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Abstract: - In this paper, we present an industrial challenge faced by electronic component manufacturers. 
From each order, the components need to be placed on panels for shipping. Panels incur significant costs. To 
control expenses, companies are compelled to optimize the placement of components on panels. Every day, 
thousands of orders have to be shipped. For each order, they have to pack between a hundred and a thousand 
rectangular electronic components of different sizes on panels with specifications such as free component 
orientation and tight time constraints. This packaging must be optimized to minimize the number of panels used 
and associated costs. The industrial challenge lies not only in space optimization but also in the speed of the 
process, with solutions needing to be found in less than a minute to meet the dynamic and continuous demands of 
production and shipping. 
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1   Introduction 
An electronic components company handles 
thousands of orders daily, each order consisting of 
up to a thousand components. The electronic 
components from each order need to be placed on 
panels for shipping. These panels have an expensive 
cost. The objective is to optimize the placement of 
electronic components on panels to minimize the 
number of panels used and, consequently, the 
associated costs. 
    Certain constraints exist, such as the fact that the 
components can be freely or fixed-oriented, 
meaning they can be rotated in 90-degree 
increments or not before being placed on a panel.  
    This problem can be framed as a two-dimensional 
bin packing problem (2D-BPP), where electronic 
components are rectangular objects to be packed, 
and the panels are the rectangular bins intended to 
contain them. Notably, some components have free 
orientation, placing the scenario within the realm of 

the two-dimensional bin packing problem with free 
orientation. As a characteristic NP-complete 
problem, finding an exact algorithm in polynomial 
time for this task is deemed impractical in the worst-
case scenario. 
     To be able to process the thousands of orders per 
day within a reasonable timeframe, it is necessary, 
for each order, to be able to handle the placement of 
electronic components on panels in less than one 
minute while remaining close to the optimal 
solution. 
 

 

2 State of the Art 
In operational research and combinatorial 
optimization, the bin packing problem plays a crucial 
role in various sectors such as production, 
transportation, scheduling management, etc. The 
simplest version of the problem involves finding the 
minimal number of bins that contain the whole set of 
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objects, respecting certain placement rules. The 
main objective is to maximize the filling of the bins 
and, therefore, minimize wasted space, [1], [2]. 
    This problem, classified NP-complete, [3], 
presents particular challenges, especially for 
instances involving numerous objects. The literature 
addresses various types of bin-packing problems 
tailored to specific applications. A typology 
considering the number of dimensions, bin, and 
object characteristics is described in [4]. A more 
recent classification is proposed in [5], aiming to 
include recent issues in cutting and arrangement. 
    The one-dimensional bin-packing problem (1D- 
BPP) is a well-known combinatorial optimization 
problem closely related to the one-dimensional 
cutting stock problem, [6]. Various approaches 
have been proposed to solve this NP-hard problem, 
including the use of metaheuristic algorithms, [7], 
symmetry-breaking constraints in integer linear 
programming, [8], branch-and-price-and-cut 
algorithms,  [9], and hybrid intelligent algorithms for 
problems with multiple size restrictions, [10]. These 
studies have significantly advanced the field by 
providing effective methods for solving the 1D-BPP. 
    The two-dimensional bin packing problem (2D- 
BPP) is a challenging optimization problem with 
numerous applications. In [11], a classification of 
2BP problems considering orientation and guillotine 
constraints is proposed. An algorithm for the 
determination of the guillotine restrictions is 
proposed in [12]. A first model dedicated to 2D- 
BPP is introduced in [13], as an extension of their 
1D-BPP approach, [14], [15]. A model based on 
graph theory is proposed in [16]. The study in 
[17],  provides a comprehensive analysis, including 
its time complexity and NP-hardness. A solution 
using combinatorial Benders decomposition, 
significantly improving on previous algorithms, is 
presented in [18]. A model considering slit distance 
and free rotation of pieces, demonstrating its 
competitiveness on benchmark instances, is 
introduced in [19] and [20], addresses just-in-time 
2D-BPP, combining bin-packing and single-
machine scheduling, proposing an integrated 
constraint program as a solution. 
    The three-dimensional bin-packing problem (3D- 
BPP) has been addressed in several studies with a 
unique focus. A solution, developed in [21], 
proposes an approach for  pallet loading problems, 
considering practical constraints such as vertical 
support and load-bearing. A variation accounting 
for the compressibility factor of deformable objects, 
significantly enhancing space utilization is 
considered in [22]. A column  generation-based 
heuristic for the problem with rotation, 

outperforming existing techniques in solution  quality 
is proposed in [23] and [24], tackled a multi-
objective version, aiming to minimize the number of 
bins while achieving balanced bins in terms of total 
weight. A topology order for 3D-BPP is proposed in 
[25]. 
     We could deal with N-dimensional bin packing 
problem, where objects and bins have dimensions 
N. One-dimensional bin packing is NP-complete, and 
its generalization to N dimensions maintains this 
complexity, [26]. 
 

 

3   Proposed Approach 
In this section, we proposed a dynamic and efficient 
approach to ensure a rapid response with the large 
number of components to be processed. A dynamic 
programming approach presents itself as a viable 
solution. This technique provides a systematic 
method for managing complexity by breaking down 
the overall problem into smaller sub-problems, 
allowing for a step-by-step optimization strategy. 
Essentially, global optimization is achieved through 
a sequential string of incremental enhancements that 
can be quickly calculated.  

In this section, we first recall the exact 
algorithm to solve the partition problem of [3]. 
Then, we explain how we adapt this method to 1D-
BPP. Subsequently, we introduce 2D-BPP and we 
expose the efficient algorithm based on this method. 
 
3.1  Exact Method of the Partition Problem 
A exact algorithm to solve the 2-partition problem, a 
well-known NP-complete problem, is introduced in 
[3]. 
    In the 2-partition problem, given a finite set 𝐴 of 
𝑛 elements 𝑎, each having a size 𝑠(𝑎) ∈ ℤ+ for 𝑎 ∈
𝐴. The objective is to determine if there exists a 
subset 𝐴′ of 𝐴 such that: ∑ 𝑠𝑎∈𝐴′ (𝑎) =
∑ 𝑠𝑎∈𝐴−𝐴′ (𝑎). 
 
    They introduce the definition 𝐵 = ∑ 𝑠𝑎∈𝐴 (𝑎). If 
B is odd, the answer is immediately "False". If 𝐵 is 
even, they construct a matrix 𝑀(𝑖, 𝑗) with 𝑛 + 1 
rows and (𝐵/2) + 1 columns, where 0 ≤ 𝑖 ≤ 𝑛 and 
0 ≤ 𝑗 ≤ 𝐵/2. 
    The first row of this matrix is initialized by: 
𝑀(0,0) = True, 𝑀(0, 𝑗) = False, ∀𝑗 > 0. After, for 
all rows 𝑖 from 1 to 𝑛, the matrices are sequentially 
constructed by setting 𝑀(𝑖, 𝑗) = True if and only if 
either 𝑀(𝑖 − 1, 𝑗) = True or 𝑀(𝑖 − 1, 𝑗 − 𝑠(𝑎𝑖)) =
True with 𝑗 ∈ [𝑠(𝑎𝑖), 𝐵/2]. 

Thus, 𝑀(𝑖, 𝑗) represents the truth value of the 
statement: "there exists a subset of 𝑎1, 𝑎2, … , 𝑎𝑖 for 
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which the sum of the item sizes is exactly 𝑗". The 
initialization is verified for the first row: we have 
the value True only in column 0. We can obtain the 
sum of 0 with the empty subset. The recursion is 
based on the following executions: 

• If there exists a subset of the first (𝑖 − 1) 
objects such that their sum is exactly equal 
to 𝑗, then the same subset exists when 
adding object 𝑖. So, 𝑀(𝑖, 𝑗) = True if 
𝑀(𝑖 − 1, 𝑗) = True. 

• If 𝑀(𝑖 − 1, 𝑗 − 𝑠(𝑎𝑖)) = True, we can 
construct a new subset containing the subset 
A among the 𝑖 − 1 elements such that 
∑ 𝑠𝑎𝑖∈𝐴

(𝑎𝑖) = 𝑗 − 𝑠(𝑎𝑖) and we 
concatenate it with the 𝑎𝑖 element in order 
to obtain the sum exactly equal to 𝑗. 

To summary, the matrix is calculated as follows: 
• 𝑀(0,0) = True 
• 𝑀(𝑖, 𝑗) = True if and only if 𝑀(𝑖 − 1, 𝑗) =

True or 𝑀(𝑖 − 1, 𝑗 − 𝑠(𝑎𝑖)) = True. 
Once the entire matrix has been filled in, the 

instance of the 2-partition problem is solved because 
the answer is "yes" if and only if 𝑀(𝑛, 𝐵/2) =
True. In this case, there exists of subset 𝐴′ of the 𝑛 
objects for which the sum is equal to 𝐵/2. We can 
obtain the second partition by constructing 𝐴 − 𝐴′. 
 
3.2 Adaptation of the Exact Partition Method 

to the 1D-BPP  
In 1D-BPP, we have a finite set 𝑂 = 𝑜1, 𝑜2, … , 𝑜𝑛 of 
objects. Each object 0 < 𝑖 < 𝑛 has a rational size 
𝑠(𝑜𝑖). The objective in this problem, is to place all 
𝑂 objects in a minimum number bin of size 𝑏 (all 
bins have the same size). We define the decision 
variables (which constitute the solution to the 
problem): 

• 𝑧𝑘 = 1 if bin 𝑘 is used (0 otherwise) 
• 𝑓𝑖𝑘 = 1 if object 𝑖 is in bin 𝑘 (0 otherwise) 

The objective function is: Min∑ 𝑧𝑘𝑘=1  
The model has the following feasible constraints: 

• Each object must be placed exactly in one 
bin: ∑ 𝑓𝑖𝑘𝑘=1 ≥ 1 and 𝑓𝑖𝑘 ≤ 𝑧𝑘 

• The capacity of each bin must not be 
exceeded: ∑ 𝑓𝑖𝑘𝑖=1 ∗ 𝑠(𝑜𝑖) ≤ 𝑏 

The partition problem and the bin packing 
problem are two classical combinatorial problems in 
theoretical computer science and optimization. The 
bin packing problem is a polynomial reduction of 
the partition problem. This means that there is a 
polynomial algorithm (i.e. a transformation whose 
cost is polynomial in terms of input size) to 
transform partition problem into 1D-BPP. 

We study this polynomial reduction in order to 
propose an efficient algorithm for 1D-BPP. Each 
object size 𝑠(𝑜𝑖) in the bin packing instance is 
associated with a positive integer 𝑠(𝑎𝑖) in the 
partition instance.  

In the 1D-BPP, we need to determine in which 
bin to place each object to minimize the total 
number of bins used. To do this, we need to 
maximize the filling of all the bins used. The main 
idea of our approach is to measure, at each decision 
step, for each feasible set of an object to a bin, the 
minimum space that will inevitably be lost at the 
end of the resolution. This measure allows us to 
anticipate all the residual spaces that will be lost in 
each bin. To minimize the space in the bins that will 
inevitably be lost at the end, we rely on the 
resolution method with the partition problem. 

One approach is classically to place the most 
constraining objects first, i.e. the largest ones. To do 
this, we start by sorting the objects in ascending 
order of size. After we can construct matrix 𝑀(𝑖, 𝑗) 
with 𝑛 + 1 rows and 𝑏 + 1 columns, where 1 ≤ 𝑖 ≤
𝑛 and 0 ≤ 𝑗 ≤ 𝑏. In this way, each row corresponds 
to an object except the first line which corresponds 
to the empty set of objects and each column to a bin 
size. 

We can consider that the maximum number of 
necessary bins is 𝑛 (each object is affected to a 
different bin). For each placement of an object 𝑜𝑖 in 
a bin 𝑘, we calculate the residual space quantity : 
𝑃𝑘 = 𝑏 − ∑ 𝑠𝑜𝑖∈𝑂

(𝑜𝑖) × 𝑓𝑖𝑘. Then, in the matrix, we 
look for the largest value 𝑗 on line 𝑖 − 1 (so as not to 
take into account the object to be placed), such that 
𝑀(𝑖 − 1, 𝑗) = True, ∀𝑗 ∈ [0, 𝑃𝑘]. The space that 
will inevitably be lost at the end in bin 𝑘 is then 𝑏 −
𝑗. 

We perform this calculation for each bin that 
can accommodate object 𝑜𝑖. Then we choose the bin 
in which we place the object in to minimize the 
space that will be lost at the end of the treatment 
among the set of all the available bins: 

min
𝑘∈[1,n]

(𝑃𝑘 − max
𝑗∈[0,𝑃𝑘]

𝑗 𝑠. 𝑡.𝑀(𝑖 − 1, 𝑗) = 𝑇𝑟𝑢𝑒). 

     
This matrix allows us to detect, every decision 

to place, the quantity that will inevitably be lost at 
the end without knowing the next objects to be 
placed. It allows us to anticipate the losses we will 
have at the end of the packing regardless of the 
remaining objects. 
    For example, let’s take an instance consisting of a 
bin of size 9 and 4 objects of sizes 3, 3, 3 and 4. The 
matrix M associated with this instance is visible in 
Figure 1. We start by placing object 4 (the largest 
one) in bin 𝑘. Following the placement of this object 
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4, 𝑃𝑘 = 9 − 4 = 5 and (𝑃𝑘 − max
𝑗∈[0,𝑃𝑘]

𝑗 𝑠. 𝑡.𝑀(𝑖 −

1, 𝑗) = 𝑇𝑟𝑢𝑒) = 5 − 3 = 2. This means that there 
is no subset of residual objects that can fill this 
quantity 2. This quantity (grey zone in the bin of 
Figure 1) is therefore inevitably and permanently 
lost because, in the third line of the matrix M, we 
have False values from column 5 to column 3 (red 
arrow in the matrix M of Figure 1). That means that 
no subset of remaining objects can be summed to 
give 5 or 4. Therefore, it is detected that these 2 
units available in the bin will be lost. 
 

Fig. 1: Calculation of the area that will necessarily 
be lost, in grey, after placing object i of size 4 in a 
bin of size 9 
 
    Let’s take this example and add an object of size 
2. We now have an instance composed of a bin of 
size 9 and 5 objects of sizes 4, 3, 3, 3 and 2. The 
matrix M associated with this instance is visible in 
Figure 2. In this example, we know as soon as we 
place object 4 that there will be no loss generated at 
the end in this bin. Indeed, 

(𝑃𝑘 − max
𝑗∈[0,𝑃𝑘]

𝑗 𝑠. 𝑡.𝑀(𝑖 − 1, 𝑗) = 𝑇𝑟𝑢𝑒) = 5 − 5 =

0. 
    To summary, our criterion for choosing the bin in 
which to place object 𝑖 is the bin that minimizes the 
final loss such that: 
min
𝑘∈[1,n]

(𝑏 − ∑ 𝑠𝑜𝑖∈𝑂
(𝑜𝑖) × 𝑓𝑖𝑘 −

max
𝑗∈[0,𝑏−∑ 𝑠𝑜𝑖∈𝑂

(𝑜𝑖)×𝑓𝑖𝑘]
𝑗 𝑠. 𝑡.𝑀(𝑖 − 1, 𝑗) = 𝑇𝑟𝑢𝑒). 

 

 
Fig. 2: Calculation of the area that will necessarily 
be lost after placing object i of size 7 in a bin of size 
11 
 

3.3  Adaptation to 2D-BPP 
The 1D-BPP involves packing objects of different 
sizes into bins of fixed capacity, to minimize the 
total number of bins used. Each object has a size, 
and the aim is to find the packing configuration that 
uses the fewest bins possible. 
        The 2D-BPP extends this problem to two-
dimensional considerations. To give a formal 
definition of the problems we have based ourselves 
on [27], [28], [29]. In this section, we will use the 
"." operator as a relation between an instance of a 
class and an attribute. For example, 𝑜𝑖. ℎ represents 
attribute ℎ (height) for object 𝑜𝑖. For a complete 
comprehension of all the attributes of all the 
considered classes, we can refer to Figure 7 in 
section 3.5. 

Given a finite set 𝑂 = 𝑜1, 𝑜2, … , 𝑜𝑛 of objects, 
each 𝑜𝑖 object has a height 𝑜𝑖. ℎ and width 𝑜𝑖. 𝑤. 
They can have a fixed or free orientation. If the 
object has a free orientation, this means that it can 
be rotated by 90 degrees before being placed in a 
bin. The objective in this problem is to place all 𝑛 
objects in a minimum 𝑘 of bins. All the bins have 
the same height 𝑏. ℎ and width 𝑏. 𝑤. We define the 
decision variables (which constitute the solution to 
the problem): 

• 𝑙𝑖𝑗 = 1 if object 𝑖 is to the left of 𝑗 (0 
otherwise). 

• 𝑎𝑖𝑗 = 1 if object 𝑖 is above 𝑗 (0 otherwise). 
• 𝑓𝑖𝑘 = 1 if object 𝑖 is in bin 𝑘 (0 otherwise). 
• 𝑧𝑘 = 1 if bin 𝑘 is used (0 otherwise). 
• 𝑜𝑖. 𝑥 is the 𝑥 (left) coordinate of object 𝑖 in a 

bin and 𝑜𝑖 . 𝑦 is its 𝑦 (bottom) coordinate. 
(𝑥, 𝑦) represents the coupling of the 𝑥 and 𝑦 
attributes. 𝑜𝑖 . (𝑥, 𝑦) is the bottom left 
coordinate of object 𝑖 in a bin. 
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The objective function is: Min ∑ 𝑧𝑘𝑘=1  
The model has the following feasible 
constraints: 
• If object 𝑖 is neither to the left, nor to the 

right, nor above, nor below object 𝑗, then 
they are in two distinct bins: 𝑙𝑖𝑗 + 𝑙𝑗𝑖 +
𝑎𝑖𝑗 + 𝑎𝑗𝑖 + (1 − 𝑓𝑖𝑘) + (1 − 𝑓𝑗𝑘) ≥

1, ∀𝑖 < 𝑗 
• Objects don’t overlap: 𝑜𝑖. 𝑥 − 𝑜𝑗. 𝑥 + 𝑏.𝑤 ×

𝑙𝑖𝑗 ≤ 𝑏.𝑤 − 𝑜𝑖 . 𝑤 and 𝑜𝑖 . 𝑦 − 𝑜𝑗. 𝑦 + 𝑏. ℎ ×
𝑎𝑖𝑗 ≤ 𝑏. ℎ − 𝑜𝑖. ℎ 

• Objects don’t exceed the boundaries of the 
bin: 𝑜𝑖. 𝑥 ≤ 𝑏.𝑤 − 𝑜𝑖 . 𝑤 + (1 − 𝑓𝑖𝑘) × 𝑏.𝑤 
and 𝑜𝑖 . 𝑦 ≤ 𝑏. ℎ − 𝑜𝑖 . ℎ + (1 − 𝑓𝑖𝑘) × 𝑏.𝑤 
and 𝑜𝑖 . 𝑥, 𝑜𝑖 . 𝑦 ≥ 0 

• Each object is placed in at least one bin: 
∑ 𝑓𝑖𝑘𝑘=1 ≥ 1 and 𝑓𝑖𝑘 ≤ 𝑧𝑘 

 

3.4  Adaptation of the Exact Partition 

Method for the 2D-BPP 
After having presented how we adapt exact method 
of partition resolution to the 1D-BPP using the 
properties of polynomial reduction, we now explain 
the extension to 2D-BPP.  
     To facilitate the approach, we consider two types 
of surfaces inside the bins: maximum surfaces and 
minimum surfaces. 
 
3.4.1  Maximum Surface  

A surface SM is maximum if and only if there is no 
other maximum surface that can include it in its 
entirety. Every maximum surface 𝑆𝑀, is 
characterized by a distinctive bottom-left point 
(𝑆𝑀. 𝑥, 𝑆𝑀. 𝑦), which specifies its position 
coordinate in bin. 
For example, in Figure 3, placing the object at the 
bottom-left (0,0) position produces the two 
maximum surfaces 𝑆𝑀1 (rectangle defined by the 4 
blue dotted lines) and 𝑆𝑀2(pink dotted lines). 
    Intersections of maximum surfaces are non-
empty. Maximum surfaces allow us to know all the 
possible placements of each object in each bin. They 
are therefore used to determine all the possible 
placements of an object in bins. Each object is 
located in the bottom-left corner of a maximum 
surface. When an object is placed, we update the list 
of maximum surfaces 𝐿𝑆𝑀. All maximum surfaces 
𝑆𝑀 impacted by its placement are subdivided into 
residual maximum surfaces, while retaining the 
maximum surfaces attribute. 

 
Fig. 3: Example of maximum surfaces. The 
maximum surfaces SM1 and SM2 are obtained after 
placing the first object in the bin 
 
3.4.2  Minimum Surface  

A minimum surface 𝑆𝑚 is a surface resulting from 
the projection of all object segments placed on all 
squares along an axis. We have minimum surfaces 
along the x-axis 𝑆𝑚𝑥 and minimum surfaces along 
the y-axis 𝑆𝑚𝑦. 
    For example, in Figure 4 we can see the minimum 
surfaces on the x and y axes created by the five 
object placements (yellow). 
    All the intersections between minimal surfaces 
are empty. These will be used to calculate the 
surfaces that will inevitably be lost at the end of 
each decision to place an object in a bin (i.e. in a 
maximum surface). 
    Each time an object is placed in a maximum 
surface, we update the list of minimum surfaces for 
the x-axis 𝐿𝑆𝑚𝑥 and the y-axis 𝐿𝑆𝑚𝑦. To do this, we 
determine the surfaces impacted by the object’s 
placement to deduce the new minimum surfaces.  
 
Thus: 
𝐿𝑆𝑚𝑥 =∪𝑆𝑚∈𝑆𝑚𝑥 {𝑆𝑚, 𝑆𝑚 ∩ 𝑜𝑖. (𝑥, 𝑦, 𝑤, ℎ) ≠ ⌀} 
𝐿𝑆𝑚𝑦 =∪𝑆𝑚∈𝑆𝑚𝑦 {𝑆𝑚, 𝑆𝑚 ∩ 𝑜𝑖. (𝑥, 𝑦, 𝑤, ℎ) ≠ ⌀} 

 
Where 𝑆𝑚𝑥 is the set of minimum surfaces on the 
x-axis, 𝑆𝑚𝑦 is the set of minimum surfaces on the 
y-axis, 𝑜𝑖. (𝑥, 𝑦, 𝑤, ℎ) represents the combination of 
attributes 𝑥, 𝑦, 𝑤, and ℎ of object 𝑖. This represents 
the surface area of object 𝑖 at position (𝑥, 𝑦) in the 
bin. 
    Note that initially, i.e. when no object is placed, 
the list of surfaces minimum and maximum are both 
initialized to the sizes of all the available bins. 𝑈𝐵 is 
a trivial upper bound of the bin number, i.e. the 
number of objects. 
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Fig. 4: Example of minimum surfaces resulting from 
the projection of all object segments placed in the 
bin 
 
3.4.3    Partition Matrix for 2D-BPP 

We construct two matrices, 𝑀𝑥 for the x-axis and 
𝑀𝑦 for the y-axis. 𝑀𝑥 will have as column number  
𝑏. 𝑤 + 1 and 𝑀𝑦 will have as column number 𝑏. ℎ +
1. 𝑀𝑥 and 𝑀𝑦 have 𝑛 + 1 row number (the number 
𝑛 of objects +1). Objects are sorted in ascending 
order of surface area, so that the most constraining 
objects are placed first. If an object is freely 
oriented, we consider that we have two distinct 
objects. One for the width direction (𝑜𝑖. ℎ x 𝑜𝑖 . 𝑤) 
and one for the length direction (𝑜𝑖. 𝑤 x 𝑜𝑖. ℎ). We 
then place one or exclusive (XOR) between the two 
objects. In this way, the placement of one object 
results in the placing of the other. The matrices are 
then calculated in the same way as for the one-
dimensional bin packing problem, i.e.: 

• 𝑀𝑥(0,0) = 𝑇𝑟𝑢𝑒 
• 𝑀𝑦(0,0) = 𝑇𝑟𝑢𝑒 
• 𝑀𝑥(𝑖, 𝑗) = 𝑇𝑟𝑢𝑒 if and only if 𝑀𝑥(𝑖 −

1, 𝑗) = 𝑇𝑟𝑢𝑒 or 𝑀𝑥(𝑖 − 1, 𝑗 − 𝑜𝑖. 𝑤) =
𝑇𝑟𝑢𝑒. 

• 𝑀𝑦(𝑖, 𝑗) = 𝑇𝑟𝑢𝑒 if and only if 𝑀𝑦(𝑖 −
1, 𝑗) = 𝑇𝑟𝑢𝑒 or 𝑀𝑦(𝑖 − 1, 𝑗 − 𝑜𝑖. ℎ) =
𝑇𝑟𝑢𝑒. 

    Thus, 𝑀𝑥(𝑖, 𝑗) = 𝑇𝑟𝑢𝑒 if there exists, among the 
first 𝑖 elements, a combination such that 𝑜𝑖 . 𝑤 = 𝑗 
and 𝑀𝑦(𝑖, 𝑗) = 𝑇𝑟𝑢𝑒 if there exists, among the first 
𝑖 elements, a combination such that 𝑜𝑖. ℎ = 𝑗. 
 

3.4.4  Dynamical Criteria 

Using matrices, we determine which surfaces, 
associated to all minimal surfaces, will be 
irretrievably lost at the end of the process.  
    When an object is placed in a maximum surface, 
it produces a new lists of minimum surfaces. 𝐿𝑆𝑚𝑥 
(resp. 𝐿𝑆𝑚𝑦 ) denotes the list of the minimal surfaces 
projected on x-axis (resp. y-axis). The ith minimum 
surfaces are respectively denoted Smx𝑖 and Smy𝑖. 
We then calculate the loss associated with each 
minimum surface, (noted Smx𝑖. 𝑆𝑃 and resp. 
𝑆𝑚𝑦𝑖. 𝑆𝑃) such that:  

𝑆𝑚𝑥𝑖. 𝑆𝑃 = (𝑆𝑚𝑥𝑖 . w
− max
𝑗∈[0,𝑆𝑚𝑥𝑖.𝑤]

(𝑗,𝑀𝑥(𝑖 − 1, 𝑗)

= 𝑇𝑟𝑢𝑒)) × 𝑆𝑚𝑥𝑖. ℎ 
𝑆𝑚𝑦𝑖 . 𝑆𝑃 = (𝑆𝑚𝑦𝑖 . h

− max
𝑗∈[0,𝑆𝑚𝑦𝑖.ℎ]

(𝑗, 𝑀𝑦(𝑖 − 1, 𝑗)

= 𝑇𝑟𝑢𝑒)) × 𝑆𝑚𝑦𝑖 . 𝑤 
 
The sum of these losses associated with each 
minimum surface gives us the minimum loss SP of 
the placement of object i such that: 

SP = ∑ (

𝑆𝑚𝑥∈𝐿𝑆𝑚𝑥

𝑆𝑚𝑥.𝑤 −

max
𝑗∈[0,𝑆𝑚𝑥.𝑤]

𝑗 𝑠. 𝑡.𝑀(𝑖 − 1, 𝑗) = True) × 𝑆𝑚𝑥. ℎ

+ ∑ (

𝑆𝑚𝑦∈𝐿𝑆𝑚𝑦

𝑆𝑚𝑦. ℎ −

max
𝑗∈[0,𝑆𝑚𝑦.ℎ]

𝑗 𝑠. 𝑡.𝑀(𝑖 − 1, 𝑗) = True) × 𝑆𝑚𝑦.𝑤

 

 
    Example 1: let’s take a bin (10,12) and 4 objects 
of different sizes ((4,5), (4,5), (4,8) and (5,8)). The 
object (5,8) is freely oriented. Initially, we sort the 
objects in ascending order based on the size of their 
surface. The freely oriented object is duplicated, and 
a bitwise XOR ensures that placing the object in one 
orientation will lead to place the object in its other 
orientation. 
    Then, we construct two matrices 𝑀𝑥 and 𝑀𝑦 
visible in Figure 5. 
    We aim to place the most constraining object 
first. So we start by probing the freely oriented 
object. This object can be placed in either 
orientation, i.e. in the width orientation (8,5) or the 
height one (5,8). 
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Figure 5: Example of 𝑀𝑥 and 𝑀𝑦 for the bin 
(12,10) and 4 objects: (4,5), (4,5), (4,8) and (5,8) 
with orientation free. 
     
Placing this object in its height orientation (5,8) 
generates the two minimum surfaces on the x-axis : 
𝑆𝑚𝑥1 of size (7,8) and 𝑆𝑚𝑥2 of size (12,2). These 
two minimum surfaces are shown in Figure 6. 
 

 
Fig. 6: Calculation of 𝑆𝑚𝑥1. 𝑆𝑃 
 
𝑆𝑚𝑥1 is a surface on the x-axis, generated by 
placing the object 𝑖 with orientation (5,8) in the bin 
of size (12,10). The surface in grey is the surface 
area of 𝑆𝑚𝑥1, which will be lost.  
       For each minimum surface, we calculate its lost 
surface SP when the object is placed. Each 
minimum surface has a height of 𝑆𝑚𝑥. ℎ (resp. 
𝑆𝑚𝑦.h) and width 𝑆𝑚𝑥.𝑤 (resp. 𝑆𝑚𝑦.w). 
     Let’s take the example of calculating the loss for 
minimum surface 𝑆𝑚𝑥1. For this minimum surface 
𝑆𝑚𝑥1 of size (7,8), the surface that will be lost 
𝑆𝑚𝑥1. 𝑆𝑃 is calculated as follows  
𝑆𝑚𝑥1. 𝑆𝑃 = (𝑆𝑚𝑥1. 𝑤 − max

𝑗∈[0,𝑆𝑚𝑥1.𝑤]
(𝑗,𝑀𝑥(𝑖 −

1, 𝑗) = 𝑇𝑟𝑢𝑒)) × 𝑆𝑚𝑥1. ℎ so 𝑆𝑚𝑥1. 𝑆𝑃 = (7 − 4) ∗
8 = 24. 
    For 𝑆𝑚𝑥2, the surface that will be lost is 
𝑆𝑚𝑥2. 𝑆𝑃 = (12 − 12) ∗ 2 = 0. 
    We make the same calculation for the minimum 
surface on the y axis. Placing this object in its height 
orientation (5,8) generates the two minimum 
surfaces on the y-axis : 𝑆𝑚𝑦1 of size (5,2) and 
𝑆𝑚𝑦2 of size (7,10). So, 𝑆𝑚𝑦1. 𝑆𝑃 = (2 − 0) ∗ 5 =
10   and 𝑆𝑚𝑦2. 𝑆𝑃 = (10 − 10) ∗ 7 = 0.    
    Placing this object in its height orientation (5,8) 
gives us:  𝑆𝑃 = 24 + 0 + 10 + 0 = 34.    
    Placing this object in its width orientation (8,5) 
generates the two minimum surfaces s on the x-axis 
: 𝑆𝑚𝑥1 of size (4,5) and 𝑆𝑚𝑥2 of size (12,5). These 
two minimum surfaces are shown in Figure 7. 

 
Fig. 7: Calculation of 𝑆𝑚𝑥1. 𝑆𝑃 
 
𝑆𝑚𝑥1 is a surface on x-axis was generated by 

placing the object 𝑖 with orientation (8,5) in a bin of 
size (12,10). 𝑆𝑚𝑥1 and 𝑆𝑚𝑥2 lead to no space lost 
because we have 𝑆𝑚𝑥1. 𝑆𝑃 = (4 − 4) ∗ 5 = 0 and 
𝑆𝑚𝑥2. 𝑆𝑃 = (0 − 0) ∗ 12 = 0. 
    Placing this object in its width orientation (8,5) 
generates the two minimum surfaces on the y-axis : 
𝑆𝑚𝑦1 of size (8,5) and 𝑆𝑚𝑦2 of size (4,10). So, 
𝑆𝑚𝑦1. 𝑆𝑃 = (5 − 5) ∗ 8 = 0 and 𝑆𝑚𝑦2. 𝑆𝑃 =
(10 − 10) ∗ 4 = 0 . 
    So, placing this object in its width orientation 
(8,5) gives us:  𝑆𝑃 = 0 + 0 + 0 + 0 = 0. 
    In this example, placing the object in the direction 
of its height results in a minimum loss SP of 34. 
Placing the object in the direction of its width 
results in a minimum loss SP of 0. As we aim to 
minimize space lost, we detect that placing the 
object in the direction of its width leads to no lost 
and placing it in the direction of its height will lead 
to lose 34 units of space (according to the remaining 
objects). Then, we detect that the placement with the 
width orientation is the best one and chose it. 
 
Example 2: let’s take a bin (8,5) and 3 objects of 
different sizes ((1,2), (1,3) and (3,4)). The object 
(3,4) is freely oriented. Initially, we sort the objects 
in ascending order based on the size of their surface. 
The freely oriented object is duplicated, and a 
bitwise XOR ensures that placing the object in one 
orientation will lead to placing the object in its other 
orientation. 
    Then, we construct two matrices 𝑀𝑥 and 𝑀𝑦 
visible in Figure 8. 
 

 
Fig. 8: Example of 𝑀𝑥 and 𝑀𝑦 for the bin (8,5) and 
3 objects: (1,2), (1,3) and (3,4) with orientation free 
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    We aim to place the most constraining object 
first. So we start by probing the freely oriented 
object. This object can be placed in either 
orientation, i.e. width (4,3) or height (3,4). 
    Placing this object in its width orientation (3,4) 
generates the two minimum surfaces s on the x-axis 
: 𝑆𝑚𝑥1 of size (5,4) and 𝑆𝑚𝑥2 of size (8,1). These 
two minimum surfaces are shown in Figure 9. 
    For each minimum surface, we calculate its lost 
surface SP when the object is placed. Each 
minimum surface has a height of 𝑆𝑚𝑥. ℎ (resp. 
𝑆𝑚𝑦.h) and width 𝑆𝑚𝑥.𝑤 (resp. 𝑆𝑚𝑦.w). 
 

 
Fig. 9: Calculation of 𝑆𝑚𝑥1. 𝑆𝑃 
 
𝑆𝑚𝑥1 is a surface on x-axis was generated by 
placing the object 𝑖 with orientation (3,4) in a bin of 
size (8,5). The surface in grey is the surface area of 
𝑆𝑚𝑥1, which will be lost. 
        Let’s take the example of calculating the loss 
for minimum surface 𝑆𝑚𝑥1. For this minimum 
surface 𝑆𝑚𝑥1 of size (5,4), the surface that will be 
lost 𝑆𝑚𝑥1. 𝑆𝑃 is calculate as following:  
𝑆𝑚𝑥1. 𝑆𝑃 = (𝑆𝑚𝑥1. 𝑤 − max

𝑗∈[0,𝑆𝑚𝑥1.𝑤]
(𝑗,𝑀𝑥(𝑖 −

1, 𝑗) = 𝑇𝑟𝑢𝑒)) × 𝑆𝑚𝑥1. ℎ so 𝑆𝑚𝑥1. 𝑆𝑃 = (5 − 2) ∗
4 = 12. 
    This calculation is performed for all minimum 
surfaces on the x-axis and the y-axis. 
 
3.4.5    Algorithm 

In the bin packing problem, for each object, we have 
to decide in which bin to pack it, in which location 
and in which orientation. In our case, this means 
determining in which maximum surface each object 
should be packed, and in which orientation if the 
object has a free orientation. 
    For each object, we look for the set of maximum 
surfaces in which we can place the object under 
consideration. For each of these maximum surfaces, 
we define a new list of maximum and minimum 
surfaces. So for each object, in each area that can 
accommodate it, we calculate the areas that will be 
irretrievably lost in the end. Then we choose to 
place the object in the maximum surface that will 
minimize the area lost at the end, such that: 

min(𝑆𝑃) = min( ∑ (

𝑆𝑚𝑥∈𝐿𝑆𝑚𝑥

𝑆𝑚𝑥.𝑤 −

max
𝑗∈[0,𝑆𝑚𝑥.𝑤]

𝑗 𝑠. 𝑡.𝑀(𝑖 − 1, 𝑗) = True) × 𝑆𝑚𝑥. ℎ

+ ∑ (

𝑆𝑚𝑦∈𝐿𝑆𝑚𝑦

𝑆𝑚𝑦. ℎ −

max
𝑗∈[0,𝑆𝑚𝑦.ℎ]

𝑗 𝑠. 𝑡.𝑀(𝑖 − 1, 𝑗) = True) × 𝑆𝑚𝑦.𝑤)

 

     
In our example, placing the object in the width 

direction (4,3) will result in a minimum loss of 21. 
Placing the object in the height direction (3,4) will 
result in a minimum loss of 18. It is this loss that 
allows us to choose the location and orientation of 
the object. We place the object in the location and 
orientation that minimize loss. So, this object is 
placed in the orientation of its height (3,4). 
    Consequently, every time an object is placed on a 
maximum surface, we can accurately estimate the 
additional space that will inevitably be lost by the 
end of the algorithm. It is this criteria of final loss 
that will guide the choice of placement for each 
object. If tie, we place the object 𝑖 in the maximum 
surface 𝑆𝑀 such that: 𝑚𝑖𝑛(𝑆𝑀.𝑤 − 𝑜𝑖. 𝑤) or 
𝑚𝑖𝑛(𝑆𝑀. ℎ − 𝑜𝑖. ℎ). 
    Our algorithm for solving two dimensional bin 
packing problem is detailed below: 

 

Algorithm 1 pack(vector<Object>, vector<Bin>) 
Require: List of objects o and their characteristics 
Require: List of bins b and their characteristics 
Ensure: List of object locations in bins 
    1: Step 1: Initializing the algorithm 

    2: Initialize list of maximum surface 𝐿𝑆𝑀, list  of  
      minimum surfaces in x 𝑳𝑺𝒎𝒙, list of minimum  
      surfaces in y 𝑳𝑺𝒎𝒚 for all available bins  

    3:  Sort objects in ascending order of surface area.     
    4: Calculate the matrices 𝑀𝑥 and 𝑀𝑦 with objects  
       sorted in ascending order of surface area. 
    5:  Step 2: Algorithm 
    6:  for each i object in descending order of    
        surface area do 
    7:      for each maximum surface SM ∈ LSM do 
    8:          if SM.w ≥ oi.w and SM.h ≥ oi.h then 

    9:               Calculate 𝐿𝑆𝑚𝑥 and 𝐿𝑆𝑚𝑦 
  10:                Calculate 𝑆𝑃  
  11:                Calculate 𝑡𝑥 = 𝑆𝑀.𝑤 − 𝑜𝑖. 𝑤 and 𝑡𝑦 =
                   𝑆𝑀. ℎ − 𝑜𝑖. ℎ  
  12:            end if 
  13:       end for 
  14:       Choose maximum surface SM such that: 
         min(SP ) 
  15:       If tie, choose maximum surface SM such that: 
         min(tx) or min(ty) 
  16:       Place object i in surface SM, i.e. store the bin 
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           number and bottom-left coordinates of the 
object  
           i   in bin, update LSmx and LSmy, calculate                
           new  LSM . 
  17: end for 

 

     
Our algorithm avoids combinatorial exploration 

by making decisive object-to-position assignments 
in the bins at each step. To prevent making 
expensive decisions (far from the optimum), it 
integrates dynamic programming elements, ensuring 
both fast execution in terms of computing time and 
efficiency in terms of optimization. The algorithm’s 
key strength lies in its comprehensive and enduring 
perspective on the impact of each decision made. 

 
3.5   Industrial Problem 
In the industrial context, companies need adaptable 
and modifiable solutions. The solution was modeled 
as a class diagram depicted in Figure 10. 
    The industrial problem (Shipping) is composed of 
several bin packing problems, one for each order. 
Each order is composed of several components and 
several panels. The problem can generate solution. 
A solution is the list of x, y coordinates for each 
component in a panel. A component has a width and 
a height. In the industrial problem, an object can be 
freely oriented or fixed. A panel type is 
characterized by its width and height. In the 
industrial context, they also have a peripheral 
margin in which no object can be positioned, and a 
𝐷𝑆 spacing must be maintained between 
components on the same panel. However, for 
peripheral components, the components can be 
placed against the edges of the panel’s technical 
margins. 
    To deal with this spacing constraint, you can: 

• Artificially increase the dimensions of 
components (i.e. objects) by 𝐷𝑆/2. 

• Decrease the panel’s technical margins by 
𝐷𝑆/2. 

• Position components with an inter-
components spacing of 0. 

 

 
Fig. 10: Implemented class diagram for industrial 
problem 
 
    For each panel, we construct Mx and My 
matrices. Each panel has its list of maximum and 
minimum surface. The maximum surfaces have a 
function to determine whether it is possible to place 
an object in that area. If feasible, it helps us know 
the x, y position of the object in the panel. The 
minimum surfaces have an x or y axis and know 
their lost area for each placement of an object in a 
maximum surface. 
    Establishing relationships between panels and 
surfaces, as well as between surfaces and 
components, summarizes both the nature of the 
problem and the structure of the solution. 
    Depending on the industrial problem, there may 
be different types of constraints. This model is 
adaptable based on various constraints. 
    Incompatibilities between components and panels 
can be considered by adding a relationship between 
panels and components (component i forbidden in 
panel j). 
    Incompatibilities between components and zones 
in panels (the component must (or must not) be 
placed in such and such a zone of the panel, 
between 2 x coordinates and/or between 2 y 
coordinates) can also be considered. We could 
integrate this with our concept of surfaces. 
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    Incompatibility between components can also be 
considered by adding a pair of component 
relationships. 
 
 
4   Results 
The C++ language was used to run the algorithm. 
 
    On some instances, it can be difficult to find the 
optimal solution and a solution close to the 
optimum. This is the case on instances where 
objects vary greatly in size. This complexity is even 
greater when the optimal arrangement of objects 
completely fills the bins. In this case, a single 
placement error can have a considerable influence 
on the addition of further containers. The solutions 
can then be very far from the optimal solution. 
    We tested our algorithm on several difficult 
extreme instances. 
 
4.1  Instance Typology 1 
To test our algorithm, we relied on the difficult 
extreme instances constructed in [3], for 1D-BPP. 
     The first instance typology in [3], is: 

𝑈 = {𝑢1, 𝑢2, … , 𝑢18𝑚},

𝑠(𝑢𝑖) =

{
  
 

  
 
1

7
+ 𝜀 1 ≤ 𝑖 ≤ 6𝑚

1

3
+ 𝜀 6𝑚 < 𝑖 ≤ 12𝑚

1

2
+ 𝜀 12𝑚 < 𝑖 ≤ 18𝑚

 

     
    We have adapted this instance typology for 2D-
BPP. To achieve this, we have taken both 
dimensions into account. This two-dimensional 
instance typology is: 

𝑈 = {𝑢1, 𝑢2, … , 𝑢64𝑚},

𝑠(𝑢𝑖) =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
1

7
𝑏.𝑤 + 𝜀,

1

7
𝑏. ℎ + 𝜀 1 ≤ 𝑖 ≤ 6𝑚

1

3
𝑏.𝑤 + 𝜀,

1

7
𝑏. ℎ + 𝜀 6𝑚 < 𝑖 ≤ 12𝑚

1

2
𝑏.𝑤 + 𝜀,

1

7
𝑏. ℎ + 𝜀 12𝑚 < 𝑖 ≤ 18𝑚

1

7
𝑏.𝑤 + 𝜀,

1

3
𝑏. ℎ + 𝜀 18𝑚 < 𝑖 ≤ 24𝑚

1

3
𝑏.𝑤 + 𝜀,

1

3
𝑏. ℎ + 𝜀 24𝑚 < 𝑖 ≤ 30𝑚

1

2
𝑏.𝑤 + 𝜀,

1

3
𝑏. ℎ + 𝜀 30𝑚 < 𝑖 ≤ 36𝑚

1

7
𝑏.𝑤 + 𝜀,

1

2
𝑏. ℎ + 𝜀 36𝑚 < 𝑖 ≤ 42𝑚

1

3
𝑏.𝑤 + 𝜀,

1

2
𝑏. ℎ + 𝜀 42𝑚 < 𝑖 ≤ 58𝑚

1

2
𝑏.𝑤 + 𝜀,

1

2
𝑏. ℎ + 𝜀 58𝑚 < 𝑖 ≤ 64𝑚

 

   
 The optimal placement of this instance typology 
can be seen in Figure 11. 
 

 
Fig. 11: Optimal placement of first instance 
typology of [3], implemented for two-dimensional 
bin packing problem 
 
    We can consider an infinite number of instances 
of this typology. The results are shown in Table 1. 
 
Table 1. Results obtained on first instance typology 

of [3] 
Nb objects Opt Our Time (s) 
64 6 6 0.05 
128 12 12 0.07 

 

4.2  Instance Typology 2 
A second difficult extreme instances of typologies 
exist in [3], for 2D-BPP. 
    This second instances typologies in [3] is: 
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𝑈 = {𝑢1, 𝑢2, … , 𝑢30𝑚},

𝑠(𝑢𝑖) =

{
 
 
 
 

 
 
 
 
1

2
+ 𝜀 1 < 𝑖 ≤ 6𝑚

1

4
+ 2𝜀 6𝑚 < 𝑖 ≤ 12𝑚

1

4
+ 𝜀 12𝑚 < 𝑖 ≤ 18𝑚

1

4
− 2𝜀 18𝑚 < 𝑖 ≤ 30𝑚

 

 
    As for the first instance typology of [3], we have 
adapted it to the 2D-BPP by taking into account the 
two dimensions.  
     
    Its two-dimensional adaptation is: 

𝑈 = {𝑢1, 𝑢2, … , 𝑢75𝑚},

𝑠(𝑢𝑖) =

{
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
1

2
𝑏.𝑤 + 𝜀,

1

2
𝑏. ℎ + 𝜀 1 ≤ 𝑖 ≤ 3𝑚

1

4
𝑏.𝑤 + 𝜀,

1

2
𝑏. ℎ + 𝜀 3𝑚 < 𝑖 ≤ 6𝑚

1

4
𝑏.𝑤 − 2𝜀,

1

2
𝑏. ℎ + 𝜀 6𝑚 < 𝑖 ≤ 9𝑚

1

4
𝑏.𝑤 + 2𝜀,

1

4
𝑏. ℎ + 2𝜀 9𝑚 < 𝑖 ≤ 21𝑚

1

4
𝑏.𝑤 − 2𝜀,

1

4
𝑏. ℎ + 2𝜀 21𝑚 < 𝑖 ≤ 33𝑚

1

2
𝑏.𝑤 + 𝜀,

1

4
𝑏. ℎ + 𝜀 33𝑚 < 𝑖 ≤ 36𝑚

1

4
𝑏.𝑤 + 𝜀,

1

4
𝑏. ℎ + 𝜀 36𝑚 < 𝑖 ≤ 39𝑚

1

4
𝑏.𝑤 − 2𝜀,

1

4
𝑏. ℎ + 𝜀 39𝑚 < 𝑖 ≤ 42𝑚

1

2
𝑏.𝑤 + 𝜀,

1

4
𝑏. ℎ − 2𝜀 42 < 𝑖 ≤ 45𝑚

1

4
𝑏.𝑤 + 2𝜀,

1

4
𝑏. ℎ − 2𝜀 45𝑚 < 𝑖 ≤ 57𝑚

1

4
𝑏.𝑤 + 𝜀,

1

4
𝑏. ℎ − 2𝜀 57𝑚 < 𝑖 ≤ 60𝑚

1

4
𝑏.𝑤 − 2𝜀,

1

4
𝑏. ℎ − 2𝜀 60𝑚 < 𝑖 ≤ 75𝑚

 

 
The optimal placement of this instance type can 

be seen in Figure 12. 
 
    We test our algorithm on numerous kind of 
instances based on this typology. The results are 
shown in Table 2. 

 
Fig. 12: Optimal placement of the second instance 
typology of [3], implemented for two-dimensional 
bin packing problem 
 

Table 2. Results obtained on the second instance 
typology of [3] 

Nb objects Opt Our Time (s) 
75 6 6 0.05 
150 8 8 0.08 

 

4.3  Instance Typology 3 
To test the robustness of the algorithm in extreme 
scenarios, we generated numerous examples by 
randomly partitioning the bins to define the objects. 
This is done in such a way that the objects have a 
wide range of sizes. In these instances, the bins are 
full. Randomly slicing bins without loss to define 
the objects to be placed makes it possible to 
construct a perfect package layout design. This 
never happens in reality but allows us to evaluate 
the worst-case performance of the algorithm. The 
optimal solution tolerates no losses, and the slightest 
error in the algorithm takes us farther away from the 
optimal solution. To add complexity, all objects are 
freely oriented. 
    We built instances of reasonable size (between 10 
and hundred objects). An example is visible in 
Figure 13. To check the complexity and 
computation times of our algorithm, we’ve built 
large instances (between 200 and a thousand 
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objects). An extract of the results obtained is given 
in Table 3. 
 

 
Fig. 13: Illustration of optimal placement for one 
bin of instance typology 3 
 

Table 3. Results obtained on our instances 
Nb objects Opt Our Time (s) 
44 4 4 0.05 
47 3 4 0.06 
51 3 4 0.07 
57 3 3 0.08 
66 6 7 0.07 
440 40 40 5.5 
470 30 31 6.5 
510 30 31 7 
570 30 30 9 
660 60 61 28 
1000 100 101 45 

 

4.4  Discussion 
All the results we give are obtained on extremely 
difficult instances (difficult topology, no losses 
allowed). On extremely difficult instances of , our 
algorithm finds the optimum solution for all these 
instances with a computation time of less than 1 
second. 
        With our difficult extreme instances (instance 
typology 3), our algorithm offers an optimal 
solution or an approximation very close to the 
optimum in less than a minute. The most notable 
discrepancy we find is one bin more than the 
optimal solution. We have examined the reasons for 
this disparity and identified that it occurs when the 
evaluation functions (minimum loss at the end of 
processing and best saturation) are equal for several 
different surfaces. This situation, although rare, can 
occur, particularly when the number of bins is high, 
indicating the presence of many different maximum 
surfaces. 
    To prevent such cases, it would be sufficient to 
explore the decisions of both equalities, but this 
would risk making the algorithm combinatorial for 

minimal gains, i.e. just winning one bin. In all 
experiments, the difference does not exceed one 
extra bin. 
    On real results from the industrial context, our 
algorithm generates solutions that, at worst, are 97% 
of the optimal solution. On average, we obtain 
results over 99% of the optimal solutions, with a 
computation time of less than 1 minute for very 
large instances. 
    Unlike exact methods and metaheuristics, which 
take a long time to compute, and very fast 
heuristics, which in the worst case are far from 
optimum, our solution gives us an excellent 
compromise between solution quality (problem 
optimization) and computation time. Furthermore, it 
can handle very large instances on an industrial 
scale. 
 

 

5   Conclusion 
Our industrial objective was to place between a 
hundred and thousand freely rotating components 
(objects) in panels (bins) in less than one minute. 
    In this paper, we present an efficient algorithm 
designed to solve this problem, which is similar to 
the two-dimensional bin packing problem with free 
orientation. 
    Our algorithm produces results very close to the 
optimum (in the worst case, it generates just one 
more bin) in acceptable computation times (less 
than one minute) for large-scale instances (thousand 
objects) even taking into account the free orientation 
of the objects. 
    Although there is potential for further 
improvement by implementing a complete branch-
and-cut algorithms incorporating all the lower 
bounds of the existing literature, such an extension 
may lead to a considerable increase in computation 
time for little additional result (just saving one bin). 
    According to our computation times and our 
object model, the perspectives of this work are very 
rich. We could envisage adapting our solution to 
other types of industrial problems with other types 
of constraints, such as cutting problems. 
Furthermore, our approach is easily adaptable to 
other industrial constraints such as: 

• Different types of bins of different sizes. 
Simply create two matrices for each type of 
bin; 

• Incompatibilities between objects and bins; 
The matrices only take into account objects 
compatible with selected surfaces in the bin; 

• Etc. 
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    We could also adapt it to 3D-BPPs such as 
packing, container and truck loading, palletization, 
etc. To do this, you need to add a depth attribute to 
the panel and the component and introduce a new 
attribute z for the surfaces. Then, we can easily 
modify our algorithm to consider this additional 
dimension. The introduction of an extra dimension 
will significantly increase calculation times but 
within reasonable limits. 
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