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Abstract

We develop a new approach to contract renegotiation under informational frictions.
Specifically, we consider mediated mechanisms which cannot be contingent on any sub-
sequent offer, but can generate a new source of asymmetric information between the
contracting parties. Taking as a reference the canonical framework of Fudenberg and
Tirole (1990), we show that, if mediated mechanisms are allowed, the corresponding
renegotiation game admits only one equilibrium allocation, which coincides with the
second-best one. Thus, the inefficiencies typically associated to the threat of renegotia-
tion may be completely offset by the design of more sophisticated trading mechanisms.
(JEL D43, D82, D86)

1 Introduction

We identify a class of mediated mechanisms that mitigate all inefficiencies due to renegotiation

in the canonical moral hazard problem as studied in Fudenberg and Tirole (1990). In so

doing, we show that any equilibrium of the corresponding mediated renegotiation game

implements the second-best allocation, which obtains with moral hazard but without any

possibility of renegotiation (as in Holmström (1979) or Shavell (1979)).

With this result we contribute to a growing literature that studies the extent to which the

design of trading mechanisms alleviates the inefficiencies arising under limited commitment

(Bester and Strausz (2007), Doval and Skreta (2022), Georgiadis-Harris et al. (2023), and

Lomys and Yamashita (2022)). While these contributions investigate this issue mainly in the

context of the Coase conjecture, our study is the first to analyze the role of more sophisticated

mechanisms in problems of contract renegotiation.

∗Attar: CNRS, Toulouse School of Economics University of Toulouse Capitole, and Università degli
Studi di Roma “Tor Vergata” (email: andrea.attar@tse-fr.eu); Bozzoli: Università degli Studi di Roma
“Tor Vergata” (email: lorenzo.bozzoli@uniroma2.it); Strausz: School of Business and Economics, Humboldt-
Universität zu Berlin (email: roland.strausz@hu-berlin.de). We thank Eloisa Campioni, Dino Gerardi, Soenje
Reiche and Francois Salanié, for very thoughtful comments. We also thank seminar audiences at Toulouse
School of Economics and Università degli Studi di Roma “Tor Vergata” for many useful discussions. This
research has benefited from financial support from the Agence Nationale de la Recherche (ANR) (project
ANR-23-CE26-0006-01).
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Our mechanisms are mediated in the sense of Rahman and Obara (2010) in that the final

allocation which the mechanism selects, depends on signals generated by the mechanism

itself.1 The required sophistication of mediation is however very minor; the optimal mechanism

only communicates to the agent the outcome of a 50-50 toss coin. Specifically, the agent

receives this signal privately before she has to accept or reject the principal’s renegotiation

offer. Hence, our mediated mechanism extends on the non-mediated ones in Fudenberg and

Tirole (1990) only by the private communication of a toss coin. Although the extension seems

insignificant, we show that it enables the principal to fully negate the threat of renegotiation.

To understand how such a minor extension leads to such an economically significant

effect, it is helpful to point out that while Fudenberg and Tirole (1990) also allow the agent

to send a binary message, its use differs from ours. In Fudenberg and Tirole (1990), the

agent uses the message to indicate whether she chose a high or low effort. By contrast,

our mechanism uses the binary message to delegate to the agent the punishment of the

principal’s attempts to renegotiate. By sending a message in the original mechanism after

observing a renegotiated offer, the agent is able to correlate her (privately known) outside

options to the offers she receives at the renegotiation stage. This provides a flexible device

to deter renegotiation. In particular, the renegotiation offer which Fudenberg and Tirole

(1990) identify as undermining the second best is not profitable anymore: observing this

offer, the agent’s optimal report in the original mechanism yields her a better outside option

with positive probability, in which case she is lead to reject the new offer, thereby hindering

renegotiation.

Because one can frame the renegotiation problem also as one of a contract designer

competing with its myopic future self over incentivizing a common agent, our results naturally

connect to recent literature on competing mechanisms that points out strong strategic effects

of agents who are privately and asymmetrically informed about some characteristics of the

posted mechanisms (Attar et al. (2023)). More generally, our results hinge on the effect

that with multiple contracting parties endogenously generated asymmetric information can

alleviate contractual frictions. This effect has also been studied in contracting environments

with the threat of contractual collusion (Ortner and Chassang (2018), Asseyer (2020) and

von Negenborn and Pollrich (2020)).

1See Strausz (2012) for how mediated mechanisms provide an alternative representation for direct mech-
anisms in the light of the revelation principle derived in Myerson (1982).
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2 The Model

We consider the canonical framework of Fudenberg and Tirole (1990) (FT, henceforth), in

which a risk-neutral principal (P , he) incentivizes a risk-averse agent (A, she), who takes

an unobservable effort. There are two outputs (states), a good one g and a bad one b,

where g > b > 0, and the probability distribution over outputs depends on the binary effort

e ∈ E .
= {L,H}. Let pe

.
= prob(g|e), and pH > pL so that ∆p

.
= pH − pL > 0. The effort e

yields the expected output Ye
.
= peg + (1− pe)b.

Payoffs and Allocations. A’s utility is additively separable in income w ∈ R and effort e ∈ E,

so that we can express it as U(w) − D(e). The utility function U exhibits U ′(w) > 0 and

U ′′(w) < 0 for each w ∈ R, and U is unbounded over its domain R, i.e., lim
w→−∞

U(w) = −∞
and lim

w→∞
U(w) = ∞. These assumptions imply that the inverse Φ of U is well–defined for

any u ∈ R with Φ′(u) > 0, and Φ′′(u) > 0 for each u ∈ R. We normalize A’s low effort cost

to D(e = L) = 0 and denote A’s high effort cost by D(e = H) = d > 0.

For any e ∈ E, final payoffs are determined by the state-contingent transfers that P

makes to A. We let a contract be a pair (wg, wb) ∈ R2 of such transfers. Because it is often

more convenient to represent a contract in terms of the induced utilities it provides to A, we

also write (with slight abuse of notation) a contract as c = (Ug, Ub), with Ug = U(wg) and

Ub = U(wb).

A (deterministic) allocation is a pair (e, c) ∈ E × R2 of payoff-relevant decisions.

The agent’s expected payoff from (e, c) is

Ue(c) = peUg + (1− pe)Ub −D(e),

where U0 is her reservation payoff.2

The principal’s expected payoff from (e, c) is

Ve(c) = Ye − peΦ(Ug)− (1− pe)Φ(Ub).

Efficient and Incentive Compatible Allocations. Because A is risk-averse, while P is risk-neutral,

any Pareto-efficient allocation exhibits full insurance. For any e ∈ E, let cFIe (U) = (U +

D(e), U +D(e)) denote the full-insurance contract that yields A the expected payoff U ∈ R.

We also define, for each e ∈ E, the function V FI
e : R→ R where

V FI
e (U)

.
= Ve(c

FI
e (U)) = Ye − Φ(U +D(e))

2In FT, it holds U0 = 0. Writing the outside option as U0 is more insightful for interpreting results.
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identifies the P’s payoff associated with the full-insurance contract leaving the expected

payoff U to A. Since Φ′ > 0, V FI
e is strictly decreasing in U for any e ∈ E.

Because P has all the bargaining power, the optimal contract with observable effort

implements the efficient allocation that yields P his maximal payoff while still guaranteeing

A her outside option U0. We refer to this outcome as the first-best. Thus the first-best

contract is cFB
.
= cFIH (U0), which yields V FB .

= V FI
H (U0) to P, and U = U0 to A.3

If, instead, effort is unobservable, any feasible allocation must be incentive-compatible.

In this case, P’s optimal contract induces e = H and gives at least U0 to A.4 We refer to

this contract as the second-best and it obtains from solving:

arg max
c∈R2

VH(c) = pH(g − Φ(Ug)) + (1− pH)(b− Φ(Ub)) (1)

s.t. pHUg + (1− pH)Ub − d ≥ pLUg + (1− pL)Ub. (2)

pHUg + (1− pH)Ub − d ≥ U0. (3)

In the solution, the incentive constraint (2) binds. Accordingly, let cIC(U) = (U IC
g (U), U IC

b (U))

denote the contract on the incentive-compatibility frontier that leaves an expected payoff

U ∈ R to A. That is:

U IC
g (U)

.
= U +

1− pL
∆p

d and U IC
b (U)

.
= U − pL

∆p
d.

It is convenient to define, for each e ∈ E, the function V IC
e : R→ R denoting P’s payoff

when A takes e ∈ E and cIC(U) is implemented. That is:

V IC
e (U)

.
= Ve(c

IC(U)) = Ye − peΦ
(
U +

1− pL
∆p

d

)
− (1− pe)Φ

(
U − pL

∆p
d

)
.

Since V IC
H is decreasing in U , the participation constraint (3) binds at the solution, which

implies that the second-best contract is cSB
.
= cIC(U0)). It yields V SB .

= V IC
H (U0) to P, and

UH(cIC(U0)) = U0 to A.

The Standard Contracting Game. The second-best allocation (H, cSB) is the only one to be

supported in a subgame-perfect equilibrium of the standard contracting game G:

1. P offers a contract c ∈ R2.

2. A accepts or rejects c. If A rejects, the game ends and outside options accrue. If A

accepts, the game continues as follows:

3As we follow FT in focusing on the non-trivial case that e = H is optimal in the second best, we have
that e = H is also optimal in the first-best.

4As in FT, we assume that e = H is optimal in the second best.
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3. A chooses e = H with probability x ∈ [0, 1] and e = L with probability 1− x.

4. The output realizes and transfers flow in accordance with the contract c.

Remark 1 While the contract cSB makes A indifferent between e = L and e = H, the

game G has a unique equilibrium allocation, which coincides with (H, cSB). This is so even

though in the subgame that starts after A accepts cSB, any mixed strategy x ∈ (0, 1) is

(part of) a Nash equilibrium. Yet, for any x < 1, P can offer a perturbed contract cSBε =

(U IC
g (U0) + ε, U IC

b (U0)), which induces a subgame where, for ε > 0 but small, accepting the

contract and picking e = H is uniquely optimal for A and yields P strictly more than what

he obtains under cSB. Thus, the equilibrium allocation is unique because there is a sequence

of contracts, each yielding a subgame in which it is uniquely optimal for A to accept and pick

e = H, and this sequence converges to cSB.

The Renegotiation Game. FT point out that the second-best allocation (H, cSB) is interim

inefficient, i.e., after the effort is chosen but before the output is realized. This leads them to

analyze an extension Gr of the game G, in which P can renegotiate away any such inefficiency

by offering a new contract at the interim stage, after stage 3 but before stage 4.

Because, at this stage, A is privately informed about her effort choice, a proper analysis

of the renegotiation game Gr requires the introduction of more complex mechanisms than

the simple take-it or leave-it pairs (Ug, Ub) of the game G. For this reason, they let P design a

revelation mechanism, which specifies a contract for each effort announced by A. Specifically,

a (deterministic) revelation mechanism is a mapping γc : E → R2, and we let C be the set

of all such mechanisms. The extensive form of Gr is as follows:

1. P offers a mechanism γc ∈ C.

2. A accepts or rejects γc. If A rejects, the game ends and outside options accrue. If A

accepts, the game unfolds as follows:

3. A chooses e = H with probability x ∈ [0, 1] and e = L with probability 1− x.

4. Without observing e, P makes a renegotiation offer γrc ∈ C∪{∅}, where {∅} represents

P’s action not to renegotiate.

5. A accepts or rejects γrc by declaring ρ ∈ {y, n}. She then sends a message m ∈ E in

the mechanism she participates in.
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6. If ρ = n, transfers occur according to γc(m). If ρ = y, transfers occur according to

γrc (m).

Any mechanism γc that A accepts in stage 2 yields a subgame Gr(γc) that starts in stage

3. FT note that, in any such subgame, choosing x = 1 is not part of an equilibrium. To see

this, suppose A takes e = H with probability one. Then, the best reply of P is to offer a

full insurance mechanism in stage 4 that is accepted by A. But against this renegotiation

offer, A would be strictly better off choosing e = L. FT then show that the overall game

Gr admits only one (perfect Bayesian) equilibrium allocation. At equilibrium, renegotiation

is successfully prevented. Yet, A takes e = H with probability xFT < 1, and obtains an

expected payoff UFT ≥ U0.

Thus, the threat of renegotiation fundamentally constraints the provision of insurance,

and the agent’s incentives to undertake the efficient level of effort.

In their analysis, FT restrict attention to revelation mechanisms,5 which, by construction,

do not incorporate any private communication to the agent. We argue that this restriction

is critical. In the remaining of the paper, we show the key role of mechanisms in which

the wage may also depend on a random signal s about which only the agent gets informed.

Because any such mechanism conditions the transfers on the signal s that it sends to the

agent, we refer to it as a “mediated mechanism” in line with Rahman and Obara (2010)

connotation of a “mediated contract”.

Specifically, we show that, if P can use mediated mechanisms, then the unique equilibrium

allocation is exactly (H, cSB). This result demonstrates that the frictions usually associated

to contract renegotiation can be fully overcome by more sophisticated contract design.

3 Mediated Mechanisms

A mediated mechanism γ = {M,S, σ, τ} features a finite set of messages M sent from A, a

finite set of signals S to be privately received by A according to the distribution σ : M→
∆(S), and a decision rule τ : M× S → R2 that associates a profile of transfers τ(m, s) to

each profile of messages and signals.6 We let Γ denote the set of mediated mechanisms.

In the mediated renegotiation gameGΓ, P posts mechanisms in Γ, and, at the renegotiation

stage, he may offer any other mechanism in Γ to A as an alternative.

5They write: “there is no loss of generality in restricting the contract space to be C”, since “the revelation
principle implies that, at the interim stage, the principal can implement any allocation obtained through a
complex contract” (Fudenberg and Tirole, 1990, p. 1283)

6To circumvent potential measure theoretical complications, we focus on finite sets.
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For |M| = 2 and |S| = 1, mechanisms in Γ reduce to mechanisms in C as defined in FT.7

Hence, the mechanisms that we consider extend the ones in FT in the message dimension

M as well as in the signal dimension S.

In the following subsection, we consider two classes of mediated mechanisms, Γ0 ⊂ Γ and

Γ1 ⊂ Γ, that differ according to the extensive form of the game they induce, that is, the

sequence in which the reports and the disclosures are made. As the rest of this section will

clarify, different implementation results can be achieved by allowing the principal to propose

mediated mechanisms from these different classes.

3.1 The Mediated Renegotiation Game

The mediated renegotiation game GΓ takes place as follows:

1. P offers a mediated mechanism γ ∈ Γ.

2. A accepts or rejects the offer. If she rejects the outside options accrue, otherwise the

subgame GΓ(γ) takes place.

The details ofGΓ(γ) depend on the timing of the reports and the disclosures featured by γ.

In this subsection, the extensive form (sub)games induced by the acceptance of mechanisms

belonging to the classes Γ0 ⊂ Γ and Γ1 ⊂ Γ are described. For a given subgame GΓ(γ), we

let λ(γ) be a (continuation) strategy for the agent in GΓ(γ), while a principal’s pure strategy

is a renegotiated mechanism γr ∈ Γ.

Consider first the class of mechanisms Γ0, in which the agent observes a signal at the ex

ante stage, before taking the effort decision, and sends a report after rejecting a renegotiated

offer.

The extensive form of the subgame GΓ(γ) that starts after A accepts a mechanism γ ∈ Γ0,

is as follows:

1. A observes a private signal s ∈ S extracted from the distribution σ ∈ ∆(S).8

2. Having observed s ∈ S, A chooses e = H with probability x ∈ [0, 1] and e = L with

probability 1− x.

3. Without observing neither e nor s, P makes a renegotiation offer γr = {Mr,Sr, σr, τ r}∈
Γ ∪ {∅}.

7In particular, concerning the extensive form of the game induced by a mechanism, FT let the agent
report into γ only after γr has been rejected; however, as they argue in Fudenberg and Tirole (1990, p.
1283), their results still hold when other extensive forms and timing of the reports are considered.

8Since s is extracted before m is sent, σ(s|m) = σ(s) for each (s,m) ∈ S ×M.
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4. A accepts or rejects γr by declaring ρ ∈ {y, n}.

5. If ρ = n or γr = {∅}, the agent sends m ∈ M. If ρ = y, A receives a private signal

sr ∈ Sr and sends mr ∈Mr.9

6. All the messages and signal of the relevant mechanism are made public and the final

transfers are executed accordingly.

A principal’s (pure) strategy in the subgame GΓ(γ) is a renegotiation offer γr ∈ Γ∪ {∅}.
An agent’s (behavioral) strategy in GΓ(γ), which we denote λ(γ), associates to any γr ∈
Γ ∪ {∅} and s ∈ S a probability distribution over E. Further, for any history (e, s, γr) with

γr 6= {∅}, λ specifies a probability distribution over the participation choices in γ, and, for

any (e, s, {∅}) or (e, s, γr, n), a probability distribution over the messages m ∈ M. Finally,

λ(γ) specifies a probability distribution over the messages in γr, at any continuation history

of (e, s, γr, y) in which, given the extensive form of γr, it is required.

A mediated mechanism γ ∈ Γ0 can indeed be thought as randomly drawing and secretly

offering menus of contracts to the agent before her effort decision. In fact, each s ∈ S can

be interpreted as an index to a menu of lotteries whose items are {τ(s,m)}m∈M. After

accepting γ, the agent learns which s has been offered to her, and by sending m ∈ M she

selects an item τ(s,m). The principal does not know at the renegotiation stage which menu

s ∈ S has been offered to the agent.

The extensive form of GΓ(γ) is instead as follows if γ ∈ Γ1:

1. A chooses e = H with probability x ∈ [0, 1] and e = L with probability 1− x.

2. Without observing e, P makes a renegotiation offer γr = {Mr,Sr, σr, τ r}∈ Γ ∪ {∅}.

3. A send a message m ∈M in the initial mechanism γ.

4. The mechanism γ extracts a signal s ∈ S according to the distribution σ(m) ∈ ∆(S).

5. After privately observing s, A accepts or rejects γr by declaring ρ ∈ {y, n}.

6. If ρ = y, A sends mr ∈Mr and receives a private signal sr ∈ Sr.10

7. All the communications in the relevant mechanism are made public and the associated

transfers are executed.

9The order of the actions depends on which mechanism is offered by the renegotiating principal.
10As in footnote 9, the order depends on the extensive form induced by γr after ρ = y.
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A principal’s (pure) strategy in GΓ(γ), where γ ∈ Γ1, is a renegotiation offer γr ∈ Γ∪{∅}.
An agent’s (behavioral) strategy in GΓ, which we denote λ(γ), associates to any γ ∈ Γ a

probability distribution over efforts. Further, for any history (e, γr), λ specifies a probability

distribution over the messages in γ, and, for any (e, γr,m, s) such that γr 6= {∅}, a probability

distribution over the participation choices in γr. Finally, λ specifies a probability distribution

over the messages in γr, at any continuation history in which, given the extensive form of

γr, it is required.

Comparing the subgame GΓ(γ) with γ ∈ Γ1 to the subgame Gr(γc) in FT reveals that

a mediated mechanism transforms the simultaneous decision of A about her message m

and acceptance decision ρ into a sequential one, comprising three substages: first, A sends a

message m, she then privately observes the random signal s, and finally accepts or rejects the

renegotiation offer. The crucial idea is that A receives her (private) signal s before deciding

about accepting P’s renegotiation offer.

As in FT, the game GΓ is an extensive form game with imperfect information, as P does

not observe A’s effort choice, when making his renegotiation offer. Consequently, we focus

on the perfect Bayesian equilibria of GΓ.

As the subgame GΓ(γ) is also an extensive form game with imperfect information, a

perfect Bayesian equilibrium of GΓ also prescribes a perfect Bayesian equilibrium for the

subgame GΓ(γ). That is, P chooses an optimal mechanism γ, given that the players

continuation strategies constitute a perfect Bayesian equilibrium (henceforth equilibrium)

of GΓ(γ).

In the next sections, we show that mediated mechanisms allow to fully overcome the

threat of renegotiation. That is, we show that in any equilibrium of GΓ, P obtains the

second-best payoff V SB, A picks e = H with probability one, and there is no incentive for

renegotiation.

More in detail, we first show that, by offering a mediated mechanism γ̂ ∈ Γ0, the principal

can obtain any payoff arbitrarily close to the second-best level V SB at some equilibrium of

the subgame GΓ(γ̂). Note that a mechanism in the class Γ only changes the extensive form

assumed in FT slightly, that is, by including a private disclosure to the agent that takes

place at the ex ante stage. The timing of the agent’s participation and reporting decisions

is instead unaltered with respect to Gr.11

11Another difference is the ability of the principal to offer stochastic mechanisms; however, the inclusion
of lotteries over transfers is shown in the Discussion section of this paper to be irrelevant in the original FT
framework, and thus, it does not constitute per se an extension of the FT model, until the private disclosures
are added to the picture.
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Then, we exhibit a mechanism γ∗ ∈ Γ1 which implements the second-best allocation

exactly, and we also show that this allocation is the only one to be supported in an equilibrium

of the overall game GΓ since, for any payoff V lower but arbitrarily close to V SB, there exists

γ′ ∈ Γ1 that yields V as the only continuation payoff of the principal.

Thus, the introduction of mediation allows to reach different conclusions according to

the level of sophistication that is allowed in the interplay between the agent’s reporting

and participation decisions. In particular, our analysis suggest that an approximate and

partial implementation of the second-best can be achieved by adding a minimal piece of

endogenous asymmetric information to the standard framework in FT; however, for the

exact and unique implementation of the second-best, the principal must be able to design

mechanisms requiring the agent to report after observing a renegotiated offer, and before

accepting or rejecting it.

3.2 Virtual Implementation of the Second Best

We prove first two preliminary results, which will be instrumental to characterize the principal’s

payoff at the renegotiation stage.

Lemma 1 There exists a π̄ ∈ (0, 1) such that, for each π ∈ (0, π̄), one can find a U j(π) ∈
(U0,∞) that satisfies:

(1− π)V SB + πV IC(U j(π)) = Y H − Φ(U j(π) + d). (4)

There could be multiple values of U ∈ (U0,∞) that verify (4). We henceforth refer to

U j(π) as the value characterized in the proof, which is the smallest U ∈ (U0,∞) yielding

the result.12

We now establish a second result:

Lemma 2 For each pair
(
π ∈ (0, π̄), U j(π)

)
, there is a unique Uk(π) ∈ (U j(π),∞) such

that:

(1−π)(Y H−Φ(U0+d))+π

[
1

2
V IC(Uk(π)) +

1

2
V IC(2U j(π)− Uk(π))

]
= (1−π)V SB+πV IC(U j(π)).

(5)

12Consider in fact H, U∗ and U1 as defined in the appendix. For all π ∈ (0, π̄), U j(π) is shown to be the
unique U ∈ [U∗, U1] satisfying (16) and thus (9). Since H(U) < 0 for any U ∈ [U0, U∗), and since U1 > U∗,
there is no other value U ∈ [U0, U j(π)) satisfying (16).
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We are now ready to show that mediated communication allows to (approximately)

implement the second-best allocation yielding V SB to the principal.

Let γ̂ = {Ŝ,M̂, σ̂, τ̂} ∈ Γ0 be such that:

1. Ŝ = {α, β}, M̂ = {a, b}

2. σ̂(α) = 1− π, σ̂(β) = π, with π ∈ (0, π̄), as in Lemma 1

3. If α realizes, then τ̂(α,m) = cIC(U0) = cSB with probability one, for every m ∈ {a, b}

4. If β realizes, then the final transfers depend on the agent’s message:

• if m = a, then τ̂(β, a) = cIC(U j(π)) with probability one,

• if m = b, then

τ̂(β, b) =

{
cIC(Uk(π)) with probability 1

2

cIC(U l(π)) with probability 1
2
,

with U j(π) and Uk(π) defined in Lemma 1 and 2, and U l(π) = 2U j(π)− Uk(π).

The mechanism can be interpreted as follows: with probability 1−π, only the second-best

contract cSB is offered. With probability π, the agent is offered a menu, which leaves her

free to choose between two items. The first one is an incentive-compatible contract yielding

the (expected) utility U j(π) > U0 to her, the second item is a randomization over the two

incentive-compatible contracts cIC(Uk(π)) and cIC(U l(π)). One should observe that, upon

selecting this second item, i.e. sending the message m = b, the agent’s expected payoff is

1

2
Uk(π) +

1

2
U l(π) = U j(π), (6)

for any e ∈ {L,H}. That is, upon receiving the signal β, the agent is indifferent over

reporting m ∈ {a, b} in the mechanism, for any effort choice.

The subgame GΓ(γ̂) unfolds as follows:

1. A observes the signal s ∈ {α, β}.

2. After seeing s, A takes e = H with probability x(s) ∈ [0, 1]

3. P offers a renegotiation mechanism γr ∈ Γ ∪ {∅}.

4. A takes a (possibly random) participation decision ρ ∈ {y, n} if γr 6= {∅}.
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5. If ρ = y, A observes sr and sends a possibly random report mr ∈ Mr. If ρ = n or

γr = {∅}, A sends a possibly random report m ∈ {a, b}.

6. All communications are made public and the transfer from the relevant mechanism are

realized.

The following result holds:

Proposition 1 Fix any π ∈ (0, π̄). The subgame GΓ(γ̂) has an equilibrium in which:

i. A plays e = H with probability one

ii. P does not renegotiate with probability one

iii. P gets the payoff V SB with probability (1− π).

We still need to show that the P’s equilibrium payoff can be made arbitrarily close to

the second-best one. This is implied by the following

Corollary 1 Let π ∈ (0, π̄). Then,

lim
π→0

πV IC(U j(π)) + (1− π)V SB = V SB. (7)

3.3 Exact Implemention of the Second Best

We now show that there exists γ∗ ∈ Γ1 that allows to obtain the second-best allocation at

an equilibrium of GΓ(γ∗).

Given the definition of V FI
e : R → R and V IC

e : R → R from Section 2, the following

lemma is key for establishing our main result.

Lemma 3 There exists Un ∈ (U0,∞) such that for all U ≥ Un and all e ∈ E:

V IC
e (U0) > max

{
V FI
e (U),

1

2
V FI
e (2U0 − U) +

1

2
V IC
e (U)

}
. (8)

Lemma 3 implies a threshold Un such that, for any e ∈ E, P prefers the incentive-compatible

contract, cIC(U0), to any full-insurance contract that leaves U ≥ Un to A. Moreover, for any

U ≥ Un, P also prefers the contract cIC(U0) to a 50/50 lottery between the full-insurance

contract leaving 2U0 − U to A, and the incentive-compatible one leaving her U .

As we shall discuss, Lemma 8 allows to construct a mediated mechanism γ∗ such that P

attains the left hand side of (8) when he does not renegotiate, while the right hand side of
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(8) corresponds to what P expects from the best possible renegotiation offer that A accepts

with a strict positive probability. Hence, the inequality in (8) implies that P is better off by

not renegotiating.

Let γ∗ = {M∗,S∗, σ∗, τ ∗} be such that M∗ = {a, b} and S∗ = {α, β}. The signals are

extracted according to σ∗ :M∗ → ∆(S∗) with:

σ∗(α|m) = σ∗(β|m) =
1

2
for each m ∈ {a, b}.

The decision rule τ ∗ :M∗ × S∗ → R2 is such that:

τ ∗(a, α) = τ ∗(a, β) = cSB; τ ∗(b, α) = cIC
(
2U0 − Un

)
; τ ∗(b, β) = cIC(Un).

Hence, γ∗ shares with the mechanisms in FT the restriction to only two messages for

A, i.e. |M∗| = 2. By contrast, it selects one of the two signals with equal probability and

privately discloses it to A. Although, in general, the distribution of the signal may depend

on the message m, the specific mediated mechanism γ∗ does not exploit this feature. Yet,

γ∗ is a mediated mechanism in the sense of Rahman and Obara (2010) because it conditions

its final transfers on some information privately sent to A.

Proposition 2 The second-best allocation (H, cSB) is supported in an equilibrium of the

subgame GΓ(γ∗).

Since P cannot obtain more in the game with renegotiation than without renegotiation,

Proposition 2 implies that the mediated renegotiation game has an equilibrium in which the

possibility of renegotiation does not constrain final outcomes. The result stands in stark

contrast to that in FT, who do not consider mediated mechanisms.

To establish Proposition 2, observe that, by reporting m = a in γ∗, A gets the second-best

contract cSB, which makes e = H an optimal choice. In the absence of renegotiation, this

yields U0 to A and V SB to P. Hence, it suffices to exhibit a profile of continuation strategies

that support these behaviors in an equilibrium of GΓ(γ∗).

Let mr
e denote some A’s optimal message m ∈ Mr when she accepted a renegotiation

offer γr 6= {∅} and she chose an effort e ∈ E.13 In addition, let Û r
e denote her corresponding

payoff. That is,

mr
e ∈ arg max

m∈Mr

∑
s∈Sr

σr(s|m)Ue(τ
r(m, s)) and Û r

e =
∑
s∈Sr

σr(s|mr
e)Ue(τ

r(mr
e, s)). (9)

13We only consider renegotiated mechanism that let the agent report before receiving a message; the
reasoning can be straightforwardly extended to the case in which s is sent before m, since, also in this case,
any non-degenerate distribution of payoff-relevant signals violates the full insurance requirement.
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By construction, sendingmr
e is sequentially rational for A following any history (e, γr,m, s, y).

We now describe the strategies {λ(γ∗), γr(γ∗)} supporting (H, cSB) in an equilibrium of

GΓ(γ∗): P’s strategy is not to renegotiate, i.e. γr(γ∗) = {∅}, while A’s strategy λ(γ∗) is as

follows:

1. A chooses e = H with probability one.

2. Her messages in γ∗, and her subsequent participation decisions in γr, depend on the

history (e, γr) as follows:

(i) If γr = {∅}, and for any γr such that Û r
e ≤ 2U0 − Un, A sends m = a in γ∗,

followed by ρ = n.

(ii) For any γr 6= {∅} such that Û r
e ∈ (2U0 − Un, Un], A sends m = b in γ∗, followed

by ρ = y when s = α, and by ρ = n when s = β.

(iii) For any γr 6= {∅} such that Û r
e > Un, A sends m = b in γ∗, followed by ρ = y for

any received signal.

3. For any history (e, γr 6= {∅},m, s, y), A sends mr
e.

We show that the strategy profile {λ(γ∗), γr(γ∗)} together with P’s belief that A picked

e = H with probability x = 1 constitutes an equilibrium of GΓ(γ∗).

First note that the only non-trivial information set in GΓ(γ∗) is at the renegotiation stage,

where P offers γr. The only belief that is consistent with the strategy profile {λ(γ∗), γr(γ∗)}
is, indeed, x = 1, as λ(γ∗) prescribes A to pick e = H. Observe that if the strategies

{λ(γ∗), γr(γ∗)} are played, then P obtains V SB and A obtains U0.

We develop our argument in two lemmas. The first one refers to the A’s behavior in

GΓ(γ∗).

Lemma 4 The agent’s strategy λ(γ∗) is sequentially rational given any history (e, γr).

Proof. We already noted that sending mr
e is sequentially rational for any history (e, γr 6=

{∅},m, s, y). Next, consider any history (e, γr 6= {∅}). It is optimal for A to send m = a in

γ∗ whenever

max{U0, Û r
e } ≥

1

2
max

{
2U0 − Un, Û r

e

}
+

1

2
max{Un, Û r

e }, (10)

where Û r
e is defined in (9). The left(right)-hand side of (10) is her continuation payoff after

sending m = a(b). The following holds:
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(i) If Û r
e ≤ 2U0 − Un ∨ γr = {∅}, then (10) is satisfied because it reduces to U0 ≥ U0

since Û r
e ≤ 2U0−Un < U0, where the latter inequality follows from Un > U0. Sending

m = a in γ∗, followed by ρ = n, as prescribed by λ(γ∗), is hence optimal.

(ii) If Û r
e ∈ (2U0 − Un, Un], then, upon sending m = b, it is optimal for A to choose ρ = y

when s = α (as rejection leads to 2U0−Un < Û r
e ), and ρ = n when s = β (as rejection

leads to Un ≥ Û r
e ). We next argue that sending m = b in γ∗, as prescribed by λ(γ∗),

is optimal. That is, the sign of the inequality in (10) is reversed, where we note that,

due to Û r
e ∈ (2U0 − Un, Un], its RHS reduces to Û r

e /2 +Un/2. Hence, we only need to

show that

max{U0, Û r
e } ≤

1

2
Û r
e +

1

2
Un. (11)

To get the result, it is sufficient to observe that:

(a) If Û r
e < U0, then (11) is satisfied since Û r

e > 2U0 − Un.

(b) If Û r
e ≥ U0, then (11) is satisfied since Û r

e ≤ Un.

(iii) If Û r
e ∈ (Un,∞), then we have U0 < Un < Û r

e , implying that A is indifferent between

m = a and m = b, followed by ρ = y for any s ∈ {α, β}. In particular, as prescribed

by λ(γ∗), sending m = b in γ∗, and then accepting to participate in γr for any received

signal is optimal. �

The next lemma considers P’s behavior inGΓ(γ∗). In this subgame, P makes a renegotiation

offer γr, given his belief that x = 1, and anticipating A’s continuation strategy derived from

λ(γ∗).

Lemma 5 The strategy γr(γ∗) = {∅} is a principal’s best response to his (Bayes-consistent)

belief x = 1, and to the agent’s strategy λ(γ∗).

Proof. We first note that P can improve on any renegotiation offer γr 6= {∅} that does not

achieve full insurance to A. Hence, any optimal renegotiation offer involves full insurance,

i.e., γr is such that τ r(m, s) = (U r
H(m, s), U r

H(m, s)) for any (m, s) ∈ Mr × Sr with the

interpretation that it yields the payoff U r
H(m, s) to A when she picks e = H. Since any

renegotiation that does condition transfers non-trivially on A’s private signal, implies that

A is not fully insured, we need to consider only γr ∈ Γ such that Sr = {sr} and τ r(m, sr) =

(U r
H(m, sr), U r

H(m, sr)) for any m ∈ Mr. But then there is also no loss in considering
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offers such that Mr is a singleton, as P correctly anticipates that for any |Mr| > 1, A

sends some mr ∈ arg max
m∈Mr

U r
H(m, sr), implying that P can do just as well by letting Mr =

{mr}. Thus, there is no loss in assuming Sr = {sr}, Mr = {mr}, and τ r(m1, s1) =

(U r
H(m1, s1), U r

H(m1, s1)), which implies that any γr can be characterized by the number

Û r = U r
H(mr, sr) ∈ R, expressing the payoff that the renegotiation offer leaves to A when

she picks e = H.

We next verify that, for any Û r ∈ R, P’s expected payoff does not exceed V SB = V IC
H (U0),

his utility when not renegotiating. We distinguish three cases:

(i) If Û r ≤ 2U0 − Un then λ(γ∗) prescribes (m = a, ρ = n) and P gets V IC
H (U0).

(ii) If Û r ∈ (2U0 − Un, Un] then λ(γ∗) prescribes (m = b, ρ = y when s = α, and ρ = n

when s = β), and P gets

1

2
V FI
H (Û r) +

1

2
V IC
H (Un) <

1

2
V FI
H

(
2U0 − Un

)
+

1

2
V IC
H (Un) < V IC

H (U0), (12)

where the first inequality follows from the fact that V FB
H is decreasing, and the second

one from Lemma 3.

(iii) If Û r > Un then λ(γ∗) prescribes (m = b, ρ = y) for any received signal, and P gets

V FI
H (Û r) < V FI

H (Un) < V IC
H (U0) (13)

where, again, the first inequality follows from the fact that each V FB
e is decreasing,

and the second one from Lemma 3.

Thus, P cannot gain by offering any γr 6= {∅}. �

We complete the proof of Proposition 2 by considering A’s effort choice. Given P’s

strategy γr(γ∗) = {∅}, this is straightforward, as A does not expect γ∗ to be renegotiated.

In particular, she expects U0 from either effort level, because UL(cSB) = UH(cSB) = U0, so

that choosing e = H is indeed optimal.

Thus, as claimed in Proposition 2, the profile {λ(γ∗), γr(γ∗)} together with P’s belief

x = 1 at his non-trivial information set, form a perfect Bayesian equilibrium of GΓ(γ∗), in

which A chooses e = H with probability one, and P obtains V SB = V IC
H (U0).

The presented verification of Proposition 2 proves that the mediated mechanism γ∗ makes

any renegotiation offer unprofitable to P. It is, in particular, useful to describe A’s behavior
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towards any γr involving a full-insurance contract leaving her a utility U0. Recall that it

is this offer that upsets the second best for non-mediated contracts, implying that such

contracts are unable to yield an equilibrium in which A picks e = H with probability 1.

We instead show that γ∗ induces A to reject any such contract upon receiving the signal

s = β, which occurs with probability 1/2. The rejection probability of 1/2 makes these offers

unprofitable to P, because whenever A rejects the offer, the relevant contracting terms are

highly unfavorable to him.

Indeed, for γ∗ to implement the second best, the P’s anticipation of a probabilistic

rejection of his offer is crucial. This also explains why the mediated mechanism must send

the signal s privately to A rather than announcing it publicly. Because γ∗ guarantees that,

at the renegotiation stage, P is unaware of the signal realization s ∈ S, it is also crucial that

P is unable to condition the renegotiation offer on s. But if the mechanism would reveal

s publicly, P would then be able to condition the renegotiation offer on the signal, thereby

undoing the probabilistic rejection.

3.4 Unique Implementation of the Second Best

Proposition 2 shows that the mediated mechanism γ∗ induces a subgame that supports the

second-best allocation at equilibrium. Because this outcome yields A the utility U0, it is also

incentive compatible for her to accept γ∗ at stage 2, as she cannot strictly gain by rejecting

it. Moreover, P cannot attain a payoff greater than V SB, in the game without renegotiation.

This then shows that an equilibrium exists in the overall game GΓ that yields the second-best

allocation.

From the Myersonian mechanism design perspective that the principal can pick not only

the mechanism but also the equilibrium to be played, the presence of an equilibrium yielding

the second-best allocation provides a satisfactory answer to its implementability. However,

taking a stricter implementation perspective, one may worry that GΓ may also admit other

equilibrium outcomes.

Indeed, the mechanism γ∗ makes A indifferent over her messages as well as over her effort

choices. As a consequence, γ∗ can be shown to implement a continuum of allocations for

the subgame GΓ(γ∗). One may, for example, show that any x ∈ [0, 1] together with P not

renegotiating (i.e. γr = {∅}) can be supported by an equilibrium of GΓ(γ∗), in which A

sends m = a on the equilibrium path, and m = b if any renegotiation occurs.

That is, γ∗ does not uniquely implement the second-best allocation. Yet, in spite of this

multiplicity, this allocation is the only one to be supported at equilibrium in the game GΓ.
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Our argument parallels that developed in Remark 1 for the standard contracting game

without renegotiation. That is, we exhibit a mediated mechanism γ′ 6= γ∗ which uniquely

implements an allocation yielding P a payoff arbitrarily close to V SB. Specifically, the

following holds:

Proposition 3 The renegotiation game GΓ has a unique equilibrium allocation, which co-

incides with the second-best one (H, cSB).

The proof of Proposition 3 constructs a mechanism γ′ by perturbing γ∗ in such a way

that, in the subgame GΓ(γ′), for any belief x ∈ [0, 1], choosing not to renegotiate is the unique

best response of P to any sequentially rational behavior of A. This, in turn, guarantees that

e = H is the unique optimal choice.

Proposition 3 shows that, in terms of implementation, our mediated mechanisms are more

powerful than the mediated contracts in Rahman and Obara (2010), because they allow a full

rather than only a virtual implementation of the principal’s optimal outcome. Because our

full implementation implies the uniqueness of the corresponding equilibrium allocation, it

also guarantees that our results do not depend on any specific equilibrium selection criterion,

neither at the ex-ante, nor at the interim stage.

4 Discussion

In this section, we put our results in perspective, clarifying the strategic role of the asymmetric

information generated by mediated mechanisms.

Random vs. Mediated Mechanisms. Because γ∗ conditions the final transfers on the random

signal s, it effectively induces a random contract. Given this observation, it is natural to ask

whether there is a random but non-mediated mechanism, i.e. a map associating any agent’s

message to a random contract, which allows to implement the second-best allocation. Indeed,

throughout their analysis, FT restrict attention to the deterministic mechanisms in the class

C, which prevents them from showing whether random mechanisms are welfare-enhancing.

The following lemma, provides however a negative answer, thereby showing that P cannot

gain by committing to lotteries over contracts.

Lemma 6 Consider the game G̃r, which coincides with Gr, with the exception that the set

of available mechanisms C is now enlarged to C̃, which includes all the stochastic revelation

mechanisms γc̃ : E → ∆(R2). Then, G̃r admits only one equilibrium allocation, which

coincides with that of Gr.
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To understand the difference between a non-degenerate random mechanism γc̃ ∈ C̃ and

the role of randomness in our mediated mechanism γ∗, note that a mechanism γc̃ ∈ C̃ is

random for both P and A, in the sense that neither party can condition any of their decisions

on the realization of the randomness. By contrast, γ∗ is random for P , but not for A, because

A can condition her choice whether to accept some renegotiation offer on the realization of

the random component. Indeed, γ∗ crucially exploits this feature.

Mediated Mechanisms and Information Storage. The mechanism γ∗ is designed such that

any signal s privately sent to A is publicly revealed only if she rejects the renegotiation

offer γr. Indeed, our construction crucially exploits this feature. If γr could be made

contingent on the realized s, then the renegotiation can be fine-tuned to match the effective

reservation utility of the agent, thereby overcoming the obstacles raised by mediation.14 In

other words, γ∗ is designed to store some information, which gets irrevocably lost whenever it

is renegotiated upon. This makes our mediated mechanisms close to the “smart contracts”

proposed by Georgiadis-Harris et al. (2023), which guarantee the privacy of the buyer’s

reported willingness to pay. In general terms, the idea that part of the communication

taking place in a mechanism cannot be exploited by the subsequent trading proposals has

been extensively applied in the limited commitment literature.15

Alternative Communication Protocols. In this paper, the communication protocol, i.e. the

sequence of the messages to be sent and that of the signals to be received from any mechanism,

is taken as given by both players. The specific protocol we adopt, which allows to uniquely

implement the second-best allocation, successfully prevents renegotiation. One may ask

whether, at the renegotiation stage, the principal may instead benefit from an alternative

mode of communication. Specifically, he may be willing to post his offer γr after the

agent communicates in the original mechanism γ∗. This may, in principle, mitigate the

punishments he is subject to, at the renegotiation stage, through the agent’s behavior in

the mediated mechanism. Yet, even in such a scenario, one can construct a richer mediated

mechanism, which incorporates a further degree of delegation to the agent. Specifically,

designing a mechanism which gives the agent the power to choose at which stage to send

messages (and subsequently receive signals), would give her an incentive to do that after γr

has been posted, so to exploit the additional market information. This, we argue, allows to

14A formal proof of the profitability of renegotiation offers contingent on the realized signal s in the
subgame GΓ(γ∗) is available in the Appendix.

15In Doval and Skreta (2022), the mechanism can garble the reports made by the buyer in each period. This
turns out to reduce the set of available deviations for the next-period seller, which has a welfare-enhancing
effect.
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extend Proposition 2 to such a richer strategic scenario.16

Appendix 1: Proofs of the Main Results

Proof of Lemma 1. Consider first the function H : (U0,∞)→ R, such that:

H(U) =
V SB − Y H + Φ(U + d)

V SB − V IC(U)
, (14)

which denominator is strictly positive since V SB > V IC(U) over its domain. One should

observe that:

1. H(U) < 1. Indeed, the convexity of Φ guarantees that V IC(U) < Y H −Φ(U + d) for any

U ∈ (U0,∞).

2. To determine the sign of H(U), we only need to consider its numerator. Recalling that

V SB = Y H − pHΦ

(
U0 +

1− pL

∆p
d

)
− (1− pH)Φ

(
U0 − pL

∆p
d

)
the numerator of (14) can be written as

N(U) = Φ(U + d)− pHΦ

(
U0 +

1− pL

∆p
d

)
− (1− pH)Φ

(
U0 − pL

∆p
d

)
, (15)

that is continuous, strictly increasing, and strictly convex in U , which guarantees that

lim
U→∞

N(U) =∞. In addition, we have:

N(U0) = Φ(U0 + d)− pHΦ

(
U0 +

1− pL

∆p
d

)
− (1− pH)Φ

(
U0 − pL

∆p
d

)
< 0,

where the inequality follows from the convexity of Φ. This guarantees that there exists

a unique finite U∗ ∈ (U0,∞) such that N(U∗) = 0. That is:
H(U) < 0 if U ∈ (U0, U∗)

H(U) = 0 if U = U∗

H(U) > 0 if U ∈ (U∗,∞)

3. H is continuously differentiable since, for all U ∈ (U0,∞), the numerator is continuously

differentiable and the denominator is continuosly differentiable, different from zero, and has

first derivative different from zero.

16A detailed analysis of this setting, and of the generalized mediated mechanism one may construct, is
available in the Appendix (Remark 10).
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Next, observe that:

H ′(U∗) =
Φ′(U∗)[V SB − V IC(U∗)] + V sb ′(U∗)[V SB − Y H + Φ(U∗)]

[V SB − V IC(U∗)]2
=

Φ′(U∗)

V SB − V IC(U∗)
> 0,

where the last equality follows from the fact that V SB − Y H + Φ(U∗) = N(U∗) = 0.

We now argue that there exists a finite value U1 ∈ (U∗,∞) such that H is defined,

continuous and strictly increasing on the closed interval [U∗, U1].

To establish the result, two cases should be distinguished.

a) H ′(U) > 0 for all U ∈ (U∗,∞). In this case, let U1 be any U ∈ (U∗,∞), which implies

that H ′ > 0 on (U∗, U1). Since H is continuous on [U∗, U1], the Mean Value Theorem

guarantees that it is also strictly increasing on this interval.

b) H ′(U) is not strictly positive for all U ∈ (U∗,∞). Then, since H ′(U∗) > 0 and H ′ is

continuous on (U∗,∞), H ′ must have at least a zero on this interval. Take U1 to be the

smallest U ∈ (U∗,∞) such that H ′(U) = 0. Since H ′ is continuous on [U∗, U1], with

H ′(U∗) > 0 and H ′(U1) = 0, and given the definition of U1, we have that H ′(U) > 0

for all U ∈ (U∗, U1). Once again, the continuity of H guarantees that this function is

also strictly increasing on [U∗, U1].

Denote π̄ = H(U1). We now show that, for any π ∈ (0, π̄), one can find a U j(π) ∈ (U0,∞)

such that

π = H(U j(π)), (16)

which is a reformulation of (9). Indeed, recalling that H is continuous on [U∗, U1] with

H(U∗) = 0 and H(U1) = π̄, the Intermediate Value Theorem guarantees the existence of

some U j(π) ∈ [U∗, U1] satisfying (16). In particular, since H is strictly increasing on [U∗, U1],

U j(π) is uniquely defined on that interval. �

Proof of Lemma 2. Define

W IC(U)
.
= YH − V IC(U)

to be the expected monetary transfer induced by the contract cIC(U). By subtracting Y H

from both sides and changing signs, equation (5) can be rewritten as

(1−π)Φ(U0 +d) +π

[
1

2
W IC(U) +

1

2
W IC(2U j(π)− U)

]
= (1−π)W IC(U0) +πW IC(U j(π)).

(17)
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Consider a pair
(
π ∈ (0, π̄), U j(π)

)
, and let the function Z : [U j(π),∞) → R be such

that17

Z(U) = (1− π)Φ(U0 + d) + π

[
1

2
W IC(U) +

1

2
W IC(2U j(π)− U)

]
.

Since the RHS of (17) does not depend on U , to establish the result, we only need to

show that there is a unique U = Uk(π) > U j(π) such that

Z(Uk(π)) = (1− π)W IC(U0) + πW IC(U j(π)).

One should observe that:

a) Z(U j(π)) = (1− π)Φ(U0 + d) + πW IC(U j(π)) < (1− π)W IC(U0) + πW IC(U j(π)),

where the inequality follows from the convexity of Φ.

b) Z is continuously differentiable on [U j(π),∞), because it is the weighted sum of

continuously differentiable functions. Also, it is strictly increasing and convex in

(U j(π),∞), which follows from the first and second derivatives of Z being positive

for any U > U j(π). In fact:

∂Z(U)

∂U
=
π

2

∂W IC(U)

∂U
− π

2

∂W SB(2U j(π)− U)

∂U
> 0,

which is satisfied since ∂W IC(U)
∂U

is increasing and U > 2U j(π) − U for any U ∈
(U j(π),∞).

The second derivative of Z is :

∂2Z(U)

∂U2
=
π

2

∂2W IC(U)

∂U2
+
π

2

∂2W SB(2U j(π)− U)

∂U2
> 0,

where the inequality follows from the convexity of W SB.

c) lim
U→∞

Z(U) = +∞, which is implied by Z being continuous, strictly increasing and

convex on (U j(π),∞).

Taken together, (a) − (c) guarantee the existence of a unique Uk(π) ∈ (U j(π),∞)

satisfying (5). �

17Note that W IC(2U j(π) − U) is defined for any U ∈ [U j(π),∞) since W IC(U) is defined for any U ∈
(−∞,+∞) (p. 10).
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Proof of Proposition 1. The proof is developed in three steps.

Step 1: Equilibrium Strategies. We construct an equilibrium of GΓ(γ̂) in which the

principal does not renegotiate, i.e. γr = {∅}.18 The agent’s strategy is such that she chooses

x(α) = x(β) = 1, i.e. she plays H with probability one, for any received signal. Her reporting

strategy, instead, depends on whether renegotiation has taken place. Specifically:

1. If renegotiation does not occur, λ(γ̂) prescribes to report m = a with probability one

in the original mechanism γ for any s ∈ Ŝ and for any e ∈ {L,H},

2. If the principal renegotiates, i.e. γr 6= {∅}, λ(γ̂) prescribes the following:

• If s = α, and for any e ∈ {L,H}, the agent selects ρ = y and reports some

mr ∈ argmax
m∈Mr

U(e, τ r(m)) in γr if and only if U(e, τ r(mr)) > U0. Otherwise, she

reports m = b in the original mechanism γ.

• If s = β, and for any e ∈ {L,H}, the agent selects ρ = y and reports any

mr ∈ argmax
m∈Mr

U(e, τ r(m)) in γr if and only if U(e, τ r(mr)) > U j(π). Otherwise,

she reports m = b in the original mechanism γ.

One can check that, if players stick to the strategies above, then the conditions (i)− (iii)

are satisfied. This in turn implies that the principal’s (expected) payoff is

V̂ (π)
.
= πV IC(U j(π)) + (1− π)V SB.

Observe that the agent’s strategy incorporates a potential punishment against the principal’s

attempts to renegotiate. Indeed, off-the-equilibrium-path, and upon receiving s = β, the

agent may hinder a renegotiating offer γr 6= {∅} by reportingm = b in the original mechanism

γ, which leads to the inefficient lottery τ(β, b).

Step 2: The Agent’s Sequential Rationality. We now show that the above strategy is

sequentially rational for the agent.

Suppose first that the principal does not renegotiate, i.e. γr = {∅}. When receiving

s = α and upon choosing e = H, the agent is indifferent between reporting m = a and

m = b. Indeed, in any such case, she gets her reservation utility U0. This shows that

reporting m = a is optimal. Likewise, the optimality of reporting m = a in γ when receiving

s = β and upon choosing e = H, follows from (6), which guarantees that, in this case, she

is indifferent between reporting m = a and m = b. Her corresponding payoff is U j(π) > U0.

18To save notation, we denote γr = {∅} the principal’s decision to abstain from renegotiation. In this case,
the agent of type s may only trade by selecting an item τ(s,m) ∈ {τ(s,m)}m∈M in the original mechanism.
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Finally, we argue that taking H with probability one is a best response at stage 2 for any

realized s ∈ {α, β}. Indeed, if s = α, the agent reports m = a, and cSB is implemented.

The contract belongs to the second-best frontier, which guarantees that e = H is an optimal

choice for the agent. If instead s = β, and m = a is reported, cIC(U j(π)) is implemented.

This contract also belongs to the second-best frontier, which makes e = H an optimal choice.

Suppose next that the principal renegotiates, i.e. γr 6= {∅}. It is immediate to see that

the above reporting strategy is sequentially rational for the agent when she receives s = α

and for any e ∈ {L,H}. If, instead, she receives s = β, chooses e ∈ {L,H}, and the principal

renegotiates to γr such that U(e, τ r(mr)) ≤ U j(π), then (6) guarantees that it is optimal to

declare ρ = n and report m = b in γ. By construction, declaring ρ = y and reporting any

mr ∈ argmax
m∈Mr

U(e, τ r(m)) in γr is optimal whenever U(e, τ r(mr)) > U j(π).

Step 3: The Principal’s Incentives to Renegotiate. We now consider the problem

faced by the principal at the renegotiation stage. If the principal’s beliefs are consistent,

he assigns probability one to the agent choosing H, and probability π (1 − π) to the agent

receiving the private signal β (α).

Given the agent’s reporting strategy, the payoff that the principal obtains by not renegotiating

is V̂ (π) = (1−π)V SB+πV IC(U j(π)). We now show that there is no renegotiation γr yielding

the principal a payoff strictly greater than V̂ (π).

To characterize an optimal renegotiating offer γr, i.e. a P ’s best-response at stage 3,

one should observe that the standard revelation principle applies at the renegotiation stage.

That is, there is no loss of generality in restricting to mechanisms such that |Sr| = 1, and

Mr = {α, β}: A receives no private signals, and her reports in γr only consists of the

private information generated by γ. We denote (Uα
g , U

α
b ) the state-contingent payoff that γr

guarantees to the agent when she reports α, and (Uβ
g , U

β
b ) that associated to the report β.

To yield a positive profit, γr must attract at least one type s ∈ {α, β} of A. We shall

then consider two situations, depending on whether γr attracts both types, or only type α.19

To attract both types, γr should guarantee to the agent the expected utility U j(π),

otherwise, upon receiving s = β, A would rather report in the original mechanism γ. The

P ’s optimal renegotiation program is therefore:

19Since U j(π) > U0 is the agent’s utility in the mechanism γ when s = β, there is no renegotiation γr

which only attracts type β of the agent.
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max
Uαg ,U

α
b ,U

β
g ,U

β
b

Y H − π[pHΦ(Uβ
g ) + (1− πH)Φ(Uβ

b )]− (1− π)[pHΦ(Uα
g ) + (1− πH)Φ(Uα

b )]

s.t.: pHUα
g + (1− pH)Uα

b ≥ U0 + d

pHUβ
g + (1− pH)Uβ

b ≥ U j(π) + d

pHUα
g + (1− pH)Uα

b ≥ pHUβ
g + (1− pH)Uβ

b

pHUβ
g + (1− pH)Uβ

b ≥ pHUα
g + (1− pH)Uα

g

The two incentive-compatibility constraints are simultaneously satisfied if and only if:

pHUα
g + (1− pH)Uα

b = pHUβ
g + (1− pH)Uβ

b (18)

Since there is no sorting condition and thus no incentive-compatibility reason for P to

allocate any amount of risk to A, P ’s optimal choice is to offer full insurance to both types,

i.e. Uα
g = Uα

b = Uα, Uβ
g = Uβ

b = Uβ.20 This implies that (18) is satisfied letting Uβ = Uα.

Since the participation constraint of type β must also bind, we get Uβ = Uα = U j(π) + d.

The optimal γr is the full-insurance, pooling contract cFI(U j(π)) = (U j(π)+d, U j(π)+d).

The corresponding payoff to P is Y H − Φ(U j(π) + d).

By not renegotiating, P achieves the payoff πV IC(U j(π)) + (1− π)V SB. It then follows

from Lemma 1 that he is indifferent between renegotiating via the pooling contract cFI(U j(π)),

and abstaining from renegotiation.

We next consider the case in which the renegotiating offer only attracts the agent of type

α. Given the above reporting strategy, type β will report m = b in the original mechanism,

γ upon rejecting γr, which leads to implement the lottery τ(β, b) with probability π. It

is straightforward to check that, in this case, the optimal γr is the full-insurance contract

cFI(U0) = Φ(U0 + d, U0 + d). The corresponding payoff to the principal is:

(1− π)(Y H − Φ(U0 + d)) + π

(
1

2
V IC(Uk(π)) +

1

2
V IC(U l(π))

)
Since U l(π) = 2U j(π) − Uk(π), Lemma 2 guarantees that the principal is indifferent

between renegotiating through the pooling contract cFI(U j(π)), and abstaining from any

renegotiation. �

Proof of Corollary 1. Since V SB does not depend on π, the term (1 − π)V SB converges

to V SB as π approaches zero. Consider next the term πV IC(U j(π)). The proof of Lemma

20Offers with random contracts can be excluded from the analysis as noted in Chade and Schlee (2012),
for a similar reason: they introduce costly and unnecessary uncertainty as they do not help the principal to
sort out types.
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1 shows that there is a U1 ∈ (U∗,∞) such that H is strictly increasing on [U∗, U1]. This

implies that its inverse H−1 : [0, H(U1)]→ [U∗, U1] exists, and it is continuous on [0, H(U1)].

In particular, we have H−1(0) = U∗, and lim
π→0

H−1(π) = U∗. In the proof, we let U j(π) =

H−1(π) for any π ∈ (0, π̄), which yields lim
π→0

U j(π) = U∗. Since V IC(U) is continuous at U∗,

one can write ve lim
π→0

V IC(U j(π)) = V IC(U∗), which is a finite term. Thus, lim
π→0

πV IC(U j(π)) =

0. �

Proof of Lemma 3. For a given e ∈ E, define the function Ṽe : [U0,∞)→ R as

Ṽe(U)
.
=

1

2
V FI
e (2U0 − U) +

1

2
V FI
e (U).

The function satisfies the following properties:

a) Ṽe(U) is well-defined, continuous, and twice differentiable for U ∈ [U0,∞), because

Φ(U) and, thus, V FI
e (U), are defined for every U ∈ (−∞,+∞) and, moreover, are

continuous, and twice differentiable.

b) Ṽe(U) is strictly decreasing since

∂Ṽe(U)

∂U
=

1

2

∂V FI
e (U)

∂U
− 1

2

∂V FI
e (2U0 − U)

∂U
< 0,

where the inequality obtains since U > 2U0 − U for any U ∈ [U0,∞), and because

V FI
e (U) is concave so that ∂V FI

e /∂U is decreasing.

c) Ṽe(U) is strictly concave since

∂2Ṽe(U)

∂U2
=

1

2

∂2V FI
e (U)

∂U2
+

1

2

∂2V FI
e (2U0 − U)

∂U2
< 0,

where the inequality follows because ∂2V FI
e (U)/∂U2 < 0.

d) It follows from (b) and (c) that lim
U→∞

Ṽe(U) = −∞.

e) For each e ∈ E, there is a U e ∈ (U0,∞) such that

V IC
e (U0) = Ṽe(U e) and V IC

e (U0) > Ṽe(U) ∀U ∈ (U e,∞).

This holds since Ṽe(U
0) = V FI

e (U0) > V IC
e (U0) > lim

U→∞
Ṽe(U) = −∞, where the

first inequality follows from the convexity of Φ. Because Ṽe(U) is continuous, the

intermediate value theorem guarantees that there is a U e ∈ (U0,∞): Ṽe(U e) =

V IC
e (U0). Because Ṽe(U) is strictly decreasing, we have Ṽe(U) < Ṽe(U e) = V IC

e (U0)

for all U > U e.
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It follows from (e) that for any Un > max{UH , UL}, we have

V IC
e (U0) > Ṽe(U

n). (19)

Since Un > U0 ⇔ Un > 2U0−Un, and given that Ṽe(U) is decreasing and concave, we have:

Ṽe(U
n) =

1

2
V FI
e (2U0 − Un) +

1

2
V FI
e (Un) > max{V FI

e (Un),
1

2
V FI
e (2U0 − Un) +

1

2
V IC
e (Un)}.

(20)

Taken together, (19) and (20) imply (8). �

Proof of Proposition 3. The proof is developed in two steps.

1. We construct a mechanism γ′, which uniquely implements an allocation such that e = H

and P’s payoff is arbitrarily close to V SB.

Take any ε ∈ (0, ε̄), with ε̄ > 0 and denote:

cSBε =

(
U0 +

(1− pL)d+ (1− pH)ε

pH − pL
, U0 − pLd+ pHε

pH − pL

)
.

One can check that cSBε leaves a payoff U0 to A if she selects e = H, and U0− ε if e = L.

Observe that P’s payoff Ve(c
SB
ε ) is continuous in ε for each e ∈ E.

The mechanism γ′ = {M′ =M∗,S ′ = S∗, σ′ = σ∗, τ ′}, coincides with γ∗, except for the

rule τ ′, which, for a given ε, is such that:

(i) If A sends m = a , then τ ′(a, α) = τ ′(a, β) = cSBε .

(ii) If A sends m = b, and receives s = β, then τ ′(b, β) = cIC(Un).

(iii) If A sends m = b, and receives s = α, then τ ′(b, α) = cIC(2U0 − Un − 3ε).

We now consider GΓ(γ′), and show that γr = {∅} is the unique best response of P, for

any sequentially rational behavior of A, and for any belief x ∈ [0, 1].

Denote Λ(γ′) the set of A’s sequentially rational strategies in GΓ(γ′). Let us characterize

the sequentially rational participation and reporting behaviors induced by some λ(γ′) ∈ Λ(γ′)

starting from the terminal nodes of GΓ(γ′).

In any history (e, γr,m, s, y) such that γr 6= {∅}, A sends any (distribution of) mr
e as

characterized in Proposition 2, and obtains Û r
e .

Consider now A’s participation behavior in any (e, γr,m, s) with γr 6= {∅}. If m = b and

s = α, ρ = y is optimal if Û r
e ≥ 2U0 − Un − 3ε, while ρ = n is optimal if the opposite weak

inequality holds. Similarly, if m = b and s = β, ρ = y is optimal if Û r
e ≥ Un and ρ = n if
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Û r
e ≤ Un.21 If m = a and e = H(L), regardless of s ∈ {α, β}, ρ = y is optimal if Û r

H ≥ U0

(Û r
L ≥ U0 − ε), and ρ = n is optimal if the opposite weak inequality holds.

Consider next A’s reports in γ∗ after any (e, γr). Given the above participation behavior,

it is optimal for her to report m = a in γ∗, if e = H, whenever

max{U0, Û r
H} ≥

1

2
max

{
Û r
H , 2U

0 − Un − 3ε
}

+
1

2
max{Û r

H , U
n} (21)

while m = b is optimal when the opposite weak inequality holds. If e = L, (21) becomes

max{U0 − ε, Û r
L} ≥

1

2
max

{
Û r
L, 2U

0 − Un − 3ε
}

+
1

2
max{Û r

L, U
n}. (22)

Consider now P’s behavior at the renegotiation stage and assume, to start with, that he

holds a deterministic belief x ∈ {0, 1} over A’s effort. As argued in the proof of Proposition

2 (Lemma 5), for any e ∈ E, it is optimal for him to choose either γr = {∅} or a renegotiated

offer γr ∈ Γ such that Mr = {m1} and Sr = {s1} are singletons, and the full insurance

transfers τ r(m1, s1) = cFIe (Û r
e ) are implemented. Thus, any optimal renegotiated offer is

characterized by the number Û r
e ∈ (−∞,+∞), that is, the expected payoff it yields to A

when she chooses e ∈ E. It follows that:

1. If Û r
H < 2U0−Un∨Û r

L < 2U0−2ε−Un∨γr = {∅}, A’s sequentially rational behavior is

unique, and coincides with (m = a, ρ = n for all s ∈ {α, β}), which yields Ve(c
SB
ε (U0))

for e ∈ {L,H} to P. Note that ρ = n is optimal after sending m = a, since

Û r
H < 2U0 − Un < U0 and Û r

L < 2U0 − 2ε− Un < U0 − ε

where both inequalities follow from Un > U0. To see why m = a is preferred to m = b,

two cases must be considered:

(a) If Û r
H ≤ 2U0 − Un − 3ε, then (21) becomes U0 ≥ U0 − 3

2
ε; likewise, if Û r

L ≤
2U0 − Un − 3ε, then (22) becomes U0 − ε ≥ U0 − 3

2
ε, and both inequalities are

strictly satisfied since ε > 0.

(b) If Û r
H ∈ (2U0−Un− 3ε, 2U0−Un), then (22) becomes Û r

H ≤ 2U0−Un; likewise,

if Û r
L ∈ (2U0 −Un − 3ε, 2U0 − 2ε−Un), then (22) becomes Û r

L ≤ 2U0 − 2ε−Un,

and both inequalities are strictly satisfied by construction.

21The participation behavior following m = b is optimal for each e ∈ E, since both τ ′(b, α) and τ ′(b, β)
implement contracts on the incentive-compatibility frontier.
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2. If Û r
H = 2U0 − Un ∨ Û r

L = 2U0 − 2ε− Un, A is indifferent between (m = a, ρ = n for

all s ∈ {α, β}), and sending m = b, followed by ρ = y(n) when s = α(β) since, in this

case, (21) and (22) hold as equalities. For any randomization over A’s decisions, P’s

payoff is a convex combination of VL(cSBε ) and 1
2
V FI
L (2U0 − 2ε− Un) + 1

2
V IC
L (Un), if

e = L, or VH(cSBε ) and 1
2
V FI
H (2U0 − Un) + 1

2
V IC
H (Un), if e = H.

3. If Û r
H ∈ (2U0 − Un, Un) ∨ Û r

L ∈ (2U0 − 2ε− Un, Un), then A’s sequentially rational

behavior is unique, and coincides with m = b, followed by ρ = y when s = α, and by

ρ = n when s = β. In this case, both (21) and (22) are violated. The corresponding

payoff to P is 1
2
V FI
e (Û r

e ) + 1
2
V IC
e (Un), for e ∈ E.

4. If Û r
e = Un, A is indifferent between sending m = a, followed by ρ = y for all s ∈ {α, β},

and m = b, followed by ρ = y when s = α and any (randomization over) ρ ∈ {y, n}
when s = β. For any mixture over her message and participation decisions, P obtains

a convex combination between V FI
e (Un) and 1

2
V FI
e (Un) + 1

2
V IC
e (Un), for e ∈ E.

5. If Û r
e ∈ (Un,∞), A is indifferent between sending m = a and m = b, followed by ρ = y

for any s ∈ {α, β}. In any such situation, P obtains V FI
e (Û r

e ), for e ∈ E.

The above remarks guarantee that, if e = H, the following inequalities are sufficient for

γr = {∅} to be P’s unique best response:

VH(cSBε )− 1

2
V FI
H

(
2U0 − Un

)
− 1

2
V IC
H (Un) > 0, (23)

and

VH(cSBε )− V FI
H (Un) > 0. (24)

Observe that, if ε = 0, (23) and (24) are satisfied because they coincide with (12) and

(13), respectively. Since VH(cSBε ) is continuous in ε, there is a εH > 0 such that (23) and (24)

are satisfied for any ε ∈ (0, εH). If, instead, e = L, P to strictly prefers not to renegotiate if

VL(cSBε )− 1

2
V FI
L

(
2U0 − 2ε− Un

)
− 1

2
V IC
L (Un) > 0 (25)

and

VL(cSBε )− V FI
L (Un) > 0. (26)

Again, since VL(cSBε ) is continuous in ε, there is a εL > 0 such that (25) and (26) are

satisfied for any ε ∈ (0, εL). Denoting ε̄
.
= min{εL, εH} allows to conclude that, if P holds a

degenerate belief, and for any ε ∈ (0, ε̄), he cannot gain by renegotiating.
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Consider next the general case x ∈ [0, 1]. Denote P’s expected payoff by not renegotiating

Vx(c
SB
ε ) = xVH(cSBε ) + (1− x)VL(cSBε ).

By offering γr 6= {∅}, he would instead get

V ∗x (γr, λ(γ′)) = xV ∗H(γr, λ(γ′)) + (1− x)V ∗L (γr, λ(γ′)),

which is P’s continuation payoff, incorporating the optimal behavior of A following the

history (e, γr), according to λ(γ′). Yet, as shown in the first part of the proof, for any e ∈ E,

there is no γr yielding P a payoff above Ve(c
SB
ε ). This in turn prevents him from getting an

expected payoff greater than Vx(c
SB
ε ), for every (x, 1− x).

We finally consider A’s effort choice. Since A perfectly anticipates that m = a will be

sent, leading to either τ ′(a, α) = τ ′(a, β) = cSBε , she strictly prefers choosing e = H with

probability one. The corresponding payoff to P is therefore VH(cSBε ), which can be made

arbitrarily close to V SB = V IC
H (U0) by choosing a sufficiently small ε. Specifically, one can

check that

lim
ε→0

VH(cSBε ) = V SB. (27)

2. We now prove that GΓ admits an equilibrium, and that, in any equilibrium, (H, cSB) is

implemented.

To show equilibrium existence, it is enough to consider the strategies exhibited in the

proof of Proposition 2. If P posts γ∗, and, players stick to the equilibrium strategies

(λ(γ∗), γr = {∅}) in the subgame GΓ(γ∗), he gets his maximal payoff V SB, and has therefore

no incentive to deviate to any γ′ 6= γ∗.22

To establish the uniqueness result, we proceed by contradiction. Suppose that there is

an equilibrium in GΓ yielding P a payoff V ∗ < V SB. Then, given (27) there is a mechanism

γ′ and an arbitrarily small ε which yield P a payoff VH(cSBε ) ∈ (V ∗, V SB) in the unique

equilibrium of GΓ(γ′). This generates a contradiction. �

Proof of Lemma 6. For any stochastic mechanism γc̃ ∈ C̃, define γc̃(e) = c̃e and let

Ũe
.
= peE[Ug|c̃e] + (1− pe)E[Ub|c̃e]

22To simplify exposition, we do not provide a full description of the players’ continuation strategies. In
particular, we do not specify their behaviors in any subgame GΓ(γ′), with γ′ 6= γ∗.
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be the A’s expected payoff after taking the effort e ∈ E, and truthfully reporting it

in γc̃. Consider the subgame Gr(γc̃), and suppose that e = H is chosen with probability

x ∈ [0, 1]. The revelation principle guarantees that the maximal payoff attainable by P by a

renegotiation offer γr ∈ C̃ is the value of the program P (x, ŨH , ŨL):

V ∗(x, ŨH , ŨL) = max
γrc̃∈C̃

Y (x)− x[pHE(Φ(Ug)|crH) + (1− pH)E(Φ(Ub)|crH)]

− (1− x)[pLE(Φ(Ug)|crL) + (1− pL)E(Φ(Ub)|crL)]
(28)

s.t.: pHE(Ug|crH) + (1− pH)E(Ub|crH) ≥ ŨH (IRCH)

pLE(Ug|crL) + (1− pL)E(Ub|crL) ≥ ŨL (IRCL)

pHE(Ug|crH) + (1− pH)E(Ub|crH) ≥ pHE(Ug|crL) + (1− pH)E(Ub|crL) (ICCH)

pLE(Ug|crL) + (1− pL)E(Ub|crL) ≥ pLE(Ug|crH) + (1− pL)E(Ub|crH) (ICCL)

where Y (x) = xYH + (1− x)YL. The following two results hold:

Lemma 7 P (x, ŨH , ŨL) admits a unique solution, which is deterministic.

Proof. See Chade and Schlee (2012, Proposition 2).

Denote γr(γc̃, x) the unique solution to P (x, ŨH , ŨL).

Lemma 8 For any γc̃ ∈ C̃ and x ∈ [0, 1] there is a deterministic γc ∈ C such that γr(γc̃, x) =

γr(γc, x).

Proof. Given γc̃ ∈ C̃, we construct the deterministic mechanism γc yielding the transfers

U e
ω = E(Uω|c̃e) for each (e, ω) ∈ E×{g, b}. Thus, for any x ∈ [0, 1], the optimal renegotiation

offer in G(γc) obtains again from solving P (x, ŨH , ŨL). �

Finally, if γc is constructed from γc̃ as in the proof of Lemma 8, the following holds:

Lemma 9 The subgames Gr(γc) and G̃r(γc̃) have the same (perfect-Bayesian) equilibrium

allocations.

Proof. Consider the subgame G̃r(γc̃), and let x ∈ [0, 1] be the equilibrium distribution

over efforts. Let G̃r(γc) be the subgame induced by the mechanism γc, which is obtained

from γc̃ as in the proof of Lemma 8. It follows that, in either subgame, P’s renegotiation

offer is γr(γc̃, x) = γr(γc, x), which is accepted by A, who truthfully reports her former

effort.23 Furthermore, the transfers corresponding to the unique solution of P (x, ŨH , ŨL) are

23See Fudenberg and Tirole (1990, p. 1295).
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implemented. Thus, playing e = H with probability x ∈ [0, 1] is sequentially rational for A

in G̃r(γc), which implies that Gr(γc) and Gr(γc̃) have the same PBE allocations. �

To conclude the proof, denote xFT the equilibrium probability of e = H characterized

by FT, and UFT the equilibrium rent of A. Lemma 9 implies that the upper bound V FT =

V ∗(xFT , UFT , UFT ) of P’s payoffs characterized by FT for the deterministic game Gr is

also an upper bound in G̃r. In addition, in the game G̃r, P can achieve V FT as the unique

continuation payoff by offering any of the mechanisms characterized in Fudenberg and Tirole

(1990, Proposition 3.4). Thus, the unique equilibrium’s payoff of P in G̃r is V FT as in Gr,

and the same distributions over efforts and transfers are implemented. �

Appendix 2: Extensions

Renegotiation with public signals. Consider the mechanism γ∗ = {M∗,S∗, σ∗, τ ∗}
characterized in Proposition 2, where M∗ = {a, b}, S∗ = {α, β}, σ∗(α|m) = σ∗(β|m) = 1

2

for all m ∈M∗, and:

τ ∗(a, α) = τ ∗(a, β) = cSB

τ ∗(b, α) = cIC(2Un − U0), τ ∗(b, β) = cIC(Un)

with Un defined as in Lemma 3. We now assume that the realization s ∈ {α, β} is public.

This raises an important question: shall we enlarge the set of available renegotiated offers

to allow P to design transfers conditionally on the realized public signals? We show that, if

the answer is positive, there is a renegotiated offer γr which guarantees him a payoff strictly

above V SB regardless of the agent continuation play.

Consider the subgame GPub
Γ (γ∗), which starts after γ = γ∗ is offered and accepted:

1. A takes e ∈ {L,H}.

2. P offers γr ∈ Γr = {Mr,Sr, σr, τ r}, with τ r : Mr × Sr × S → ∆C, allowing to

condition on the realization s ∈ S.

3. A sends m ∈M∗.

4. The signal s ∈ S∗ is realized according to σ∗.

5. If ρ = y, A sends mr ∈ Mr, the signal sr ∈ Sr is realized according to σr, and the

transfers τ r(sr,mr, s) are implemented. If ρ = n or γr = {∅}, the transfers τ ∗(m, s)

are implemented.
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Observe that, if γr = {∅}, it is optimal for A to send m = a, as already shown in

Proposition 2. This leads to the implementation of cSB and yields P the payoff V SB.

We now argue that there is no equilibrium of GPub
Γ in which x = 1 and renegotiation is

prevented. In particular, we exhibit a γ̂r which, under the belief x = 1, yields P a payoff

strictly greater than V SB under any sequentially rational continuation play.

To simplify the exposition, let γ̂r be such that |Ŝr| = |M̂r| = 1, and suppress any

dependence of τ̂ r on the unique (mr, sr). The decision rule of γ̂r is:

τ̂ r(s) =

{
cFIH (U0 + η) if s = α;

cIC(U) if s = β,

where U < 2U0 − Un,24 and η > 0 is small enough to guarantee that:

• U0 + η < Un;

• V FI
H (U0 + η) > V SB.

We first characterize the optimal participation and reporting behavior of A at any history

such that e = H. Specifically, we show that, at any (H, γ̂r,m, s), A only accepts γ̂r if

(m = a, s = α), and that, at any (H, γ̂r), the unique optimal choice of A is to report m = a.

Start from the participation behavior. Suppose first (m = a, s = α): by rejecting, A

gets U0, and by accepting, τ̂ r(α) = cFIH (U0 + η), which yields U0 + η > U0. Thus, it is

strictly optimal for her to accept the offer. If instead (m = a, s = β), A gets U0 in the

original mechanism and U < U0 in the renegotiated one, and is thus strictly better off by

rejecting. Suppose instead that m = b. Then, if s = α, A is better off by rejecting since

UH(cIC(Un)) > UH(cFIH (U0 +η)) by construction of η. In this case, she obtains Un. If s = β,

she will also reject γ̂r since UH(cIC(2U0 − Un)) > UH(cIC(U)), hence obtaining 2U0 − Un.

To see that it is (strictly) optimal for A to report m = a, note that, if m = a, she gets

U0 + η
2
> U0. If, instead, m = b, her expected payoff is 2U0−Un

2
+ Un

2
= U0. Thus, given her

participation behavior, A prefers the report m = a to m = b at any (H, γ̂r).

Given the A’s behavior at any (H, γ̂r), P’s payoff from any offer γ̂r under x = 1 is

1

2
V FI(U0 + η) +

1

2
V SB > V SB

where the inequality holds by construction of η. Thus, P strictly prefers offering γ̂r than

abstaining from renegotiation, which allows to conclude that there is no equilibrium of

GPub
Γ (γ∗), in which x = 1 and no renegotiation takes place.

24It does not really matter that τ r(α) is an incentive-compatible contract. What is important is that
UH(τ r(β)) < 2U0 − Un.
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Endogenous timing of the agent’s report. Consider the mechanism µ = {Mµ,Sµ, σµ, τµ}
such that µ /∈ Γ and

Mµ = {a, b, ∅}, Sµ = {α, β}, σµ =

(
1

2
,
1

2

)
.

The mechanism µ is a modified version of γ′ = {M′,S ′, σ′, τ ′} from Proposition 3. If µ is

offered by P and accepted by A, it induces the following extensive form game Gµ:

1. A selects e ∈ E.

2. A sends m1 ∈ {a, b, ∅}.

3. If m1 6= ∅, s ∈ {α, β} is extracted from the distribution
(

1
2
, 1

2

)
and disclosed privately

to A.

4. P proposes γr ∈ Γ.

5. If m1 = ∅, A sends m2 ∈ {a, b, ∅}, and m2 = ∅ otherwise.

6. If (m1 = ∅,m2 6= ∅), s ∈ {α, β} is extracted from the distribution
(

1
2
, 1

2

)
and is disclosed

privately to A.

7. A takes the participation decision ρ ∈ {y, n}.

8. There are three possible situations:

• If γr 6= {∅} and ρ = y, A sends mr ∈ Mr, sr ∈ Sr is extracted from σr and

τ r(mr, sr) is implemented.

• If γr = {∅} or ρ = n, and if m1 = m2 = ∅, A sends m3 ∈ {a, b}, then s ∈ {α, β}
is extracted from the distribution

(
1
2
, 1

2

)
, and the decision rule τµ(m1,m2,m3, s)

is implemented.

• If γr = {∅} or ρ = n, and m1 6= ∅ or m2 6= ∅, A sends m3 = ∅ and the decision

rule τµ(m1,m2,m3, s) is implemented.

For a given vector of A’s messages (m1,m2,m3) let mj ∈ (m1,m2,m3) be the only one

different from ∅, and assume that τµ(m1,m2,m3, s) = τ ′(mj, s). Note that µ extends the

optimal mechanism γ′ characterized in the proof of Proposition 3, by giving A the freedom

to decide, at each step i = 1, 2, 3 of the interim stage, whether to send the message mi ∈
{a, b} or to stay silent (mi = ∅).25 A must speak, only once, in the mechanism µ, i.e. if

25We assume, for simplicity of exposition and without loss of generality, that A cannot send any message
at the ex-ante stage, that is, before taking e ∈ E.
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m1 = m2 = ∅,A is forced to send a nonempty message m3 ∈ {a, b} at the last stage of the

game, but, if at some point she sends a nonempty message, her future messages must be

empty. Note also that A learns the realization s ∈ {α, β} of the private signal as soon as she

sends a nonempty message mi 6= ∅.
A behavioral strategy for P in Gµ is a distribution over the set of the renegotiated offers

Γ. In fact, since the message and the signal are exchanged privately, at the renegotiation

stage, the principal does not know whether communication has taken place or not in the

original mechanism, and thus, he cannot condition his renegotiation on such information.

This crucially implies that the renegotiating principal cannot prevent the agent from waiting

until a renegotiation offer before making his report in the original mechanism.

A behavioral strategy λ(µ) of A specifies an effort probability x ∈ [0, 1] at the initial

history (µ); a distribution over m1 ∈Mµ for each (µ, e), a distribution over the participation

decisions ρ ∈ {y, n} at any (µ, e,m1, s, γ
r) with m1 6= ∅ and γr 6= {∅}, followed by a

distribution over mr ∈Mr at any history such that ρ = y. It also involves a distribution over

m2 ∈Mµ at any (µ, e, ∅, γr), followed by a distribution over ρ at any (µ, e, ∅, γr,m2, s) and a

distribution over mr ∈ Mr at any continuation (µ, e, ∅, γr,m2, s, y) with γr 6= {∅}. Finally,

it involves a distribution over m2 ∈ Mµ at any (µ, e, ∅, γr) with γr = {∅}, a distribution

over ρ at any (µ, e, ∅, γr, ∅) with γr 6= {∅}, a distribution over m3 ∈Mµ at the continuation

histories such that ρ = n, and a distribution over mr ∈ Mr at the continuation histories

such that ρ = y.

One can then show the following:

Lemma 10 Gµ admits an equilibrium which supports the same equilibrium allocation as that

of GΓ(γ′).

Proof. We show that there exists an equilibrium in which P abstains from renegotiating,

A chooses e = H selecting (m1 = ∅,m2 = a) with probability one on the equilibrium path;

also, A sends m1 = ∅ off-the-equilibrium path when e = L, and, following any history such

that γr = {∅} and m1 = ∅, she sends m2 = a. Also, at any history (µ, e,m1, γ
r) such that

m1 = ∅ and γr 6= {∅}, A send m2 ∈Mµ according to the following rule:

(i) If γr = {∅}, and for any γr such that Û r
H ≤ 2U0−Un ∨ Û r

L ≤ 2U0− 2ε−Un, A sends

m = a in µ.

(ii) For any γr 6= {∅} such that Û r
H ∈ (2U0 − Un, Un] ∨ (2U0 − Un − 2ε, Un], A sends

m = b in µ.
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(iii) For any γr 6= {∅} such that Û r
e > Un, A sends m = b in µ.

Moreover, at any history such that γr 6= ∅ and mj ∈ {m1,m2}, she selects a participation

decision for each s ∈ {α, β} according to the following rule:

(i) If mj = a and for each s ∈ {α, β}, ρ = y if Û r
H ≥ U0 (Û r

L ≥ U0 − ε) and ρ = n

otherwise.

(ii) If mj = b and s = α, ρ = y if Û r
e ≥ 2U0 − Un − 3ε and ρ = n otherwise.

(iii) If s = β, ρ = y if Û r
e ≥ Un and ρ = n otherwise.

At any history such that m1 = m2 = ∅, A participates in the renegotiated mechanism if

and only if Û r
H ≥ U0 (Û r

L ≥ U0−ε).26 Finally, at any terminal history such that m1 = m2 = ∅
in which she is asked to report some m3 ∈ Mµ into µ, she sends m3 = a, while, at any

terminal history in which she participates in a renegotiated mechanism, she optimally sends

some mr
e ∈Mr as defined in the proof of Proposition 2.

Note first that, given the A’s behavior, the sequential rationality of P’s behavior has

already been shown in Proposition 3. The same argument applies to the A’s effort and

participation behaviors at any history such that mj ∈ {m1,m2}.
We check the sequential rationality of the other A’s decisions, starting from the terminal

nodes. It can be seen that, at any terminal history in which A sends m3 6= ∅ (or m2 6= ∅ with

γr = {∅}), her only sequentially rational decision is to send m3 = a. Since any such history

is such that either ρ = n or γr = {∅}, and thus A has to stick to the original mechanism, by

sending mj = a she avoids the penalty −3
2
ε associated to the report mj = b in µ.

Consider now A’s participation behavior whenm2 = ∅. Since s ∈ {α, β} is payoff-irrelevant

when mj = a, the fact that at any history (µ, e, ∅, γr,m2, s) it is sequentially rational to

select ρ ∈ {y, n}, implies that the same participation decision ρ ∈ {y, n} is optimal at

any (µ, e, ∅, γr, ∅) for the same renegotiated offer γr. But then, the participation behavior

associated to m2 = ∅ is sequentially rational, since it is equivalent to the one constructed

when m2 = a, which has been shown to be sequentially rational in Proposition 3.

Let us now turn to A’s choice of m2 ∈ Mµ at any (µ, e, ∅, γr). Since A is indifferent

between sending m2 = ∅ and m2 = a for any sequentially rational continuation play, she has

no incentive to deviate from m2 = a to m2 = ∅ when prescribed by the behavioral strategy we

construct. Furthermore, deviating from m2 = b to m2 = ∅ yields her no strictly profitable

deviation since m2 = ∅ is equivalent to m2 = a, and thus, the existence of a profitable

26This is equivalent to her participation behavior when j ∈ {1, 2} and mj = a for each s ∈ {α, β}.
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deviation to m2 = ∅ would imply the existence of a deviation from m = b to m = a in

the original game studied in Proposition 3. Thus, the A’s message behavior corresponding

to m2 ∈ Mµ is sequentially rational. Finally, consider her behavior concerning m1. Since

γr = ∅ at equilibrium, it is payoff-irrelevant for A to send the optimal message mj = a at

the stages i ∈ {1, 2}, and thus, there is no profitable deviation from the behavior that we

assume, in which m1 = ∅ and m2 = a. �

It is also noteworthy that no equilibrium in pure strategies exists such that m1 6= ∅, at

least for values of Un that are large enough in the mechanism µ.27 In fact, if the equilibrium

strategy of the A’s endogenous type e ∈ E is m1 = a, P’s optimal response is to give full

insurance to this type, leading A to pick mj = b as shown in Proposition 3. Also, if A

picks m1 = b, for large enough values of Un, P optimally proposes a full insurance contract

targeted only to the type (e, α), which means that by sending m = b, A expects the same

payoff as in the absence of renegotiation. But then, as as shown in Proposition 3, mj = a is

the A’s unique optimal report. Thus, γ′ provides an incentive to coordinate on equilibria in

which mj is sent after γr is posted and before ρ is taken.
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