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Abstract. We consider solving the Job Shop Scheduling Problem (JSSP)
with machine unavailability constraints using an analog quantum ma-
chine and running the quantum annealing metaheuristic. We propose a
technique to handle these new constraints, whether the unavailability
periods are known or variable, in order to integrate them into the same
type of disjunctive model processed by the analog machine: Binary, Un-
constrained, and Quadratic. We present results on small-scale instances
corresponding to what these quantum machines can handle.
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1 Introduction

Quantum optimization, leveraging quantum computers and algorithms to ad-
dress complex optimization issues, stands as a highly promising area in quan-
tum computing. As in the classical domain, two principal strategies are utilized
to solve combinatorial problems in quantum optimization: exact methods like
Grover’s search algorithm [10] and meta-heuristics such as Quantum Annealing
(QA) [11] and the Quantum Approximate Optimization Algorithm (QAOA) [8].
Exact and variational methods like QAOA can be processed on universal gate-
based quantum computers, such as IBM machines. In contrast, QA is tailored
for analog quantum computers, notably those produced by D-Wave.

Quantum Annealing, a key metaheuristic in quantum optimization, is par-
ticularly designed for combinatorial optimization problems, drawing from the
principles of quantum mechanics and emulating the process of simulated anneal-
ing [12]. It utilizes quantum phenomena, such as superposition and quantum
tunneling, to efficiently navigate through local minima and target the global
minimum of a cost function. For heuristic approaches like QA, it is often nec-
essary to transform the optimization problem into a format compatible with
quantum computers. Quadratic Unconstrained Binary Optimization (QUBO) is
generally the preferred format for mapping problems to quantum computers.
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In this work, we study the resolution of the job shop scheduling problem
with availability constraints by the quantum annealing metaheuristic. We first
describe the problem in the following section and review the quantum-based so-
lution methods recently proposed in the literature. Then, the QUBO formulation
of the JSSP adapted from [1] is presented. Through minor modifications, we show
how this QUBO can be adapted to integrate both fixed and flexible availability
constraints. The paper concludes with numerical results obtained using D-Wave’s
quantum annealing machines and overall conclusions. This synthesis merges the
concept of quantum annealing’s efficacy with broader quantum optimization ap-
proaches and their application to specific problems like JSSP, highlighting the
diverse methodologies and quantum computing platforms in use.

2 Problem definition

The Job Shop Scheduling Problem with Availability Constraints (JSSP-AC) can
be stated as follows: A set of n jobs J = {J1, J2, . . . , Jn} has to be processed on a
set of m machines M = {M1, . . . ,Mm}. Each job Ji consists of a linear sequence
of ni operations (Oi1, Oi2, . . . , Oini

). Each machine can process only one opera-
tion at a time and each operation Oij with a processing time of pij time units
needs exactly one machine. Each job visits the machines according to its own
predefined routing. This problem generalizes the flow shop scheduling problem,
in which all the jobs are processed following the same routing (M1,M2, . . . ,Mm).
There are k unavailability periods {hj1, hj2, . . . , hjk} on each machine Mj . Two
cases are considered in the paper: either the starting date Sjk of unavailability
period hjk of duration p′jk is known in advance and fixed, or it is flexible and
can vary within a time window. The objective is to determine the starting date
of each operation Oij so that the makespan noted Cmax is minimized. The job
shop scheduling problem with availability constraints is strongly NP-hard since
the 2-machine flow shop scheduling problem is strongly NP-hard [4].

In what follows we first focus and the Job shop scheduling problem, then we
generalize the approach to integrate the availability constraints.

The traditional solution approaches to solve JSSP include heuristics and
meta-heuristics as well as exact methods, such as branch-and-bound and con-
straint programming [5]. The linear disjunctive model [15] for the JSSP can be
expressed as follows. The starting times are represented by the integer variable
vector, denoted by x. We use z to denote the binary variable vector, which
satisfies the following conditions:

zijk =

{
1 if the job j precedes job k on machine i,
0 otherwise.

We note by (σj
1, ..., σj

h, ..., σj
m) the processing order of job j through the

machines. The minimization of the objective function (1) forces all the jobs to
be finished as soon as possible.
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∑
j∈J

xσj
mj (1)

Another objective extensively discussed and utilized within the literature is
the concept of makespan. By adding constraint (2) to the model and replacing
the objective function (1) with the minimization of the Cmax variable, in order
to ensure that the last job finishes as early as possible.

Cmax ≥
∑
j∈J

(xσj
mj + pσj

mj) (2)

Constraints (3) forbid consecutive operations of one job to start before the
previous one is finished.

xσj
hj

≥ xσj
h−1j

+ pσj
h−1j

∀j ∈ J, h = 2..m (3)

Big M constraints (4) and (5) forbid to have more than one operation at a
time on a given machine.

xij ≥ xik + pik −Mzijk ∀j, k ∈ J, j < k, i ∈ M (4)

xik ≥ xij + pij −M(1− zijk) ∀j, k ∈ J, j < k, i ∈ M (5)

3 Related works

In the literature, the number of papers dedicated to quantum solutions for hard
combinatorial optimization problems is growing fast. In particular, the job shop
scheduling problem and its extensions is attracting more and more research
works involving quantum computing. Those works can be classified according
to the types of quantum computers and algorithms used to solve the problems:
analog, universal computers, and simulators. In general, the solution approaches
consist in first mapping the decision variables of the considered problems to the
qubits of the quantum computer. Then, quantum algorithms are applied to make
the qubits value evolve until solutions are found. Solving optimization problems
with quantum computers is therefore strongly limited by the number of qubits
available, among other hardware constraints.

Since the number of qubits is smaller in universal quantum computers, the
studies of the JSSP involving those computers are scarce. The first one was devel-
oped by [2]. The authors have proposed four variational quantum heuristics for
solving a JSSP with early and late delivery as well as production costs, adapted
from a steel manufacturing process. They have compared the performance of the
heuristics on two-machine flow shop instances using IBM gate-based computers
with 5 to 23 qubits.

Recently, [14] have proposed a QAOA approach to the JSSP with a particular
method for updating the parameters of the algorithm. The authors have also
investigated the relationship between makespan and energy minimzation.
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The number of research works involving quantum annealers and simulators
is significantly higher. The first quantum computing approach for solving the
JSSP was proposed by Venturelli et al. [19]. The authors proposed a time-
indexed QUBO formulation and a quantum annealing solution for the makespan
minimization. The method was implemented on a D-Wave quantum annealer,
with 509 working qubits. The authors also proposed variable pruning techniques,
through window shaving and immediate selections, to reduce the number of nec-
essary qubits. The proposed QUBO model has been re-used in several studies,
as listed below.

In [13] the authors have developed a hybrid quantum annealing heuristic to
solve a particular instance of the job shop scheduling problem on the D-Wave
2000Q quantum annealing system that consists of 2041 qubits and a maximum of
6 connections between qubits. The proposed approach includes variable pruning
techniques and a processing window heuristic. In [6], job shop instances with uni-
tary operations have been tested on the D-Wave Advantage machine, built upon
5640 qubits and 15 possible connections between qubits. Extensive experiments
with the reverse annealing procedure and comparisons with simulated annealing
are also described. In [1], we have proposed a QUBO formulation for the min-
imisation of the total completion time in a job shop. The model was solved using
the D-Wave hybrid solver and Advantage quantum annealing computer.

The flexible job shop, which is a generalization of the job shop problem with
pools of parallel machines available for processing operations was considered in
[7]. The authors proposed a QUBO derived from the one of [19] and an iterative
procedure to solve relatively large size instances on a specialized hardware ([3]).
Using the QUBO formulations proposed in [7], the authors in [18], also tackle
the flexible job shop scheduling problem with the D-Wave solvers comparing
various input models. Another QUBO formulation is proposed in [16] for assign-
ing dispatching rules to the machines and scheduling the operations in a flexible
job shop system. The problem is solved using the leap hybrid solver. In [17], the
authors propose a QUBO formulation for the job shop scheduling with worker
assignment considerations. Possible ways to approximate the makespan are dis-
cussed and instances solved with the Fujitsu Digital Annealer are described.
In the same environment, the authors in [20] efficiently solve large instances
of JSSP with a hybrid approach that combines constraints programming and
QUBO models for one-machine problems.

The present paper also aims at extending the job shop scheduling model and
solution approach, in particular the one proposed in [1], by considering additional
constraints that are important in practice. To the best of our knowledge, it is
the first study in the quantum optimization literature that integrates availability
constraints on the machines of both fixed and flexible types.

4 QUBO formulation

The QA metaheuristic, as executed on a D-Wave quantum machine, takes as
input an unconstrained binary model, which can be quadratic. Either an Ising



Addressing Machine Unavailability in Job Shop Scheduling 5

model ({−1;+1} variable values) or a QUBO model ({0; 1} variable values)
can be provided. Since both models are isomorphic, and the machine is capable
of converting QUBO into Ising, we focus on the classical binary variables in
computing to more easily establish a connection with known MILP models.

We add some notations to those used in the linear formulation of the previous
section. We use x to denote the binary variable vector, which, for each i, j and
t, with i = 1..ni, j = 1..n, t = 1..T , satisfies the following conditions:

xt
ij =

{
1 if the operation i of the job j starts in period t,
0 otherwise.

The minimization of the Objective function f(x) forces the last operations of
all jobs to start globally as soon as possible (see expression (6)). Here, we adapt
the objective function (1) from the integer formulation to a binary formulation
that we develop for the QUBO:

f(x) =
∑
j

∑
t

t.xt
nij . (6)

For optimizing the makespan, it is sufficient to add a virtual job consisting
of a single operation that is executed instantly which will be connected to the
last operations of the non-virtual jobs by precedence constraints ((10)). It then
only remains to exclusively minimize the execution date of the virtual job as in
function (7), where ni of the virtual job n + 1 is equal to 1 since there is only
one operation.

f(x) =
∑
t

t.xt
(1)(n+1). (7)

To force each operation to start exactly once through a relaxed constraints
into the objective function, we apply a penalty P1 such that P1(x) =

∑
i

∑
j

P1(x, i, j) where each element is given by the expression (8).

P1(x, i, j) = (
∑
t

xt
ij − 1)2, i = 1..ni, j = 1..n. (8)

We note Mij , i = 1..ni, j = 1..n, the required machine for the operation i of
the job j. P2(x) is the penalty that forbids to have more than one operation at a
time on a given machine, such that P2(x) is the sum of each element calculated
by the quadratic expression (9).

P2(x, i, j, t, i′, j′, t′) = xt
ijx

t′

i′j′ ,

(i, j, t) ∪ (i′, j′, t′) : i, i′ = 1..ni, j, j
′ = 1..n, (i, j) ̸= (i′, j′),

Mij = Mi′j′ , (t, t
′) ∈ T 2, 0 ≤ t′ − t < pij .

(9)

The last Penalty which is noted P3(x) forbids consecutive operations to start
before the previous one is finished. Each element of P3(x) is calculated by the
quadratic expression (10).
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P3(x, i, j, t, t′) = xt
ijx

t′

i+1j ,

i = 1..(ni − 1), j = 1..n, (t, t′) ∈ T 2, t+ pij > t′.
(10)

We can finally express the JSSP quadratically and without constraints through
the QUBO formulation of the JSSP with its penalties balanced by 3 multipliers,
λ1, λ2, and λ3 (see expression 11) and its detailed form of equality (12) .

fQUBO(x) = f(x) + λ1P1(x) + λ2P2(x) + λ3P3(x). (11)

fQUBO(x) =
∑
j

∑
t

t.xt
nij + λ1

∑
j

∑
i

(
∑
t

xt
ij − 1)2

+λ2

∑
(i,j,t)∪(i′,j′,t′)∈T1

xt
ijx

t′

i′j′ + λ3

∑
(i,j,t,t′)∈T2

xt
ijx

t′

i+1j .

with:
T1 = (i, j, t) ∪ (i′, j′, t′) : i, i′ = 1..ni, j, j

′ = 1..n, (i, j) ̸= (i′, j′),

Mij = Mi′j′ , (t, t
′) ∈ T 2, 0 ≤ t′ − t < pij .

T2 = (i, j, t, t′) : i = 1..(ni − 1), j = 1..n, (t, t′) ∈ T 2, t+ pij > t′.

(12)

5 Non Fixed Resource Availability Constraints

Let’s consider the problem of resource constraints due to unavailability, whether
these are fixed or variable. The management of these resources proves to be
intuitive when the problem is formulated as a QUBO. The UML activity diagram
shown in Figure (1) illustrates the methodology for developing the QUBO, with
a particular emphasis on non-availability constraint management.

When a resource’s unavailability is constant over time, it can be treated as a
single operation already scheduled. Thus, it becomes possible to spread this con-
straint throughout all the other operations that cannot simultaneously use the
resource. This consideration is expressed through elementary quadratic expres-
sions of the form xt

ijx
t′

i′j′ , where i and j denote the fictive operation representing
the resource’s unavailability during a certain period pij . For any t included in
this period, and for all operations characterized by i′ and j′ that use the same
resource, we impose the constraint xt

ijx
t′

i′j′ = 0 with the related penalty.
When a resource’s unavailability has to be scheduled, it should be consid-

ered as a unique operation of a project that can be scheduled at any time. If
the objective is to minimize the makespan, the virtual operation related to the
resource non-availability is integrated in the calculation of this makespan as a
last operation of a job. Hence, the unavailability constraints, regardless of their
nature, can be sequentially incorporated into the QUBO. We finally obtain a
JSSP problem with additional jobs comprising single operations. The QUBO
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Fig. 1. The non-availability constraints are divided into two subsets: those whose un-
availability window is already known, and those where this window is variable. In both
cases, we consider each unavailability as a unique operation of a new Job. In the first
case, it involves fixing the variables corresponding to these specific operations, and,
in the second case, it involves considering the new operations as any other activities
where optimization will lead them to finish globally as soon as possible.
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model used is thus the same fQUBO(x) as the one given by expression (12) in
the previous section.

In Figure 2, we present an example of the Job Shop Scheduling Problem
(JSSP) incorporating various types of unavailability constraints. The period la-
beled ’U1’ denotes a time during which Machine 1 is unavailable, specifically
in period 3. Conversely, the ’U2’ period represents a variable unavailability du-
ration. It is noteworthy that this variable unavailability period is strategically
optimized prior to commencing the first operation of Job 3. As depicted, min-
imizing the makespan necessitates careful scheduling around the ends of these
variable unavailability periods.

Periods

Machines

U2 3

1

2 3

U1

1

0 1 2 3
0

1

2

3

makespan

Fig. 2. A solution to JSSP with unavailability constraints, featuring three jobs and a
total of six operations. Unavailability constraint U1 is associated with a fixed period
of non-availability, whereas the period for U2 is variable.

6 Computational Experiments

In [1], we studied the impact that the number of periods in a JSSP instance
has on its resolution. We noticed that iterating different experiments with a
reduction in the number of periods until an infeasible solution is obtained showed
a significant improvement in results, more than what could be expected from
classical calculations, due to the narrowing of the solution space. In this study,
we directly considered a relatively small number of periods. We achieved this
result empirically and quickly, thanks to a small number of replications initially
performed on a QUBO related to the same instance but with a larger number
of periods.

We opted for the quantum quadratic unconstrained binary solver, which is
non-hybrid, in contrast to the method of resolution discussed in [1], which relied
on D-Wave’s hybrid solution for solving constrained binary quadratic problems.
The experiment was conducted on an initial instance of the JSSP with 3 jobs
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for a total of 7 operations. The size of the base instance was chosen to enable
processing by the D-Wave Advantage machine, while also considering the ability
to achieve optimality. The instance with a fixed period of unavailability is distin-
guished by the stopping of machine 2 during the second time period. The third
case concerns a variable unavailability of machine 3 over a single time period. We
aimed to minimize the makespan by adding a job with only a virtual operation
at the beginning and another at the end of the experiment. This was done by
adding precedence constraints, focusing the objective on minimizing the start
date of the last virtual operation.

For these preliminary results, we achieved the optimal solution in all three
cases, where each time 3 periods were necessary to meet all the constraints
of the 3 problems. The figures respectively represent the optimal solutions for
the JSSP case and for the case with variable unavailability. In the latter, the
unavailability period was placed after all other operations, without affecting the
makespan. Figure 3 and Figure 4 correspond respectively to Figures 5 and 4.
We can observe the impact that the embedding process (mapping of the QUBO
graph to the qubit graph) can have on the problem addressed by the quantum
machine. This experiment shows that the number of qubits increases from 122 to
208 when moving from the JSSP instance to the instance with variable machine
unavailability, where such unavailability is represented by an additional job with
a single operation.

Periods

Machines

1

1

1

2

2

3

3

4

4

0 1 2 3
0

1

2

3

4

makespan

Fig. 3. JSSP without unavailability
constraints solution obtained.

Periods

Machines

1

1

1

2

2

3

3

4

4

U2

0 1 2 3
0

1

2

3

4

makespan

Fig. 4. JSSP with variable unavailabil-
ity constraints solution obtained.
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Fig. 5. Representation of the QUBO graph (left), corresponding to a scenario where
all machines are continuously available, and its embedding (right) into the qubit graph
of a the Advantage machine. This particular case involves 4 jobs and a total of 9
operations. The QUBO model has 48 variables, while the embedding on the QPU
requires 122 qubits. (Visualization created using D-Wave Inspector).

Fig. 6. Representation of the QUBO graph (left) illustrating a scenario in which a
machine is unavailable during a specific period, and its corresponding embedding (right)
into the qubit graph of the Advantage machine. This instance involves managing 4
jobs with a total of 9 operations. The QUBO model comprises 60 variables, and its
embedding into the QPU utilizes 208 qubits. (Visualization created using D-Wave
Inspector).

7 Discussion

In our study, we conducted an analysis of recent quantum computing strategies
for the JSSP, particularly emphasizing QUBO models and their role in effectively
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incorporating practical constraints. We apply this method to a JSSP with ma-
chine unavailability constraints. These constraints can be either variable or fixed.
Starting from a QUBO that models the JSSP and is well-suited for quadratic
modeling, we treat these new constraints as unique operations of jobs that are
added to the initial ones. Thus, the same QUBO formulation could be imple-
mented to describe instances for the quantum machine.

Our research included the development and testing of this QUBO model
using D-Wave’s quantum annealing technology. We noted that current quantum
hardware has limitations in managing the volume of variables produced by such
models. Despite this, it’s crucial to continue refining the modeling of real-world
problems, as quantum approaches, while not currently outperforming classical
methods, hold potential for future advancements, especially with the anticipated
increase in available qubits. Our future research aims to explore methods to
minimize variable count while still efficiently embedding necessary constraints.
Additionally, the recent increase in the number of qubits, surpassing the 1000-
qubit threshold in machines from IBM or Atom Computing, now allows for the
consideration of solving small-scale instances like those addressed in this work.
This is made possible through quantum algorithms such as QAOA implemented
on these discrete (gate-based) machines.
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