
HAL Id: hal-04532124
https://hal.science/hal-04532124

Submitted on 4 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Efficient Real-Time Algorithm for Placing Electronic
Components on Panel

Catherine Huyghe, Stephane Negre, Melanie Fontaine

To cite this version:
Catherine Huyghe, Stephane Negre, Melanie Fontaine. An Efficient Real-Time Algorithm for Placing
Electronic Components on Panel. WSEAS Transactions on Information Science and Applications,
2024, 21, pp.139-152. �10.37394/23209.2024.21.14�. �hal-04532124�

https://hal.science/hal-04532124
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An Efficient Real-Time Algorithm for Placing Electronic Components

on Panel

CATHERINE HUYGHE1, STEPHANE NEGRE2, MELANIE FONTAINE3

1Department of MIS, “Modélisation, Information & Systèmes”
University of Picardie Jules Verne, Amiens

FRANCE

2Department of EPROAD, “Eco-PRocédés, Optimisation & Aide à la Décision”
University of Picardie Jules Verne, Amiens

FRANCE

3Department of LTI, “Laboratoire des Technologies Innovantes”
University of Picardie Jules Verne, Amiens

FRANCE

Abstract: - In this paper, we present an industrial challenge faced by electronic component manufacturers.
From each order, the components need to be placed on panels for shipping. Panels incur significant costs. To
control expenses, companies are compelled to optimize the placement of components on panels. Every day,
thousands of orders have to be shipped. For each order, they have to pack between a hundred and a thousand
rectangular electronic components of different sizes on panels with specifications such as free component
orientation and tight time constraints. This packaging must be optimized to minimize the number of panels used
and associated costs. The industrial challenge lies not only in space optimization but also in the speed of the
process, with solutions needing to be found in less than a minute to meet the dynamic and continuous demands of
production and shipping.

Key-Words: - bin packing problem, heuristic, dynamical programming algorithm, pseudo-polynomial algorithm,

lower bound, operational research, combinatorial problem.

Received: May 23, 2023. Revised: December 26, 2023. Accepted: January 19, 2023. Published: February 28, 2024.

1 Introduction
An electronic components company handles
thousands of orders daily, each order consisting of
up to a thousand components. The electronic
components from each order need to be placed on
panels for shipping. These panels have an expensive
cost. The objective is to optimize the placement of
electronic components on panels to minimize the
number of panels used and, consequently, the
associated costs.
 Certain constraints exist, such as the fact that the
components can be freely or fixed-oriented,
meaning they can be rotated in 90-degree
increments or not before being placed on a panel.
 This problem can be framed as a two-dimensional
bin packing problem (2D-BPP), where electronic
components are rectangular objects to be packed,
and the panels are the rectangular bins intended to
contain them. Notably, some components have free
orientation, placing the scenario within the realm of

the two-dimensional bin packing problem with free
orientation. As a characteristic NP-complete
problem, finding an exact algorithm in polynomial
time for this task is deemed impractical in the worst-
case scenario.
 To be able to process the thousands of orders per
day within a reasonable timeframe, it is necessary,
for each order, to be able to handle the placement of
electronic components on panels in less than one
minute while remaining close to the optimal
solution.

2 State of the Art
In operational research and combinatorial
optimization, the bin packing problem plays a crucial
role in various sectors such as production,
transportation, scheduling management, etc. The
simplest version of the problem involves finding the
minimal number of bins that contain the whole set of

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.14

Catherine Huyghe,
Stephane Negre, Melanie Fontaine

E-ISSN: 2224-3402 139 Volume 21, 2024

objects, respecting certain placement rules. The
main objective is to maximize the filling of the bins
and, therefore, minimize wasted space, [1], [2].
 This problem, classified NP-complete, [3],
presents particular challenges, especially for
instances involving numerous objects. The literature
addresses various types of bin-packing problems
tailored to specific applications. A typology
considering the number of dimensions, bin, and
object characteristics is described in [4]. A more
recent classification is proposed in [5], aiming to
include recent issues in cutting and arrangement.
 The one-dimensional bin-packing problem (1D-
BPP) is a well-known combinatorial optimization
problem closely related to the one-dimensional
cutting stock problem, [6]. Various approaches
have been proposed to solve this NP-hard problem,
including the use of metaheuristic algorithms, [7],
symmetry-breaking constraints in integer linear
programming, [8], branch-and-price-and-cut
algorithms, [9], and hybrid intelligent algorithms for
problems with multiple size restrictions, [10]. These
studies have significantly advanced the field by
providing effective methods for solving the 1D-BPP.
 The two-dimensional bin packing problem (2D-
BPP) is a challenging optimization problem with
numerous applications. In [11], a classification of
2BP problems considering orientation and guillotine
constraints is proposed. An algorithm for the
determination of the guillotine restrictions is
proposed in [12]. A first model dedicated to 2D-
BPP is introduced in [13], as an extension of their
1D-BPP approach, [14], [15]. A model based on
graph theory is proposed in [16]. The study in
[17], provides a comprehensive analysis, including
its time complexity and NP-hardness. A solution
using combinatorial Benders decomposition,
significantly improving on previous algorithms, is
presented in [18]. A model considering slit distance
and free rotation of pieces, demonstrating its
competitiveness on benchmark instances, is
introduced in [19] and [20], addresses just-in-time
2D-BPP, combining bin-packing and single-
machine scheduling, proposing an integrated
constraint program as a solution.
 The three-dimensional bin-packing problem (3D-
BPP) has been addressed in several studies with a
unique focus. A solution, developed in [21],
proposes an approach for pallet loading problems,
considering practical constraints such as vertical
support and load-bearing. A variation accounting
for the compressibility factor of deformable objects,
significantly enhancing space utilization is
considered in [22]. A column generation-based
heuristic for the problem with rotation,

outperforming existing techniques in solution quality
is proposed in [23] and [24], tackled a multi-
objective version, aiming to minimize the number of
bins while achieving balanced bins in terms of total
weight. A topology order for 3D-BPP is proposed in
[25].
 We could deal with N-dimensional bin packing
problem, where objects and bins have dimensions
N. One-dimensional bin packing is NP-complete, and
its generalization to N dimensions maintains this
complexity, [26].

3 Proposed Approach
In this section, we proposed a dynamic and efficient
approach to ensure a rapid response with the large
number of components to be processed. A dynamic
programming approach presents itself as a viable
solution. This technique provides a systematic
method for managing complexity by breaking down
the overall problem into smaller sub-problems,
allowing for a step-by-step optimization strategy.
Essentially, global optimization is achieved through
a sequential string of incremental enhancements that
can be quickly calculated.

In this section, we first recall the exact
algorithm to solve the partition problem of [3].
Then, we explain how we adapt this method to 1D-
BPP. Subsequently, we introduce 2D-BPP and we
expose the efficient algorithm based on this method.

3.1 Exact Method of the Partition Problem
A exact algorithm to solve the 2-partition problem, a
well-known NP-complete problem, is introduced in
[3].
 In the 2-partition problem, given a finite set 𝐴 of
𝑛 elements 𝑎, each having a size 𝑠(𝑎) ∈ ℤ+ for 𝑎 ∈
𝐴. The objective is to determine if there exists a
subset 𝐴′ of 𝐴 such that: ∑ 𝑠𝑎∈𝐴′ (𝑎) =
∑ 𝑠𝑎∈𝐴−𝐴′ (𝑎).

 They introduce the definition 𝐵 = ∑ 𝑠𝑎∈𝐴 (𝑎). If
B is odd, the answer is immediately "False". If 𝐵 is
even, they construct a matrix 𝑀(𝑖, 𝑗) with 𝑛 + 1
rows and (𝐵/2) + 1 columns, where 0 ≤ 𝑖 ≤ 𝑛 and
0 ≤ 𝑗 ≤ 𝐵/2.
 The first row of this matrix is initialized by:
𝑀(0,0) = True, 𝑀(0, 𝑗) = False, ∀𝑗 > 0. After, for
all rows 𝑖 from 1 to 𝑛, the matrices are sequentially
constructed by setting 𝑀(𝑖, 𝑗) = True if and only if
either 𝑀(𝑖 − 1, 𝑗) = True or 𝑀(𝑖 − 1, 𝑗 − 𝑠(𝑎𝑖)) =
True with 𝑗 ∈ [𝑠(𝑎𝑖), 𝐵/2].

Thus, 𝑀(𝑖, 𝑗) represents the truth value of the
statement: "there exists a subset of 𝑎1, 𝑎2, … , 𝑎𝑖 for

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.14

Catherine Huyghe,
Stephane Negre, Melanie Fontaine

E-ISSN: 2224-3402 140 Volume 21, 2024

which the sum of the item sizes is exactly 𝑗". The
initialization is verified for the first row: we have
the value True only in column 0. We can obtain the
sum of 0 with the empty subset. The recursion is
based on the following executions:

• If there exists a subset of the first (𝑖 − 1)
objects such that their sum is exactly equal
to 𝑗, then the same subset exists when
adding object 𝑖. So, 𝑀(𝑖, 𝑗) = True if
𝑀(𝑖 − 1, 𝑗) = True.

• If 𝑀(𝑖 − 1, 𝑗 − 𝑠(𝑎𝑖)) = True, we can
construct a new subset containing the subset
A among the 𝑖 − 1 elements such that
∑ 𝑠𝑎𝑖∈𝐴

(𝑎𝑖) = 𝑗 − 𝑠(𝑎𝑖) and we
concatenate it with the 𝑎𝑖 element in order
to obtain the sum exactly equal to 𝑗.

To summary, the matrix is calculated as follows:
• 𝑀(0,0) = True
• 𝑀(𝑖, 𝑗) = True if and only if 𝑀(𝑖 − 1, 𝑗) =

True or 𝑀(𝑖 − 1, 𝑗 − 𝑠(𝑎𝑖)) = True.
Once the entire matrix has been filled in, the

instance of the 2-partition problem is solved because
the answer is "yes" if and only if 𝑀(𝑛, 𝐵/2) =
True. In this case, there exists of subset 𝐴′ of the 𝑛
objects for which the sum is equal to 𝐵/2. We can
obtain the second partition by constructing 𝐴 − 𝐴′.

3.2 Adaptation of the Exact Partition Method

to the 1D-BPP
In 1D-BPP, we have a finite set 𝑂 = 𝑜1, 𝑜2, … , 𝑜𝑛 of
objects. Each object 0 < 𝑖 < 𝑛 has a rational size
𝑠(𝑜𝑖). The objective in this problem, is to place all
𝑂 objects in a minimum number bin of size 𝑏 (all
bins have the same size). We define the decision
variables (which constitute the solution to the
problem):

• 𝑧𝑘 = 1 if bin 𝑘 is used (0 otherwise)
• 𝑓𝑖𝑘 = 1 if object 𝑖 is in bin 𝑘 (0 otherwise)

The objective function is: Min∑ 𝑧𝑘𝑘=1
The model has the following feasible constraints:

• Each object must be placed exactly in one
bin: ∑ 𝑓𝑖𝑘𝑘=1 ≥ 1 and 𝑓𝑖𝑘 ≤ 𝑧𝑘

• The capacity of each bin must not be
exceeded: ∑ 𝑓𝑖𝑘𝑖=1 ∗ 𝑠(𝑜𝑖) ≤ 𝑏

The partition problem and the bin packing
problem are two classical combinatorial problems in
theoretical computer science and optimization. The
bin packing problem is a polynomial reduction of
the partition problem. This means that there is a
polynomial algorithm (i.e. a transformation whose
cost is polynomial in terms of input size) to
transform partition problem into 1D-BPP.

We study this polynomial reduction in order to
propose an efficient algorithm for 1D-BPP. Each
object size 𝑠(𝑜𝑖) in the bin packing instance is
associated with a positive integer 𝑠(𝑎𝑖) in the
partition instance.

In the 1D-BPP, we need to determine in which
bin to place each object to minimize the total
number of bins used. To do this, we need to
maximize the filling of all the bins used. The main
idea of our approach is to measure, at each decision
step, for each feasible set of an object to a bin, the
minimum space that will inevitably be lost at the
end of the resolution. This measure allows us to
anticipate all the residual spaces that will be lost in
each bin. To minimize the space in the bins that will
inevitably be lost at the end, we rely on the
resolution method with the partition problem.

One approach is classically to place the most
constraining objects first, i.e. the largest ones. To do
this, we start by sorting the objects in ascending
order of size. After we can construct matrix 𝑀(𝑖, 𝑗)
with 𝑛 + 1 rows and 𝑏 + 1 columns, where 1 ≤ 𝑖 ≤
𝑛 and 0 ≤ 𝑗 ≤ 𝑏. In this way, each row corresponds
to an object except the first line which corresponds
to the empty set of objects and each column to a bin
size.

We can consider that the maximum number of
necessary bins is 𝑛 (each object is affected to a
different bin). For each placement of an object 𝑜𝑖 in
a bin 𝑘, we calculate the residual space quantity :
𝑃𝑘 = 𝑏 − ∑ 𝑠𝑜𝑖∈𝑂

(𝑜𝑖) × 𝑓𝑖𝑘. Then, in the matrix, we
look for the largest value 𝑗 on line 𝑖 − 1 (so as not to
take into account the object to be placed), such that
𝑀(𝑖 − 1, 𝑗) = True, ∀𝑗 ∈ [0, 𝑃𝑘]. The space that
will inevitably be lost at the end in bin 𝑘 is then 𝑏 −
𝑗.

We perform this calculation for each bin that
can accommodate object 𝑜𝑖. Then we choose the bin
in which we place the object in to minimize the
space that will be lost at the end of the treatment
among the set of all the available bins:

min
𝑘∈[1,n]

(𝑃𝑘 − max
𝑗∈[0,𝑃𝑘]

𝑗 𝑠. 𝑡.𝑀(𝑖 − 1, 𝑗) = 𝑇𝑟𝑢𝑒).

This matrix allows us to detect, every decision

to place, the quantity that will inevitably be lost at
the end without knowing the next objects to be
placed. It allows us to anticipate the losses we will
have at the end of the packing regardless of the
remaining objects.
 For example, let’s take an instance consisting of a
bin of size 9 and 4 objects of sizes 3, 3, 3 and 4. The
matrix M associated with this instance is visible in
Figure 1. We start by placing object 4 (the largest
one) in bin 𝑘. Following the placement of this object

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.14

Catherine Huyghe,
Stephane Negre, Melanie Fontaine

E-ISSN: 2224-3402 141 Volume 21, 2024

4, 𝑃𝑘 = 9 − 4 = 5 and (𝑃𝑘 − max
𝑗∈[0,𝑃𝑘]

𝑗 𝑠. 𝑡.𝑀(𝑖 −

1, 𝑗) = 𝑇𝑟𝑢𝑒) = 5 − 3 = 2. This means that there
is no subset of residual objects that can fill this
quantity 2. This quantity (grey zone in the bin of
Figure 1) is therefore inevitably and permanently
lost because, in the third line of the matrix M, we
have False values from column 5 to column 3 (red
arrow in the matrix M of Figure 1). That means that
no subset of remaining objects can be summed to
give 5 or 4. Therefore, it is detected that these 2
units available in the bin will be lost.

Fig. 1: Calculation of the area that will necessarily
be lost, in grey, after placing object i of size 4 in a
bin of size 9

 Let’s take this example and add an object of size
2. We now have an instance composed of a bin of
size 9 and 5 objects of sizes 4, 3, 3, 3 and 2. The
matrix M associated with this instance is visible in
Figure 2. In this example, we know as soon as we
place object 4 that there will be no loss generated at
the end in this bin. Indeed,

(𝑃𝑘 − max
𝑗∈[0,𝑃𝑘]

𝑗 𝑠. 𝑡.𝑀(𝑖 − 1, 𝑗) = 𝑇𝑟𝑢𝑒) = 5 − 5 =

0.
 To summary, our criterion for choosing the bin in
which to place object 𝑖 is the bin that minimizes the
final loss such that:
min
𝑘∈[1,n]

(𝑏 − ∑ 𝑠𝑜𝑖∈𝑂
(𝑜𝑖) × 𝑓𝑖𝑘 −

max
𝑗∈[0,𝑏−∑ 𝑠𝑜𝑖∈𝑂

(𝑜𝑖)×𝑓𝑖𝑘]
𝑗 𝑠. 𝑡.𝑀(𝑖 − 1, 𝑗) = 𝑇𝑟𝑢𝑒).

Fig. 2: Calculation of the area that will necessarily
be lost after placing object i of size 7 in a bin of size
11

3.3 Adaptation to 2D-BPP
The 1D-BPP involves packing objects of different
sizes into bins of fixed capacity, to minimize the
total number of bins used. Each object has a size,
and the aim is to find the packing configuration that
uses the fewest bins possible.
 The 2D-BPP extends this problem to two-
dimensional considerations. To give a formal
definition of the problems we have based ourselves
on [27], [28], [29]. In this section, we will use the
"." operator as a relation between an instance of a
class and an attribute. For example, 𝑜𝑖. ℎ represents
attribute ℎ (height) for object 𝑜𝑖. For a complete
comprehension of all the attributes of all the
considered classes, we can refer to Figure 7 in
section 3.5.

Given a finite set 𝑂 = 𝑜1, 𝑜2, … , 𝑜𝑛 of objects,
each 𝑜𝑖 object has a height 𝑜𝑖. ℎ and width 𝑜𝑖. 𝑤.
They can have a fixed or free orientation. If the
object has a free orientation, this means that it can
be rotated by 90 degrees before being placed in a
bin. The objective in this problem is to place all 𝑛
objects in a minimum 𝑘 of bins. All the bins have
the same height 𝑏. ℎ and width 𝑏. 𝑤. We define the
decision variables (which constitute the solution to
the problem):

• 𝑙𝑖𝑗 = 1 if object 𝑖 is to the left of 𝑗 (0
otherwise).

• 𝑎𝑖𝑗 = 1 if object 𝑖 is above 𝑗 (0 otherwise).
• 𝑓𝑖𝑘 = 1 if object 𝑖 is in bin 𝑘 (0 otherwise).
• 𝑧𝑘 = 1 if bin 𝑘 is used (0 otherwise).
• 𝑜𝑖. 𝑥 is the 𝑥 (left) coordinate of object 𝑖 in a

bin and 𝑜𝑖 . 𝑦 is its 𝑦 (bottom) coordinate.
(𝑥, 𝑦) represents the coupling of the 𝑥 and 𝑦
attributes. 𝑜𝑖 . (𝑥, 𝑦) is the bottom left
coordinate of object 𝑖 in a bin.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.14

Catherine Huyghe,
Stephane Negre, Melanie Fontaine

E-ISSN: 2224-3402 142 Volume 21, 2024

The objective function is: Min ∑ 𝑧𝑘𝑘=1
The model has the following feasible
constraints:
• If object 𝑖 is neither to the left, nor to the

right, nor above, nor below object 𝑗, then
they are in two distinct bins: 𝑙𝑖𝑗 + 𝑙𝑗𝑖 +
𝑎𝑖𝑗 + 𝑎𝑗𝑖 + (1 − 𝑓𝑖𝑘) + (1 − 𝑓𝑗𝑘) ≥

1, ∀𝑖 < 𝑗
• Objects don’t overlap: 𝑜𝑖. 𝑥 − 𝑜𝑗. 𝑥 + 𝑏.𝑤 ×

𝑙𝑖𝑗 ≤ 𝑏.𝑤 − 𝑜𝑖 . 𝑤 and 𝑜𝑖 . 𝑦 − 𝑜𝑗. 𝑦 + 𝑏. ℎ ×
𝑎𝑖𝑗 ≤ 𝑏. ℎ − 𝑜𝑖. ℎ

• Objects don’t exceed the boundaries of the
bin: 𝑜𝑖. 𝑥 ≤ 𝑏.𝑤 − 𝑜𝑖 . 𝑤 + (1 − 𝑓𝑖𝑘) × 𝑏.𝑤
and 𝑜𝑖 . 𝑦 ≤ 𝑏. ℎ − 𝑜𝑖 . ℎ + (1 − 𝑓𝑖𝑘) × 𝑏.𝑤
and 𝑜𝑖 . 𝑥, 𝑜𝑖 . 𝑦 ≥ 0

• Each object is placed in at least one bin:
∑ 𝑓𝑖𝑘𝑘=1 ≥ 1 and 𝑓𝑖𝑘 ≤ 𝑧𝑘

3.4 Adaptation of the Exact Partition

Method for the 2D-BPP
After having presented how we adapt exact method
of partition resolution to the 1D-BPP using the
properties of polynomial reduction, we now explain
the extension to 2D-BPP.
 To facilitate the approach, we consider two types
of surfaces inside the bins: maximum surfaces and
minimum surfaces.

3.4.1 Maximum Surface

A surface SM is maximum if and only if there is no
other maximum surface that can include it in its
entirety. Every maximum surface 𝑆𝑀, is
characterized by a distinctive bottom-left point
(𝑆𝑀. 𝑥, 𝑆𝑀. 𝑦), which specifies its position
coordinate in bin.
For example, in Figure 3, placing the object at the
bottom-left (0,0) position produces the two
maximum surfaces 𝑆𝑀1 (rectangle defined by the 4
blue dotted lines) and 𝑆𝑀2(pink dotted lines).
 Intersections of maximum surfaces are non-
empty. Maximum surfaces allow us to know all the
possible placements of each object in each bin. They
are therefore used to determine all the possible
placements of an object in bins. Each object is
located in the bottom-left corner of a maximum
surface. When an object is placed, we update the list
of maximum surfaces 𝐿𝑆𝑀. All maximum surfaces
𝑆𝑀 impacted by its placement are subdivided into
residual maximum surfaces, while retaining the
maximum surfaces attribute.

Fig. 3: Example of maximum surfaces. The
maximum surfaces SM1 and SM2 are obtained after
placing the first object in the bin

3.4.2 Minimum Surface

A minimum surface 𝑆𝑚 is a surface resulting from
the projection of all object segments placed on all
squares along an axis. We have minimum surfaces
along the x-axis 𝑆𝑚𝑥 and minimum surfaces along
the y-axis 𝑆𝑚𝑦.
 For example, in Figure 4 we can see the minimum
surfaces on the x and y axes created by the five
object placements (yellow).
 All the intersections between minimal surfaces
are empty. These will be used to calculate the
surfaces that will inevitably be lost at the end of
each decision to place an object in a bin (i.e. in a
maximum surface).
 Each time an object is placed in a maximum
surface, we update the list of minimum surfaces for
the x-axis 𝐿𝑆𝑚𝑥 and the y-axis 𝐿𝑆𝑚𝑦. To do this, we
determine the surfaces impacted by the object’s
placement to deduce the new minimum surfaces.

Thus:
𝐿𝑆𝑚𝑥 =∪𝑆𝑚∈𝑆𝑚𝑥 {𝑆𝑚, 𝑆𝑚 ∩ 𝑜𝑖. (𝑥, 𝑦, 𝑤, ℎ) ≠ ⌀}
𝐿𝑆𝑚𝑦 =∪𝑆𝑚∈𝑆𝑚𝑦 {𝑆𝑚, 𝑆𝑚 ∩ 𝑜𝑖. (𝑥, 𝑦, 𝑤, ℎ) ≠ ⌀}

Where 𝑆𝑚𝑥 is the set of minimum surfaces on the
x-axis, 𝑆𝑚𝑦 is the set of minimum surfaces on the
y-axis, 𝑜𝑖. (𝑥, 𝑦, 𝑤, ℎ) represents the combination of
attributes 𝑥, 𝑦, 𝑤, and ℎ of object 𝑖. This represents
the surface area of object 𝑖 at position (𝑥, 𝑦) in the
bin.
 Note that initially, i.e. when no object is placed,
the list of surfaces minimum and maximum are both
initialized to the sizes of all the available bins. 𝑈𝐵 is
a trivial upper bound of the bin number, i.e. the
number of objects.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.14

Catherine Huyghe,
Stephane Negre, Melanie Fontaine

E-ISSN: 2224-3402 143 Volume 21, 2024

Fig. 4: Example of minimum surfaces resulting from
the projection of all object segments placed in the
bin

3.4.3 Partition Matrix for 2D-BPP

We construct two matrices, 𝑀𝑥 for the x-axis and
𝑀𝑦 for the y-axis. 𝑀𝑥 will have as column number
𝑏. 𝑤 + 1 and 𝑀𝑦 will have as column number 𝑏. ℎ +
1. 𝑀𝑥 and 𝑀𝑦 have 𝑛 + 1 row number (the number
𝑛 of objects +1). Objects are sorted in ascending
order of surface area, so that the most constraining
objects are placed first. If an object is freely
oriented, we consider that we have two distinct
objects. One for the width direction (𝑜𝑖. ℎ x 𝑜𝑖 . 𝑤)
and one for the length direction (𝑜𝑖. 𝑤 x 𝑜𝑖. ℎ). We
then place one or exclusive (XOR) between the two
objects. In this way, the placement of one object
results in the placing of the other. The matrices are
then calculated in the same way as for the one-
dimensional bin packing problem, i.e.:

• 𝑀𝑥(0,0) = 𝑇𝑟𝑢𝑒
• 𝑀𝑦(0,0) = 𝑇𝑟𝑢𝑒
• 𝑀𝑥(𝑖, 𝑗) = 𝑇𝑟𝑢𝑒 if and only if 𝑀𝑥(𝑖 −

1, 𝑗) = 𝑇𝑟𝑢𝑒 or 𝑀𝑥(𝑖 − 1, 𝑗 − 𝑜𝑖. 𝑤) =
𝑇𝑟𝑢𝑒.

• 𝑀𝑦(𝑖, 𝑗) = 𝑇𝑟𝑢𝑒 if and only if 𝑀𝑦(𝑖 −
1, 𝑗) = 𝑇𝑟𝑢𝑒 or 𝑀𝑦(𝑖 − 1, 𝑗 − 𝑜𝑖. ℎ) =
𝑇𝑟𝑢𝑒.

 Thus, 𝑀𝑥(𝑖, 𝑗) = 𝑇𝑟𝑢𝑒 if there exists, among the
first 𝑖 elements, a combination such that 𝑜𝑖 . 𝑤 = 𝑗
and 𝑀𝑦(𝑖, 𝑗) = 𝑇𝑟𝑢𝑒 if there exists, among the first
𝑖 elements, a combination such that 𝑜𝑖. ℎ = 𝑗.

3.4.4 Dynamical Criteria

Using matrices, we determine which surfaces,
associated to all minimal surfaces, will be
irretrievably lost at the end of the process.
 When an object is placed in a maximum surface,
it produces a new lists of minimum surfaces. 𝐿𝑆𝑚𝑥
(resp. 𝐿𝑆𝑚𝑦) denotes the list of the minimal surfaces
projected on x-axis (resp. y-axis). The ith minimum
surfaces are respectively denoted Smx𝑖 and Smy𝑖.
We then calculate the loss associated with each
minimum surface, (noted Smx𝑖. 𝑆𝑃 and resp.
𝑆𝑚𝑦𝑖. 𝑆𝑃) such that:

𝑆𝑚𝑥𝑖. 𝑆𝑃 = (𝑆𝑚𝑥𝑖 . w
− max
𝑗∈[0,𝑆𝑚𝑥𝑖.𝑤]

(𝑗,𝑀𝑥(𝑖 − 1, 𝑗)

= 𝑇𝑟𝑢𝑒)) × 𝑆𝑚𝑥𝑖. ℎ
𝑆𝑚𝑦𝑖 . 𝑆𝑃 = (𝑆𝑚𝑦𝑖 . h

− max
𝑗∈[0,𝑆𝑚𝑦𝑖.ℎ]

(𝑗, 𝑀𝑦(𝑖 − 1, 𝑗)

= 𝑇𝑟𝑢𝑒)) × 𝑆𝑚𝑦𝑖 . 𝑤

The sum of these losses associated with each
minimum surface gives us the minimum loss SP of
the placement of object i such that:

SP = ∑ (

𝑆𝑚𝑥∈𝐿𝑆𝑚𝑥

𝑆𝑚𝑥.𝑤 −

max
𝑗∈[0,𝑆𝑚𝑥.𝑤]

𝑗 𝑠. 𝑡.𝑀(𝑖 − 1, 𝑗) = True) × 𝑆𝑚𝑥. ℎ

+ ∑ (

𝑆𝑚𝑦∈𝐿𝑆𝑚𝑦

𝑆𝑚𝑦. ℎ −

max
𝑗∈[0,𝑆𝑚𝑦.ℎ]

𝑗 𝑠. 𝑡.𝑀(𝑖 − 1, 𝑗) = True) × 𝑆𝑚𝑦.𝑤

 Example 1: let’s take a bin (10,12) and 4 objects
of different sizes ((4,5), (4,5), (4,8) and (5,8)). The
object (5,8) is freely oriented. Initially, we sort the
objects in ascending order based on the size of their
surface. The freely oriented object is duplicated, and
a bitwise XOR ensures that placing the object in one
orientation will lead to place the object in its other
orientation.
 Then, we construct two matrices 𝑀𝑥 and 𝑀𝑦
visible in Figure 5.
 We aim to place the most constraining object
first. So we start by probing the freely oriented
object. This object can be placed in either
orientation, i.e. in the width orientation (8,5) or the
height one (5,8).

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.14

Catherine Huyghe,
Stephane Negre, Melanie Fontaine

E-ISSN: 2224-3402 144 Volume 21, 2024

Figure 5: Example of 𝑀𝑥 and 𝑀𝑦 for the bin
(12,10) and 4 objects: (4,5), (4,5), (4,8) and (5,8)
with orientation free.

Placing this object in its height orientation (5,8)
generates the two minimum surfaces on the x-axis :
𝑆𝑚𝑥1 of size (7,8) and 𝑆𝑚𝑥2 of size (12,2). These
two minimum surfaces are shown in Figure 6.

Fig. 6: Calculation of 𝑆𝑚𝑥1. 𝑆𝑃

𝑆𝑚𝑥1 is a surface on the x-axis, generated by
placing the object 𝑖 with orientation (5,8) in the bin
of size (12,10). The surface in grey is the surface
area of 𝑆𝑚𝑥1, which will be lost.
 For each minimum surface, we calculate its lost
surface SP when the object is placed. Each
minimum surface has a height of 𝑆𝑚𝑥. ℎ (resp.
𝑆𝑚𝑦.h) and width 𝑆𝑚𝑥.𝑤 (resp. 𝑆𝑚𝑦.w).
 Let’s take the example of calculating the loss for
minimum surface 𝑆𝑚𝑥1. For this minimum surface
𝑆𝑚𝑥1 of size (7,8), the surface that will be lost
𝑆𝑚𝑥1. 𝑆𝑃 is calculated as follows
𝑆𝑚𝑥1. 𝑆𝑃 = (𝑆𝑚𝑥1. 𝑤 − max

𝑗∈[0,𝑆𝑚𝑥1.𝑤]
(𝑗,𝑀𝑥(𝑖 −

1, 𝑗) = 𝑇𝑟𝑢𝑒)) × 𝑆𝑚𝑥1. ℎ so 𝑆𝑚𝑥1. 𝑆𝑃 = (7 − 4) ∗
8 = 24.
 For 𝑆𝑚𝑥2, the surface that will be lost is
𝑆𝑚𝑥2. 𝑆𝑃 = (12 − 12) ∗ 2 = 0.
 We make the same calculation for the minimum
surface on the y axis. Placing this object in its height
orientation (5,8) generates the two minimum
surfaces on the y-axis : 𝑆𝑚𝑦1 of size (5,2) and
𝑆𝑚𝑦2 of size (7,10). So, 𝑆𝑚𝑦1. 𝑆𝑃 = (2 − 0) ∗ 5 =
10 and 𝑆𝑚𝑦2. 𝑆𝑃 = (10 − 10) ∗ 7 = 0.
 Placing this object in its height orientation (5,8)
gives us: 𝑆𝑃 = 24 + 0 + 10 + 0 = 34.
 Placing this object in its width orientation (8,5)
generates the two minimum surfaces s on the x-axis
: 𝑆𝑚𝑥1 of size (4,5) and 𝑆𝑚𝑥2 of size (12,5). These
two minimum surfaces are shown in Figure 7.

Fig. 7: Calculation of 𝑆𝑚𝑥1. 𝑆𝑃

𝑆𝑚𝑥1 is a surface on x-axis was generated by

placing the object 𝑖 with orientation (8,5) in a bin of
size (12,10). 𝑆𝑚𝑥1 and 𝑆𝑚𝑥2 lead to no space lost
because we have 𝑆𝑚𝑥1. 𝑆𝑃 = (4 − 4) ∗ 5 = 0 and
𝑆𝑚𝑥2. 𝑆𝑃 = (0 − 0) ∗ 12 = 0.
 Placing this object in its width orientation (8,5)
generates the two minimum surfaces on the y-axis :
𝑆𝑚𝑦1 of size (8,5) and 𝑆𝑚𝑦2 of size (4,10). So,
𝑆𝑚𝑦1. 𝑆𝑃 = (5 − 5) ∗ 8 = 0 and 𝑆𝑚𝑦2. 𝑆𝑃 =
(10 − 10) ∗ 4 = 0 .
 So, placing this object in its width orientation
(8,5) gives us: 𝑆𝑃 = 0 + 0 + 0 + 0 = 0.
 In this example, placing the object in the direction
of its height results in a minimum loss SP of 34.
Placing the object in the direction of its width
results in a minimum loss SP of 0. As we aim to
minimize space lost, we detect that placing the
object in the direction of its width leads to no lost
and placing it in the direction of its height will lead
to lose 34 units of space (according to the remaining
objects). Then, we detect that the placement with the
width orientation is the best one and chose it.

Example 2: let’s take a bin (8,5) and 3 objects of
different sizes ((1,2), (1,3) and (3,4)). The object
(3,4) is freely oriented. Initially, we sort the objects
in ascending order based on the size of their surface.
The freely oriented object is duplicated, and a
bitwise XOR ensures that placing the object in one
orientation will lead to placing the object in its other
orientation.
 Then, we construct two matrices 𝑀𝑥 and 𝑀𝑦
visible in Figure 8.

Fig. 8: Example of 𝑀𝑥 and 𝑀𝑦 for the bin (8,5) and
3 objects: (1,2), (1,3) and (3,4) with orientation free

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.14

Catherine Huyghe,
Stephane Negre, Melanie Fontaine

E-ISSN: 2224-3402 145 Volume 21, 2024

 We aim to place the most constraining object
first. So we start by probing the freely oriented
object. This object can be placed in either
orientation, i.e. width (4,3) or height (3,4).
 Placing this object in its width orientation (3,4)
generates the two minimum surfaces s on the x-axis
: 𝑆𝑚𝑥1 of size (5,4) and 𝑆𝑚𝑥2 of size (8,1). These
two minimum surfaces are shown in Figure 9.
 For each minimum surface, we calculate its lost
surface SP when the object is placed. Each
minimum surface has a height of 𝑆𝑚𝑥. ℎ (resp.
𝑆𝑚𝑦.h) and width 𝑆𝑚𝑥.𝑤 (resp. 𝑆𝑚𝑦.w).

Fig. 9: Calculation of 𝑆𝑚𝑥1. 𝑆𝑃

𝑆𝑚𝑥1 is a surface on x-axis was generated by
placing the object 𝑖 with orientation (3,4) in a bin of
size (8,5). The surface in grey is the surface area of
𝑆𝑚𝑥1, which will be lost.
 Let’s take the example of calculating the loss
for minimum surface 𝑆𝑚𝑥1. For this minimum
surface 𝑆𝑚𝑥1 of size (5,4), the surface that will be
lost 𝑆𝑚𝑥1. 𝑆𝑃 is calculate as following:
𝑆𝑚𝑥1. 𝑆𝑃 = (𝑆𝑚𝑥1. 𝑤 − max

𝑗∈[0,𝑆𝑚𝑥1.𝑤]
(𝑗,𝑀𝑥(𝑖 −

1, 𝑗) = 𝑇𝑟𝑢𝑒)) × 𝑆𝑚𝑥1. ℎ so 𝑆𝑚𝑥1. 𝑆𝑃 = (5 − 2) ∗
4 = 12.
 This calculation is performed for all minimum
surfaces on the x-axis and the y-axis.

3.4.5 Algorithm

In the bin packing problem, for each object, we have
to decide in which bin to pack it, in which location
and in which orientation. In our case, this means
determining in which maximum surface each object
should be packed, and in which orientation if the
object has a free orientation.
 For each object, we look for the set of maximum
surfaces in which we can place the object under
consideration. For each of these maximum surfaces,
we define a new list of maximum and minimum
surfaces. So for each object, in each area that can
accommodate it, we calculate the areas that will be
irretrievably lost in the end. Then we choose to
place the object in the maximum surface that will
minimize the area lost at the end, such that:

min(𝑆𝑃) = min(∑ (

𝑆𝑚𝑥∈𝐿𝑆𝑚𝑥

𝑆𝑚𝑥.𝑤 −

max
𝑗∈[0,𝑆𝑚𝑥.𝑤]

𝑗 𝑠. 𝑡.𝑀(𝑖 − 1, 𝑗) = True) × 𝑆𝑚𝑥. ℎ

+ ∑ (

𝑆𝑚𝑦∈𝐿𝑆𝑚𝑦

𝑆𝑚𝑦. ℎ −

max
𝑗∈[0,𝑆𝑚𝑦.ℎ]

𝑗 𝑠. 𝑡.𝑀(𝑖 − 1, 𝑗) = True) × 𝑆𝑚𝑦.𝑤)

In our example, placing the object in the width

direction (4,3) will result in a minimum loss of 21.
Placing the object in the height direction (3,4) will
result in a minimum loss of 18. It is this loss that
allows us to choose the location and orientation of
the object. We place the object in the location and
orientation that minimize loss. So, this object is
placed in the orientation of its height (3,4).
 Consequently, every time an object is placed on a
maximum surface, we can accurately estimate the
additional space that will inevitably be lost by the
end of the algorithm. It is this criteria of final loss
that will guide the choice of placement for each
object. If tie, we place the object 𝑖 in the maximum
surface 𝑆𝑀 such that: 𝑚𝑖𝑛(𝑆𝑀.𝑤 − 𝑜𝑖. 𝑤) or
𝑚𝑖𝑛(𝑆𝑀. ℎ − 𝑜𝑖. ℎ).
 Our algorithm for solving two dimensional bin
packing problem is detailed below:

Algorithm 1 pack(vector<Object>, vector<Bin>)
Require: List of objects o and their characteristics
Require: List of bins b and their characteristics
Ensure: List of object locations in bins
 1: Step 1: Initializing the algorithm

 2: Initialize list of maximum surface 𝐿𝑆𝑀, list of
 minimum surfaces in x 𝑳𝑺𝒎𝒙, list of minimum
 surfaces in y 𝑳𝑺𝒎𝒚 for all available bins

 3: Sort objects in ascending order of surface area.
 4: Calculate the matrices 𝑀𝑥 and 𝑀𝑦 with objects
 sorted in ascending order of surface area.
 5: Step 2: Algorithm
 6: for each i object in descending order of
 surface area do
 7: for each maximum surface SM ∈ LSM do
 8: if SM.w ≥ oi.w and SM.h ≥ oi.h then

 9: Calculate 𝐿𝑆𝑚𝑥 and 𝐿𝑆𝑚𝑦
 10: Calculate 𝑆𝑃
 11: Calculate 𝑡𝑥 = 𝑆𝑀.𝑤 − 𝑜𝑖. 𝑤 and 𝑡𝑦 =
 𝑆𝑀. ℎ − 𝑜𝑖. ℎ
 12: end if
 13: end for
 14: Choose maximum surface SM such that:
 min(SP)
 15: If tie, choose maximum surface SM such that:
 min(tx) or min(ty)
 16: Place object i in surface SM, i.e. store the bin

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.14

Catherine Huyghe,
Stephane Negre, Melanie Fontaine

E-ISSN: 2224-3402 146 Volume 21, 2024

 number and bottom-left coordinates of the
object
 i in bin, update LSmx and LSmy, calculate
 new LSM .
 17: end for

Our algorithm avoids combinatorial exploration

by making decisive object-to-position assignments
in the bins at each step. To prevent making
expensive decisions (far from the optimum), it
integrates dynamic programming elements, ensuring
both fast execution in terms of computing time and
efficiency in terms of optimization. The algorithm’s
key strength lies in its comprehensive and enduring
perspective on the impact of each decision made.

3.5 Industrial Problem
In the industrial context, companies need adaptable
and modifiable solutions. The solution was modeled
as a class diagram depicted in Figure 10.
 The industrial problem (Shipping) is composed of
several bin packing problems, one for each order.
Each order is composed of several components and
several panels. The problem can generate solution.
A solution is the list of x, y coordinates for each
component in a panel. A component has a width and
a height. In the industrial problem, an object can be
freely oriented or fixed. A panel type is
characterized by its width and height. In the
industrial context, they also have a peripheral
margin in which no object can be positioned, and a
𝐷𝑆 spacing must be maintained between
components on the same panel. However, for
peripheral components, the components can be
placed against the edges of the panel’s technical
margins.
 To deal with this spacing constraint, you can:

• Artificially increase the dimensions of
components (i.e. objects) by 𝐷𝑆/2.

• Decrease the panel’s technical margins by
𝐷𝑆/2.

• Position components with an inter-
components spacing of 0.

Fig. 10: Implemented class diagram for industrial
problem

 For each panel, we construct Mx and My
matrices. Each panel has its list of maximum and
minimum surface. The maximum surfaces have a
function to determine whether it is possible to place
an object in that area. If feasible, it helps us know
the x, y position of the object in the panel. The
minimum surfaces have an x or y axis and know
their lost area for each placement of an object in a
maximum surface.
 Establishing relationships between panels and
surfaces, as well as between surfaces and
components, summarizes both the nature of the
problem and the structure of the solution.
 Depending on the industrial problem, there may
be different types of constraints. This model is
adaptable based on various constraints.
 Incompatibilities between components and panels
can be considered by adding a relationship between
panels and components (component i forbidden in
panel j).
 Incompatibilities between components and zones
in panels (the component must (or must not) be
placed in such and such a zone of the panel,
between 2 x coordinates and/or between 2 y
coordinates) can also be considered. We could
integrate this with our concept of surfaces.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.14

Catherine Huyghe,
Stephane Negre, Melanie Fontaine

E-ISSN: 2224-3402 147 Volume 21, 2024

 Incompatibility between components can also be
considered by adding a pair of component
relationships.

4 Results
The C++ language was used to run the algorithm.

 On some instances, it can be difficult to find the
optimal solution and a solution close to the
optimum. This is the case on instances where
objects vary greatly in size. This complexity is even
greater when the optimal arrangement of objects
completely fills the bins. In this case, a single
placement error can have a considerable influence
on the addition of further containers. The solutions
can then be very far from the optimal solution.
 We tested our algorithm on several difficult
extreme instances.

4.1 Instance Typology 1
To test our algorithm, we relied on the difficult
extreme instances constructed in [3], for 1D-BPP.
 The first instance typology in [3], is:

𝑈 = {𝑢1, 𝑢2, … , 𝑢18𝑚},

𝑠(𝑢𝑖) =

{

1

7
+ 𝜀 1 ≤ 𝑖 ≤ 6𝑚

1

3
+ 𝜀 6𝑚 < 𝑖 ≤ 12𝑚

1

2
+ 𝜀 12𝑚 < 𝑖 ≤ 18𝑚

 We have adapted this instance typology for 2D-
BPP. To achieve this, we have taken both
dimensions into account. This two-dimensional
instance typology is:

𝑈 = {𝑢1, 𝑢2, … , 𝑢64𝑚},

𝑠(𝑢𝑖) =

{

1

7
𝑏.𝑤 + 𝜀,

1

7
𝑏. ℎ + 𝜀 1 ≤ 𝑖 ≤ 6𝑚

1

3
𝑏.𝑤 + 𝜀,

1

7
𝑏. ℎ + 𝜀 6𝑚 < 𝑖 ≤ 12𝑚

1

2
𝑏.𝑤 + 𝜀,

1

7
𝑏. ℎ + 𝜀 12𝑚 < 𝑖 ≤ 18𝑚

1

7
𝑏.𝑤 + 𝜀,

1

3
𝑏. ℎ + 𝜀 18𝑚 < 𝑖 ≤ 24𝑚

1

3
𝑏.𝑤 + 𝜀,

1

3
𝑏. ℎ + 𝜀 24𝑚 < 𝑖 ≤ 30𝑚

1

2
𝑏.𝑤 + 𝜀,

1

3
𝑏. ℎ + 𝜀 30𝑚 < 𝑖 ≤ 36𝑚

1

7
𝑏.𝑤 + 𝜀,

1

2
𝑏. ℎ + 𝜀 36𝑚 < 𝑖 ≤ 42𝑚

1

3
𝑏.𝑤 + 𝜀,

1

2
𝑏. ℎ + 𝜀 42𝑚 < 𝑖 ≤ 58𝑚

1

2
𝑏.𝑤 + 𝜀,

1

2
𝑏. ℎ + 𝜀 58𝑚 < 𝑖 ≤ 64𝑚

 The optimal placement of this instance typology
can be seen in Figure 11.

Fig. 11: Optimal placement of first instance
typology of [3], implemented for two-dimensional
bin packing problem

 We can consider an infinite number of instances
of this typology. The results are shown in Table 1.

Table 1. Results obtained on first instance typology

of [3]
Nb objects Opt Our Time (s)
64 6 6 0.05
128 12 12 0.07

4.2 Instance Typology 2
A second difficult extreme instances of typologies
exist in [3], for 2D-BPP.
 This second instances typologies in [3] is:

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.14

Catherine Huyghe,
Stephane Negre, Melanie Fontaine

E-ISSN: 2224-3402 148 Volume 21, 2024

𝑈 = {𝑢1, 𝑢2, … , 𝑢30𝑚},

𝑠(𝑢𝑖) =

{

1

2
+ 𝜀 1 < 𝑖 ≤ 6𝑚

1

4
+ 2𝜀 6𝑚 < 𝑖 ≤ 12𝑚

1

4
+ 𝜀 12𝑚 < 𝑖 ≤ 18𝑚

1

4
− 2𝜀 18𝑚 < 𝑖 ≤ 30𝑚

 As for the first instance typology of [3], we have
adapted it to the 2D-BPP by taking into account the
two dimensions.

 Its two-dimensional adaptation is:

𝑈 = {𝑢1, 𝑢2, … , 𝑢75𝑚},

𝑠(𝑢𝑖) =

{

1

2
𝑏.𝑤 + 𝜀,

1

2
𝑏. ℎ + 𝜀 1 ≤ 𝑖 ≤ 3𝑚

1

4
𝑏.𝑤 + 𝜀,

1

2
𝑏. ℎ + 𝜀 3𝑚 < 𝑖 ≤ 6𝑚

1

4
𝑏.𝑤 − 2𝜀,

1

2
𝑏. ℎ + 𝜀 6𝑚 < 𝑖 ≤ 9𝑚

1

4
𝑏.𝑤 + 2𝜀,

1

4
𝑏. ℎ + 2𝜀 9𝑚 < 𝑖 ≤ 21𝑚

1

4
𝑏.𝑤 − 2𝜀,

1

4
𝑏. ℎ + 2𝜀 21𝑚 < 𝑖 ≤ 33𝑚

1

2
𝑏.𝑤 + 𝜀,

1

4
𝑏. ℎ + 𝜀 33𝑚 < 𝑖 ≤ 36𝑚

1

4
𝑏.𝑤 + 𝜀,

1

4
𝑏. ℎ + 𝜀 36𝑚 < 𝑖 ≤ 39𝑚

1

4
𝑏.𝑤 − 2𝜀,

1

4
𝑏. ℎ + 𝜀 39𝑚 < 𝑖 ≤ 42𝑚

1

2
𝑏.𝑤 + 𝜀,

1

4
𝑏. ℎ − 2𝜀 42 < 𝑖 ≤ 45𝑚

1

4
𝑏.𝑤 + 2𝜀,

1

4
𝑏. ℎ − 2𝜀 45𝑚 < 𝑖 ≤ 57𝑚

1

4
𝑏.𝑤 + 𝜀,

1

4
𝑏. ℎ − 2𝜀 57𝑚 < 𝑖 ≤ 60𝑚

1

4
𝑏.𝑤 − 2𝜀,

1

4
𝑏. ℎ − 2𝜀 60𝑚 < 𝑖 ≤ 75𝑚

The optimal placement of this instance type can

be seen in Figure 12.

 We test our algorithm on numerous kind of
instances based on this typology. The results are
shown in Table 2.

Fig. 12: Optimal placement of the second instance
typology of [3], implemented for two-dimensional
bin packing problem

Table 2. Results obtained on the second instance
typology of [3]

Nb objects Opt Our Time (s)
75 6 6 0.05
150 8 8 0.08

4.3 Instance Typology 3
To test the robustness of the algorithm in extreme
scenarios, we generated numerous examples by
randomly partitioning the bins to define the objects.
This is done in such a way that the objects have a
wide range of sizes. In these instances, the bins are
full. Randomly slicing bins without loss to define
the objects to be placed makes it possible to
construct a perfect package layout design. This
never happens in reality but allows us to evaluate
the worst-case performance of the algorithm. The
optimal solution tolerates no losses, and the slightest
error in the algorithm takes us farther away from the
optimal solution. To add complexity, all objects are
freely oriented.
 We built instances of reasonable size (between 10
and hundred objects). An example is visible in
Figure 13. To check the complexity and
computation times of our algorithm, we’ve built
large instances (between 200 and a thousand

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.14

Catherine Huyghe,
Stephane Negre, Melanie Fontaine

E-ISSN: 2224-3402 149 Volume 21, 2024

objects). An extract of the results obtained is given
in Table 3.

Fig. 13: Illustration of optimal placement for one
bin of instance typology 3

Table 3. Results obtained on our instances
Nb objects Opt Our Time (s)
44 4 4 0.05
47 3 4 0.06
51 3 4 0.07
57 3 3 0.08
66 6 7 0.07
440 40 40 5.5
470 30 31 6.5
510 30 31 7
570 30 30 9
660 60 61 28
1000 100 101 45

4.4 Discussion
All the results we give are obtained on extremely
difficult instances (difficult topology, no losses
allowed). On extremely difficult instances of , our
algorithm finds the optimum solution for all these
instances with a computation time of less than 1
second.
 With our difficult extreme instances (instance
typology 3), our algorithm offers an optimal
solution or an approximation very close to the
optimum in less than a minute. The most notable
discrepancy we find is one bin more than the
optimal solution. We have examined the reasons for
this disparity and identified that it occurs when the
evaluation functions (minimum loss at the end of
processing and best saturation) are equal for several
different surfaces. This situation, although rare, can
occur, particularly when the number of bins is high,
indicating the presence of many different maximum
surfaces.
 To prevent such cases, it would be sufficient to
explore the decisions of both equalities, but this
would risk making the algorithm combinatorial for

minimal gains, i.e. just winning one bin. In all
experiments, the difference does not exceed one
extra bin.
 On real results from the industrial context, our
algorithm generates solutions that, at worst, are 97%
of the optimal solution. On average, we obtain
results over 99% of the optimal solutions, with a
computation time of less than 1 minute for very
large instances.
 Unlike exact methods and metaheuristics, which
take a long time to compute, and very fast
heuristics, which in the worst case are far from
optimum, our solution gives us an excellent
compromise between solution quality (problem
optimization) and computation time. Furthermore, it
can handle very large instances on an industrial
scale.

5 Conclusion
Our industrial objective was to place between a
hundred and thousand freely rotating components
(objects) in panels (bins) in less than one minute.
 In this paper, we present an efficient algorithm
designed to solve this problem, which is similar to
the two-dimensional bin packing problem with free
orientation.
 Our algorithm produces results very close to the
optimum (in the worst case, it generates just one
more bin) in acceptable computation times (less
than one minute) for large-scale instances (thousand
objects) even taking into account the free orientation
of the objects.
 Although there is potential for further
improvement by implementing a complete branch-
and-cut algorithms incorporating all the lower
bounds of the existing literature, such an extension
may lead to a considerable increase in computation
time for little additional result (just saving one bin).
 According to our computation times and our
object model, the perspectives of this work are very
rich. We could envisage adapting our solution to
other types of industrial problems with other types
of constraints, such as cutting problems.
Furthermore, our approach is easily adaptable to
other industrial constraints such as:

• Different types of bins of different sizes.
Simply create two matrices for each type of
bin;

• Incompatibilities between objects and bins;
The matrices only take into account objects
compatible with selected surfaces in the bin;

• Etc.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.14

Catherine Huyghe,
Stephane Negre, Melanie Fontaine

E-ISSN: 2224-3402 150 Volume 21, 2024

 We could also adapt it to 3D-BPPs such as
packing, container and truck loading, palletization,
etc. To do this, you need to add a depth attribute to
the panel and the component and introduce a new
attribute z for the surfaces. Then, we can easily
modify our algorithm to consider this additional
dimension. The introduction of an extra dimension
will significantly increase calculation times but
within reasonable limits.

References:

[1] M. Quiroz-Castellanos, L. Cruz-Reyes, J.
Torres-Jimenez, C. Gómez, H. J. F. Huacuja,
and A. C. Alvim, A grouping genetic
algorithm with controlled gene transmission
for the bin-packing problem, Computers and

Operations Research, vol. 55, pp. 52-64,
2015.

[2] M. M. Baldi, T. G. Crainic, G. Perboli, and R.
Tadei, Branch-and-price and beam search
algorithms for the variable cost and size bin-
packing problem, Annals of Operations

Research, vol. 222, no. 1, pp. 125-141, 2014.
[3] M. R. Garey and D. S. Johnson, Computer

and intractability: A Guide to the Theory of -

Completeness, 1979.
[4] H. Dyckhoff, A typology of cutting and

packing problems, European Journal of

Operational Research, vol. 44, no. 2, pp. 145-
159, 1990.

[5] G. Wäscher, H. Haußner, and H. Schumann,
An improved typology of cutting and packing
problems, European Journal of Operational

Research, vol. 183, no. 3, pp. 1109-1130,
2007.

[6] G. Scheithauer, One-Dimensional Bin
Packing, in Introduction to Cutting and
Packing Optimization, International Series in
Operations Research and Management

Science, vol. 263, Springer, Cham, 2018.
[7] C. Munien and A. Ezugwu, Metaheuristic

algorithms for one-dimensional bin-packing
problems: A survey of recent advances and
applications, Journal of Intelligent Systems,
vol. 30, no. 1, pp. 636-663, 2021.

[8] K. H. Salem and Y. Kieffer, An experimental
study on symmetry breaking constraints
impact for the one-dimensional bin packing
problem, in 2020 15th Conference on

Computer Science and Information Systems

(Fed-CSIS), IEEE, 2020.
[9] L. Wei, Z. Luo, R. Baldacci, R and A. Lim, A

new branch-and-price-and-cut algorithm for
one-dimensional bin-packing problems,

INFORMS Journal on Computing, vol. 32, no.
2, pp. 428-443, 2020.

[10] K. Huang and Y. Dai, An intelligent algorithm
integrated with fit algorithms for solving the
one-dimensional bin packing problem under
multiple length restrictions, in Second

International Conference on Algorithms,

Microchips, and Network Applications

(AMNA 2023), SPIE, 2023.
[11] A. Lodi, S. Martello, and D. Vigo, Heuristic

and metaheuristic approaches for a class of
two-dimensional bin packing problems,
INFORMS Journal of Computing, vol. 11, pp.
345–357, 1999.

[12] D. Varsamis, and F. Chanlioglou, A parallel
approach of best fit decreasing algorithm,
WSEAS Transactions on Computers, 17(9),
79-85, 2018.

[13] P. Gilmore and R. Gomory, Multistage cutting
stock problems of two and more dimensions,
Operations Research, vol. 13, pp. 94–120,
1965.

[14] P. Gilmore and R. Gomory, A linear
programming approach to the cutting stock
problem, Operations Research, vol. 9, pp.
849–859, 1961.

[15] P. Gilmore and R. Gomory, A linear
programming approach to the cutting stock
problem - part II, Operations Research, vol.
11, pp. 863–888, 1963.

[16] S. P. Fekete and J. Schepers, A combinatorial
characterization of higher-dimensional
orthogonal packing, Mathematics of
Operations Research, vol. 29, no. 2, pp. 353-
368, 2004.

[17] A. Pandey, An analysis of solutions to the 2D

bin packing problem and additional

complexities, Authorea Preprints, 2023.
[18] J.-F. Côté, M. Haouari, and M. Iori,

Combinatorial benders decomposition for the
two-dimensional bin packing problem,
INFORMS Journal on Computing, vol. 33, no.
3, pp. 963-978, 2021.

[19] Z. Wang, D. Chang, and X. Man,
Optimization of two-dimensional irregular bin
packing problem considering slit distance and
free rotation of pieces, International Journal

of Industrial Engineering Computations, vol.
13, no. 4, pp. 491-506, 2022.

[20] S. Polyakovskiy and R. M’Hallah, Just-in-
time two-dimensional bin packing, Omega,
vol. 102, p. 102311, 2021.

[21] F. Gzara, S. Elhedhli, and B. C. Yildiz, The
pallet loading problem: Three-dimensional bin
packing with practical constraints, European

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.14

Catherine Huyghe,
Stephane Negre, Melanie Fontaine

E-ISSN: 2224-3402 151 Volume 21, 2024

Journal of Operational Research, vol. 287,
no. 3, pp. 1062-1074, 2020.

[22] Q. Zuo, X. Liu, L. Xu, L. Xiao, C. Xu, J. Liu,
and W. K. V. Chan, The Three-dimensional
Bin Packing Problem for Deformable Items,
in 2022 IEEE International Conference on

Industrial Engineering and Engineering

Management (IEEM), IEEE, 2022.
[23] B. Mahvash, A. Awasthi, and S. Chauhan, A

column generation-based heuristic for the
three-dimensional bin packing problem with
rotation, Journal of the Operational Research

Society, vol. 69, no. 1, pp. 78-90, 2018.
[24] J. Hasan, J. Kaabi, and Y. Harrath, Multi-

objective 3D bin-packing problem, in 2019
8th International Conference on Modeling

Simulation and Applied Optimization

(ICMSAO), IEEE, 2019.
[25] M. Daniela, I. Paul, and B. Alexandra. A

topological order for a rectangular three-
dimensional Bin Packing problem. In
Proceedings of the 12th WSEAS international

conference on Computers, pp. 285-290, 2008.
[26] S. Hong, D. Zhang, H. C. Lau, X. Zeng, and

Y. W. Si, A hybrid heuristic algorithm for the
2D variable-sized bin-packing problem,
European Journal of Operational Research,
vol. 238, no. 1, pp. 95-103, 2014.

[27] C. S. Chen, S. M. Lee, and Q. S. Shen, An
analytical model for the container loading
problem, European Journal of Operational

Research, vol. 80, pp. 68-76, 1995.
[28] H. Onodera, Y. Taniguchi, and K. Tmaru,

Branch-and-bound placement for building
block layout, 28th ACM/IEEE Design

Automation Conference, pp. 433–439, 1991.
[29] D. Pisinger and M. Sigurd, The two-

dimensional bin packing problem with
variable bin sizes and costs, Discrete

Optimization, vol. 2, no. 2, pp. 154-167, 2005.

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

The authors equally contributed to the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflicts of interest to declare.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.14

Catherine Huyghe,
Stephane Negre, Melanie Fontaine

E-ISSN: 2224-3402 152 Volume 21, 2024

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

