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We derive the compliance of an elastic cylinder
submitted to a line Hertzian contact. The cylinder is
maintained in static equilibrium by bulk forces that
are proportional to rigid body motions. Displacements
are measured by setting integral gauges that amount
to prescribing zero net linear and angular momentum,
if the problem were to depend upon time. Various
cases are covered, representing either infinitesimal or
finite contact displacements, including partial slip.
The developments are illustrated by revisiting a
classical example in what could be called The heavy
cylinder on a vibrating soil. The four contact resonances
and forced response of the system are given in closed
form in the quasi-static approximation, and compared
against a reference numerical solution. The formulae
can also be used as building blocks to assemble the
compliance matrix of a system comprising several
cylinders.

1. Introduction
Obtaining the compliance of a Hertzian line contact
is a notoriously difficult task. For point contacts,
i.e. between two non-conformal surfaces such as two
spheres or two non-parallel cylinders, a comprehensive
collection of formulae have been derived from the
1950s following Mindlin’s milestone article [1], and are
now gathered in textbooks [2]. The key property that
allows for a general treatment of the point contact

2024 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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compliance problem is the fact that the strains and the elastic displacements decay to 0 as the
distance to contact increases—respectively as s−2 and s−1 if we call s that distance. The problem
is therefore purely local and comes down to a half-space problem: it is enough to know the local
curvatures to derive the contact area caused by a normal force, and the contact displacement can
be measured relatively to any ‘far point’.

Regarding line contacts, only part of the problem can be treated as local: the strains decay
to 0 as s−1, enabling a general solution for the stresses and the contact width as a function of
the local curvatures. However, the ‘far point’ concept does not apply. This is because the elastic
displacement does not tend to 0 far from the contact, but diverges as log s. As a consequence, there
is no general solution, there are only special cases: the solution depends on the entire geometry of
the cross section, on the number and location of multiple contacts, on the presence of other loads
such as bulk loads and on the non-trivial choice of a reference to measure displacements—the
‘datum’ in [2], in this article, we speak of ‘gauges’. There is a large literature on line contacts that
will not be reviewed here; we rather refer to [2] (in which line contacts are called non-Hertzian
because of the ‘datum’ issue), to [3] for a historical perspective and to [4] for the closely related
problem of line contacts between three-dimensional bodies.

In this article, we address the problem of a cylinder loaded by a single Hertzian contact,
balanced with body forces that are proportional to rigid body motions. This problem arises as
an inner problem when considering the overall motion and deformation of a cylinder put into
a time-varying contact with an external body. We treat the four cases that result into a non-zero
net force or moment, namely monopolar loads in the three directions and a dipolar normal load.
Closed form solutions are given for a variety of traction distributions representing either small
incremental, or finite contact displacements, including partial slip within the Coulomb model.
An important aspect in our derivation is how the reference for displacements is set: instead
of choosing arbitrarily a point—there is no symmetry, and therefore no reason to choose the
axis of the cylinder—we introduce integral gauges. Indeed, these gauges naturally appear when
addressing the dynamic behaviour of the cylinder: they translate into prescribing zero linear and
angular momentum, and enable separating the total motion into what we call below a skeleton
and an inner field.

The problem addressed can represent a heavy cylinder resting on a vibrating soil, as
we call it in an example. It also appears in statics when modelling the contacts between
peripheral and core wires of a wire strand (see [5,6])—where the uniform normal body force
is caused by a tension applied to the cable and by the curvature of the wires, or with slightly
misaligned cylinders pressed together [7]. As a piece of context, our motivation stems from
modelling guided wave propagation in wire strands and wire ropes, where contacts are known
to play an important role on wave phenomena [8,9], and where current models [10] would
certainly benefit from closed form formulae to account for contacts. Let us also cite [11] that
develops a semianalytical strategy to model Hertzian stick-slip contacts between cylindrical
particles in a discrete element method approach, and [12] that simplifies the modelling of line
contacts in wire strands by using the well-known compliance of the symmetrically loaded
cylinder.

We start in §2 by defining the problems that aim to be addressed, then sketch in §3 a general
methodology to solve them and motivate the quasi-static inner problems that are the core of this
article. Section 4 is devoted to these inner problems. A first step in their resolution is to obtain the
related Green’s functions. Although the general solutions are known since Michell’s work [13]
and are tabulated in textbooks [14], and despite the literature on similar problems being very large
(‘the heavy disc’, ‘the rotating disc’, see [15,16], or [17] for a review with a historical perspective),
we did not manage to find a record of the solutions to our four cases including the displacement
field—not mentioning the gauges. Therefore, we believe that it should be valuable to report in
this article a complete, self-sustained set of formulae for both the stress and the displacement
fields. We finally give examples in §5 by revisiting two classical cases: A first example revisits the
well-known formula for the ‘compression of a cylinder pressed by two others’, while a second
one revisits ‘the heavy disc’ by adding a dynamic behaviour.
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Figure 1. (a and b) Scheme of the problem and of the coordinate systems.

2. Problem statement

(a) Summary
(i) System

A long elastic cylinder of radius R, shear modulus μ, Poisson’s ratio ν and density ρ is put in
contact with an external body, which is such that the system remains invariant along the axis
direction (z-axis). The characteristics of the contact—efforts, area—are allowed to change over
time. The system is represented in figure 1 along with three sets of coordinates: cylinder-centred
Cartesian (x, y, z) and polar (r, θ , z), and contact-centred polar (s, β, z).

(ii) Boundary condition for the displacement

Under this action, the cylinder deforms and a small contact strip of half-width a � R arises,
centred around the line whose coordinates in the (xy) plane are C = (0, −R)T. Anticipating that the
elastic field will be decomposed into two parts, we refer to it as the total field: the displacement
and stress within the cylinder are notated utot and σ tot. The displacement satisfies the following
boundary condition:

utot = d along the contact: r = R,
−a
R

< θ <
a
R

, (2.1)

with d a given displacement distribution, considered as known. Whether d is indeed explicitly
known (prescribed) or not (e.g. the external body is part of a larger system) is problem-dependent
and irrelevant at this stage.

Equation (2.1) translates into a traction distribution q applied on the contact strip. The
symmetric part of d will give rise to a monopolar-like traction while the antisymmetric part will
produce a dipolar-like traction.

(iii) Model restriction and degrees of freedom

We restrict to certain contact models by assuming that q is a weighted sum of a finite number of
well known distributions. Because they are caused by smooth surfaces in contact, and because
we work in the usual limit a � R, we will refer to them as Hertzian, although this qualification
entails different meanings in the literature: it is often reserved to frictionless contacts, and
sometimes excludes line contacts. The traction distributions considered in this article are depicted
in figure 2—their expressions and what they physically represent is recalled in §2b. In a nutshell,
both small incremental (full stick for normal, shear and tilt) and finite displacements (normal, or
shear with partial slip) are covered, although the focus is set on the full stick case in the examples.
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Figure 2. (a) Force distribution along a line Hertzian contact, representing: a small incremental displacement (b1) or tilt (b2),
a finite normal displacement (b3), a finite transverse displacement with partial slip (b4).

We write the traction as the sum of four components:

q = QxqQx (x)ex + QyqQy (x)ey + QzqQz (x)ez + Mz

R
qMz (x)ey, (2.2)

where qQi (x) are monopolar-like distributions while qMz (x) is a dipolar-like one, and where ei is
either unit vector of the standard basis (i = x, y, z). Note that in equation (2.2) we have chosen to
omit ex and ez dipolar terms. This is because the net force and moment of such distributions is
zero: although they do produce a local field, they bring no contribution to the overall cylinder
motion and as such are not under interest here. Finally, let us introduce the average traction Q
and moment M. Assuming qQi and qMz are properly normalized, they express as

Q =
∮

r=R
q R dθ = Qxex + Qyey + Qzez (2.3a)

and
M =

∮
r=R

r × q R dθ = (RQx + Mz)ez. (2.3b)

(iv) Problem

The problem is to find the displacement field utot resulting from the load, possibly as a function
of time for a dynamic problem, and possibly from other loads if the actual system is comprised of
several bodies in contact.

(b) Distributions of load
We here specify the distributions of load q.(x) for which explicit formulae for the contact
compliance are given in §4. These distributions are well known (e.g. [2]). q.(x) is defined for
−a < x < a, where the contact half-width a � R is treated as an arbitrary parameter—its value
eventually depends on the radii and elastic constants of both bodies and on the normal pressure,
following Hertz’s Law. In equation (2.2), we have introduced the notation qQi to refer to a
monopolar-like load on the i = x, y, z component, and qMz for a dipolar-like load around the z
axis. The formulae below are normalized to

∫a
−a qQi dx = 1 and

∫a
−a xqMz dx = R to be compatible

with equations (2.2) and (2.3).

— Small incremental uniform displacement:

qQi (x) = 1
πa

1√
1 − x2/a2

. (2.4)

Equation (2.4) represents a prescribed displacement that is uniform along the contact, i.e.
assuming full-stick (e.g. [2] §7.2). It is well suited to describe a small vibration around a
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given static state, assuming that finite displacement effects are of second order: slip effects
for the transverse components (QxqQx and QzqQz ) and the nonlinear dependence of the
contact half-width upon the normal component QyqQy .

— Small incremental uniform tilt

qMz (x) = 2R
πa2

x/a√
1 − x2/a2

. (2.5)

Equation (2.5) represents a small, shearless prescribed tilt uy(x) = αx, with α = R(κ + 1)/
(2πμa2), assuming full-stick. This distribution is usually called the inclined flat punch (e.g.
[2], ch. 2.7).

— Finite normal displacement

qQy (x) = 2
πa

√
1 − x2

a2 . (2.6)

Equation (2.6) represents a non-uniform deformation along the contact caused by
a normal pressure of finite magnitude Qy, resulting for instance into a flat shaped
contact zone of half-width a(Qy) for a contact between two identical cylinders (e.g. [2]
§4.2).

— Finite transverse displacement, partial slip

qQx,z (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
π (a2 − c2)

(√
a2 − x2 −

√
c2 − x2

)
in the stick zone |x| < c,

2
π (a2 − c2)

√
a2 − x2 in the slip zone c < |x| < a.

(2.7)

Equation (2.7) represents the distribution caused by a tangential traction of finite
magnitude, assuming that the adhesion follows Coulomb’s law (e.g. [2] §7.2 and [18,19]).
Although this adhesive model is simple and widely used, there is a vast literature on
friction modelling, for which [20] can be a good starting point. Here, the contact zone
separates into a stick zone of half-width c, and a slip zone near the edges. By calling

f the coefficient of friction, P = Qy the finite normal pressure and Qshear =
√

Q2
x + Q2

z <

fP the total shear magnitude, c is given by the relation c = a
√

1 − Qshear/fP. Equation
(2.7) further assumes that the normal traction is given by equation (2.6), implying
no tilt from equation (2.5), or Mz = 0. A way to reduce this hypothesis is shown
in [21].

3. General principle of resolution
The idea is to describe the motion of the cylinder as the superposition of an average, rigid body
like motion—the skeleton field, adopting a naming used in [22]—and an elastic deformation—
the inner field. The equations of motion are written in terms of a state vector containing only
the motion of the skeleton (the outer problem), while independent equations are obtained for the
inner field and solved once for all (the inner problem). Then, these inner solutions are converted
into equivalent, possibly nonlinear spring constants and reported into the outer problem and the
boundary condition (2.1). The outer problem is thereby reduced to one with a finite number of
degrees of freedom and can eventually be solved.

(a) Skeleton and inner fields
The total field is expanded as follows:

utot(r) = U + Θ × r + u(r) (3.1a)

and
σ tot = Σ + σ , (3.1b)
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where

— r = (x, y, z) is the position vector from the axis of the cylinder.
— U + Θ × r is the motion of the skeleton and will be called skeleton field: U is a uniform

translation, and Θ × r = Θ ez × r is a uniform rotation.
— u is an elastic displacement relative to the skeleton and will be called inner field.
— Σ = 0 is the (null) skeleton stress field.
— σ is the inner stress field.

(b) Gauges for the inner field
Expansion (3.1a) is defined up to integration constants that represent rigid-body motions. Here,
the inner displacement field is made unique by requiring zero average uniform translations and
rotation about the principal axis ∫∫

S
ρu dS = 0 (3.2a)

and ∫∫
S
ρr × u dS = 0, (3.2b)

in which
∫∫

S dS refers to integrating over the cross section of the cylinder.
Because they come down to requiring zero linear and angular momentum for u in the limit of

small displacements, these gauges are well suited to both static and dynamic problems.

(c) State vectors
In equation (2.2), we have written the traction as a weighted sum of four distributions after
restricting to cases listed in §2b. Likewise, d and the boundary condition (2.1) can then also be
characterized with four values. For this purpose, it is useful to define dα |C = ∂xdy|C the prescribed
inclination at contact, and

α|C = ∂xuy|C (3.3)

the inner field local inclination at contact.
Let us introduce the following state vectors to write the equations in a compact form:

— d̂|C = (dx, dy, dz, Rdα)T|C: prescribed displacement at contact.
— Q̂ = (Qx, Qy, Qz, R−1Mz)T: net efforts at contact.
— û = (ux, uy, uz, Rα)T: inner field → û|C: inner field at contact.
— Û = (Ux, Uy, Uz, RΘ)T: skeleton field state variables.

By using the relations utot|C = U + RΘex + u|C and ∂xuy,tot|C = Θ + α, equation (2.1) can be re-
written

R̂Û + û|C = d̂|C, (3.4)

with R̂ the relations matrix

R̂ =

⎡
⎢⎢⎢⎣

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ . (3.5)
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(d) Dynamic inner and outer problems
(i) Balance of forces

The balance of forces for the total field reads

ρ∂2
t utot − ∇ · σ tot = 0 for r < R (3.6a)

and
σ tot · er = q for r = R. (3.6b)

The next step is to separate equations (3.6) into equations involving only the skeleton on the one
hand, and only the inner field on the other hand.

(ii) The outer problem

We apply the gauge integrals (3.2) to equations (3.6), use the divergence theorem to transform∫∫
S ∇ · σ tot dS = Q, and

∫∫
S r × ∇ · σ tot dS = M by noticing that r × ∇ · σ tot = ∂i(r × σ i,tot) because

ei × σ i,tot = 0. We then obtain the law of conservation of momentum

∂2
t M̂Û = R̂T

Q̂, (3.7)

with

M̂ = m diag
([

1, 1, 1,
J

mR2

])
, (3.8)

the mass matrix, m = ∫∫
S ρ dS = ρπR2 the mass and J = ∫∫

S ρr2 dS = (1/2) mR2 the moment of
inertia with respect to the principal axis.

(iii) The inner problem

Inserting equations (3.7) into (3.6) leads to a balance of forces that does not explicitly involve the
skeleton

ρ∂2
t u − ∇ · σ = b for r < R, (3.9a)

σ · er = q for r = R (3.9b)

and b = − ρ

m
Q − ρ

J
M × r. (3.9c)

In equations (3.9), the bulk load b balances the surface traction q on average, which ensures that
the static limit can be taken, as done later on. b can be interpreted as the superposition of rigid-
body inertia forces

b = btr + brot, (3.10)

where btr = −ρm−1Q can be viewed as the inertia of a uniform translation and brot = −ρJ−1M × r
can be viewed as the inertia of a uniform rotation.

(e) Quasi-static compliance of the system
Taking the static limit in equations (3.9) by neglecting ρ∂2

t u ≈ 0 leads to a well-posed inner
problem that can be solved analytically for the traction distributions listed earlier: this solution is
given in §4. Formally, let us write

û|C = ĈQ̂, (3.11)

with Ĉ(a) the contact compliance matrix, which depends on the contact half-width a. For finite
displacements (i.e. qQy is given by equation (2.6)), we recall that a depends on the normal pressure
Qy, which renders the relation (3.11) nonlinear. For small incremental displacements (qQy is given
by equation (2.4)), relation (3.11) is of course linear, and is defined around the static state given
by a.
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Anticipating the solutions given in the next section, Ĉ can be approximated by a diagonal
matrix because the coordinates (x, y) align with the tangential and normal directions

Ĉ = diag([Cxx, Cyy, Czz, Cαα]). (3.12)

Indeed, the off-diagonal terms in equation (3.12) Cxα = Rux|C/Mz and Cαx = Rα|C/Qx are much
smaller than the corresponding diagonal terms and can be neglected: Cxα � Cxx and Cαx � Cαα .

(f) Extension to several contact points: far field compliance
If the overall system is comprised of more than two cylinders, such as one of these undergoes
several contacts, then the global compliance matrix will need other terms to be assembled. Indeed,
by calling C2 another contact point to the cylinder under consideration, the inner field at that point
is also composed of a far field contribution from the efforts at point C—renamed C1 here. Let us
then formally extend equation (3.11) as

û|C1 = Ĉ(C1, a1)Q̂1 + Ĝ(C2, R, θ2,1)Q̂2 (3.13a)

and

û|C2 = Ĝ(C1, R, θ1,2)Q̂1 + Ĉ(C2, a2)Q̂2, (3.13b)

where we have defined Ĝ(Ci, r, θ ) the far-field compliance matrix from a source at point Ci (i =
1, 2), û|Ci (Q̂i) the inner displacement (efforts) at point Ci, θ1,2 the angle from C1 to C2 and ai the
ith contact half-width. Note that we have added the Ci argument to Ĉ to emphasize that it might
in general not be diagonal—to preserve this property one should use polar coordinates for ûi and
Q̂i, which also leads to a more symmetric form for Ĝ.

Unlike Ĉ, Ĝ does not depend on ai, however, it contains off-diagonal terms and can be
approximated by

Ĝ =

⎡
⎢⎢⎢⎣
Gxx Gxy 0 0
Gyx Gyy 0 0
0 0 Gzz 0
0 0 0 0

⎤
⎥⎥⎥⎦ . (3.14)

Here, we have neglected any far field term involving α because of its qualitatively faster decrease
with the distance to the source (as 1/||r − C||) than the other terms (as log ||r − C||).

(g) Resolution
Equations (3.4), (3.7) and (3.11) (or (3.13)) represent a well-posed system, which can be solved. Let
us emphasize again that an essential brick is equations (3.11) and (3.13), which is the object of §4.

4. The static inner problems and their solutions
In this section, we treat the inner problem defined by equations (3.9) and (3.2) as a set of four
independent problems. We seek to obtain the displacement field u. We solve these four problems
analytically in the static limit, i.e. by taking ρ∂2

t u ≈ 0.
We first define four Green’s problems by considering line loads of unit amplitude

(Qx,y,z = 1 or 0, R−1Mz = 1 or 0) and call Ĝ their solutions (Green’s matrix). We then consider
normalized distributions of finite extent (see §2b) and call Ĉ the matrix of solutions at the centre
of the contact, i.e. for r = C.

Plane strain: We assume that the cylinder is long enough for the plane strain hypothesis to be
valid. Solutions are expressed using Kolosov’s1 constant κ = 3 − 4ν.

1The formulae are also valid for plane stress by taking κ = (3 − ν)/(1 + ν).
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Rxδ(r – C)ey

(a) (b) (c) (d)

2r eθπR3

δ(r – C)ez

1 ezπR2

δ(r – C)ex

1 (ex + 
πR2

2r
R

eθ)

δ(r – C)ey

1 eyπR2

Figure 3. Load distribution in Green’s problems. (a) Normal load, (b) in-plane tangential load, (c) out-of-plane tangential load
and (d) dipolar normal load.

(a) The four Green’s problems and their solutions
As a first step of resolution, let us address the following four cases of unit line loads, represented
in figure 3.

Definitions.

(a) normal load: q = δ(r − C) ey and b = −(πR2)−1 ey,
(b) in-plane tangential load: q = δ(r − C) ex and b = −(πR2)−1(ex + 2rR−1eθ ),
(c) out-of-plane tangential load: q = δ(r − C) ez and b = −(πR2)−1ez,
(d) dipolar normal load: q = R∂xδ(r − C) ey and b = −2r/(πR3) eθ ,

where δ is the unit impulse symbol.

(i) Solutions on the edge

We recall in appendix A the well-known methodology to obtain the solutions to these four
problems, and provide the expression of Green’s functions at any point inside the cylinder. Here,
we report only their expression at r = R, where simplifications can be done using β = (θ − π )/2
and s = 2| sin θ/2| for 0 ≤ θ ≤ 2π . Indeed, these are the formulae that are required to assemble the
compliance matrix of systems of several cylinders in contact as illustrated by the example in §5a.

(a) Normal load

4πμGxy|r=R = 1
2

(κ − 1)(θ − π ) + 1
2

(κ + 1 + 2 cos θ ) sin θ (4.1a)

and

4πμGyy|r=R =
(

1
2

− (κ + 1) log
∣∣∣∣2 sin

θ

2

∣∣∣∣
)

− 1
2

(κ + 1 + 2 cos θ ) cos θ . (4.1b)

(b) In-plane tangential load

4πμGxx|r=R =
(

1
2

− (κ + 1) log
∣∣∣∣2 sin

θ

2

∣∣∣∣
)

− (κ − 1
3

− cos θ ) cos θ (4.2a)

and

4πμGyx|r=R = −1
2

(κ − 1)(θ − π ) −
(

κ − 1
3

− cos θ

)
sin θ . (4.2b)
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(c) Out-of-plane tangential load

4πμGzz|r=R = −4 log
∣∣∣∣2 sin

θ

2

∣∣∣∣+ 1
2

. (4.3)

(d) Dipolar normal load

4πμGxα |r=R = −1
2

(κ − 3 − 2 cos θ ) −
(

κ + 2
3

)
cos θ (4.4a)

and

4πμGyα |r=R = 1
2

cot
θ

2
(κ + 3 − 2 cos θ ) −

(
κ + 2

3

)
sin θ . (4.4b)

Let us emphasize that equations (4.1)–(4.4) are valid only for 0 ≤ θ ≤ 2π because of the relation
β(θ ). For another range of definition of θ such as −π ≤ θ ≤ π , they have to be adapted by replacing
θ → θ mod 2π , where mod is the modulus operator.

(b) The Hertzian contact problems and their solutions at the contact point
Let us now consider that the traction distribution q is composed of normalized distributions of
finite extent. As in the previous section, we set Qx,y,z = 1 or 0, R−1Mz = 1 or 0.

(i) Method of resolution

Green’s functions given in appendix A are convolved with the normalized distributions defined
in §2b, yielding the contact compliance matrix Ĉ when the convolutions are evaluated at point
C. The integrals involved are solved analytically in the limit 2a � R – for the sake of conciseness
they are given in appendix Cc.

(ii) Solutions for full-stick, small incremental displacements

We start by giving the compliance corresponding to distributions given by equations (2.4) and
(2.5). Only non-zero terms are reported.

(a) Small, incremental normal load

4πμCyy = (κ + 1) log
2R

a
√

e
− 1

2
. (4.5)

(b) Small, incremental in-plane tangential load

4πμCxx = (κ + 1) log
2R
a e

+ 3 − 1
6

(4.6a)

and
4πμCαx = R

2a
π (κ − 1). (4.6b)

(c) Small, incremental out-of-plane tangential load

4πμCzz = 4 log
2R
a

+ 1
2

. (4.7)

(d) Small, incremental dipolar normal load

4πμCαα = 2R2

a2 (κ + 1) (4.8a)

and
4πμCxα = −3

2
κ + 11

6
, (4.8b)

with e = exp(1). An application of the normal contact compliance formula (4.5) can be found in
[6,23], where contact effects are accounted for in the stiffness matrix of a wire strand.
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(iii) Solutions for finite displacements

The formulae for Cxx, Cyy and Czz corresponding to distributions given by equations (2.6) and (2.7)
read

(a) Finite normal load

4πμCyy = (κ + 1) log
2R
a

− 1
2

. (4.9)

(b) Finite in-plane tangential load with partial slip, by calling c the half-width of the stick
strip

4πμCxx = (κ + 1) log
2R

a
√

e
+ (κ + 1)c2

a2 − c2 log
c
a

+ 3 − 1
6

(4.10a)

and

4πμCαx = same as equation (4.6). (4.10b)

(c) Finite out-of-plane tangential load, with partial slip

4πμCzz = 4 log
2R

√
e

a
+ 4c2

a2 − c2 log
c
a

+ 1
2

. (4.11)

(c) Solution: inner field at and far from contact
From these latter two parts, using the state vectors defined in §3c, the inner field can be expressed
as

û(r) =
{

Ĝ(r)Q̂ far from the contact: ||r − C|| � a,
Ĉ(a)Q̂ at the centre of the contact: r = C,

(4.12)

where the far field terms ||r − C|| � a are approximated by merely multiplying Green’s functions
by the average loads Qx,y,z and Mz/R, and where the intermediate region s ∼ a is small and then
not of interest.

5. Examples
Let us illustrate how the formulae derived in the previous parts can be applied to obtain analytical
solutions to problems involving cylinders in contact. In example 5a, we show how the compliance
of a simple system of three cylinders can be properly assembled by accounting for non-local
terms (i.e. the far field in Green’s solutions), by revisiting an example given in [2]. Although there
already exists a general recipe to obtain the stress field within a cylinder under multiple contacts
([24]—§37), example 5a indicates how this could be extended to get the displacement field. In
example 5b, we derive the free and forced dynamic response of a single cylinder in contact with
a stiff soil.

(a) Example 1: Compression of a cylinder in contact with two others
It may be instructive to show how a well-known formula can be recovered using equations (4.1)
and (4.9). Consider a cylinder in contact with two others that are located at opposite ends of a
diameter. The two external bodies compress the cylinder at a magnitude Qy = P per unit axial
length. This case is treated in [2] §5.6. We call C1 = (0, −R)T and C2 = (0, R)T the contact points
before any pressure is applied, and a1(P) and a2(P) the contact half-widths. This situation can be
viewed as a superposition of two cases of type (a) treated in §4, with load distributions following
equation (2.6): the body forces cancel and only the Hertzian loads remain. We call u1 and u2 the
solutions to these two cases, given by equations (4.1) and (4.9) under an appropriate change of
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vibrating soil
d eiωt

contact springs

Figure 4. A cylinder in Hertzian contactwith a vibrating soil, represented at low frequencies as amass-spring systemwith 4 d.f.

coordinate system. The displacement u = u1 + u2 at point C1 is obtained by subtracting equation
(4.1) evaluated at θ = π to equation (4.9):

4πμ

P
uy(C1) = (κ + 1) log

2R
a1

− 1
2

−
(

−(κ + 1) log 2 − 0 + 1
2

(κ − 1) + 1
2

)

= (κ + 1)
(

log
4R
a1

− 1
2

)
. (5.1)

A similar expression can be obtained at point C2. The compression of the diameter δ = uy(C1) −
uy(C2) is then

δ = P
(κ + 1)

4πμ

(
log

4R
a1

+ log
4R
a2

− 1
)

. (5.2)

With κ = 3 − 4ν and μ = E/2(1 + ν), one recovers the formula given in [2] §5.6:

δ = 2P
(1 − ν2)

πE

(
log

4R
a1

+ log
4R
a2

− 1
)

. (5.3)

(b) Example 2: The heavy cylinder on a vibrating soil
Here, we go back to the minimalist example of a single cylinder and add a dynamic behaviour.
The resolution method is to replace contacts with equivalent springs under a low-frequency
approximation, as represented in figure 4. We revisit the classical example of the ‘heavy disc’
or ‘heavy cylinder’ [15] by introducing a small dynamic motion in the stiff soil supporting the
cylinder. The original problem in Michell’s paper was to find the stress field caused by the weight
and a line-wise contact with the soil. Here, the problem is to find the displacement field as a
function of the forcing frequency, under the assumption that the contact follows Hertz’s Law.

(i) Initial state and perturbed state

A cylinder lays over a stiff soil. Under the action of a normal body force of magnitude P0 (e.g. the
weight) and the reaction of the soil q0 (Hertzian contact distribution following equation (2.6)), the
cylinder deforms into an initial (static) state (u0, σ 0) characterized by a contact strip of width 2a,
where a =

√
4P0R(1 − ν2)/πE according to Hertz’s Law.

Then, let us consider that the soil slightly vibrates harmonically owing to a small prescribed
displacement d eiωt, with ω the angular frequency and t the time. The related contact load
q eiωt follows equations (2.4) and (2.5). This excitation produces a small incremental dynamic
displacement udyneiωt. The total displacement and stress become

utot(t) = u0 + udyn eiωt (5.4a)

and

σ tot(t) = σ 0 + σ dyn eiωt. (5.4b)
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For simplicity, we use a coordinate system centred on the centre of mass of the cylinder in the
initial state u0, such as in the previous sections (figure 1). From here on, only the dynamic part
udyn is of interest and we apply the notations defined earlier to it: U is the skeleton part of udyn, u
is the inner field part, etc.

(ii) Solutions: forced motion and contact resonances

Equations (3.4), (3.7) and (3.11) can be combined to obtain an equation on the skeleton field only

(−ω2M̂ + K̂)Û = K̂R̂−1
d̂|C, (5.5)

with
K̂ = R̂TĈ−1R̂, (5.6)

the (real, symmetric, positive definite) stiffness matrix. The solution of equation (5.5) (forced
motion) can be straightforwardly obtained by inverting the left-hand side matrix. It is however
more insightful to express the solution as a combination of the eigenmodes of the system: we
call (ω2

n, Ûn) the eigenvalues and eigenvectors of the Hermitian generalized eigenvalue problem

K̂Ûn = ω2
nM̂Ûn and require the following normalization: Û

T
nM̂Ûn = m. Then,

Û =
4∑

n=1

dn
1

1 − ω2/ω2
n

Ûn, (5.7)

in which dn = d̂
T
n d̂|C is the participation factor of mode n, and with d̂n = m−1(R̂T

)−1M̂Ûn. The
contact forces can be obtained using equation (3.11)

Q̂ =
4∑

n=1

dn
ω2/ω2

n

1 − ω2/ω2
n

Q̂n, (5.8)

where we have defined Q̂n = −mω2
nd̂n the eigen contact forces. Knowing the contact efforts Q̂ at

a given frequency ω, the inner field u(r, ω) can be obtained at any point using equation (4.12).
Finally, the total dynamic field udyn(r, ω) can be obtained using equation (3.1a).

The eigenvalue problem is simple enough for analytical solutions to be derived; indeed only
the Ux and Θ components are coupled. The four eigenmodes are

ω1 =
√

1
Cααmα

, Û1 =
√

2
3

(−1, 0, 0, 1)T, d̂1 =
√

2
3

(
−1, 0, 0,

3
2

)T
, Q̂1 = −2

3
C−1

αα d̂1, (5.9a)

ω2 =
√

1
Czzm

, Û2 = (0, 0, 1, 0)T, d̂2 = Û2, Q̂2 = −C−1
zz d̂2, (5.9b)

ω3 =
√

1
Cyym

, Û3 = (0, 1, 0, 0)T, d̂3 = Û3, Q̂3 = −C−1
yy d̂3 (5.9c)

and ω4 =
√

1
Cxxmx

, Û4 = 1√
3

(1, 0, 0, 2)T, d̂4 = 1√
3

(1, 0, 0, 0)T, Q̂4 = −3C−1
xx d̂4, (5.9d)

with mx = (m−1 + (J/R2)−1)−1 = 1/3 m and mα = 3/2 m.

Remark. Equations (5.9a) and (5.9d) were obtained by noticing that Cxx � Cαα , expanding in
powers of Cxx/Cαα and keeping only the leading term.

(iii) Numerical evaluation, discussion

Let us now apply equations (5.7) and (5.9) with parameters representing a steel cylinder:
E = 217 GPa, ν = 0.28, ρ = 7.8 g cm−3, R = 3.6 mm. The contact half-width is set to a/R = 1%: this
order of magnitude can be reached in a wire strand between a peripheral wire and the core when
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Figure 5. Forced response of a steel heavy cylinder in Hertzian contactwith a vibrating soil, for different vibration polarizations,
obtained using the analytical solutions in the quasi-static approximation (solid lines) or using finite elements (FE) (dashed lines,
see appendix B for details). The first four resonances are the contact resonances of the system, then elastic resonances start to
contribute. Contact half-width: a/R= 1%.

applying a tension close to the maximal service load—as a comparison, the action of the weight
only yields a much weaker value (a/R ∼ 6.8 × 10−3 %). The frequencies will be normalized with
a characteristic angular frequency of the cylinder ωcyl = cS/R, with cS =√

E/2(1 + ν)ρ the shear
wave velocity.

Figure 5 represents the forced response (equation (5.7)) at the top of the cylinder (udyn|r=R, θ=π )
as a function of the normalized driving frequency ω/ωcyl, for different polarizations of the soil
motion. A reference solution obtained with FE—see appendix B for details—is superimposed to
show the transition from which the low-frequency hypothesis stops being valid: here we observe
excellent agreement up to roughly ω/ωcyl ≈ 1.5, after which elastic resonances start to dominate
the solution. It is noticeable that the lowest contact resonance frequency is orders of magnitude
below the other three. This is because the response to the dipolar normal load is qualitatively
different: the fundamental solution (displacement) behaves as 1/s near the load instead of log s,
leading to a contact compliance in (a/R)−2 instead of − log a/R + const., hence resulting into a
much higher compliance for a/R � 1.

Figure 6 illustrates further this dependence on the contact width. The eigen angular
frequencies ωn (equations (5.9)) are represented as a function of a/R, emphasizing three families
of modes: one pendulum-like contact mode with ω1 ∼ a/R, then three other contact modes
with ω2,3,4 ∼ 1/

√− log a/R + const., responding to piston or tangential forces, and finally elastic
resonances in infinite number from (depending on a/R) half an order of magnitude above the
highest contact mode, whose frequencies are almost independent on the contact width in the
range compatible with the Hertzian approximation. Figure 6 also illustrates the decomposition of
the displacement field into a skeleton field that allows for an average description of the motion,
and an inner field that captures the deformation due to the contact.

6. Conclusion
This manuscript gives a derivation of the compliance of an elastic cylinder to surface forces
representing a Hertzian contact, that are balanced by bulk forces representing the inertia of
rigid body motions. It contains an extensive set of closed form formulae, starting from Green’s
functions of the problems for the displacement and stress fields, to the value of the response at the
contact point. An original aspect that relates to a long standing discussion in the literature is how
displacements are made unique: here integral gauges have been introduced whose justification
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Figure 6. First eigenmodes of a steel heavy cylinder in Hertzian contact with the soil, obtained using the analytical solutions in
the quasi-static approximation or using FE, see appendix B for details. (a) Eigenfrequency as a function of the contact half-width
a. The dashed lines stand for FE solutions. (b) Mode shapes; analytical solutions are represented by filtering out or including the
inner field. Pink-green colourmap depicts out-of-plane modes.

arises when addressing dynamic problems. From these formulae, the forced and free response of
a cylinder in contact with a vibrating soil have been derived.

The natural way to use these formulae is to address systems of several—or many—cylinders
in contact, either in static equilibrium or in linear or nonlinear dynamic motion around a given
static state, and construct the compliance matrix by linear superposition. For statics there already
exists a general solution to obtain the stress within a cylinder submitted to multiple contacts, here
the benefit would be to also obtain the displacement. For dynamics, one could think of modelling
vibrations in a lattice of cylinders, obtaining the normal modes of a stack of cylinders, or, more
specifically, modelling the behaviour of wire strands at low frequencies. For this latter perspective,
it seems a promising way to couple the present results to beam theory. Another further step could
be to model frictional hysteretic damping by employing the contact compliance with partial slip,
a case which has been only barely sketched here.

A limitation is the geometry of the cross section, which has to be purely circular. In the context
of wire ropes, there exists a wide variety of architectures that also resort to exotic cross sections
(e.g. Z-shaped). Devising a numerical strategy to adapt the current formulae to these shapes
would also be beneficial.
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Appendix A. Full solutions of Green’s inner static problems
We here recall how the four Green’s problems defined in §4 can be solved. We give an expression
of the displacement field that is valid at all points inside the cylinder, from which the simplified
formulae (4.1)–(4.4) were derived. We also report the partial formulae from which the total stress
field can be obtained.

The solutions are represented in figure 7. It can be observed that while the displacement turns
out to be zero on the cylinder axis for case (a), and while in case (d) the far-point concept would
also reasonably apply for that point, cases (b) and (c) have no trivial fixed point. A validation of
the formulae with FE is shown in figure 8, see details in appendix B.

(a) Method of resolution
Green’s functions can be constructed by superposing:

— the response of a half-space to a load applied on its boundary (the Flamant solution),
— the contribution of balancing body forces (gravitational-like loading, and rotational

acceleration),
— solutions of the bi-harmonic equation chosen to satisfy the boundary condition (the

Michell solutions),
— rigid-body displacements chosen to satisfy Gauges (3.2).

Corresponding formulae can either be readily found in [14], or be deduced with simple algebra
from solutions in stress reported in [14]. The integrals required for the gauges are given in
appendix C. Case (c) is simpler, it is amenable to a more straightforward resolution using
separation of variables. Case (d) is qualitatively different because the dipolar load leads to a
decrease of the fundamental solution as 1/||r − C|| rather than log ||r − C||: for our purpose, it
would be enough to only account for the local curvature and prescribe zero displacement of a ‘far
point’ (half-space approximation), as done in three dimensions for deriving the compliance of a
point-wise contact. However, for the sake of uniformity in the derivations, we treat case (d) in the
same manner as the others and give the solution to the entire problem.

(b) Polar coordinates (s,β)
Parts of the formulae can be most conveniently expressed by using polar coordinates centred on
point C, whose definition is recalled here (figure 1): s = ||r − C|| and tan β = −r sin θ/(R − r cos θ ),
or equivalently x = −s sin β and y + R = s cos β, with −π/2 ≤ β ≤ π/2.

(c) Normal load
We here treat the case depicted in figure 3a, which can represent a cylinder that deforms under its
own weight. This case is a classic since [15] (the ‘heavy disc’ or ‘heavy cylinder’) and is often given
as an exercise in textbooks, where the problem is to find the stress field (e.g. [14] §12). However,
in spite of that, it seems hardly possible to find an explicit report of the displacement field caused
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(a) (b)

>0

<0

(c) (d )

0 max

Figure 7. (a–d) Analytical Green’s functions: displacement field for a Poisson’s ratio ν = 0.28. Log scale colours are
proportional to the magnitude of the displacement.

by this system of forces. The solution is partially given in [7]—where only the displacement for
the Hertzian problem at the contact point is derived. We did find reports of the solution in [23]
and [5], however, with typographic errors—the reference quoted in [23] that supposedly contains
the proof is a real challenge to find.

The solution can be constructed by adding the contributions of:

— the Flamant solution

— Airy stress function: φF = −π−1sβ sin β,
— Stress tensor: 2π (σ F

ss, σ
F
ββ , σ F

sβ ) = −(4 cos β/s, 0, 0),

— the irrotational force field btr = −∇V

— Potential: V = y/πR2,
— Stress tensor: 2π (σ tr

rr , σ tr
θθ , σ tr

rθ ) = (2πV, 2πV, 0),

— the following two corrective fields:

1. Airy stress function: φC1 = r2/(4πR),
1. Stress tensor: 2π (σC1

rr , σC1
θθ , σC1

rθ ) = (R−1, R−1, 0),
2. Airy stress function: φC2 = r3 cos θ/(4πR2),
2. Stress tensor: 2π (σC2

rr , σC2
θθ , σC2

rθ ) = rR−2(cos θ , 3 cos θ , sin θ ),

giving the following result for the displacement field:

4πμGxy = − sin 2β + (κ − 1)β + r
2R

(κ − 1) sin θ + r2

2R2 sin 2θ (A 1a)

and

4πμGyy = −(κ + 1) log
s
R

− 2 sin2 β − r
2R

(κ − 1) cos θ + r2

2R2 (1 + 2 sin2 θ ). (A 1b)

This solution is represented in figures 7a and 8a. As discussed in the introduction, it can be
observed that the displacement is indeed not zero far from the source, which calls for a careful
treatment of how references are measured (through gauges in this manuscript). This is in contrast
to the case of a point contact, or to the dipolar case (d).

Remark. The displacement at point O is zero: this point remains the centre of mass of the
cylinder. This is not the case for tangential loads.

(d) In-plane tangential load
We here treat the case represented in figure 3b. Unlike case (a), this case seems not to appear in
the literature, even though the closely related case of a cylinder accelerated by two diametrically
opposed sources can be found in [14], §12.
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The solution can be constructed by adding the contributions of

— the Flamant solution

— Airy stress function: φF = −π−1sβ cos β,
— Stress tensor: 2π (σ F

ss, σ
F
ββ , σ F

sβ ) = (4 sin β/s, 0, 0),

— the irrotational force field btr = −∇V

— Potential: V = x/πR2,
— Stress tensor: 2π (σ tr

rr , σ tr
θθ , σ tr

rθ ) = (2πV, 2πV, 0),

— the solenoidal force field brot = ∇ × A

— Vector potential: A = r2/(πR3)ez,
— Stress tensor: 2π (σ rot

rr , σ rot
θθ , σ rot

rθ ) = (0, 0, πA),

— a corrective field

— Airy stress function: φC = −r3 sin θ/(4πR2),
— Stress tensor: 2π (σC

rr , σC
θθ , σC

rθ ) = rR−2(− sin θ , −3 sin θ , cos θ ),

giving the following result for the displacement field:

4πμGxx = −(κ + 1) log
s
R

+ 2 sin2 β + r2

2R2 (1 + 2 cos2 θ ) +
(

r3

R3 −
(

κ + 5
3

)
r
R

)
cos θ − 1 (A 2a)

and

4πμGyx = − sin 2β − (κ − 1)β + r2

2R2 sin 2θ +
(

r3

R3 −
(

κ + 5
3

)
r
R

)
sin θ . (A 2b)

This solution is represented in figures 7b and 8b.

Remark. In contrast to the case of a normal load, the displacement at point O is here non-zero.

(e) Out-of-plane tangential load
We here treat the case represented in figure 3c. This case is scalar, and is simple enough to be
solved in a tractable manner by separation of variables. The solution is

4πμGzz = −4 log
s
R

+ r2

R2 − 1
2

. (A 3)

This solution is represented in figures 7c and 8c. The shear stresses σrz = 1
2 μ∂rGzz and σθz =

1
2 μ∂θGzz/r can be derived using s∂rs = r − R cos θ and s∂θ s = rR sin θ—obtained from s2 = R2 −
2rR cos θ + r2. One obtains: 2πσrz = −(r − R cos θ )/s2 + r/(2R2) and 2πσθz = −R sin θ/s2.

Remark. Here again, in contrast to the case of a normal load, the displacement at point O is
non-zero.

(f) Dipolar normal load
We here treat the case represented in figure 3d. This case is qualitatively different to the others as
the fundamental solution has a stronger divergence at the source, and decreases to zero in the far
field. In principle, approximating the contact compliance at the leading order could then be done
by using the half-space approximation and relying on the ‘far point’ concept, as classically done
for a point-wise (three-dimensional) contact compliance. Nevertheless, for the sake of a uniform
presentation, we give here the complete solution of case (d).

The solution can be constructed by adding the contributions of:

— the Flamant solution
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Figure 8. Solutions to the Hertzian problems at the edge, for a contact half-width a/R= 0.1%, a Poisson’s ratio ν = 0.28,
a shear modulus μ = 1 and unit average traction ((a) Qy = 1, (b) Qx = 1, (c) Qz = 1, (d) Mz = 1 and R= 1). The traction
distribution is taken from equation (2.6) for (a) (finite disp.), from equation (2.4) for (b) and (c), and from equation (2.5) for
(d) (small incremental disp. and tilt). Solid lines stand for analytical formulae (see equation (4.12)); dashed lines represent a
validation obtained usingfinite elements, see appendix B for details. Note that (d) is strongly zoomed to see the field at non-zero
angles.

— Airy stress function: −R∂x((1/π )xβ) = −(R/π )β − (R/2π) sin 2β—
using ∂xβ = −∂x arctan x/(y + R) = − cos β/s,

— Stress tensor: 2π (σ F
ss, σ

F
ββ , σ F

sβ ) = 4Rs−2(sin 2β, 0, − cos2 β),

— the solenoidal force field brot = ∇ × A

— Vector potential: A = r2/(πR3)ez,
— Stress tensor: 2π (σ rot

rr , σ rot
θθ , σ rot

rθ ) = (0, 0, πA),

— (no corrective field is needed),

giving the following result for the displacement field:

4πμGxα = R cos β

s
(κ + 1 − 4 cos2 β) − (κ − 2) +

(
r3

R3 −
(

κ + 5
3

)
r
R

)
cos θ (A 4a)

and

4πμGyα = −R sin β

s
(κ + 1 + 4 cos2 β) +

(
r3

R3 −
(

κ + 5
3

)
r
R

)
sin θ . (A 4b)

This solution is represented in figures 7d and 8d.

Appendix B. Comparison with finite elements
Finite-elements (FE) reference computations presented in figures 5, 6 and 8 were performed using
the FreeFem++ software [25]. In all cases, a mesh refinement loop was used to properly converge
to the solution near the contact region. P2 Lagrange elements were used. In neither case, the
geometry of the cylinder was deformed prior to applying a load (figure 8) or applying a Dirichlet
condition (figures 5 and 6): even if the cases may represent a boundary deformed by an initial
pressure, this geometric effect was neglected, as do the analytical approximations.

The static problems represented in figure 8a,b and c are ill behaved due to the difficulty to reach
the balance of forces at a required numerical accuracy: a small penalization term was added to
remedy this issue. Cases (b) and (c) involve a force distribution that is weakly singular at the tips
of the contact strip: the distribution was therefore slightly truncated (and re-normalized). Case (d)
involves a much stronger singularity: no static FE computation was intended, however we believe
that the dynamic FE computations shown in figures 5 and 6 (forced response and eigenmodes)
provide solid validation.
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Appendix C. Useful integrals
All formulae in this appendix are expressed with dimensionless coordinates, obtained by
normalizing with the radius of the cylinder. Equivalently, it comes down to writing R = 1 in the
notations used above.

Let us start with a few useful relations obtained by introducing complex numbers. The two
sets of polar coordinates relate as

s eiβ = 1 − r eiθ , (C 1)

with i = √−1. Taking the logarithm of (C 1), expanding the right-hand side into a Laurent series,
and identifying real and imaginary parts yields

log s = −
∑
n≥1

rn cos nθ

n
(C 2)

and

β = −
∑
n≥1

rn sin nθ

n
. (C 3)

(a) Gauges on translations
The integrals listed below relate to gauges (3.2a).

(i) Non-zero integrals

—
∫∫

S dS = π .
—

∫∫
S rn dS = ∫2π

θ=0
∫1

r=0 rn+1 dr dθ = 2π/(n + 2).
—

∫∫
S sin2 θ dS = ∫∫

S cos2 θ dS = π/2.

—
∫∫

S sin2 β dS = π/4: using
∫∫

S dS = ∫π/2
β=−π/2

∫2 cos β

s=0 s ds dβ.
—

∫∫
S cos β/s dS = π : same method.

—
∫∫

S cos β3/s dS = 3π/4: same method.

(ii) Zero integrals

—
∫∫

S log s dS = 0: all terms of the series expansion (C 2) give 0.
— Integrals of rn cos mθ , rn sin mθ , with m ≥ 1 an integer.
— Integrals of sin β, sin 2β and β: odd functions of x.

(b) Gauge on rotation
The integrals listed below relate to gauge (3.2b):

∫∫
S ruθ dS = ∫∫

S(rux cos θ + ruy sin θ ) dS.

(i) Non-zero integrals

—
∫∫

S r cos θ log s dS = −π/4: using the series expansion in equation (C 2), all terms give 0
except for n = 1.

—
∫∫

S β r sin θ dS = −π/4: same method, using equation (C 3).

—
∫∫

S r cos θ sin2 β dS = π/12: using r cos θ = 1 − s cos β and
∫∫

S dS = ∫π/2
β=−π/2

∫2 cos β

s=0 s ds dβ.
—

∫∫
S r cos θ cos β/s dS = π/4: same method.

—
∫∫

S r cos θ cos β3/s dS = π/8: same method.
—

∫∫
S r sin θ sin 2β dS = −π/3: same method, using r sin θ = −s sin β.

—
∫∫

S r sin θ sin β/s dS = −π/4: same method.
—

∫∫
S r sin θ cos2 β sin β/s dS = −π/8: same method.

—
∫∫

S r2 dS = π/2.
—

∫∫
S r4 dS = π/3.
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(ii) Zero integrals

— r sin θ log s, r cos θ sin 2β, r cos θ β, and r sin θ sin2 β: odd functions of x.
— r cos θ sin 2θ , r sin θ sin2 θ and r sin θ cos2 θ : odd functions of x.
— r sin θ sin 2θ , r cos θ sin2 θ and r cos θ cos2 θ : odd functions of y.
— cos θ sin θ .

(c) Convolutions with Hertzian distributions at the mid-point of contact
Most integrals are either zero (odd functions convolved by even distributions), or straightforward
(sin2 β = 1 is a constant on y = 0, far field terms r, θ are constant in the limit a → 0). The only
tedious convolutions are those involving log s:

— For distributions (2.6) and (2.7): from [26] §4.241, equation (9):

2
∫ 1

0

√
1 − x2 log x dx = −π

4
− π

2
log 2 = −π

2
log 2

√
e. (C 4)

— For distribution (2.4): from [26] §4.241, equation (7):
∫ 1

0

log x√
1 − x2

dx = −π

2
log 2. (C 5)
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