. These states are not subject to cooling on link
1-2 because on that link they live within the J1 = 0, 1
subspace and thus have no overlap with the local hot
subspace. For N = 3 there is only a single link with

a well-defined spin as the other spin operators J⃗2 and

J⃗3 do not commute with J⃗1. The dark states all show
J1 = 1. In a chain with N = 4 sites, there can be two
links with well-defined spins, e.g., (1, 2) and (3, 4). The
dark states turn out to feature J1 = 0 and J3 = 2. Start-
ing with N = 5, we find no dark states that are steady
states. With periodic boundary conditions, N = 5 is the
smallest chain where any link with the well-defined total
spin (meaning that the spin operator of the link in ques-

tion commutes with J1) has at least one other link with a
well-defined spin between itself and the cooled link. Note
that chains of size N = 3, 4 can be cooled in a non-dilute
way, when coupling all links to detector qubits. The fail-
ure to cool chains of lengths N = 3 and 4 with steering a
single link can be remedied by adding coherent local in-
teractions. We first identify the general conditions under
which dilute cooling is possible in Sec. IV and come back
to the AKLT chain with N = 3, 4 in Sec. IVD, showing
that nearest-neighbor interactions are sufficient.

B. Selective preparation of a degenerate ground
state of the Majumdar-Ghosh model

Dilute cooling is, of course, not limited to the AKLT
model. We show now that it works equally well for an-
other frustration-free spin chain with Hamiltonian given
as sum over non-commuting terms, the Majumdar-Ghosh
(MG) model [49]. Here, three neighboring spin-1/2 par-
ticles are coupled into a total spin with quantum num-

bers Ji = 1/2, 3/2 associated to
(
J⃗i

)2

where J⃗i =

S⃗i + S⃗i+1 + S⃗i+2. The original formulation of the MG

Hamiltonian was HMG =
∑N
j J⃗i

2
. Up to a shift in en-

ergy, the model can be formulated in terms of projectors
such that the Ji = 3/2 subspaces are energetically penal-

ized by the projector P
(i)
J=3/2 acting on sites i, i+ 1, i+ 2

via the Hamiltonian

HMG = 12

N∑

i=1

P
(i)
J=3/2 , (20)

subject to PBC. We consider chains with an even number
of sites N because the ground state manifold is only two-
fold degenerate in this case. It is spanned by the states
|ψ±⟩—the product states of spin singlets formed from
two neighboring spins with the first spin on an even (−),
respectively odd (+), site,

|ψ−⟩ =
N/2⊗

i=1

|0, 0⟩(i,i+1) , (21)

|ψ+⟩ =
N/2⊗

i=1

|0, 0⟩(i+1,i+2) , (22)

where |0, 0⟩(i,i+1) denotes the S = 0,m = 0 singlet state

on link (i, i + 1). Although the ground state is two-fold
degenerate, it is possible to select one of them with dilute
cooling and we choose |ψ−⟩ as the target ground state.

The ground state degeneracy represents the main dif-
ference between the MG and AKLT models which needs
to be accounted for when designing a cooling protocol tar-
geting a pure target state. Naive adaptation of the recipe
for choosing the jump operators presented in Sec. II B,
considering three neighboring sites of the MGmodel, sug-
gests projecting every J = 3/2 state onto some J = 1/2
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FIG. 5. Scaling of the cooling rate with chain size N for the
MG model. (a) Overlap with the target state |ψ−⟩, bootstrap-
averaged 500 times over 10000 trajectories. Dashed lines are
linear fits used to extract ∆. (b) The gap fitted to a power
law ∆(N) = m ·N−α. Gaps (with error bars) extracted from
(a) are indicated with an ”x” marker, gap estimates from Eq.
(15) with an ”o” marker, with exponents αN/2 even = 3.76,
NN/2 odd = 2.78. The y-intersects are mN/2 even = 24.4 and
mN/2 odd = 2.02.

state. This does not, however, lead to a pure steady state
but also allows for statistical mixtures of |ψ±⟩. To sin-
gle out one of the two ground states |ψ±⟩, it is sufficient
to perform cooling on only two neighboring sites. Two
neighboring S = 1/2 spins combine into either J = 1 or
J = 0. We choose to cool the link (1, 2). The |ψ−⟩ state
lives within the J = 0 subspace on this link. A suit-
able choice of operators that act on the single link (1, 2)
transforming the states from the triplet manifold to the
singlet manifold is then given by

L1 =(|0, 0⟩⟨1, 1|)(1,2) , (23a)

L2 =(|0, 0⟩⟨1,−1|)(1,2) , (23b)

L3 =(|0, 0⟩⟨1, 0|)(1,2) , (23c)

This implies

V
(1,2)
hot = span{(|1, 1⟩)(1,2) , (|1, 0⟩)(1,2) , (|1,−1⟩)(1,2)}

and V
(1,2)
cold = (|0, 0⟩)(1,2). We therefore choose Li such

that any state from V
(1,2)
hot is projected into V

(1,2)
cold . Again

in analogy to the AKLT model, excitations outside of
the cooled link are propagated through the chain by the
interactions, until they eventually reach link (1, 2) where
cooling takes place.

The approach to the target state is shown in Fig. 5(a)
for chains with an even number of sites up to N = 16,
where we have used the same numerical method as in
Sec. IIIA. The target state is approached exponentially
in time for chains of length N ≥ 6 with the exponent, i.e.,
the slope in Fig. 5(a), which depends on N differently for
chains with even and odd values of N/2. This difference
is more clearly seen in Fig. 5(b) plotting the gap obtained
from the slopes in Fig. 5(a). The gap estimate (15) gives
a fairly good prediction of ∆ for system size up to N = 10
in Fig. 5.

As explained in Appendix A, the estimate can only
be expected to give a tight bound if the difference in
eigenenergies δϵ = |ϵ − ϵ′| for any pair of energies ϵ, ϵ′

is large compared to γ but for chains with N ≥ 10, this
is no longer the case. The gap roughly follows a power
law similar to the AKLT model but the size of the gap is
larger by about two orders of magnitude compared to the
AKLT chains of similar size, cf. Fig. 4. This is in line
with the overlaps Q, cf. Eq. (15b), also being roughly
two orders of magnitude larger compared to the AKLT
model. It is thus easier to scale up the system size in
the dilute cooling of the MG model, in the sense that for
similar system sizes the target state will be reached much
faster in the MG model as compared to the AKLT state.

IV. CONDITIONS FOR DILUTE COOLING

Detector qubits are a precious resource. In con-
trast, the ability to engineer quasi-local coherent inter-
actions is a basic prerequisite for the realization of any
measurement-induced dynamics — the system needs to
be coupled to the detector qubits in the first place. It
should then also be comparatively straightforward to al-
ter the Hamiltonian by adding extra terms, as long as
they are quasi-local, see also Fig. 1.

This defines a paradigm that allows us to remedy
the failure of dilute cooling protocols utilizing only the
measurement-induced jump operators, as in the example
of the AKLT chain of length N = 3, 4. We formulate a
general framework to leverage quasi-local interactions to
overcome this problem. To this end, we identify neces-
sary and sufficient conditions for dilute cooling: Assum-
ing full quasi-local coherent control over the system (in
the sense that we are free to add to the system Hamil-
tonian any quasi-local operator), under which conditions
becomes a desired target state ρ⊕ = |ψ⊕⟩⟨ψ⊕| the unique
steady state of L? In other words, the answer to the
question of whether a given |ψ⊕⟩ is obtainable via blind
dilute cooling does then not depend on H implementing
|ψ⊕⟩ as its ground state.

A. Permissible quasi-local coherent interactions

We restrict ourselves to the case of nearest-neighbor
interactions but longer-ranged interactions or more com-
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plicated neighborhood definitions are also possible. To
set the stage, we first define the space of allowed addi-
tional coherent terms. They have to fulfill two conditions:
(i) they should be quasi-local, and (ii) they need to leave
the target state |ψ⊕⟩ invariant. A suitable operator ba-
sis to represent them is the generalized Pauli basis {σij},
where j ≤ d2 with d the dimension of the local Hilbert
space on each site i. The space of all quasi-local operators
can then be written as

O = span ∪Ni=1 O(i,i+1) ,

O(i,i+1) = span
{
σ
(i)
j ⊗ σ

(i+1)
k : j, k ≤ d2

}
.

From O, we select those operators that leave |ψ⊕⟩ invari-
ant. In the most general sense, this requires |ψ⊕⟩ to be
an eigenstate to all the selected operators. In order to
obtain a vector space structure, we only allow for selected
operators A ∈ O, such that |ψ⊕⟩ is eigenstate to A with
eigenvalue 0. We thus define

K|ψ⊕⟩ ≡ {A ∈ span O : A |ψ⊕⟩ = 0} ⊕ {1} , (24)

dubbing the space of allowed quasi-local coherent terms
appropriately the kernelizer. Note that we do not lose
any generality by restricting to annihilators of |ψ⊕⟩ since
operators A ∈ O with A |ψ⊕⟩ = λ |ψ⊕⟩ and λ ̸= 0 can be
obtained by simply adding the identity to K|ψ⊕⟩.
The key property of K|ψ⊕⟩ as defined in Eq. (24) is

to separate the system Hilbert space H into the target
space H⊕ = span {|ψ⊕⟩} and its complement H∁

⊕. Our
definition (24) comes with the advantage that K|ψ⊕⟩ has
a vector space structure over R and contains only Her-
mitian operators. The kernelizer is thus spanned by all
coherent interactions affecting only H∁

⊕. The purpose of
the separation of Hilbert space is two-fold: (i) it allows
for identifying the operators that leave the target state
invariant and (ii) it implies a straightforward sufficient
condition for blind cooling in terms of operator control-
lability on the complement H∁

⊕, see Sec. IVC below.

B. Necessary conditions

We identify two necessary conditions for dilute cool-
ing, one on the jump operators and one on the coherent
interactions. The condition on the jump operators for-
malizes the intuition that cooling should not affect the
target state, whereas the condition on the coherent in-
teractions is required to ensure population flow to the
cooled link. We state the conditions here and prove them
in Appendix B.

The condition on the jump operators can be stated as
follows: Cooling on a given link (i, i+ 1) is permissible
if the local hot subspace is not empty,

V(i,i+1)
hot ̸= ∅ . (25a)

Equivalently, since H(i,i+1) = V(i,i+1)
cold ⊕ V(i,i+1)

hot , cooling
is permissible if the local cold subspace is a proper subset

of the local Hilbert space of the link (i, i+ 1),

V(i,i+1)
hot ⊊ H(i,i+1) . (25b)

Note that condition (25) is equivalent to Eq. (12): If the
hot subspace is not empty, one can always choose a set of
jump operators which fulfill Eqs. (12). Conversely, given
a set of jump operators obeying conditions (12), there
necessarily has to exist a finite hot subspace.
Assuming that condition (25) is met, the jump op-

erators L
(i,i+1)
j should ideally be chosen as L

(i,i+1)
j =

|ϕc,j⟩⟨ϕh,j | such that they map every state in V(i,i+1)
hot to

some states in V(i,i+1)
cold , as suggested in Sec. II B. The

choice of the {L(i,i+1)
j } is not unique. For example, the

jump operators for the AKLT chain, Eq. (19), map the
five states with J = 2 onto the four states with J = 0, 1
such that the sign of Jz is preserved. Another of many

conceivable choices would be {L(i,i+1)
j } that flip the sign

of Jz.
A necessary condition on the coherent interactions can

be stated in terms of the kernelizer. Considering the co-
herent part of the equation of motion (8), a necessary
condition for cooling is that there should be no state
other than the target state that is invariant to both cool-
ing and all coherent interactions from the kernelizer. In
particular, excitations on links that are not cooled have
to propagate through the system until they reach the
cooled link. We formalize this condition as

∄ |ϕ⟩ ∈ H \



|ψ⊕⟩ ⊕


V(i,i+1)

hot

⊗

j ̸=i
Hj





 such that

|ϕ⟩ is eigenstate of all A ∈ K|ψ⊕⟩. (26)

The kernelizer contains all Hermitian operators that
leave the target state invariant, not only those that are
part of the system Hamiltonian. This is why condi-
tion (26) is necessary but not sufficient.
Condition (26) explains why certain states, for example

the highly entangled GHZ and W states,

|ψGHZ⟩ =
1√
2

(
|0⟩⊗N + |1⟩⊗N

)
, (27)

|W⟩ = 1√
N

(|100 . . . 0⟩+ |010 . . . 0⟩+ . . .+ |00 . . . 01⟩)
(28)

cannot be obtained by dilute cooling. For these states
and N ≥ 5, one can identify a complementary state that
is not locally distinguishable from |ψGHZ⟩, respectively
|W⟩, namely the antisymmetric GHZ state, |ϕGHZ⟩ =
1√
2

(
|0⟩⊗N − |1⟩⊗N

)
and the state |W0⟩ = |000 . . . 0⟩,

respectively. Indeed, the reduced states of |ψGHZ⟩ and
|ϕGHZ⟩ on any link are identical which implies that there
is no quasi-local operator, neither as part of the Hamil-
tonian nor the jump operators, that can discriminate be-
tween the two states. In contrast, with less than five
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qubits, condition (26) is satisfied, and dilute cooling is
possible. Given that a link involves two qubits, our ar-
gument is in line with the general proof [23] that cooling
towards a GHZ state requires measurements on at least
N/2 qubits [62]. Beyond the framework of Hamiltonians
and jump operators with quasi-local interactions that we
consider here, dissipative preparation of a GHZ can also
be achieved with a single auxiliary degree of freedom,
provided it is coupled globally to all sites [63].

C. Sufficient condition

The intuition that the role of the quasi-local coher-
ent interactions is to ensure population flow towards the
cooled link allows us to formulate a sufficient condition
for dilute cooling. The desired population flow can surely
be realized if any unitary evolution on the complement
Hilbert space H∁

⊕ is possible. The latter is guaranteed

if the system part that is defined on H∁
⊕ is controllable,

and controllability can be checked via the rank of the dy-
namical Lie algebra [64]. In our case, what matters is the
Lie Algebra L

(
K|ψ⊕⟩

)
generated by the kernelizer. The

corresponding Lie rank condition reads

dimL
(
K|ψ⊕⟩

)
=

(
dN − 1

)2 − 1 . (29)

If Eq. (29) holds, then there exist, in principle, suffi-
ciently many interactions leaving the target state invari-
ant such that any time evolution in H∁

⊕ can be gener-
ated. Since it is a condition purely on the coherent part
of the dynamics, the necessary condition on the dissipa-
tive part (25) must also be fulfilled. We note that this
condition is sufficient: Controllability is a strong assump-
tion and may not be necessary for cooling to work. But
if condition (29) is met, then it is possible to add to the
Hamiltonian operators from the kernelizer that induce
the desired propagation of excitations through the chain
towards the cooled link. Thus, Eq. (29) together with
Eq. (25) indeed ensures cooling towards ρ⊕.

To illustrate the relationship between population flow
and controllability, we verify in Appendix C that the
AKLT model (18) fulfills the condition (29) for unitary
controllability in the complement to the target subspace.
In fact, it does so for any N . This implies that blind
cooling should be possible also for chains of size N = 3, 4.
In other words, condition (29) tells us how to amend the
AKLT Hamiltonian such that blind cooling becomes pos-
sible also for the small chains.

D. Use of the sufficient condition to design single
link cooling for the AKLT chain with N = 3, 4 sites

For chains of size N = 3, 4 and cooling on a single link,
multiple steady states exist for the AKLT model. How-
ever, since the sufficient condition (29) is satisfied for any
N (see Appendix C), there exists a coherent interaction

δH in the kernelizer, which renders |AKLT⟩ the unique
steady state. One possible choice is to add

J
(i,i+1)
2,x =

∑

−2≤mj≤2

(|2,mj⟩⟨2,mj + 1|)(i,i+1) + h.c.

(30a)

on all but one link, i.e.,

δH = α

N−1∑

i=1

J
(i,i+1)
2,x . (30b)

Since J
(i,i+1)
2,x only acts on the local J = 2 subspace,

it is an element of the kernelizer, i.e., permissible. Its
specific choice can be motivated as follows. We seek the
generator of an evolution that mixes all the excited states
to guarantee propagation towards the cooled link. The
additional coherent interaction (30) mimics the Jx action
on the J = 2 subspace, generating rotations of the spin
around the x axis.
Given our choice of δH, it will now depend on the in-

teraction strength α and the dissipation rate γ whether
and how quickly the |AKLT⟩ is reached. The rate of ap-
proach is determined by the Liouvillian gap, shown in
Fig. 6 for N = 3 as a function of α and γ. A comparison
to the gap estimate (15), obtained via exact diagonal-
ization of HAKLT, is also presented in Fig. 6(b). In the
weak cooling limit (γ ≪ 1), in which Eq. (8) is valid,
the estimate captures the gap very accurately. When the
coupling to the detector becomes comparable or larger
than the nearest-neighbor interactions, one would need
to solve the full system-detector dynamics [44]. In this
regime, the gap is expected to be suppressed due to the
quantum Zeno effect which freezes the coherent evolu-
tion. If the dissipation is strong compared to the inter-
actions, the dissipation immediately removes any change
to the state due to the interactions, before propagation
through the chain can happen. Even in the weak cou-
pling limit, Fig. 6(a) suggests maximizing ∆ by proper
choice of the relative strengths of the additional coher-
ent interaction and coupling to the detector qubit. More
generally, one may also optimize the choice of the addi-
tional interactions δH out of all the operators contained
in the kernelizer K|ψ⊕⟩. For N = 4, the AKLT model be-
haves in much the same way, i.e., dilute cooling becomes
possible by adding coherent interactions.

More generally, these observations raise the question of
how to choose δH. As already mentioned above, this may
be viewed as an optimization problem on the kernelizer
space, targeting maximum ∆ or at least a non-zero gap.
Unfortunately, the kernelizer space is high-dimensional,
and the simplest way to approach the question is to ran-
domly sample δH ∈ K|ψ⊕⟩ and then calculate ∆. We
have found in all of 1000 samples that such random sam-
pling yields δH that results in successful cooling. We are
thus led to conjecture that the set of H ∈ K|ψ⊕⟩ not lead-
ing to dilute cooling is sparse, possibly of measure zero.
This is in line with earlier observations in the context of
system size-extensive (i.e., non-dilute) steering [23].
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FIG. 6. Liouvillian gap of the AKLT chain for N = 3 with
the additional coherent interaction (30) on links (1, 2) and
(2, 3) as a function (a) of coherent interaction strength α and
dissipation rate γ and (b) of γ for three values of α (solid
lines). The gap estimates, cf. Eq. (15), are also shown (dashed
lines). The solid lines in (a) indicate the values of α shown in
(b).

V. DISCUSSION: GENERAL FRAMEWORK
FOR DILUTE MEASUREMENT-INDUCED

COOLING

After showcasing dilute cooling for two paradigmatic
many-body models with finite-size numerics, we now turn
to the overall applicability of our approach. First, we
explore how far one can push the system size in the dilute
cooling of many-body systems, given that the approach of
the target state slows down as the system size increases.
Second, based on a summary of the general framework
of dilute cooling, we discuss to which systems it can be
applied.

The success of dilute cooling as the size of a many-
body system increases depends both on the type and on
the strength of the interactions, within the system and
of the system with the meter. The interaction strengths
give rise to competing timescales, whose scaling with sys-
tem size is estimated in the following with the help of
a classical diffusion picture. This can readily be moti-
vated by viewing the jump operators as implementing a
localized sink for excitations. A classical picture obvi-
ously misses many subtleties, for example, the difference
in the propagation speed for classical and non-classical
correlations [65], as well as the possibility of (partial)
integrability of the model [66]. Therefore, the scaling ar-
guments presented below will only give a rough estimate
for generic correlated systems.

Consider a classical one-dimensional diffusion equation
with a δ-function source (or rather sink). Denoting the
diffusion constant by D and the sink strength by A, the
following types of relaxation behavior for a system of size
L, characterizing its spatial extent, can be expected (see
Supplemental material [67] for details of the derivation):

• the “ballistic regime” — for small systems, L≪ ℓ,
where ℓ is the mean free path with respect to the
interaction of elementary excitations, the dissipa-
tion rate is determined by the measurement rate γ

and the many-body level spacing;

• the intermediate diffusion regime — for ℓ ≪ L ≪
D/A, the decay is exponential with decay time tA =
L/A, where A = ℓγ and D itself is determined by
ℓ (note that the diffusion constant does not enter
the decay rate explicitely in this regime);

• for large systems, L ≫ D/A, the time dependence
of the survival probability is first given by t−1/2,
but becomes exponential at t ≫ tD = L2/D with
the ‘gap’ given by 1/tD. In the limit of an infinite
system, excitations decay in a power-law (more pre-
cisely, square-root) manner, implying zero gap for
L = ∞, as it should be.

For any finite system, all the above regimes correspond
to a finite cooling time: for long times the removal of
excitations from the system occurs exponentially. The
numerical calculations presented in this work cover the
“ballistic regime” of not-too-large systems. Successful
cooling in such ballistic systems suggests that the sink
satisfies the conditions for cooling in larger systems once
diffusion sets in, which guarantees single-sink cooling in
an infinite system in the limit of infinite times.
The assumption of quasi-local interactions is key to

the competition of timescales as discussed above: For
extended systems with quasi-local interactions, the speed
with which excitations can propagate to the cooled site(s)
is necessarily finite. The picture changes for global inter-
actions, as is the case for example in cavity QED [68],
where the upper bound on propagation is set by the
system size [69]. Dilute cooling in finite time is then
in principle possible even in the limit of infinite system
size. For large systems with interactions characterized
by light-cone propagation of excitations [69], the best
strategy for dilute cooling will be to balance “diluteness”
with system size. For example, one can conceive a pro-
tocol where only every tenth link is cooled such that the
number of ”meters” is still considerably smaller than the
number of system sites.
Next, we provide a simple “recipe” to identify systems

amenable to dilute measurement-induced cooling, draw-
ing directly on the examples of the AKLT and MGmodel:

• Consider as target state a ground state of a
frustration-free projector-based Hamiltonian;

• This state can be stabilized (even without the sys-
tem own Hamiltonian) by a frustration-free Lind-
bladian with local terms acting on all parts of the
system;

• The local jump operators of such a Lindbladian
suggest the form of the local coupling of the system
parts (cells) to the measurement apparatus (me-
ter);

• In the system with its own Hamiltonian, add the
coupling to a meter qubit inferred above only at a
single elementary cell of the system (a link, i.e., two
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neighboring sites in the AKLT and MG examples
above);

• Unless the Hamiltonian has a perfectly flat band
of excitations or there exist excitations that do not
overlap with the chosen cell, dilute cooling is ex-
pected to work: for a finite system, all excitations
will be essentially removed within a finite time.

The simple recipe can be generalized beyond
frustration-free projector-based Hamiltonians, such as
the AKLT and MG models, and can be made to work
even in the case of flat bands or excitations avoiding
the sink (as in N = 3, 4 AKLT model). The kernel-
izer (Sec. IV) is key to this generalization. It allows for
identifying Hamiltonians, Lindbladians, and possibly ad-
ditional interactions to realize dilute cooling. Use of the
kernelizer results in the following extension of the simple
recipe:

• Find a system with a ground state that fulfills the
necessary condition (25) and choose a set of quasi-
local jump operators according to the recipe

• Check if the system fulfills the sufficient condi-
tion (29) on the kernelizer, i.e., the existence of suf-
ficiently many Hermitian operators acting on the
hot subspace only, such that their Lie algebra is
of full rank. In other words, check if the system
is completely controllable on the (global) hot sub-
space;

• Add as many operators from the kernelizer to the
Hamiltonian as needed to ensure a unique steady
state.

The most difficult step is the first one, but earlier find-
ings for non-dilute cooling with quasi-local couplings pro-
vide a good starting point [22, 23, 59]. Good candidates
are, for example, systems with product entangled pair
states [3, 4, 21], including matrix-product states for one-
dimensional systems.

VI. CONCLUDING REMARKS

Using quantum measurements to engineer desired dis-
sipative dynamics comes with the advantage of versatil-
ity and robustness but is also very costly. The scaling of
resources for measurement-induced dynamics with sys-
tem size is an important open but often overlooked ques-
tion. We have addressed this question for measurement-
induced cooling into many-body ground states. Using
finite-size numerics and analytical arguments, we have
shown that the number of detector qubits can under cer-
tain conditions be reduced (“diluted”) all the way to the
extreme case of a single detector.

In particular, we have demonstrated dilute cooling
for two examples: the ground states of the AKLT and
MG models. Both are frustration-free spin chains where
the Hamiltonian is given by a sum over non-commuting

quasi-local terms. In general, cooling or passive steering
requires couplings within the system and with the detec-
tor that leave the target state invariant. For dilute cool-
ing via weak measurements, this translates into necessary
conditions on the jump operators and coherent interac-
tions. To formalize these conditions, we have introduced
two key concepts—the kernelizer and the local hot and
cold subspaces. The latter are defined via the projection
of the target state onto the local Hilbert space of the sites
that are cooled. Invariance of the target state is ensured
by the jump operators fulfilling Eq. (12) or, equivalently,
the local hot subspace not being empty. The kernelizer
is the vector space of all quasi-local Hermitian operators
that leave the target state invariant. Since these opera-
tors generate the flow of excitations towards the cooled
site(s), a necessary condition is their mere existence. But
the kernelizer is even more useful: It allowed us to state
a sufficient condition for dilute cooling, in terms of con-
trollability on the Hilbert space complement to the target
state. Controllability of the kernelizer implies the exis-
tence of sufficiently many quasi-local Hermitian opera-
tors to generate any conceivable unitary evolution on the
complement space. A constructive recipe to implement
dilute cooling is then obtained simply by adding coherent
interactions from the kernelizer to the Hamiltonian.
Our approach of using controllability to identify cou-

plings within the system that enable dilute cooling is re-
lated to the algebraic approach of Ref. [55, 70] to deter-
mine the operators that ensure uniqueness of the steady
state. Combining the two should allow for an even larger
class of many-body target states than discussed here.
To conclude, we have addressed the challenge of

measurement-based cooling a many-body quantum sys-
tem to its ground state without the costly burden of
extensive measurements. By showcasing the effective-
ness of cooling on a single link for frustration-free one-
dimensional spin chains, we have demonstrated that pas-
sive steering protocols can be taken to the dilute limit un-
der specific conditions. Our findings, supported by both
analytical arguments and finite-size numerical simula-
tions, emphasize the potential for reducing the resources
needed for measurement-induced dynamics. Moving for-
ward, these insights pave the way for further applications,
offering a more cost-effective and versatile approach to
state engineering and state manipulation in quantum sys-
tems.
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Appendix A: Gap estimate

Here we derive the estimate (14) for small dissipation
rates γ. We do this by explicitly constructing an eigen-
state of the Lindbladian that has eigenvalue −iω−κ with
κ ≈ ∆est. Having an eigenstate with κ ≈ ∆est guarantees
that the Lindbladian gap does not exceed this value, i.e.,
∆ ≲ ∆est.

Consider

ρcoh = |ψexc⟩ ⟨ψ⊕| , (A1)

where |ψexc⟩ ∈ H/ |ψ⊕⟩ is any state in the excited sub-
space. ρcoh represents coherences between the target
state and the excited subspace and will decay as the pop-
ulation of the excited subspace gets eliminated. Under
Eq. (8), the time evolution of the coherences is governed
by an effective Hamiltonian,

H̃ = Hs − ϵ⊕ − i
γ

2
Phot. (A2)

with ϵ⊕ the ground state energy of |ψ⊕⟩ and

i
d

dt
ρcoh = H̃ρcoh ,

where we have used the identities ⟨ψ⊕|L†
i = 0 and∑

i L
†
iLi = Phot. Therefore, any eigenstate |λ⟩ of the

non-Hermitian Hamiltonian H̃ restricted to the excited
subspace gives rise to an eigenstate of the Lindbladian
governing the evolution (8):

H̃ |λ⟩ = λ |λ⟩ ⇒ L (|λ⟩ ⟨ψ⊕|) = −iλ |λ⟩ ⟨ψ⊕| . (A3)

For γ → 0, the eigenstates of H̃ coincide with the
eigenstates |ϵ⟩ of Hs up to corrections O(γ/δϵ), where
δϵ represents the level spacing of Hs. Then, by virtue
of first-order perturbation theory, the respective decay
eigenvalues are κ = −Re (−iλ) = −Imλ = γ

2 ⟨ϵ|Phot|ϵ⟩
up to corrections O(γ2/δϵ). In the case of degenerate
eigenstates of Hs, one needs to diagonalize Phot in each
energy subspace in order to find the eigenstates of H̃.
The smallest κ = ∆est corresponds to the state |ϵ⟩ with
the smallest overlap with the hot subspace, leading to
Eq. (15b).

Appendix B: Proofs of the necessary conditions for
dilute cooling

We provide here proofs of the necessary and sufficient
conditions for dilute cooling stated in Sec. IVB.
A jump operator is permissible if it leaves the target

state invariant in the sense that L(i,i+1) ⊗ 1∁ |ψ⊕⟩ = 0.
Not all operators with this property lead to cooling which
is why this is only a necessary condition. As a first step,
we prove that a necessary condition for the existence of a
non-trivial (i.e., non-zero) permissible jump operator on
link (i, i+ 1) is for the reduced density operator to not
be full rank. This can be seen to be equivalent to the
condition of a non-empty local hot subspace, Eq. (25a),
by recalling definition (11c) and using that any linear
operator has full rank if and only if its kernel contains
only 0.
For convenience of notation we write L = L(i,i+1) as-

suming that the jump operator only acts on the cooled
link (i, i+ 1).

Claim: L⊗ 1∁ |ψ⊕⟩ = 0 ⇒ rk ρ
(i,i+1)
⊕ < d2

We prove the contraposition

rk ρ
(i,i+1)
⊕ = d2 ⇒ L⊗ 1∁ |ψ⊕⟩ ≠ 0 .

Consider the r.h.s.; it is equivalent to

L⊗ 1∁ |ψ⊕⟩⟨ψ⊕|L† ⊗ 1∁ ̸= 0 . (B1)

Since the l.h.s. of Eq. (B1) is a projector and using the
cyclicity of the trace,

Tr
(
L†L⊗ 1∁ |ψ⊕⟩⟨ψ⊕|

)
̸= 0 .

Taking the partial trace over all but the cooled link allows
us to rewrite Eq. (B1) in terms of the reduced state,

Tr
(
Lρ

(i,i+1)
⊕ L†

)
̸= 0 .

By assumption, ρ
(i,i+1)
⊕ has full rank and we may write

ρ
(i,i+1)
⊕ =

d2∑

n=1

λn |n⟩⟨n|

with λn > 0 and {|n⟩} an orthonormal basis of Hi,i+1.
Then the above trace becomes

∑
n λnTr |ñ⟩⟨ñ| with |ñ⟩ ≡

L |n⟩. Therefore ∑n λnTr |ñ⟩⟨ñ| > 0 unless |ñ⟩ = 0 for all
n. Since L is required to be non-trivial, we can exclude
this case which concludes the proof.

We now turn to the necessary condition on the coher-
ent interactions, Eq. (26). To grasp the intuition, con-
sider a state |ϕ⟩ that is neither the target state nor in
the hot subspace. Because it is not in the hot subspace,
it cannot be affected by any jump operator (we had in-
troduced the jump operators to only act on the hot sub-
space). Then |ϕ⟩ is not directly subject to cooling, and
cooling can only be mediated through interactions. In
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order for this to work, there has to be some interaction
H from the kernelizer which connects |ϕ⟩ to some other
state |ϕ′⟩ = H |ϕ⟩. It may be that |ϕ′⟩ is then subject to
cooling or that |ϕ′⟩ is connected via interactions to yet
another state until eventually a state subject to cooling is
reached. This observation can be phrased as a necessary
condition on the interactions: For every such state |ϕ⟩
that is not directly subject to cooling there has to exist
an operator from the kernelizer that maps |ϕ⟩ to some
other state |ϕ′⟩ ̸= λ |ϕ⟩ for some λ ∈ C. We formalize
this condition as

∀ |ϕ⟩ ∈ H \



|ψ⊕⟩ ⊕


V(i,i+1)

hot

⊗

j ̸=i
Hj







∃H ∈ K|ψ⊕⟩ : |ϕ′⟩ = H |ϕ⟩ ≠ λ |ϕ⟩ .

Negating both parts of the statement leads to Eq. (26):
There can be no state |ϕ⟩ being neither the target nor in
the hot subspace such that |ϕ⟩ would be an eigenstate to
all operators from the kernelizer.

Appendix C: Unitary controllability for the AKLT
model

As an illustrative example, we show here that the suf-
ficient condition for dilute cooling on the interactions,
Eq. (29), i.e., full unitary controllability on the comple-
ment of the target state, is satisfied for the AKLT chain.
Our argument consists of three steps: First, we present
the general structure of a subset of the kernelizer for the
AKLT model. Although only a subset of the kernelizer,
we show in step 3 that it generates an algebra of full
rank on the complement space. Therefore control on this
subset leads to full operator controllability on the com-
plement space. Second, we argue that the absence of
non-trivial invariant subspaces of the Lie algebra gener-
ated by the kernelizer implies controllability. Finally, we
present the proof that there can be no other invariant
subspaces of the Lie algebra than the space complement
to the target state and the target state itself.

First notice that by construction |ψAKLT⟩ is orthogonal
to the Ji = 2 sectors. Its reduced state on the cooled link,

ρ
(i,i+1)
AKLT , only has support in the Ji = 0, 1 subspaces and

may in general have 3 + 1 non-zero eigenvalues. More-
over, HAKLT makes no distinction between all Ji = 1

states such that the eigenvalues of ρ
(i,i+1)
AKLT are 3 + 1-fold

degenerate. Labeling them λ1 = λ2 = λ3 ≡ λ and λ0, we
may write

ρ
(i,i+1)
AKLT = diag

(
0, 0, 0, 0, 0︸ ︷︷ ︸

Ji=2

, λ, λ, λ︸ ︷︷ ︸
Ji=1

, 1− 3λ︸ ︷︷ ︸
Ji=0

)
.

Evidently, any action on the Ji = 2 subspace leaves

ρ
(i,i+1)
AKLT invariant. Therefore, the local kernelizer,

K
(i,i+1)
|ψAKLT⟩ ≡ K|ψAKLT⟩ ∩ O(i,i+1) where O(i,i+1) is the

space of operators on the link (i, i + 1), cf. Sec. IVA,

is 25-fold dimensional, containing all the generators of
unitaries acting on the Ji = 2 subspace. In other words

K
(i,i+1)
|ψAKLT⟩ = su (5), the generator of SU(5) acting on the

Ji = 2 subspace.
Since O is the space of all quasi-local interactions, we

may express the (global) kernelizer as

K|ψAKLT⟩ = K|ψAKLT⟩ ∩ O
= K|ψAKLT⟩ ∩

(
O(1,2) +O(2,3) + . . .+O(N,N+1)

)
.

This implies

K|ψAKLT⟩ ∩ O(i,i+1) ⊆ K|ψAKLT⟩ ,

and we have

N∑

i=1

K
(i,i+1)
|ψAKLT⟩ ⊆ K|ψAKLT⟩ .

We proceed by showing that the Lie algebra generated
by the sum of the local kernelizers is already sufficient
to satisfy Eq. (29). For brevity, we write L

(
K|ψ⊕⟩

)
= L

and K|ψ⊕⟩ = K in the reminder of the proof and argue
that, if the Lie algebra L acting on a vector space V
only possesses a single invariant subspace, this subspace
is V itself. Moreover in this case the dimension of L
is maximal, dimL = dimV 2. If it was smaller, then L
would not generate all unitaries on V and there would
be a subspace invariant under L. It is thus sufficient to
prove that L possesses exactly two invariant subspaces,
V ⊕ |ψAKLT⟩ = H. The invariance of the latter subspace
follows by construction. In other words, it is sufficient
to show that there exists no invariant subspace V with
dimension smaller than dimV = dN − 1.
The strategy of the proof is to construct V via re-

peated applications of L on some initial state, chosen
to be the all up state |v0⟩ ≡ |1, . . . , 1⟩ in the local
spin-1 basis. For lack of an explicit expression for L,
we will only consider actions of K ⊂ L for the gen-
eration of V . We shall see that this is already suffi-
cient. We introduce the notation for vector space orbits,
K [H] = span {A |ψ⟩ : A ∈ K, |ψ⟩ ∈ H}; it is the image
of Hilbert space H (i.e., a vector space of states) under
the vector space of operators K. As a first step, we prove
the following

Lemma 1. There exists some k ∈ N such that V ≡
V k ≡ L [|v0⟩] is the smallest subspace invariant under L
and contains |v0⟩.
Proof. First, by definition 1 ∈ L such that |v0⟩ ∈ V . For
the same reason we have V k ⊆ V k+1. Therefore there
exists some k ∈ N for which the series converges and
V k+1 = V k ≡ V . Next we show that indeed there is
no smaller subspace that is invariant under L and con-
tains |v0⟩. By definition of V k, there exists a series of
A1, . . . , Ak ∈ L such that any |v⟩ ∈ V k is connected to
|v0⟩ via Ak . . . A1 |v0⟩ = |v1⟩. Therefore V does not con-
tain any subspace that would be invariant under L. Now
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assume the existence of smaller subspace W invariant
under L that contains |v0⟩. Since we are looking for the
smallest such subspace, W cannot contain another sub-
space invariant under L. This implies that all |w⟩ ∈ W
are connected to |v0⟩ by some Aq . . . A1 |w⟩ = |v0⟩. By
assumption V k is converged, so that any such state |w⟩
is also in V . Therefore W ⊆ V and because neither con-
tains additional invariant subspaces we haveW = V .

To set the stage for constructing V , we introduce the

shorthand notation K =
∑N
i=1K

i with Ki ≡ K
(i,i+1)
|ψAKLT⟩

and note that the local Hilbert space on a single link
(i, i+ 1) is partitioned into a local excited space and a
local ground space,

Hi =Hi
2 ⊕Hi

0,1 ,

where Hi
2/(1,0) ≡ H(i,i+1)

2/(0,1) refers to the J = 2, respec-

tively J = 0, 1 subspace. The state |v0⟩ is excited with
respect to this partition on all links of the chain and can
be expressed locally as |J = 2,mj = 2⟩ on any link. To
carry out the proof, we will first show controllability for
even chain lengths and then use the result to prove con-
trollability for odd chain lengths.

For even chain lengths, we can cover the whole chain
by the set of adjacent non-overlapping even (odd) links,
denoting a link as even (odd) when the index of the left
site is even. In the following, we focus on a cover of the
chain by the set of odd links (1, 2) , (3, 4) , . . . , (N − 1, N).
The spin operators Ji for even/ odd i are then mutually
commuting such that any state can be labeled by its J,mj

quantum numbers, and we can partition the total Hilbert
space,

H =

N⊗

i=1, odd

(
Hi

2 ⊕Hi
0,1

)

=

N∑

k=0

(
N
k

)
H2 ⊗ . . .⊗H2︸ ︷︷ ︸

N−k

⊗H0,1 ⊗ . . .⊗H0,1︸ ︷︷ ︸
k

=

N∑

k=0

∑

(p,q)∈PN
k

Hp(1)
2 ⊗ . . .⊗Hp(N−k)

2︸ ︷︷ ︸
N−k

⊗Hq(1)
0,1 ⊗ . . .⊗Hq(k)

0,1︸ ︷︷ ︸
k

,

where PNk denotes the set of permutations of an N -
dimensional vector of k entries equal to 0 and N − k
entries equal to 1. Here q, resp. p in (p, q) ∈ PNk denote
the positions of the entries 1, resp. 0 in the permutation.
We illustrate this for the example of an N = 4 chain,

H =
(
H1

2 ⊕H1
0,1

)
⊗
(
H2

2 ⊕H2
0,1

)

=
(
H1

2 ⊗H2
2

)
⊕
(
H1

2 ⊗H2
0,1

)
⊕
(
H1

0,1 ⊗H2
2

)

⊕
(
H1

0,1 ⊗H2
0,1

)
.

We will show that each such Hilbert space summand ex-
cept H1

0 ⊗ . . . ⊗ HN−1
0 is connected to |v0⟩ by repeated

actions K.

As a first step, consider the action of Ki on |v0⟩.
Note that |v0⟩ ∈ Hodd

2 ≡ ⊗N
i=1, odd Hi

2 and Ki contains

any (Hermitian) operator on Hi
2. Therefore the vector

space orbit Ki |v0⟩ = span
{
A |v0⟩ : A ∈ Ki

}
contains

any state of the form |2,mj⟩i
⊗N

j=1j ̸=i,j odd |2, 2⟩ with

−2 ≤ mj ≤ 2, i.e., the whole Hi
2. Since for every i

the vector space orbit Ki |v0⟩ is connected to |v0⟩ by K,
it follows that they all belong to V such that Hodd

2 ⊂ V .

Next, we show that we can generate a Hilbert space
summand Hi

0,1 at an arbitrary position i from Hodd
2 . We

consider the local kernelizer Ki+1 acting on the even
link on i+ 1. Specifically we consider the image of Hodd

2

under Ki+1. Since links i and i + 1, resp. i and i − 1,
are overlapping, the action of Ki+1 is non-trivial only
on Hi

2 ⊗ Hi+2
2 and it is sufficient to consider the vec-

tor space orbit Ki+1
[
Hi

2 ⊗Hi+2
2

]
. One can show (nu-

merically) that it has a finite overlap with Hi
2 ⊗ Hi+2

0,1

and Hi
0,1 ⊗ Hi+2

2 . More specifically, Ki+1
[
Hi

2 ⊗Hi+2
2

]

contains states of the form



|ϕj⟩

∈H2

⊗
∣∣∣ψJ=0,1
j

〉

∈H0,1




j=1,...,4

where the four states
∣∣∣ψJ=0,1
j

〉
form a basis of H0,1 and

|ϕj⟩ are some states in H2. Similarly, it also contains


∣∣∣ψJ=0,1
j

〉

∈H0,1

⊗ |ϕj⟩
∈H2




j=1,...,4

. By another application of

Ki, resp. Ki+2, acting only on |ϕj⟩ ∈ Hi
2, resp. Hi+2

2 , we

generate both, Hi
2⊗Hi+2

0 and Hi
0⊗Hi+2

2 . This works be-
cause Ki contains any (Hermitian) operator on H2 such

that Ki
[
|ϕj⟩ ⊗

∣∣∣ψJ=0,1
j

〉]
= Hi

2 ⊗
∣∣∣ψJ=0,1
j

〉
and likewise

Ki+2
[∣∣∣ψJ=0,1

j

〉
⊗ |ϕj⟩

]
=

∣∣∣ψJ=0,1
j

〉
⊗Hi

2.

This mechanism works in general and allows us to gen-
erate any Hilbert space summands with arbitrary num-
ber of H0,1 on arbitrary links by alternating applica-
tion of the kernelizers on even and odd links. The only
Hilbert space summand not entirely accessible in this

way is Hodd
0,1 ≡ ⊗N

i=1, odd Hi
0,1 and we conclude that

H \Hodd
0,1 ⊂ V .

In order to connect all excited states in Hodd
0,1 to |v0⟩,

we now cover the whole chain by adjacent even links
(2, 3) , (3, 4) , . . . , (N, 1). First note that |v0⟩ ∈ Heven

2 .
Thus we can repeat the above procedure and immediately
find thatH\Heven

0,1 ⊂ V . In order to show that V contains
all states except |ψAKLT⟩, we consider the orthogonal
complement V ⊥. Note that

(
H \Heven

0,1

)
+
(
H \Heven

0,1

)
⊆

V , therefore V ⊥ ⊆
((
H \Heven

0,1

)
+

(
H \Heven

0,1

))⊥
=(

H \Heven
0,1

)⊥ ∩
(
H \Heven

0,1

)⊥
= Hodd

0,1 ∩Heven
0,1 . The only

state not in V is simultaneously in the ground space of
all even and all odd links. The only state in this set is the
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unique ground state |ψAKLT⟩. This concludes the proof
of controllability for even chain lengths.

For odd chain lengths, covering the the whole chain
by adjacent even/odd links leaves a single site uncov-
ered, e.g. for 5 sites one would cover (1, 2) , (3, 4) or
(2, 3) (4, 5). In other words, the chain essentially becomes
a chain with open boundary conditions. We can still
apply the procedure above but without the closing link
(N, 1) there are now four states in V ⊥: the four degener-
ate AKLT ground states of a chain with open boundary
conditions. To formalize this V ⊥ ⊆ Hodd

0,1 ∩ Heven
0,1 is not

cut withHN
0,1 and therefore the states in V ⊥ are not con-

straint to HN
0,1 resulting in the four degenerate AKLT

states. We can partition the four states in V ⊥ into 3+ 1
states: one state without excitations on link N corre-
sponding to the unique AKLT ground state of a chain
with periodic boundary conditions. The other three are
excited on link N and are therefore subject to KN which
allows us to connect them to V . This concludes the proof
of controllability for odd chain lengths.
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