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ABSTRACT
The proliferation of airborne drones, while instrumental to a broad

range of applications, has led to an increased number of regula-

tory non-compliance incidents. The ubiquitous unmanned aerial

vehicles (UAVs) are posing security risks, since they have started

to be used for cybercrimes. Effective detection of illicit drones in

restricted areas is paramount. Evolved drones are more and more

sophisticated, and sometimes they do not emit RF-based signals,

making inapplicable RF-based detection solutions. Different from

existing work, this paper introduces a neural sensor fusion frame-

work for drone detection based on both audio and video data to ac-

curately identify drones and differentiate them from similar objects

at long distances. Our design adopts a late fusion approach using the

Weighted Average and Random Forest algorithm on the visual and

auditory classification pipeline. Specifically, we process infrared

data using a You Only Look Once (YOLO) v5 model due to its bal-

ance between inference time and accuracy. For the audio stream,

we evaluate Long Short-Term Memory (LSTM) and Convolutional

Recurrent Neural Network (CRNN) models and demonstrate the

superiority of the CRNN model through Mel-Frequency Cepstral

Coefficients (MFCC) features. To demonstrate the robustness of our

audio-visual fusion approach, we validate it in extensive scenarios,

with impaired audio/video data. Our results demonstrate that multi-

modal fusion significantly improves drone detection, outperforming

traditional single-modality systems in complex environments. Ad-

ditionally, our system provides predictions rapidly, in just 0.382

seconds, making it well-suited for real-time applications.

CCS CONCEPTS
• Networks→Wireless access networks; • Security and pri-
vacy→ Intrusion/anomaly detection and malware mitiga-
tion; • Computing methodologies→ Neural networks; En-
semble methods.

KEYWORDS
drone detection, deep learning, audio classification, infrared imag-

ing, late fusion.

1 INTRODUCTION
The increasing use of airborne drones in commercial applications

such as surveillance, logistics, and photography raises concerns

about maintaining a safe and private airspace. The need for robust

drone detection mechanisms is increased by the possibility of inci-

dents such as aircraft interference, invasive monitoring, and threats

to essential services [39]. Some threats related to drones encompass

illegal surveillance or also terroristic attacks, as occurred in [8].

The detection of drones, especially during nocturnal hours, is

then of paramount importance due to the reduced visibility and in-

creased likelihood of covert operations. Some of the possible drone

detection approaches are based on humming sounds from drones

(audio), Radio Frequency (RF) signals from the drone controller, etc.

Infrared (IR) sensors have been recognized as a pivotal technology

for enhancing nocturnal detection capabilities, utilizing thermal

signatures to detect drones in conditions where traditional visual

spectrum sensors fail [33]. However, existing systems relying solely

on IR imaging face limitations in terms of detection accuracy and

environmental adaptability. On the other hand, audio-based detec-

tion solutions also offer advantages under certain conditions, but

their effectiveness can be compromised in noisy environments or

be affected by factors such as wind direction and temperature.

This paper aims to bridge this gap by proposing a novel drone

detection system that synergies the strengths of both IR imaging

and acoustic sensing. We posit that integrating IR sensors’ thermal

detection capabilities with the light-independent drone identifica-

tion offered by acoustic sensors can significantly enhance detection

efficiency [5, 34]. This integration is achieved through late sensor

fusion, a strategy shown to augment detection robustness by lever-

aging the complementary features of each sensingmodality, thereby

reducing faults and improving reliability in diverse operational sce-

narios [33, 34]. This work’s contributions can be summarized as

follows:

• We extend the application of Long Short-Term Memory

(LSTM) and Convolutional Recurrent Neural Network

(CRNN) models to drone audio recognition. Our approach

includes novel customization of the LSTM architecture, op-

timizing it for Mel-Frequency Cepstral Coefficients (MFCC)

feature processing. Additionally, we integrate a special-

ized CRNN model in PyTorch for Log-Mel spectrogram and

MFCC feature analysis, leading to improved audio recogni-

tion performance.

• We have developed a preprocessing technique that is not

only tailored to the unique characteristics of IR imagery but

also exhibits versatility for adaptation to various datasets.
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Our methodology adapts You Only Look Once (YOLO) mod-

els to IR imagery, employing layer freezing to enhance com-

putational efficiency. We conduct a comparative analysis of

YOLOv3 and YOLOv5 models on IR datasets, a perspective

that is largely unexplored in the existing literature, to the

best of our knowledge.

• We propose a novel fusion approach, termed Dynamic

Weighted Average Fusion (DWAF). In particular, DWAF is

based on the combined outputs of the CRNN and YOLOv5.

Specific adaptive weights are assigned to each model based

on its performance during the prediction process. A further

stage, called Multi-Modal Tree Fusion (MMTF) is applied

to the predictions, based on a trained classifier, to enhance

the accuracy of the prediction.

The evaluation outcomes demonstrate the superior performance

of our multi-modal approach, which significantly enhances accu-

racy even in scenarios where image and audio data may lack preci-

sion. Our late fusion strategies yield high accuracy rates; specifically,

the MMTF technique achieves an accuracy of 96.02%, while the

DWAF method reaches 89.31% accuracy, both methods notably re-

ducing false positive rates. The MMTF technique demonstrates its

suitability for real-time detection and tracking by performing the

detection in only 0.382 seconds.

The rest of the paper is organized as follows. Section 2 reviews

existing literature on drone detection. Based on the limitations

identified in these works, we propose the Threat Model in Section 3.

Section 4 introduces the proposed drone detection system. Section 5

presents and discusses the results obtained. Finally, Section 6 closes

with the conclusion and future work.

2 RELATEDWORK
In the critical domain of airspace security, Counter-Unmanned

Aerial Vehicle (C-UAV) systems, or anti-drone systems, are piv-

otal for neutralizing the threat of unauthorized drones. These sys-

tems, which include a range of technologies from lasers to mi-

crowaves, are essential for protecting sensitive civilian areas from

potential aerial intrusions [24]. Existing research in C-UAV systems

primarily focuses on integrating various detection and neutraliza-

tion technologies, underscoring the necessity for adaptable and

cost-effective strategies to counter increasingly sophisticated aerial

threats [35, 41]. The suite of anti-drone technologies features radar,

acoustic sensors, and infrared systems, often used in synergy to

create a robust defense mechanism. The success of these systems

relies on the critical first step of precise drone detection, which

underpins the entire counteraction process. While comprehensive,

the current approaches often fall short in addressing key challenges

such as scalability, environmental adaptability, and multi-drone

detection capabilities [12].

Single Sensor Detection. The landscape of drone detection

has evolved from reliance on single-sensor systems, such as RF,

acoustic, camera, or radar technologies, to address the increasing

complexity of Unmanned Aerial Vehicle (UAV) identification. De-

spite the advancements, these methods face significant challenges,

including high false-positive rates and environmental limitations,

underscoring the need for improved detection strategies [21, 33]. A

notable effort in RF-based detection utilized a comprehensive drone

RF signal database to fuel three Deep Neural Networks (DNNs) for

identifying drone presence, type, and flight mode. However, the

performance noticeably diminished as the classification complexity

rose, pointing to the inherent difficulty of distinguishing between

drones from the same manufacturer due to RF spectrum similari-

ties [2]. This observation suggests an urgent demand for advanced

algorithms or more sophisticated network architectures to enhance

classification precision. Furthermore, existing designs often over-

look the variety of drone types and operational ranges, thereby

restricting their detection efficacy across different protocols and

frequencies, and struggle to accurately identify multiple drones in

densely populated drone environments [23].

Visual and thermal identifications through cameras present a

direct approach to drone detection. Studies highlighting the effi-

cacy of C-LBP, C-HAAR, and C-HOG methods underscore their

potential in precise detection and distance estimation, though they

are hampered by non-optimized processing in real-time applica-

tions, suggesting an avenue for computational optimization [10].

IR cameras extend the detection capabilities by leveraging ther-

mal signatures, particularly effective in low visibility conditions,

albeit with diminished utility at extended ranges [26]. Furthermore,

the implementation of YOLOv4-based systems marks a pivotal en-

hancement in detection accuracy and speed, with the caveat of

reduced efficacy at high altitudes, emphasizing the need for algo-

rithmic innovation and expanded datasets [31]. The exploration

of background subtraction methods, integrated with Fourier de-

scriptors and HOG features for Support Vector Machine (SVM)

classification, reveals potential, though challenges remain in accu-

rately distinguishing drones from birds in complex environments

[40]. Additionally, a study introducing a real-time drone detection

algorithm that combines moving object detection with CNN-based

classification demonstrates impressive processing speed, yet faces

limitations in dynamic backgrounds, impacting detection precision

and increasing false positives and negatives [28].

The domain of drone detection has seen advancements through

various methodologies, particularly in audio analysis. The authors

in [17] presented a system with promising indoor performance that,

however, struggles with outdoor false alarms. The study in [20]

explored correlation methods for sound detection, pointing out the

need for improvements against environmental noise and distance

challenges. Machine learning advancements were highlighted in

[11], where a Recurrent Neural Network (RNN) demonstrated accu-

racy in detecting drones up to 150 meters, albeit limited to binary

classification. The comparison between Plotted Image Machine

Learning (PIL) and K-Nearest Neighbors (KNN) in [15] revealed

PIL’s superior accuracy, emphasizing the importance of extensive

data. Lastly, the use of Hidden Markov Models (HMM) for UAV

detection was explored in [30], which faced limitations due to the

scarcity of training data.

Sensor Fusion Detection. Recent research in sensor fusion

strategies has shown promising advancements in enhancing the

robustness of object detection systems [29]. These strategies, en-

compassing early, intermediate, and late fusion phases, leverage the

strengths of diverse sensor inputs to improve detection accuracy

and reliability. Early fusion, as explored in [16], combines raw cam-

era and radar data for superior 3D object detection. Intermediate

fusion, demonstrated by the innovative work of integrating DNNs
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and CNNs for drone detection, faces challenges in data process-

ing complexity, despite achieving a validation accuracy of 75% [3].

Late fusion techniques, which evaluate sensor data independently

before combining outcomes, have been shown to significantly re-

duce false detections, as evidenced by multi-sensor drone detection

systems achieving notable F1-scores through the integration of

video, thermal infrared, and audio sensors [33]. Furthermore, the

fusion of audio and vision features using CNNs and SVMs for audio

and YOLOv5 for visual data has been highlighted for its potential

to increase detection accuracy across various distances, despite

limitations in drone-type diversity and the call for further explo-

ration into real-time detection systems and deep learning methods

[13, 14].

Despite these advancements, a significant gap remains in devel-

oping a comprehensive and scalable C-UAV system capable of accu-

rate, real-time detection in diverse and challenging environments,

particularly in scenarios involving multiple drones and complex

backgrounds. This research aims to address these gaps by focusing

on late fusion strategies. We propose to enhance the robustness and

applicability of late fusion in drone detection systems, particularly

for real-time applications, by extending its capabilities to handle

a broader range of environmental conditions and operational dis-

tances. This approach seeks to capitalize on the inherent flexibility

and adaptability of late fusion, aiming to overcome the limitations

observed in current technologies and methodologies.

3 THREAT MODEL
The Threat Model considered in this work is illustrated in Figure 1.

Our system considers a large set of malicious drones, where nodes

can overfly a restricted area, but are not necessarily emitting RF

signals. This approach enables the detection of drones that might

evade traditional RF-based systems, significantly broadening our

system’s applicability.

Figure 1: Threat Detection Model.

In ourmodel, we consider a detector node installed on the ground

and collecting both audio and video data. The position of the detec-

tor is fixed. The model developed to run in the detector, is built to

handle various scenarios, noisy and low-noisy, and can work with

both audio and video data, and also with just one source of data.

This flexibility ensures robust detection capabilities across diverse

operational contexts without the need for prior knowledge about

the drones, enhancing the system’s adaptability and responsiveness.

Our system is designed to detect drones infiltrating protected

spaces undetected by traditional means. By harnessing both audio

and IR imaging, we significantly reduce the likelihood of evasion,

ensuring a high degree of detection.

The setup considered in this work is based on a laptop running

the intelligence based on the fusion approaches, taking in input the

audio and IR data. The initial setup consists of a single detector, to

demonstrate the feasibility of the data fusion approach and its high

accuracy also in adversarial conditions (e.g., with high noise, scarce

visibility, etc.). This system can be easily extended to include more

detectors opportunistically deployed and communicate with each

other to exchange data from different viewpoints.

4 PROPOSED FRAMEWORK
In Figure 2, we present our drone detection system, which inte-

grates audio and infrared video modalities to leverage their unique

detection capabilities. Audio is essential for its ability to capture

acoustic signatures, which are particularly valuable in low-visibility

environments. In contrast, infrared videos are indispensable for

detecting thermal signatures, enabling reliable detection even in

visually challenging conditions. Our system is meticulously trained

on four distinct classes — airplanes, birds, drones, and helicopters

— to minimize potential misidentifications that could arise from

distant or overlapping signatures. Following detection, a fusion

strategy synergizes the insights from both modalities to ensure real-

time and accurate drone identification among other aerial entities.

The framework is comprehensively detailed in the following

subsections, beginning with the datasets employed, progressing

through the deep learning models utilized, and culminating with

an exposition of the advanced late fusion techniques.

4.1 Datasets
The datasets include data captured using a thermal IR camera and

a microphone. The audio tracks in the datasets are either extracted

from the videos or recorded separately under different conditions.

The audio data sourced from [32] comprises 90 files in WAV

format with a sampling frequency of 44.1 KHz. The authors pro-

vide data for three classes: Background, Drone, and Helicopter. To
ensure the same number of classes as in the infrared dataset, we

incorporated data for airplanes and birds from [1] to enhance the

comprehensiveness of the dataset. In total, we have 130 audio files,

each lasting 10 seconds. Figure 3 showcases a spectrogram of a

drone, distinguished by a red line that signifies the drone’s unique

frequency signature—a feature not present in the spectrograms of

other audio samples, which exhibit a mix of low and high frequen-

cies.

We examined the IR Video dataset [32], comprising 365 IR videos

captured from various distances, up to a maximum of 200𝑚. Each
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Figure 2: Workflow of the drone detection system.

Figure 3: Spectrogram of drone audio sample.

video is ten seconds long and has a resolution of 320 × 256 pixels.
From 200 videos, we extracted frames at a rate of one every 0.1

second, resulting in approximately 20, 688 annotated images. The

annotations categorize the subjects into four classes: Airplane, Bird,
Drone, and Helicopter, as shown in Figure 4. The weather conditions

in the dataset range from clear and sunny to scattered clouds and

complete overcast.

Figure 4: Dataset IR images.

4.2 LSTM and CRNN models
4.2.1 Models description. Among various approaches, LSTM net-

works [38] excel in capturing the temporal dynamics of drone au-

dio. Conversely, CRNNs [25] combine temporal sequence learning

with superior feature extraction capabilities. This synergy makes

CRNNs robust choices for the complex task of drone audio detec-

tion, particularly in noisy and real-time environments. In the CRNN

model architecture, detailed in Table 1, we configured the model

with a learning rate of 0.0001 and employed the Adam optimizer
in PyTorch, alongside a patience setting of 10. The training was

Table 1: CRNN Model Architecture

Configuration Description

Convolution 16 kernels of 5x5 size, ReLU activation

Max Pooling 5x5 pooling size with stride 2

Batch Normalization -

Reshape for LSTM -

LSTM 32 memory units

Flatten -

Dense 32 neurons, ReLU activation

Dropout Dropout with a rate of 0.3

Dense (Output) 4 neurons, Softmax activation

conducted over approximately 30 epochs, incorporating strategies

such as early stopping and model checkpoints to preserve the best-

performing model and minimize the risk of overfitting. A batch size

of 16 was found to yield optimal results after evaluating various

sizes [6].

The LSTM model, implemented in Keras, utilizes Log-Mel spec-

trograms or MFCC features for input. Its architecture features a

combination of Layer Normalization, TimeDistributed Dense layers,

and a Bidirectional LSTM layer with a skip connection, specifically

designed to capture temporal features effectively. Additionally, the

model incorporates regularization techniques and dropout to mit-

igate overfitting. We adjusted the feature extraction process and

class specifications within the LSTM model to align with our spe-

cific research requirements, ensuring consistency in parameters

with those used for the CRNN model.

4.2.2 Audio Feature Extraction. According to [6], segmenting au-

dio into 1-second intervals has produced more favorable results

than another method, which involves using shorter audio segments.

Furthermore, as indicated by [9], this specific time interval is more
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promising compared to other intervals. This is because it allows

the deep learning algorithm to more precisely learn the features,

as opposed to processing the entire audio in one go. To diversify

our audio dataset, we experimented with various data augmenta-

tion techniques, including pitch shifting, noise injection, dynamic

range compression, and reverberation. However, according to [22],

pitch shifting and white noise were the only methods that posi-

tively impacted performance without adversely affecting detection

classes. Building on these results, we applied pitch shifting and

added white noise to the audio recordings, thereby enhancing the

system’s ability. The augmentation methods used are described as

follows:

• Pitch shifting: The pitch of every audio signal within the

datasets is elevated by a factor of +2.
• White noise: The audio segments are subjected to white

noise with an intensity of 0.05.

Various feature extraction techniques are capable of capturing

distinct attributes. In detection tasks, the Log-Mel spectrogram and

MFCC are frequently employed as features [7, 11], with MFCCs cap-

turing the audio’s timbral aspects, while Log-Mel spectrograms are

utilized for analyzing the signal’s frequency content. Each sound

sample was adjusted to a sampling rate of 22.05 kHz, and its distinc-

tive features were extracted using Librosa [19], a Python package

designed for audio analysis. Our study focuses on examining the

behavior of both the Log-Mel spectrogram and MFCC features.

Specifically, we analyzed the Mel spectrograms and MFCCs across

segments, identifying 44 frames in each. The number of Fast Fourier

Transform (FFT) points was set to 2048, with a hop length of 512,

to ensure detailed and consistent feature extraction.

We conducted experiments to investigate the impact of various

MFCC features and Mel scales on the results. Consequently, each

audio segment is represented by a dimension of 𝑁 × 44, where 𝑁
specifies either the number of Mel-frequency cepstral coefficients

extracted from a segment or the number of Mel scale frequency

bands. Upon fine-tuning this parameter, we established that the

optimal input size for the Log-Mel spectrogram is 90 × 44, while
for the MFCC features, it is 40× 44. This methodology is illustrated

in Figure 5.

Figure 5: Feature extraction steps.

4.3 YOLO’s models
4.3.1 Models description. In pursuit of a real-time object detec-

tion model suitable for constrained hardware, we first integrated

YOLOv3-tiny into our framework. This simple version of YOLO,

with its reduced layer count of 38, provides a compromise between

speed and accuracy. Its lightweight design ensures faster inference

times, essential for real-time applications, at the cost of some pre-

cision in detection, especially in multi-class scenarios for distant

objects. Building upon the insights gained from YOLOv3-tiny, we

then explored the full YOLOv3 architecture, which employs a ro-

bust Darknet-53 backbone. This comprehensive structure, extended

to 190 layers including convolutional strides, bottleneck blocks,

and multi-scale predictions, is referenced in [37]. Despite its higher

precision, the complexity of YOLOv3 leads to increased inference

times. After experimenting with different numbers of blocks to

freeze, we decided to freeze 10 blocks in the models to achieve

a balance between training time and model precision. This incre-

mental approach, from the agility of YOLOv3-tiny to the precision

of YOLOv3, sets the stage for our subsequent evaluation against

YOLOv5, where we seek to benchmark performance and identify

the optimal model configuration for real-time object detection in

our specific use case.

4.3.2 IR Feature Extraction. Before training the model, we resized

the images to dimensions of 414 × 416. The ground truth generated

by the Video Labeler app [18] uses a specific format for bounding

box positions. This format employs 𝑥min, 𝑦min, 𝑥max, 𝑦max in pixels.

Conversely, YOLO label format uses 𝑥center, 𝑦center, 𝑤𝑖𝑑𝑡ℎ, and

ℎ𝑒𝑖𝑔ℎ𝑡 . Consequently, we meticulously review and normalize the

labels to align them with the YOLO format.

The YOLOv5 architecture is structured into three primary seg-

ments: the backbone, neck, and head [4]. The backbone incorpo-

rates the innovative Cross-Stage Partial Network (CSPNet), which

addresses gradient-related challenges and reduces model complex-

ity, leading to enhanced inference speed and accuracy in object

detection. This section acts as a feature extractor, using multiple

convolutional layers and a Spatial Pyramid Pooling (SPP) mecha-

nism. The subsequent segment, the neck or the Path Aggregation

Network (PANet) facilitates feature fusion by transmitting extracted

features to deeper layers. The concluding segment, the head, is re-

sponsible for object detection, employing various convolutional

layers to predict object classes, outline bounding boxes, and assign

class confidence scores. Figure 6 shows the overall architecture

of YOLOv5. Among the various YOLOv5 models [36], we selected

YOLOv5s (small) and YOLOv5m (medium) as backbone architec-

tures due to our hardware constraints, as the models are trained on

our PC, necessitating a balance between computational efficiency

and detection performance.

Figure 6: YOLOv5 architecture.
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4.4 Fusion approach
Late fusion or decision-level fusion, is an approach used to combine

predictions from multiple models or sensors. We chose late fusion

for its suitability in handling heterogeneous data from multiple

sources, allowing for the independent processing of diverse input

and output formats. This approach ensures the preservation of

unique sensor characteristics, enhances system flexibility for inte-

grating new technologies, and improves robustness against sensor

failures. We have implemented two different late fusion approaches

as follows.

4.4.1 Dynamic Weighted Average Fusion. The system described

employs a sophisticated technique that integrates probabilistic pre-

dictions from two distinct sources: audio and video, as detailed

in Algorithm 1 with respective abbreviations explained in Table

2. This integration begins with an unbiased starting point, where

each modality’s prediction is initially assigned an equal weight of

0.5. These modalities are then processed independently through

specialized models to generate their own set of class probabilities.

At the core of this integration strategy is an adaptive weighting

process, facilitated by three key functions.

Table 2: Abbreviations Used in Pseudocode

Abbreviation Description

𝑎𝑝 Audio Probability

𝑣𝑝 Video Probability

𝑎𝑤 , 𝑣𝑤 Audio, Video Weights

𝑏𝑠 Batch Size

𝑊𝑡𝐴𝑣𝑔𝐹𝑢𝑠 Weighted Average Fusion Function

𝑈𝑝𝑑𝑊𝑡𝑠 Update Weights Function

𝐺𝑒𝑡𝐶𝑜𝑛𝑓 Get Confidence Function

𝑤𝑡𝑝 Weighted Probability

𝑡𝑜𝑡𝑤 , 𝑡𝑜𝑡𝑐 Total Weight, Total Confidence

𝑓𝑝 Fused Probability

𝑝𝑟𝑒𝑑𝑐 Predicted Class

𝑎𝑝𝑤 , 𝑣𝑐𝑤 Audio, Video Probability Windows

𝑐𝑜𝑛𝑓 Confidences List

𝑐𝑏 Current Batch

𝑎𝑐 Audio Confidence

𝑣𝑐 Video Confidence

The ’GetConf ’ function plays a crucial role by calculating the

average confidence of each modality. It achieves this by extracting

the maximum confidence value from the probability distributions of

each segment, providing a quantitative basis for weight adjustment.

Following this, the ’WtAvgFus’ function combines the predictions,

adjusting weights dynamically to favor themore confident modality,

thus enhancing predictive performance. This dynamic adjustment is

operationalized through the ’UpdWts’ function, which recalibrates

weights for the next batch of inputs based on the recent confidence

levels of the modalities.

The methodology of processing inputs in batches, as defined by

a 𝑏𝑠 parameter, allows for the accumulation of data necessary for

informed weight adjustments. This ensures that the final prediction

not only leverages the strengths of both audio and video inputs

Algorithm 1 Dynamic Weighted Avgerage Fusion

Require: 𝑎𝑝 , 𝑣𝑝 , 𝑎𝑤 , 𝑣𝑤 , 𝑏𝑠
Ensure: Weighted average probability & predicted class

1: functionWtAvgFus(𝑎𝑝 , 𝑣𝑝 , 𝑎𝑤 , 𝑣𝑤 )

2: if 𝑎𝑝 = None ∨ 𝑣𝑝 = None then
3: Handle missing predictions
4: end if
5: 𝑤𝑡𝑝 ← (𝑎𝑝 · 𝑎𝑤) + (𝑣𝑝 · 𝑣𝑤)
6: 𝑡𝑜𝑡𝑤 ← 𝑎𝑤 + 𝑣𝑤
7: return𝑤𝑡𝑝/𝑡𝑜𝑡𝑤 if 𝑡𝑜𝑡𝑤 > 0 else𝑤𝑡𝑝
8: end function
9: function UpdWts(𝑎𝑐 , 𝑣𝑐 )

10: 𝑡𝑜𝑡𝑐 ← 𝑎𝑐 + 𝑣𝑐
11: return (𝑎𝑐/𝑡𝑜𝑡𝑐 , 𝑣𝑐/𝑡𝑜𝑡𝑐 ) if 𝑡𝑜𝑡𝑐 > 0 else (0.5, 0.5)
12: end function
13: function GetConf(𝑝𝑟𝑜𝑏𝑠)

14: Calculate avg. confidence from model probs.
15: Initialize 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒𝑠 ← []
16: for 𝑐ℎ𝑢𝑛𝑘 in 𝑝𝑟𝑜𝑏𝑠 do
17: if 𝑐ℎ𝑢𝑛𝑘 is not empty then
18: Append max(𝑐ℎ𝑢𝑛𝑘) to 𝑐𝑜𝑛𝑓

19: end if
20: end for
21: return mean(𝑐𝑜𝑛𝑓 ) if 𝑐𝑜𝑛𝑓 not empty else 0
22: end function
23: Init. 𝑎𝑝𝑤 , 𝑣𝑝𝑤 with 𝑏𝑠
24: for ∀𝑠𝑒𝑔𝑚𝑒𝑛𝑡 do
25: 𝑓𝑝 ←WtAvgFus(𝑎𝑝 , 𝑣𝑝 , 𝑎𝑤 , 𝑣𝑤)
26: 𝑝𝑟𝑒𝑑𝑐 ← argmax(𝑓𝑝 )
27: 𝑐𝑏 = 𝑐𝑏 + 1
28: if 𝑐𝑏 mod 𝑏𝑠 = 0 then
29: 𝑎𝑐 , 𝑣𝑐 ← GetConf(𝑎𝑝𝑤 , 𝑣𝑝𝑤)
30: 𝑎𝑤 , 𝑣𝑤 ← UpdWts(𝑎𝑐 , 𝑣𝑐 )
31: end if
32: end for

but also dynamically balances their contributions to optimize over-

all accuracy. The adaptive, confidence-informed fusion approach

enables the system to achieve robust performance across varying

conditions, efficiently handling fluctuations in the reliability of

individual modalities.

Furthermore, we tested an alternate technique that updates

weights based on the accuracies of each modality’s predictions rel-

ative to ground truths. Unlike the primary method, this technique

does not utilize the ’GetConf ’ function and omits the application

of a sliding window mechanism to maintain recent confidences.

Although this method promises higher results, it is limited by the

availability of ground truths post-deployment, rendering it less

feasible for real-world applications. This contrast highlights the

system’s innovative approach to optimizing prediction accuracy

through adaptive weighting, addressing the challenges of integrat-

ing multimodal data sources.

4.4.2 Multi-Modal Tree Fusion. In our work, we introduce a novel

multi-modal fusion technique designed to enhance classification

performance by integrating audio and video data, as depicted in
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Figure 7. This method excels in situations where predictions from

audio or video sources are either missing or unreliable. By employ-

ing prediction labels and probabilities from the CRNN for audio

and YOLOv5s for video, we create a robust framework for data

analysis. To tackle the challenge of missing modality data, we im-

pute such gaps with predetermined placeholder values, ensuring

uniform input dimensions for our fusion process.

Figure 7: Multi-Modal Tree Fusion training procedure.

Central to our approach is the deployment of a Random Forest

classifier, fine-tuned through GridSearchCV to identify an optimal

configuration of 100 trees (𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 ), a decision supported by

5-fold cross-validation. This meticulous optimization process guar-

antees that our fusion method is not only accurate but also resilient,

capable of handling the intricacies of real-world data scenarios

where incomplete or inconsistent data is common.

Our multi-modal tree fusion technique stands as a significant

advancement in the field, demonstrating the ability to seamlessly

synthesize insights from both auditory and visual cues, thereby

significantly improving classification outcomes even in the face of

challenging data conditions. This innovative approach promises to

be a valuable asset in applications requiring nuanced data analysis

and interpretation.

5 RESULTS AND DISCUSSION
5.1 Hardware specification
The system operates onWindows 11 with a 12th Gen Intel

®
Core

TM

i7-12800H processor, which has 14 cores and features a base clock

speed of approximately 2.4 GHz. The system is complemented by

32 GB of RAM. It includes an NVIDIA RTX A1000 GPU with 4 GB

of dedicated memory.

5.2 Drone sound recognition
From Table 3, we have divided the audio dataset into training,

validation, and testing subsets, comprising 71%, 13%, and 16% of

the dataset, respectively. To enhance the robustness of the model,

techniques such as pitch shifting and noise injection have been

applied to these subsets. Comparative analysis reveals that the

Table 3: Data Description

Type of data Class Audio Image Audio (s) Video (s)

Train

airplane 64 4301

2690 2920

bird 64 3616

drone 77 4334

helicopter 64 4299

Validation

airplane 11 537

460 370

bird 11 452

drone 13 541

helicopter 11 537

Test

airplane 15 538

600 370

bird 15 454

drone 15 542

helicopter 15 537

CRNN model outperforms the LSTM model in audio classification

tasks. This superiority is particularly evident in tasks involving the

classification of multiple classes using MFCC features, as detailed in

Table 4. The effectiveness of the CRNN model is underscored by its

Table 4: Evaluation Metrics for LSTM and CRNN Models

Model Feature Classes Metric

CPU-time (ms) Accuracy (%)

LSTM

Mel

Two 15.987 89

Four 17.163 76

MFCC

Two 48.861 92

Four 44.134 82

CRNN

Mel

Two 12.257 95

Four 13.007 82

MFCC

Two 16.058 94

Four 13.463 85

higher accuracy, a metric that quantifies the proportion of correctly

identified predictions across all classes. Accuracy is calculated using

the formula 1, where 𝑇𝑃 , 𝐹𝑃 , 𝑇𝑁 , and 𝐹𝑁 represent the counts of

true positives, false positives, true negatives, and false negatives,

respectively.

Accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (1)
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In binary audio classification, the CRNN model efficiently differ-

entiated "drone" from "no drone" sounds with superior accuracy and

lower inference time over LSTM. The model’s simplicity negates

the need for GPU use, as it performs equally well on the CPU. Based

on its performance, we proceed with the CRNN model using MFCC

features.

5.3 Drone IR image detection
Due to GPU memory constraints, we opted to train YOLOv3 with a

batch size of 4, a decision informed by its computational intensity,

evidenced by its 154.6 Giga Floating Point Operations per Second

(GFLOPs) demand. Despite this, YOLOv3’s accuracy improvements

plateaued after 25 epochs. In contrast, YOLOv5m, with a signifi-

cantly lower computational requirement of only 47.9 GFLOPs, al-

lowed for a larger batch size of 8 and exhibited continuous improve-

ments in mean Average Precision (mAP) up to the 50th epoch. The

performance of YOLO models is quantitatively assessed through

metrics such as mAP@0.5 and mAP@0.5:0.95, which evaluate ob-

ject detection capabilities across varying Intersections over Union

(IoU) thresholds. Specifically, mAP@0.5 focuses on precision and

recall at an IoU threshold of 0.5, whereas mAP@0.5:0.95 provides a

more comprehensive assessment by averaging these metrics across

IoU thresholds from 0.5 to 0.95.

To further elucidate the models’ performance, we examined

additional metrics:

1. Precision: The ratio of true positive predictions to total positive

predictions, defined as:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (2)

2. Recall (Sensitivity): The ability of the model to identify all

positive samples, calculated as:

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (3)

A balanced trade-off between ’Precision’ and ’Recall’ is crucial for

an effective model. High precision indicates reliable detections,

whereas high recall reflects the model’s capability to identify most

objects, albeit potentially at the cost of accuracy.

Our evaluation utilized a dataset of 2,071 infrared (IR) images.

The YOLOv3-tiny variant, while achieving high frame rates suit-

able for real-time applications, exhibited limitations in accuracy,

especially for small or distant objects. YOLOv3’s training duration

spanned 20.186 hours on a GPU, with performance diminishing

over greater distances and with increased object classes. On the

other hand, YOLOv5 models demonstrated variable outcomes. The

YOLOv5s model, completing its training in approximately 5.189

hours, achieved high mAP values at a 50% IoU threshold but showed

slight decreases in precision at stricter IoU thresholds and over

longer distances. The YOLOv5m model, after around 10.031 hours

of training, displayed superior precision and accuracy, albeit at

the cost of longer inference times. Notably, freezing the first 10

layers of YOLOv5m reduced training time but also resulted in lower

mAP scores and compromised detection reliability, paralleling our

observations with YOLOv3.

The YOLOv5s model exhibits the capability to detect multiple

objects simultaneously, a feature illustrated in Figure 8, overcom-

ing the constraints observed in existing literature where alterna-

Figure 8: Multi-object detections.

tive models struggle with the detection of multiple drones or dis-

tant objects. As summarized in Table 5, our analysis underscores

YOLOv5s’s advantageous balance of rapid training and inference

speeds against YOLOv5m’s marginally superior accuracy. Despite

the efficiency gains from layer freezing, the consequent accuracy re-

duction led to our preference for YOLOv5s, considering its optimal

performance and speed trade-off.

Table 5: Detection Performance Metrics

Model Precision Recall mAP50 mAP50-95 Inference (ms)

CPU GPU

YOLOv3-tiny 0.985 0.983 0.988 0.685 84.1 6.7

YOLOv3 full training 0.995 0.995 0.994 0.807 688.9 46.1

YOLOv3 frozen layers 0.875 0.882 0.895 0.412 701.1 46.8

YOLOv5s 0.995 0.994 0.994 0.815 157.9 9.3

YOLOv5m full training 0.997 0.995 0.995 0.847 300.3 20.1

YOLOV5m frozen layers 0.987 0.988 0.99 0.728 302.6 20.2

5.4 Late fusion
Our study improves drone detection by employing late fusion tech-

niques on 60 synchronized audio and video files in a combined

dataset. This dataset included challenging cases from [32] for ob-

jects at distances up to 200 meters. To simulate the effects of dis-

tance, audio adjustments were made using the Python package

PyDub [27]. The data, derived from various scenarios, posed chal-

lenges including low resolution, occlusion, the presence of multiple

objects, and noisy audio conditions. These challenges were further

compounded by diverse environmental noise and white noise intro-

duced during augmentation. The fusion methods were specifically

designed to overcome sensor performance limitations at extended

distances, in noisy conditions, and in instances of missing data

from predictions. Occasionally, segments lacking predictions are

appended to the end of the files. This approach is undertaken to

observe the resultant effects on the system, thereby enabling an

understanding of the system’s resilience and its response to such

conditions. In the following, we will detail the results achieved

with our techniques and compare them with those from existing

detection methods.
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5.4.1 Dynamic Weighted Average Fusion (DWAF). Regarding the
performance of the DWAF system, we analyzed it by testing it with

various values of the hyperparameter ’𝑏𝑠 ’ across two scenarios.

The first scenario involves situations with no missing data, where

predictions are made by each model independently. This implies

that for the audio sensor, the corresponding class is perceivable, and

for the IR camera, the object is within the line of sight. However,

such ideal conditions are not always present, especially with static

sensors. For instance, an object may be in motion and out of the

camera’s field of view, or the audio sensor might fail to detect it.

To address these challenges, we introduced a second scenario ac-

counting for missing sensor data. In instances where predictions are

absent, we assign a marked class (-1) to each segment. Additionally,

we evaluated the system’s performance in updating weights related

to ground truth. This assessment aimed to gauge the stability and

accuracy of our system and to understand its deviation from the

ideal case of ground truth, which provides the actual classes and

thereby facilitates more accurate weight updates.

The parameter ’𝑏𝑠 ’ influences how often our model updates,

affecting the efficacy of the learning process, as shown in Table 6.

The choice of 𝑏𝑠 can significantly affect the behavior of the system.

Table 6: Effect of batch size on DWAF accuracy according to
scenarios

Accuracy (%)

Batch Size Without Data Missing Data Missing
Ground Truth Confidence Score Ground Truth Confidence Score

Off 87.07 86.59

5 92.48 86.77 91.42 86.89

10 92.18 88.87 90.81 87.96

20 90.53 88.12 89.91 87.35

30 90.38 88.72 88.86 87.65

50 89.02 89.32 88.10 88.55

70 87.82 89.77 87.19 89.01

100 85.56 90.23 84.64 89.31

A smaller 𝑏𝑠 leads to more frequent updates (potentially more

responsiveness to changes), while a larger𝑏𝑠 provides more stability

in the weights but less responsiveness. We have experimented with

various values of this parameter but observed no improvement in

the results beyond a parameter value of 100. When the dynamic

change of weights is not utilized (i.e., 𝑏𝑠 = off, and the weights are

fixed at 0.5), we observe that the accuracy is lower compared to

when the𝑏𝑠 is set to 100 for the ’Confidence Score’ case. Additionally,
with the 𝑏𝑠 set to 5, the ’Ground Truth’ case achieved the best

performance across 665 audio-video segments. However, in the

’Confidence Score’ case, which is closer to real-world conditions,

we achieved an accuracy of 89.31%. The number of false positives

for the drone class is 10. This indicates that the system has reduced

the occurrence of false detections.

5.4.2 Multi-Modal Tree Fusion (MMTF). For the training of the

MMTF system, we used 75% (489 samples) of the audio-video files

for training purposes and the remaining 25% (176 samples) for test-

ing. Similar to the DWAF approach, we evaluated the system’s

robustness in various scenarios by testing it both with and without

missing data. To enrich our evaluation, beyond the metrics previ-

ously employed, we incorporated the F1-score—an indicator that

provides a balanced measure of precision and recall by computing

their harmonic mean as follows:

𝐹1 = 2 × Precision × Recall
Precision + Recall (4)

As evidenced by Table 7, the F1-scores and other metrics exhibit

minimal variation, even in scenarios with missing data predictions.

This highlights the MMTF system’s stability and its ability to main-

tain high accuracy despite data gaps. Upon refining the system

Table 7: Evaluation Metrics for the MMTF System

Case Precision Recall F1-Score Accuracy

Without Data Missing 96.56% 96.02% 96.03% 96.07%

With Data Missing 96.36% 96.01% 95.99% 96.02%

through hyperparameter tuning, we identified an optimal param-

eter set for the second scenario, characterized by:𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ = 10,

𝑚𝑎𝑥 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑠𝑞𝑟𝑡 , 𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓 = 1, 𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 = 5,

and 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 100. This configuration demonstrated a marked

improvement in classification accuracy over the DWAF approach,

particularly in handling noisy, or missing data—underscoring its

suitability for diverse and challenging operational environments.

The number of false positives for the drone is 5, as shown in Figure

9, despite being tested on fewer samples (176 in total) compared to

DWAF, due to a lack of data.

Figure 9: Confusion matrix of MMTF system showcasing
performance with missing data.

Moreover, the comparative analysis of model accuracies reveals

that the audio-only model achieved an accuracy of 81.95%, while

the infrared (IR) video model registered 69.56%. The DWAF method

significantly boosted accuracy to 89.31%, surpassing single-sensor

approaches and highlighting its efficacy for real-world applications.

The MMTF model, leveraging machine learning, outperformed on

the test set of 176 samples, suggesting a promising avenue for future

research, particularly with an expanded dataset.

In summary, while DWAF adeptly merges audio and video data,

adjusting to varying performance levels and offering simplicity
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Table 8: Comparison of proposed methods with existing methods.

Ref No. Audio Data Image Data Distance (m) No. classes Accuracy (%) F1-score (%)

[17] ✓ - up to 60 2 62 -

[20] ✓ - up to 4 1 70 -

[11] ✓ - up to 150 2 - 80.09

[15] ✓ - - 1 83 -

[30] ✓ - - 5 81.3 -

[10] - ✓ up to 25 2 - 96

[26] - ✓ close 1 - 68.1

[31] - ✓ - 2 - 79

[40] - ✓ - 2 82.7 -

[28] - ✓ - 2 - 74.2

DWAF approach ✓ ✓ up to 200 4 89.31 89.29
[33] ✓ ✓ up 200 4 78 -

[13] ✓ ✓ up to 60 2 88.33 -

[14] ✓ ✓ up to 100 1 92.53 -

MMTF approach ✓ ✓ up to 200 4 96.02 95.99

and adaptability, it falls short in managing complex inter-modal

interactions. In contrast, MMTF excels in integrating multimodal

data through decision trees, adeptly navigating intricate patterns

across modalities with superior accuracy and robustness, albeit at

a little bit greater computational cost than DWAF.

5.4.3 Time Detection Performance. Our detection framework em-

ploys the MMTF method to efficiently process audio and video

inputs, providing predictions for each segment in just 0.382 sec-

onds per segment, while achieving a high accuracy rate of 96.02%.

This framework is optimized for GPU processing, enhancing its

suitability for real-time applications. In comparison, the alternative

DWAF technique requires slightly less time for processing, at 0.356

seconds per segment.

5.4.4 Comparison with existing drone detection methods. A com-

prehensive comparison of all methods directly is challenging due

to their evaluation on different datasets. However, one exception is

the study identified in [33], which utilized the same dataset for eval-

uation. As illustrated in Table 8, we present a comparison between

our proposed drone detection method and existing approaches. For

consistency in evaluation, we adopted a similar k-fold validation

approach as outlined in recent literature, setting k to 5. Our method

demonstrated outstanding performance, achieving an accuracy of

nearly 96.02% in detecting drones. The technique we introduced

specifically addresses several challenges not considered in previous

studies to the best of our knowledge. These include issues related to

low resolution, various illuminations, occlusion, noisy audio, and

missing data, which significantly impact detection accuracy.

6 CONCLUSION AND FUTUREWORK
Our research introduces a system that integrates audio and IR

imaging data through an MMTF approach, surpassing the DWAF

approach in performance. This system synergizes the strengths of a

CRNN for audio processing with the YOLOv5s for IR image analysis,

demonstrating enhanced efficiency in drone detection. Notably,

the CRNN exhibits significant improvements over conventional

LSTM models in audio recognition. Concurrently, YOLOv5s strike

an optimal balance between speed and accuracy, outperforming

both YOLOv3-tiny and the standard YOLOv5 in visual detection.

Our study’s results confirm the efficacy of integrating multi-

modal data for drone detection, underscoring the transformative

impact of machine learning algorithms on security and surveil-

lance applications. Future directions for enhancing the system’s

adaptability and precision in various operational environments in-

clude integrating additional sensory modalities such as radar and

LiDAR and testing them on a more extensive dataset to further

refine the system’s detection capabilities. Moreover, an interesting

avenue for future research involves the exploration of cooperative

distributed detectors. These detectors, equipped with diverse data

sources, would communicate with each other to feed an intelligent

centralized node. This setup could significantly improve detection

capacity at greater distances and in challenging conditions, such

as in the presence of potential obstructions or obfuscation attacks

aimed at misleading detection efforts. This development aims not

only to enhance the system’s adaptability and precision but also to

set the stage for more advanced and dependable drone detection

technologies.
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