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Abstract

I devise a difference-in-differences design that accounts for the possibility that some

treatment effect is split in the reactions to two or more events. At the intersection of

settings with a single treatment and with multiple treatments, regression-based meth-

ods for this split-treatment design can be subject both to negative weights and con-

tamination bias. I propose a simple solution, a first-difference regression with sample

constraints in the spirit of Dube et al.’s (2023) LP-DiD, that allows to identify and es-

timate sensible causal parameters of interest. This estimator is efficient under random

walk errors and unrestricted heterogeneity across groups and events. In addition, this

estimator has a larger appeal than this design as it more generally applies to settings

with several nonlinearly-dependent treatments.

Keywords: Difference-in-differences, Heterogeneous treatment effects, Multiple treat-

ments, Contamination bias
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1 Introduction

Differences-in-differences (DiD) are widely used in social sciences for estimating causal effects.

Typically, identification relies on the “no anticipation” assumption which states that the

treatment has no causal effect prior to its implementation. However, economic and finance

theory is usually based on some version of the rational expectation hypothesis, i.e., agents are

forward-looking, rational, and use available information to make decisions. As a consequence,

in some settings, when treatment is anticipated, it is likely that to-be-treated individuals

will react preemptively and adjust their behaviour before treatment actually occurs. An

archetypical example is the delay between the time a piece of legislation is passed into law

and the time of its implementation. In such situations, it is not always clear as to whether

agents adjust their behaviour at the time the law is passed, at its implementation, or at both.

Consider as an example the implementation of a central clearing counterparty (CCP) in

a financial market. The aim of this change is to introduce an insurance system by which the

losses incurred by the failure of one’s counterparty are insured by the CCP. Theory says that

counterparty risk should fall, and that, if counterparty risk is priced, asset prices should react

at the time of implementation. Yet, given rational expectations, some agents may anticipate

this future fall in counterparty risk and adjust their behaviour after the announcement date,

not because counterparty risk actually falls, but because assets subject to this change now

have a higher average expected return. Therefore, it is unclear whether one should consider

that treatment occurs at the implementation or the announcement date. This reasoning easily

expands to a general case with more than two events. Progressive disclosure of information

prior to treatment constitutes as many potential reasons for anticipated effects. In this paper,

I devise a DiD design that accounts for the possibility that some treatment effect is split in

the reactions to two or more events. I call this setting a split-treatment design. My aim is

to derive sufficient conditions for identification and to provide a method for estimation of

meaningful causal parameters of interest, namely weighted average “event effects”.

Because the split-treatment design can be seen either as a framework with a single treat-

ment with irregular dynamics or as a framework with several treatments, identification faces
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important challenges. In particular, a recent and yet abundant literature has shown that

standard regression-based estimators fail, in general, in identifying interpretable causal esti-

mands when treatment effects are heterogeneous. A first difficulty, pervasive in both single

and multiple treatment specifications, pertains to the well-known issue of negative weights

(de Chaisemartin and D’Haultfœuille, 2020; Goodman-Bacon, 2021; Sun and Abraham, 2021;

Callaway and Sant’Anna, 2021; Borusyak et al., 2024). Clean identification fails because

standard methods rely on “forbidden comparisons” of newly treated observations with al-

ready treated ones that may experience heterogeneous effects across groups or relative time

since treatment. Furthermore, specifications with multiple treatments are affected by an-

other issue, a contamination bias that stems from the nonlinear dependence structure that

often exists between different treatments (Hull, 2018; Goldsmith-Pinkham et al., 2022; de

Chaisemartin and D’Haultfœuille, 2023a).

The split-treatment design is concerned by both issues. I show how a simple and practical

regression-based method in the spirit of Dube et al.’s (2023) local-projection based DiD (LP-

DiD) allows to bypass these hurdles and estimate average “event effects”. This solution

relies on a first-difference regression with sample constraints to select clean controls. These

constraints are different from those imposed in Dube et al.’s (2023) framework and will

generally be easy to meet in real-world applications. Still, identification comes at the cost of

important restrictions on the dynamics of “event effects”. Although limiting, the structure

of the split-treatment design itself brings dynamics to a single treatment, and it makes sense

in some finance and economics applications for information to be incorporated rapidly into

the outcome. Besides, although it is not in the spirit of the original design, nothing prevents

practitioners from defining additional events as lagged effects of past events. Finally, this

method, called first-difference DiD (FD-DiD), is efficient under random walk errors and

unrestricted heterogeneity across groups and events.

Although I develop the FD-DiD for the split-treatment design, it has a much larger appeal.

Specifically, in settings with several treatments that have a nonlinear relationship (as in the

case of mutually exclusive treatments, for instance), the FD-DiD allows estimation of average
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treatment effects on the treated (ATT) for each treatment without contamination. Since it

is regression-based, it is straightforward to control for covariates and easy to implement.

Therefore, it may be the main takeaway of this paper that Dube et al.’s (2023) method

can be adapted to settings with multiple treatments provided some constraints are made on

treatment effect dynamics.

The remainder of the paper is organized as follows. Section 2 discusses the related liter-

ature with a focus on staggered designs with binary treatments and parallel trends, thereby

leaving out papers that have assumed randomized treatment timing. Section 3 presents the

split-treatment design. Section 4 highlights how contamination bias prevents simple local-

projection regressions to be used for identification and introduces the FD-DiD. Section 5 is

dedicated to efficiency and inference. Section 6 presents some additional results. In Section

7, I use the FD-DiD to revisit the application of Bernstein et al. (2019), whose aim is to

identify the effects of the introduction of a clearinghouse by the New York Stock Exchange

(NYSE) on counterparty risk. Section 8 concludes.

2 Related literature

TWFE regressions, i.e., regressions of an outcome variable on group and time fixed effects

and a treatment, were up until recently routinely used to estimate treatment effects. de

Chaisemartin and D’Haultfœuille (2023b) found that out of the 100 most-cited papers pub-

lished in the American Economic Review from 2015 to 2019, 26 estimate a TWFE regression.

Motivated by the fact that it is indeed true in the canonical case with two groups and two pe-

riods, TWFE estimators were until recently thought to be equivalent to DiD estimators. As

shown by several recent seminal papers, it is now clear that this assumption was misguided.

Under the assumptions of parallel trends and no anticipation, TWFE regressions with

one treatment identify a weighted sum of effects for treated (g, t) cells with weights that may

be negative, sum to one, and are not proportional to the share of that cell in the treated

population (de Chaisemartin and D’Haultfœuille, 2020; Goodman-Bacon, 2021; Borusyak et

al., 2024). In a staggered design, when treatment is binary, the TWFE estimator can be
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decomposed in a weighted sum of 2× 2 DiD comparing the outcome evolution of two groups

from a pre-period to a post-period with positive weights that differ from 0 if and only if one

group switches treatment while the other does not (Goodman-Bacon, 2021). Some of these

DiD compare a group that starts receiving treatment to another that remains untreated at

both dates, while others compare a group that starts receiving treatment to one already

treated at both dates. Negative weights come from this second type of DiD, which involves

“forbidden comparisons” in presence of heterogeneous effects across groups or relative time.

In some cases, it can even lead to all group-time average treatment effects being of the same

sign, while the estimated treatment coefficient is of the opposite sign.

Dynamic TWFE regressions - or event-study regressions - are also a popular tool to

estimate the effects of a binary treatment. They consist in regressing the outcome variable

on group and time fixed effects, and on relative-time indicators equal to 1 if group g started

receiving the treatment h periods ago. They are often used when treatment is thought to have

dynamic effects. Although coefficients in this dynamic specification yield a sensible causal

estimand of treatment effect when there is heterogeneity across relative time, they do not

when one adds heterogeneity across groups. Sun and Abraham (2021) show in a staggered

design with a binary treatment that the coefficient associated with indicator h equals the

sum of two terms. The first one is a weighted sum across groups of the cumulative effect of

h + 1 treatment periods, with weights summing to 1 but that may be negative. This term

resembles the decomposition of the coefficient in the static TWFE. The second term is a

weighted sum across relative periods h′ ̸= h and across groups of the cumulative effect of

h′ + 1 treatment periods in group g, with weights summing to 0. This result implies that

the estimate of the cumulative effect of h+1 treatment periods may be contaminated by the

cumulative effects of all other relative treatment periods.1

Contamination from dynamic effects in event-study regressions can be seen as a byprod-

uct of a more general issue that arises in TWFE regressions with several treatments. In an

1Indicators for h < 0 have also been used in event-study regressions to test the validity of the parallel
trends assumption. Sun and Abraham’s (2021) results notably imply that this approach for testing parallel
trends is misguided.
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early paper, Hull (2018) studied TWFE regressions in a framework that involves a choice

between different treatment options. Each indicator in the regression then corresponds to

a possible value of this multinomial treatment. His results already highlighted a contam-

ination phenomenon from effects of other treatment states. In a more general framework,

de Chaisemartin and D’Haultfœuille (2023a) show that, in TWFE regressions with several

treatments, the coefficient on a given treatment identifies a weighted sum of that treatment

effects across (g, t) cells with weights that sum to 1 but may be negative, plus weighted sums

of the effects of the other treatments, with weights summing to 0 under certain conditions.2

Moreover, including only one treatment in the regression does not prevent contamination -

although contamination weights will be different.3

In a last related paper, Goldsmith-Pinkham et al. (2022) explain how contamination

bias can arise in regressions with mutually exclusive treatments and a set of controls such

that the treatments can be assumed to be independent of the potential outcomes conditional

on those controls. Although the core of their paper focuses on “design-based” identifying

assumptions, their analysis extend to “model-based” frameworks as well. A key aspect of the

explanation lies in the fact that, to properly identify the effect of a treatment, the residuals

in the auxiliary regression of this treatment indicator on covariates and other treatment

indicators must be mean independent of these regressors - and not simply uncorrelated with

them, which they are by construction. This condition is not satisfied when the dependence

between treatments is nonlinear, as is the case with mutually exclusive treatments or, in

the split-treatment design, with events whose occurrence is conditioned by the assignment of

other events.

Because the split-treatment design can either be regarded as (i) a framework with a

single treatment - the first event - with irregular dynamic effects - subsequent events -, or,

2Even when weights sum to 0, there can be contamination in the case of heterogeneous effects across
groups.

3I derive similar results for the split-treatment design in Section 6.1. de Chaisemartin and D’Haultfœuille
(2023a) go further and derive the maximal bias of the average effect of the first treatment both when it is the
only treatment included in the regression and when all treatments are included. It shows that controlling for
the other treatments does not necessarily lead to less biased estimators than not controlling for them.
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alternatively, as (ii) a framework with several treatments, it is directly affected by the issues

mentioned above. Several estimators have been proposed to address these problems. I present

them briefly and then emphasize their differences with the estimator I propose.

de Chaisemartin and D’Haultfœuille (2023b) review recent estimators in the single-treatment

case. A common intuition behind their development has been to carefully select valid

controls in order to bypass the “forbidden comparisons” problem. de Chaisemartin and

D’Haultfœuille’s (2020) pioneering estimator allows to identify a proper causal effect by a

weighted average of DiD. Sun and Abraham (2021) develop a regression-based estimator that

allows dynamic treatment effects but requires homogeneity of those effects across units of a

same cohort - i.e., units treated at the same time must experience the same path of treat-

ment effects. Callaway and Sant’Anna (2021) propose estimators with similar properties but

allow parallel trends to hold only after conditioning on covariates. Borusyak et al. (2024)

propose a flexible imputation estimator that allows to efficiently estimate any combination

of individual treatment effects.

In a recent working paper, Dube et al. (2023) exploit the fact that the local projection

approach, originally developed in macroeconomics to estimate average treatment responses

that are heterogeneous and dynamic, can be linked to DiD regressions. They propose the

local projection based difference-in-differences (LP-DiD) approach that combines local pro-

jections with a clean control condition to estimate unbiased dynamic effects. Since, in a

staggered design, bias comes from “forbidden comparisons” of newly treated units with al-

ready treated units that may be experiencing dynamic and heterogeneous effects, their clean

control condition restricts the sample to ensure that only untreated units are used as controls

for newly-treated ones.

The literature on DiD with several treatments is still narrow. de Chaisemartin and

D’Haultfœuille (2023a) propose an estimator that relies on common-trends assumptions and

that is robust to heterogeneous effects and contamination bias. It generalizes de Chaisemartin

and D’Haultfœuille’s (2020) estimator to several treatments. To isolate the effect of the first

treatment, their estimator compares the t− 1-to-t evolution of switching groups, whose first
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treatment switches from t−1 to t while their other treatments do not change, to the outcome

evolution of control groups (i) whose treatments all remain the same between t− 1 to t, and

(ii) that had the same treatments as the switching groups in period t− 1. These conditions

ensure that their estimator is robust to heterogeneous effects of all treatments.

In the split-treatment design, the latency between events is unrestricted across groups.

It means that the effect h periods after the first event may correspond to the second event

for some units but not for others. As a consequence, the target estimand defined in recent

papers that allow for some form of dynamic effects become inappropriate (Sun and Abraham,

2021; Dube et al., 2023). Specifically, in my framework, a group-specific event effect will

not overlap with the group-specific treatment effect h periods after the initial treatment

date. In addition, compared to Sun and Abraham (2021), my estimator allows unrestricted

heterogeneity of event effects across units, when theirs requires homogeneous effects for units

of a same cohort.

Compared to de Chaisemartin and D’Haultfœuille’s (2023a) framework with several treat-

ments, I do not allow for units to switch back to their original state, i.e., events are absorbing.

In return, my estimator requires far less stringent conditions for using units as controls. In

real-world applications of the split-treatment design, the condition that allows to use only

units with the same treatments as the switching groups in period t−1 seems very restrictive.

With these restrictions, identification in the application proposed in Section 7 would not have

been possible, for instance. In my baseline specification, control units only needs not to go

through any event in the period when treated units get through some event e.

The approach I develop for identification is closely related to Dube et al.’s (2023) LP-DiD.

It is a simple regression-based method with sample constraints that guarantee clean compar-

isons. The split-treatment design highlights the challenges that pertain to identification in

settings with multiple treatments and unrestricted effect heterogeneity. Although identifica-

tion requires important restrictions on event effect dynamics - restrictions that will be too

limiting in many settings -, keep in mind that the “event” structure itself brings dynamics to

a single treatment, and that, as explained in the introduction, these restrictions can be jus-
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tified in some finance and macroeconomic settings. Specifically, in my baseline specification,

I assume event effects are static, and I only weaken this assumption in Section 6.2. Since,

with static effects, it is not necessary to analyse effects at horizon h > 0, I call the method

first-difference DiD (FD-DiD) by analogy with Dube et al. (2023). An important takeaway

is that, under some conditions, Dube et al.’s (2023) method can be adapted to settings with

multiple treatments.

Finally, this work can also be directly related to the flexible framework of Borusyak et

al. (2024) and its link with other recent DiD estimators as highlighted by Harmon (2023).

In Harmon’s (2023) terminology, the FD-DiD is a subgroup DiD estimator. As such, I show

that it has a simple imputation form, and that it is efficient under random walk errors and

unrestricted treatment effect heterogeneity.

3 Split-treatment design

3.1 Setup

I consider a DiD setting with N units, i ∈ {1, . . . , N}, T periods, t ∈ {1, . . . , T}, and a

treatment split into E binary events, e ∈ {1, . . . , E}. Treatment is only completed after

event E, although all events can have an effect on the outcome. Let De
i,t denote the dummy

that takes the value 1 once event e has occurred for unit i, and Ee
i denote the period at

which event e occurred for unit i, i.e., Ee
i = min{t : De

i,t = 1}. For a never-treated unit i, I

note Ee
i = ∞, ∀e ∈ {1, . . . , E}. The information set D = (De

i,t)(i,t,e) contains the timing of

all events for all units. For every treated unit i, events always happen in the same increasing

order, so that, for (e, e′) ∈ {1, . . . , E}2, if e < e′, then Ee
i < Ee′

i . The design is staggered in

the sense that units can get through any event at a different time.

Units can be divided into G mutually exclusive groups according to the timing of all E

events, G = {1, . . . , G}. That is, two units belong to the same group if and only if they go

through all E events at the same time. This condition leads to a simple extension of the

sharp design assumption. Let Ng,t denote the number of observations in group g at period
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t, then: ∀(i, g, t, e) ∈ {1, . . . , Ng,t} × {1, . . . , G} × {1, . . . , T} × {1, . . . , E}, De
i(g),t = De

g,t and

Ee
i(g) = Ee

g . Events are absorbing states: ∀(g, e), ∀t ≥ 2, De
g,t ≥ De

g,t−1.

The number of periods between two events can be heterogeneous, i.e., ∃(i, i′, e) ∈ {1, . . . , N}2×

{1, . . . , E} : Ee
i − Ee−1

i ̸= Ee
i′ − Ee−1

i′ . With homogeneous latency time between events, the

split-treatment design is nested in the event-study case. The latter has already been the

focus of considerable attention in the literature (Sun and Abraham, 2021; de Chaisemartin

and D’Haultfœuille, 2023b), so that the interest of the split-treatment design lays on the case

with heterogeneous latency time between events.

Yi,t denotes an observed outcome of interest. Y 0
i,t(0

′
E) and Y E

i,t (E
1
i , . . . , E

E
i ), with 0E a null

vector of size E, denote potential outcomes of unit i at time t without and with treatment,

respectively.4 Notations of potential outcomes reflect the fact that, in the case of dynamic

“event effects”, potential outcomes will depend on the timing of all E events. Similarly, let

Y e
i,t(E

1
i , . . . , E

e
i ,0

′
E−e) denote the potential outcome of unit i at time t after events 1 to e

occurred in periods E1
i to Ee

i , respectively, and event e + 1 did not occur yet. To simplify

notation, I often drop the E-vector of event timing. Likewise, although it is a slight abuse of

notation I sometimes note Y e
i,t(g) to refer to the potential outcome of Yi,t as it went through

the first e events associated with the path of group g. Treatment assignment and potential

outcomes are treated as random variables independent across groups. Expectations are taken

with respect to these random variables. The number of individuals in each group is treated

as non-random.

3.2 Parameters of interest

The main estimand of interest is a weighted average “event effect” on the treated h periods

after event e occurred. First, define the individual event effect h periods after event e occurred

as:

τ ei,h = E[Y e
i,Ee

i +h(E
1
i , . . . , E

e
i ,0

′
E−e)− Y e−1

i,Ee
i +h(E

1
i , . . . , E

e−1
i ,0′

E−e+1)|D] (1)

4Although, given previous definitions, noting Y ∞
i,t (0

′
E) would be more intuitive, I use Y 0

i,t(0
′
E) instead to

simplify the writing of sums.
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Although several causal parameters can be of interest to researchers, this most disaggregated

brick offers flexibility to envision heterogeneous effects across events, groups, or horizons.5

The target estimand is then:

τ eh =
∑
i

ωiτ
e
i,h (2)

The target can be an equally-weighted average such that wi = 1/N1 for all i - with N1 the

number of units that go through event e -, but it is not necessary. In particular, weights can

depend on the treatment design.

Group-specific average event effects will also prove useful. They are defined by:

τ eg,h =
1

Ng

∑
i∈g

τ ei(g),h (3)

where Ng is the number of units in group g and i(g) denotes an individual i in group g.

3.3 Identifying assumptions

Causal parameters of interest involve several potential outcomes that can never be observed

simultaneously for a given individual. Identifying assumptions are therefore needed to impute

the mean counterfactual untreated outcome for treated units.

Assumption 1. (Parallel trends)

For all (t, t′) ∈ {1, . . . , T}2 and (i, i′) ∈ {1, . . . , N}2:

E[Y 0
i,t − Y 0

i,t′ |D] = E[Y 0
i′,t − Y 0

i′,t′|D] (4)

Assumption 1 (A1) states that the expected mean change in the untreated outcome is the

same for every unit in every group. This assumption ensures that, had treated units not

been treated, they would have evolved in the same manner as control units. In line with the

literature, it is helpful to be more specific and to define a simple data-generating process that

5It follows that the individual treatment effect h periods after treatment for unit i is given by the sum of
all event effects in period EE

i + h.

11



respects the parallel trend assumption for the untreated potential outcome: E[Y 0
i,t(0

′
E)] =

α + αi + δt, where αi and δt are individual and time non-stochastic effects, respectively.6

Assumption 2. (No anticipation)

For all i ∈ {1, . . . , N}, e ∈ {0, 1, . . . , E}, k ∈ {0, . . . , E − e}, and t < Ee+1
i :

Y e
i,t(E

1
i , . . . , E

e
i ,0E−e) = Y e+k

i,t (E1
i , . . . , E

e
i , . . . , E

e+k
i ,0E−e−k) (5)

Assumption 2 (A2) is an adaptation of the no anticipation assumption to the split-treatment

design. It stipulates that, for two distinct event paths with the same first e events, the

potential outcome of unit i along these two paths will be identical for periods prior to event

e+1. Put more simply, an event does not have an influence on the outcome before it occurs.

Assumption 3. (Strict exogeneity)

For all (i, t) ∈ {1, . . . , N} × {1, . . . , T}: E[ϵi,t|D] = 0

Assumption 3 (A3) is a standard assumption of strict exogeneity. It states that shocks are

mean independent of the treatment design.

With these assumptions the expected value of Yi,t+h can be decomposed to obtain:7

E[Yi,t+h|D] = α + αi + δt+h +
G∑

g=1

(
1{i∈g}

E∑
e=1

(
τ ei,h1{Ee

g=t}

))

+
G∑

g=1

(
1{i∈g}

E∑
e=1

(
∞∑
j=1

τ ei,h+j1{Ee
g=t−j}

))

+
G∑

g=1

(
1{i∈g}

E∑
e=1

(
h∑

j=1

τ ei,h−j1{Ee
g=t+j}

))
(6)

Eq. (6) highlights that E[Yi,t+h|D] can be expressed as the sum of its potential outcome

without treatment and all prior dynamic event effects up until period t + h. In addition,

6It is clear from the following that a weaker parallel trends assumption would have been sufficient for
identification. Since alternative restrictions depend on realized treatment timing, and given that parallel
trends is an assumption on potential outcomes, I prefer to follow Borusyak et al. (2024) and rely on this
stronger assumption that is easier to justify ex ante.

7Detailed calculations can be found in Appendix A.
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subtracting E[Yi,t−1|D] from E[Yi,t+h|D] gives:

E[∆hYi,t|D] = δht +
G∑

g=1

(
1{i∈g}

E∑
e=1

(
τ ei,h1{Ee

g=t}

))

+
G∑

g=1

(
1{i∈g}

E∑
e=1

(
∞∑
j=1

(τ ei,h+j − τ ei,j−1)1{Ee
g=t−j}

))

+
G∑

g=1

(
1{i∈g}

E∑
e=1

(
h∑

j=1

τ ei,h−j1{Ee
g=t+j}

))
(7)

with δht = δt+h − δt−1.

The intricacy of Eqs. (6) and (7) reveals that it will be difficult to identify event effects

without additional assumptions. Dynamic effects of events prior to emake it impossible to use

untreated units, while using other treated units requires additional constraints. Identification

is possible, however, if event effects are static. I show in Section 6.2 that it is possible to

weaken this assumption, but I choose to focus on static effects in the baseline specification

for ease of exposition. Although restrictive, it is a reasonable assumption in many finance

settings - especially since events themselves introduce flexible dynamics to a single treatment.

Specifically, even with static effects, there can still be heterogeneous effects both across groups

and relative to the time treatment is “completed”. It is an advantage of the split-treatment

design - compared to event-study regressions - to cater for group heterogeneity in the effects

relative to the time of treatment - i.e., a given event e may not be as far apart from the

“complete treatment” for two different groups.

Assumption 4. (Static effects) ∀(h, h′) ∈ N
2:

E[Y e
i,Ee

i +h(E
1
i , . . . , E

e
i ,0

′
E−e)− Y e−1

i,Ee
i +h(E

1
i , . . . , E

e−1
i ,0′

E−e+1)|D] =

E[Y e
i,Ee

i +h′(E1
i , . . . , E

e
i ,0

′
E−e)− Y e−1

i,Ee
i +h′(E

1
i , . . . , E

e−1
i ,0′

E−e+1)|D] (8)

that is: ∀(h, h′) ∈ N
2, τ ei,h = τ ei,h′.

Assumption 4 (A4) simply implies that the effect of an event e for individual i is the same
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for all periods t ≥ Ee
i . Therefore, under A4, τ ei,h = τ ei,0, ∀h ∈ N, so that it is sufficient to

focus on h = 0. The horizon subscript can then be discarded, and Eqs. (6) and (7) reduce

to:

E[Yi,t|D] = α + αi + δt +
G∑

g=1

(
1{i∈g}

E∑
e=1

(
∞∑
j=0

τ ei 1{Ee
g=t−j}

))
(9)

and:

E[∆Yi,t|D] = δ0t +
G∑

g=1

(
1{i∈g}

E∑
e=1

(
τ ei 1{Ee

g=t}

))
(10)

In the next section, I first show with the example of local projection (LP) regressions that

standard regression-based methods do not identify a proper estimand in the split-treatment

design. I then demonstrate, in the spirit of Dube et al.’s (2023) local projection based

difference-in-differences (LP-DiD), that a simple first-difference regression combined with the

assumption of static event effects allows to identify a convex combination of all group-specific

event effects for a given event e.

4 A first-difference DiD estimator

4.1 Local projections and the split-treatment design

Although less popular than TWFE regressions, local projections (LP) can also be used in

some settings to estimate treatment effects under appropriate assumptions of parallel trends

and no anticipation.8 In the two-group and multiple-period case, for instance, the coefficient

associated with the regression, ∆hYi,t = δht + βh,LP∆Di,t + ϵhi,t, where ∆hYi,t = Yi,t+h − Yi,t−1,

provides an unbiased estimate of the ATT.9

8Since the first-difference difference-in-differences (FD-DiD) estimator I develop is directly related to LP
regressions, I focus on their shortcomings to highlight the relevance of my approach. Complementary results
on the shortcomings of TWFE under A1 to A4 are postponed in Section 6.1.

9See Dube et al. (2023) for more details on DiD settings where LP regressions can be useful.
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Consider the LP regression for a given event e:

∆hYi,t = δht + βh,LP,e∆De
i,t + ϵhi,t (11)

One would want for E[β̂h,LP,e] to capture the effects of event e for all treated groups. Under

assumptions A1 to A3, it is clear that this regression will not identify a sensible estimand.10

For the sake of simplicity, let’s assume for now that δht = δh, ∀(t, h). One has:

E[β̂h,LP,e|D] = E[∆hYi,t|D,∆De
i,t = 1]− E[∆hYi,t|D,∆De

i,t = 0]

with:

E[∆hYi,t|D,∆De
i,t = 0] = δh +

G∑
g=1

(
1{i∈g}

E∑
e′=1,e′ ̸=e

(
τ e

′

i,h1{Ee′
g =t}

)
1{Ee

g ̸=t}

)

+
G∑

g=1

(
1{i∈g}

E∑
e′=1

(
∞∑
j=1

(τ e
′

i,h+j − τ e
′

i,j−1)1{Ee′
g =t−j}

)
1{Ee

g ̸=t}

)

+
G∑

g=1

(
1{i∈g}

E∑
e′=1

(
h∑

j=1

τ e
′

i,h−j1{Ee′
g =t+j}

)
1{Ee

g ̸=t}

)

and:

E[∆hYi,t|D,∆De
i,t = 1] = δh +

G∑
g=1

(
1{i∈g}τ

e
i,h1{Ee

g=t}

)
+

G∑
g=1

(
1{i∈g}

e−1∑
e′=1

(
∞∑
j=1

(τ e
′

i,h+j − τ e
′

i,j−1)1{Ee′
g =t−j}

)
1{Ee

g=t}

)

+
G∑

g=1

(
1{i∈g}

E∑
e′=e+1

(
h∑

j=1

τ e
′

i,h−j1{Ee′
g =t+j}

)
1{Ee

g=t}

)

where, since the expected value is taken with respect to ∆De
i,t = 1 in the second equation,

∆De′

i,t′ = 0 for e′ > e and t′ ≤ t (events after e must happen after t), and ∆De′

i,t′ = 0 for e′ < e

10To highlight the usefulness of A4, I do not assume static effects in this development.

15



and t′ ≥ t (events before e must happen before t). Hence:

E[β̂h,LP,e|D] = E[∆hYi,t|D,∆De
i,t = 1]− E[∆hYi,t|D,∆De

i,t = 0] (12)

=
G∑

g=1

(
1{i∈g}τ

e
i,h1{Ee

g=t}

)
(12.1)

−
G∑

g=1

(
1{i∈g}

E∑
e′=1,e′ ̸=e

(
τ e

′

i,h1{Ee′
g =t}

)
1{Ee

g ̸=t}

)
(12.2)

+
G∑

g=1

(
1{i∈g}

e−1∑
e′=1

(
∞∑
j=1

(τ e
′

i,h+j − τ e
′

i,j−1)1{Ee′
g =t−j}

)
1{Ee

g=t}

)
(12.3)

−
G∑

g=1

(
1{i∈g}

E∑
e′=1

(
∞∑
j=1

(τ e
′

i,h+j − τ e
′

i,j−1)1{Ee′
g =t−j}

)
1{Ee

g ̸=t}

)
(12.4)

+
G∑

g=1

(
1{i∈g}

E∑
e′=e+1

(
h∑

j=1

τ e
′

i,h−j1{Ee′
g =t+j}

)
1{Ee

g=t}

)
(12.5)

−
G∑

g=1

(
1{i∈g}

E∑
e′=1

(
h∑

j=1

τ e
′

i,h−j1{Ee′
g =t+j}

)
1{Ee

g ̸=t}

)
(12.6)

After application of the law of iterated expectations, the population regression coefficient

E[β̂h,LP,e] will identify a weighted average of the individual effects of event e (12.1), plus

five bias terms that highlight different sorts of “forbidden comparisons” (Borusyak et al.,

2024).11 The first bias (12.2) comes from comparisons with (i, t) cells in which individuals

gets through events other than e, i.e., observations such that 1{Ee
g=t} = 0 but 1{Ee′

g =t} = 1

for some e′ ̸= e. The second bias (12.3) comes from potential dynamic effects of events prior

to e for cells considered as “treated” for event e, i.e., observations such that 1{Ee
g=t} = 1 and

1{Ee′
g =t−j} = 1 for some j such that 1 ≤ j < ∞ and e′ ∈ {1, . . . , e − 1}. The third bias

(12.4) comes from comparison with (i, t) cells that are subject to dynamic effects of events

that unit i went through in periods prior to t, i.e., observations such that 1{Ee
g=t} = 0 and

1{Ee′
g =t−j} = 1 for some j such that 1 ≤ j < ∞ and e′ ∈ {1, . . . , E}. (12.3) and (12.4) exist

11(12.3) and (12.4) do not partially cancel each other out without additional assumptions. Indeed, groups
treated and not treated for event e at period t are mutually exclusive. It implies that: (i) for a given period t,
the values of indicators 1{Ee′

g =t−j}, e
′ ∈ {1, . . . , e− 1}, 1 ≤ j < ∞, need not be the same for units for which

event e occurs at period t and for units for which it doesn’t, and, (ii) even if there are treated and control
groups that follow the same path of events prior to t, event effects can be heterogeneous across individuals
and groups. A similar reasoning holds for (12.5) and (12.6).
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as long as there is some e′ such that τ e
′

i,h+j ̸= τ e
′

i,j−1, i.e., as long as event effects are dynamic.

The fourth bias (12.5) comes from the potential presence of units that go through one or

several events subsequent to e between t + 1 and t + h among cells “treated” for event e,

i.e., observations such that 1{Ee
g=t} = 1 and 1{Ee′

g =t+j} = 1 for some j such that 1 ≤ j ≤ h

and e′ such that e′ ∈ {e + 1, . . . , E}. The last bias (12.6) stems from comparisons with

(i, t) cells that go through one or several events between t + 1 and t + h, i.e., observations

such that 1{Ee
g=t} = 0 and 1{Ee′

g =t+j} = 1 for some j such that 1 ≤ j ≤ h and e′ such that

e′ ∈ {1, . . . , E}.

A plus sign in front of a bias term in Eq. (12) denotes a bias that stems from units

“treated” for event e themselves, while a minus sign denotes a bias that comes from comparing

it with inappropriate control units. The signs taken by each event effect in the estimator will

not necessarily be the same as those discussed here given that they will also depend on the

signs of the actual weights.

Although Eq. (12) has been derived for simple LP regressions, it clearly highlights that the

clean control conditions used by Dube et al. (2023) will not be sufficient to identify a proper

estimand in the case with several treatments and dynamic effects. I now assume event effects

are static (A4) and explicitly characterize the weights associated with each group-specific
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event effect in regression (11) for h = 0.12 Eq. (11) becomes a simple first-difference (FD)

regression:

∆Yi,t = δ0t + βFD,e∆De
i,t + ϵi,t (13)

Proposition 1. Suppose A1-A4 hold, then:

E[β̂FD,e] = E

 E∑
e′=1

∑
g,t:∆De′

g,t=1

Ng∆̃D
e

g,t∑
g,t:∆De

g,t=1Ng∆̃D
e

g,t

τ e
′

g

 (14)

= E

 ∑
g,t:∆De

g,t=1

Ng(1−∆De
.,t)∑

g,t:∆De
g,t=1Ng(1−∆De

.,t)
τ eg

−
E∑

e′=1,e′ ̸=e

∑
g,t:∆De′

g,t=1

Ng∆De
.,t∑

g,t:∆De
g,t=1Ng(1−∆De

.,t)
τ e

′

g


Even under the assumption of static effects, Proposition 1 shows that the coefficient in the

FD regression with one event doesn’t identify a proper estimand.13 The population regression

coefficient identifies a weighted sum of all group-specific event effects with weights that sum to

1 only for event e.14 Two issues intertwined to give this result. The first pertains to a standard

12Depending on the context, researchers may be reluctant to assume static event effects, and would rather
make an assumption of homogeneous effects across units:

Assumption 4’. (Homogeneous effects) An event e have the same expected effect at a horizon h, h ≥ 0, for
all units, i.e., ∀i:

E[Y e
i,Ee

i +h(E
1
i , . . . , E

e
i ,0

′
E−e)− Y e−1

i,Ee
i +h(E

1
i , . . . , E

e−1
i ,0′

E−e+1)|D]

= E[Y e
i′,Ee

i′+h(E
1
i′ , . . . , E

e
i′ ,0

′
E−e)− Y e−1

i′,Ee
i′+h(E

1
i′ , . . . , E

e−1
i′ ,0′

E−e+1)|D]

In other words: τei,h = τei′,h.

Eq. (12) may give the impression that the population regression coefficient in a FD-DiD regression similar
to the one described below - but with adapted sample restrictions - could identify a proper estimand for the
average event effect under such an assumption. This is misguided. Even if one restricts the sample to control
units that go through events prior to e at the same time as treated units, and to a horizon h such that no
other event occurs, both for treated and control units, between t and t+ h, dynamic effects of past events of
treated and control units will not cancel each other out as their weights will be different. In this situation,
if such a control group does exist, it is still possible to compute a sum of simple difference-in-differences to
identify the average event effect on the treated under A1-A3 and A4’. Yet, it is clear that Assumption 4’ and
associated sample conditions are very restrictive and unlikely to be met in real-world applications. Similar
considerations for two treatments are developed in Section C.2 of de Chaisemartin and D’Haultfœuille’s
(2023a) Web Appendix.

13The proofs of Proposition 1 and 2 are reported in Section B.1 of the Appendix.
14As show in the Appendix, E[β̂FD,e] actually identifies a weighted sum of individual event effects. Yet,
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omitted variable bias - the omission of relevant event indicators that may be correlated with

the one indicator included in the regression -, while the other is a contamination bias that

stems from the nonlinear dependence between events.15

While including indicators for all events in the regression solves the omitted variable

problem, it does not prevent contamination. Consider the regression:

∆Yi,t = δ0t +
E∑

e′=1

βFDm,e′∆De′

i,t + ϵi,t (15)

Proposition 2. Suppose A1-A4 hold, then:

E[β̂FDm,e] = E

 E∑
e′=1

∑
g,t:∆De′

g,t=1

Ng∆̃D
e

g,t∑
g,t:∆De

g,t=1 Ng∆̃D
e

g,t

τ e
′

g

 (16)

where ∆̃D
e

g,t are residuals obtained from the auxiliary regression of ∆De
g,t on time fixed effects

and {∆De′
i,t}e′,e′ ̸=e.

Despite their same expressions, the weights in Eqs. (14) and (16) are different. E[β̂FDm,e]

still identifies a weighted sum of all group-specific average event effects with weights that sum

to 1 only for event e. Contrary to the regression with one event, however, weights associated

with event e can be negative. This is an issue similar to the now well-known issue of negative

weights highlighted in the recent DiD literature (de Chaisemartin and D’Haultfœuille, 2020;

Goodman-Bacon, 2021; Sun and Abraham, 2021; de Chaisemartin and D’Haultfœuille, 2023b;

Goldsmith-Pinkham et al., 2022; Borusyak et al., 2024).

This result further highlights that contamination bias is an issue distinct from omitted

variable bias (Goldsmith-Pinkham et al., 2022). Contamination stems from the nonlinear

dependence structure between events. If events were linearly dependent, the residuals ∆D̃e
i,t

in the auxiliary regression would be orthogonal to ∆De′
i,t, e

′ ∈ {1, . . . , E}, e′ ̸= e, the contami-

since all individual effects in a same group have the same weight, it can be restated as a weighted sum of
group-specific average event effects.

15Note that in this regression with time fixed effects and only one event indicator, weights associated with
event e will always be positive.
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nation bias would disappear, and the estimand would correspond to a weighted sum of group-

specific event effects for event e. Instead, the dependence between events comes from the fact

that the occurrence of event e is both conditioned by prior events having already happened

and necessary for subsequent events to happen.16 Hence, ∆D̃e
i,t ̸= ∆De

i,t −E[∆De
i,t|∆De′ , λ],

where ∆De′ and λ are the matrix of event indicators other than e and the matrix of time

indicators, respectively.

As shown by Goldsmith-Pinkham et al. (2022) for mutually exclusive treatments in

another framework, the residuals ∆D̃e
i,t, despite being uncorrelated with other treatments

by construction, are not conditionally independent of these treatments. To see this, note

that E[β̂FDm,e] can be obtained as a two-step residualization. Let ∆D̈e′
i,t, e

′ ∈ {1, . . . , E},

be the demeaned residuals in the regression of ∆De′
i,t on time fixed effects. ∆D̃e

i,t can be

obtained as the residuals in the regression of ∆D̈e
i,t on ∆D̈e′

i,t, e
′ ∈ {1, . . . , E}, e′ ̸= e. Since

∀e, ∃(t′, t′′) ∈ {1, . . . , T}2 : E[∆De
i,t|λt′

i,t = 1] ̸= E[∆De
i,t|λt′′

i,t = 1], the relationship between

residuals ∆D̈e
i,t and ∆D̈e′

i,t varies by period, and the regression between the two averages

across this relationship. As a result, the line of best fit does not isolate the conditional (i.e.,

within period) variation in ∆De
i,t, and the remaining variation in ∆D̃e

i,t will tend to predict

variation in ∆De′
i,t within periods, making the contamination weights non-zero.

It is easier to understand this with a simple example. Consider the case with two units -

both treated, but in different periods - and two events. The within-period covariance between

∆D̈1
i,t and ∆D̈2

i,t will be equal to 0 in periods when no event happen as well as in periods

when an event happens for one or both units but the other event does not happen for any

unit, but it will be lower than 0 in periods when some units get through event 1 and the

other gets through event 2. After averaging between this relationship, it is clear that ∆D̃1
i,t

will tend to predict variations in ∆D2
i,t.

Another way to understand the respective issue of these two estimators is that, while β̂FD,e

leverages comparisons of treated units with units in the same period that did not go through

event e but that may have been through other events, β̂FDm,e leverages comparisons with all

cells in periods when some units got treated for any event and infer erroneous relationships

16The dates of occurrence of different events are mutually exclusive.
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between events so that the effect of other events is not averaged away.17

A possible solution would be to interact time indicators with event indicators so that the

regression be saturated and thus capture the nonlinearity of E[∆De
i,t|∆De′ , λ]. This solution

is problematic, however, when there are a large number of events and treated groups relative

to the size of the sample.

4.2 A first-difference DiD estimator

Dube et al. (2023) show that Jorda’s (2005) local projection (LP) approach can be adapted

to a DiD setting in order to solve the issue of negative weights that arise in standard (both

static and dynamic) TWFE regressions in presence of heterogeneity across groups and relative

time since treatment. Their approach, a local projection based difference-in-differences (LP-

DiD), simply consists in estimating a LP regression, ∆hYi,t = δht + βh,LP−DiD∆Di,t + ϵhi,t,

on the restricted sample of newly treated observations (∆Di,t = 1) and not-yet-treated ones

(∆Di,t−j = 0 for −h ≤ j < ∞). These restrictions make “unclean comparisons” disappear.

This approach can easily be adapted to the split-treatment design provided that one makes

appropriate restrictions.

From prior developments, consider the first difference based difference-in-differences (FD-

DiD) regression:

∆Yi,t = δ0t + βFD−DiD,e∆De
i,t + ϵi,t (17)

17To see this, note that β̂FD,e can be decomposed as (see Section C of the Appendix for details):

β̂FD,e =
∑
t

(1−Ne
t /N)

Ne
t∑

i=1

∆Yi,t − (1/N0
t )
∑N0

t
i=1 ∆Yi,t∑

g,t:∆De
g,t=1 Ng(1−∆De

.,t)

where Ne
t and N0

t denote the number of units that go through event e in period t and the number of units

that don’t, respectively. This expression shows that β̂FD,e leverages comparisons of the outcome of units
treated for e with the outcome of units untreated for event e in the same period. In doing so, it leverages
forbidden comparisons with units treated for another event in the same time period. The decomposition of
β̂FDm,e is not as telling:

β̂FDm,e =
∑
t

∑
i:∆De

i,t=1 ∆̃D
e

i,t∆Yi,t +
∑

e′=1,e′ ̸=e

∑
i:∆De′

i,t=1 ∆̃D
e

i,t∆Yi,t∑
i,t(∆̃D

e

i,t)
2

where ∆̃D
e

i,t denote residuals in auxiliary regression of ∆De
i,t on time indicators and ∆De′

i,t, e
′ ∈ {1, . . . , E},

e′ ̸= e.
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restricted to a sample of (i) observations newly “treated” for event e, i.e., (i, t) cells such

that 1{Ee
i =t} = 1, and (ii) corresponding control observations for which no event occurs at

period t, i.e., (i, t) cells such that 1{Ee′
i =t} = 0 for all e′ ∈ {1, . . . , E}. I show below that the

population analogue of β̂FD−DiD,e identifies a convex combination of all group-specific effects

for event e and I characterize explicitly the weights assigned to each group-specific average

event effect τ eg .

First, I recompose the sets of groups G = {1, . . . , G} into a smaller set of groups G ′ =

{1, . . . , G′} according to the timing of event e, so that each group in G ′ is composed of units

that go through event e at the same date. I use (G) or (G ′) to make it clear whether a

group belongs to G or G ′. I can then define the clean control sample (CCS) for an event

e for a particular group g(G ′), denoted CCSe
g(G′), as the set of observations at time t = Ee

g

that satisfy the restrictions associated with Eq. (17). With these definitions, one gets the

following result.18

Theorem 1. Suppose A1-A4 hold, then:

E[β̂FD−DiD,e] = E

[
G∑

g′=1

ωFD−DiD,e
g′ τ eg′(G)

]
(18)

with:

ωFD−DiD,e
g′ =

Ng′(1−Ng(G′)/NCCSe
g(G′)

)∑G′

g=1Ng(G′)(1−Ng(G′)/NCCSe
g(G′)

)

=
NCCSe

g(G′)
ne
g′n

e
gn

e
c,g∑G′

g=1NCCSe
g(G′)

ne
gn

e
c,g

(19)

where NCCSe
g(G′)

is the number of units in CCSe
g(G′). ne

g = Ng(G′)/NCCSe
g(G′)

and ne
c,g =

N0
g(G′)/NCCSe

g(G′)
= 1 − Ng(G′)/NCCSe

g(G′)
are the shares of treated units and control units in

CCSe
g(G′), respectively, while ne

g′ = Ng′/Ng(G′) is the share of group g′ ∈ G in treated units of

recomposed group g ∈ G ′.

The product ne
gn

e
c,g is maximal for ne

g = 0.5, while it goes to 0 as ne
g gets closer to 0 or

18The proof of this result is reported in Appendix B.2.
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1. It means that more weights is given to a group when it has a balanced share of treated

units and controls, while it goes to 0, when treated or control units completely dominate

the sample. Weights are all positive, proportional to the variance of the treatment dummy,

∆̃D
e

i,Ee
g(G′)

, on subsample CCSe
g(G′) and to its size, NCCSe

g(G′)
. Moreover, weights sum to 1 so

that E[β̂FD−DiD,e] identifies a convex combination of all group-specific effects for event e.19

Eqs. (18) and (19) reveal that the FD-DiD estimator is a variance-weighted average of de

Chaisemartin and D’Haultfœuille’s (2023a) DIDM estimator for several treatments when there

are only switchers that gets from untreated to treated for event e - because of the staggered

design - and with a larger set of control units - because of the static effect assumption.

The FD-DiD estimator associated with Eq. (17) identifies a variance-weighted average

event effect on the treated (AET). In general, researchers may be more interested in an

equally-weighted average effect instead. It can be obtained with a re-weighted FD-DiD

regression. Indeed, Eq. (18) and (19) imply that the estimation of an FD-DiD regression

through weighted least squares, assigning to an observation belonging to CCSe
g(G′) a weight

equal to
√

1/(ωFD−DiD,e
g′ /Ng′), where g′(G) ⊂ g(G ′), identifies the equally-weighted AET for

event e.20

An alternative way to obtain an equally-weighted AET relies on an imputation ap-

proach.21 First, use clean control units to estimate a counterfactual outcome change for

19In the simplified case where an event e always occurs at a different date for two different groups, one
gets the simplified result that:

E[β̂FD−DiD,e] = E

[
G∑

g=1

ωFD−DiD,e
g τeg

]

with:

ωFD−DiD,e
g =

Ng(1−Ng/NCCSe
g
)∑G

g=1 Ng(1−Ng/NCCSe
g
)

=
NCCSe

g
ne
gn

e
c,g∑G

g=1 NCCSe
g
ne
gn

e
c,g

where ne
g = Ng/NCCSe

g
and ne

c,g = 1 − Ng/NCCSe
g
are the shares of treated units and of control units in

CCSe
g , respectively. Weights are positive and sum to 1.

20ωFD−DiD,e
g′ /Ng′ can be computed from the data using Eq. (19) or with an auxiliary regression.

21I show in Section 5.1 how the FD-DiD estimator can be obtained by imputation (Borusyak et al., 2024;
Harmon, 2023).
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each treated unit. To do so, regress ∆Yi,t on time indicators using only clean control obser-

vations of the restricted sample, and use the estimated coefficients to get a predicted value

of each treated unit in the absence of treatment ∆̂Yi,t. Then, compute the equally-weighted

AET as follows: N−1
1

∑
i,t:∆De

i,t=1(∆Yi,t−∆̂Yi,t), where N1 is the number of (i, t) cells in which

event e occurs.

To conclude this section, note that the FD-DiD has a much larger appeal than the split-

treatment design as it applies to settings with several nonlinear dependent treatments, as in

the case of mutually exclusive treatments, for instance. One only needs to replace “events” by

“treatments” in prior developments. It is the main takeaway of the paper. Under restricted

treatment effect dynamics, the approach of Dube et al. (2023) can be adapted using different

clean control conditions to settings with several treatments - including the split-treatment

design - to properly estimate average treatment effects without contaminations. For a given

treatment, it only requires to focus on a restricted sample of units newly treated and control

units that do not go through any event in that same period.

5 Properties of the FD-DiD

In this section, I use the additional notations ΩN , ΩT , and Ω1 to denote the sets of different

units, of different time periods, and of units treated for event e in the restricted sample,

respectively.

5.1 Efficiency

I consider a setting similar to Borusyak et al. (2024) and Harmon (2023) with unrestricted

treatment effect heterogeneity to show that the FD-DiD estimator is efficient under random

walk errors.

Assumption 5. (Random walk errors)

Let ϵi,t = ∆ui,t. ∀(i, t) ∈ {1, . . . , N} × {2, . . . , T}, E[ϵi,t] = 0, Var(ϵi,t) = σ2, and for all

(i, t) ̸= (i′, t′), cov(ϵi,t, ϵi′,t′) = 0.
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Assumption 5 (A5) states that ui,t follows a random walk without drift. It implies that ϵi,t

are spherical errors, i.e., random variables with mean zero, homoskedastic, and uncorrelated

over time and units.

Theorem 2. Suppose A1-A5 hold, then β̂FD−DiD,e is the efficient estimator of τ e =
∑

i∈Ω1
ωiτ

e
i

with τ ei = E[Y e
i,Ee

i
−Y e−1

i,Ee
i
|D] and ωi = (1−Ng(G′)/NCCSe

g(G′)
)/(
∑G′

g=1Ng(G′)(1−Ng(G′)/NCCSe
g(G′)

)).

Theorem 2 states that, under random walk errors, β̂FD−DiD,e is the best linear unbiased

estimator of a convex sum of event-e effects across all treated observations. Although random

walk errors is only a benchmark, note that, given that their behaviour is closely related to

a random walk, it is particularly relevant in finance applications with asset prices as the

outcome. Standard cluster-robust inference is likely to be preferred in applications where A5

is not satisfied.

5.2 Asymptotic properties

I have shown that the FD-DiD has an imputation representation and is efficient under random

walk errors. I now derive asymptotic properties.22 Convergence is studied along a sequence

of unbalanced panels indexed by sample size
∑G′

g=1NCCSe
g(G′)

. This approach has the appeal

that it applies to asymptotic sequences where both the number of units and the number of

time periods may grow, although the assumptions are least restrictive when the number of

time periods remains constant or grows slowly. While efficiency required spherical errors for

ϵi,t, I now make the standard assumption that errors are clustered by units.

Assumption 5’. (Clustered errors)

Error terms ϵi,t are independent across units i and have bounded variance Var(ϵi,t|D) ≤ σ̄2

for all (i, t) ∈ ΩN × ΩT uniformly.

I assume that Ng/NCCSe
g(G′)

is bounded away from 0 and 1. It implies that, as the sample

grows, the number of treated observations in group g does not grow disproportionately faster

than the number of untreated observations in that clean control sample, and conversely.

22Proofs of Theorems 3 and 4 can be found in Appendix E.
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Theorem 3. Denote ωg = (1−Ng(G′)/NCCSe
g(G′)

)/(
∑G′

g=1 Ng(G′)(1−Ng(G′)/NCCSe
g(G′)

)). Assume

that A1-A4 and A5’ hold and that, ∀g ∈ G ′, G′Ng/
(∑G′

g=1NgN
0
g /NCCSe

g(G′)

)2
→ 0. Then:

β̂FD−DiD,e − τ e
L2−→ 0.

The condition G′Ng/
(∑G′

g=1NgN
0
g /NCCSe

g(G′)

)2
→ 0 ensures that the weights are not too

concentrated. It covers a large range of situations. In the simplified case whereNg = N0
g = N̄ ,

∀g ∈ G ′, for instance, it is sufficient that G′ or N̄ goes to infinity to ensure consistency.

Theorem 4. Under A1-A4 and A5’, if there exists κ > 0 such that E[|ϵi,t|2+κ|D] is uniformly

bounded, that
√∑G′

g=1NCCSe
g(G′)

/
(∑G′

g=1 NgN
0
g /NCCSe

g(G′)

)
→ 0, and that: σ2

e

∑G′

g=1 NCCSe
g(G′)

>

0 with σ2
e = Var(β̂FD−DiD,e), then: σ−1

e (β̂FD−DiD,e − τ e)
d−→ N (0, 1).

This result establishes conditions under which the difference between estimator and estimand

is asymptotically normal.
√∑G′

g=1 NCCSe
g(G′)

/
(∑G′

g=1NgN
0
g /NCCSe

g(G′)

)
→ 0 ensures that the

weights are not too concentrated, while σ2
e

∑G′

g=1NCCSe
g(G′)

> 0 ensures that the variance does

not vanish too quickly. It is also sufficient that G′ or N̄ goes to infinity to ensure asymptotic

normality in the simplified case where Ng = N0
g = N̄ , ∀g ∈ G ′.

In some applications, it may be preferable to assume errors are clustered at a different

level. In Section 7, for instance, treated units are stocks traded at the NYSE while control

units are those exact same stocks traded at the CSE. It is therefore likely that residuals

of observations in a same clean control sample will still exhibit correlation. Moreover, all

stocks are used in one period and one period only, so that there is no need to account

for serial correlation at the unit level. In this case, it seems more appropriate to rely on

asymptotic properties that assume errors are clustered at the clean control sample level.

It is straightforward to derive consistency and asymptotic normality weight conditions by

adapting the proofs of Theorems 3 and 4. Specifically, consistency requires that ∀g ∈ G ′,

(NgN
0
g /NCCSe

g(G′)
)2/(

∑G′

g=1 NgN
0
g /NCCSe

g(G′)
)2 → 0, while asymptotic normality requires that

∀g ∈ G ′,
√∑G′

g=1NCCSe
g(G′)

(
NgN

0
g /NCCSe

g(G′)

)
/
(∑G′

g=1NgN
0
g /NCCSe

g(G′)

)
→ 0.23

23Proofs of these results are reported in Appendix F.
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5.3 Inference

In Borusyak et al.’s (2024) imputation approach, individual treatment effects are estimated

by fitting the observed outcome perfectly. As a consequence, residuals are null for all treated

observations. By contrast, and although it can be obtained by imputation, the regression-

based FD-DiD doesn’t face such an issue. Indeed, the coefficient averages event effects across

all treated units and does not require to estimate them individually. Inference can therefore

rely on standard cluster-robust inference methods.24

6 Additional results

6.1 TWFE

TWFE regressions were routinely used to identify treatment effects. As explained in Section

2, a recent literature made it clear that this approach was misguided. Assume A1 to A4

hold. There is a clear parallel to be made between the analysis of TWFE regressions for the

split-treatment design and de Chaisemartin and D’Haultfœuille’s (2023a) analysis of TWFE

regressions with several treatments. Each event can be considered as a distinct treatment.

Consider first a TWFE regression that includes indicators for all events:

Yi,t = α + αg + δt +
E∑

e′=1

βTWFEm,e′De′

i,t + ϵi,t

One finds:

E[β̂TWFEm,e] = E

 E∑
e′=1

∑
g,t:De′

g,t=1

NgD̃
e
g,t∑

g,t:De
g,t=1NgD̃e

g,t

τ e
′

g

 (20)

where D̃e
g,t is the residual in the regression of De

i,t on a constant, time and group fixed effects,

and all other event indicators. E[β̂TWFEm,e] identifies the sum of E terms. Each term is a

weighted sum of group-specific AET for a different event. Weights on event e sum to 1, while

24See MacKinnon et al. (2023) for a recent literature review.
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weights on other events do not. Weights can be negative.

Eq. (20) is similar to Theorem 2 in de Chaisemartin and D’Haultfœuille (2023a). Likewise,

analogous to their Theorem 3, the expression of the coefficient associated with event e in a

TWFE with only one event is given by:25

E[β̂TWFE,e] = E

 E∑
e′=1

∑
g,t:De′

g,t=1

NgD̃
e
g,t∑

g,t:De
g,t=1NgD̃e

g,t

τ e
′

g

 (21)

= E

 E∑
e′=e

∑
g,t:De′

g,t=1

Ng(1−De
g,. −De

.,t +De
.,.)∑

g,t:De
g,t=1 Ng(1−De

g,. −De
.,t +De

.,.)
τ e

′

g

+

 e−1∑
e′=1

∑
g,t:De

g,t=1

Ng(1−De
g,. −De

.,t +De
.,.)∑

g,t:De
g,t=1Ng(1−De

g,. −De
.,t +De

.,.)

+
e−1∑
e′=1

∑
g,t:De′

g,t=1,De
g,t=0

Ng(−De
g,. −De

.,t +De
.,.)∑

g,t:De
g,t=1 Ng(1−De

g,. −De
.,t +De

.,.)

 τ e
′

g


where, this time, D̃e

g,t is the residual in the regression of De
i,t on a constant, and time and

group fixed effects only. Eq. (21) is the same as Eq. (20) but with different weights. Weights

associated with event e still sums to 1, while those associated with other events do not.

Compared to de Chaisemartin and D’Haultfœuille’s (2023a) analysis, the split-treatment

design imposes a particular dependence structure: it is not possible to keep the value of an

event at 0 if the value of a subsequent event is at 1, or, conversely, to move the value of an

event from 0 to 1 if the values of all preceding events are not 1. As shown in the development

of Eq. (21), it has implications for the weights. For events prior to e, the form of the weights

across (g, t) cells in which event e already occurred will differ from those cells in which event

e did not occur yet. Contamination from cells where event e did not happen yet will enter

the equation with a lower weight, that will more likely be negative.26

25A notable difference is that de Chaisemartin and D’Haultfœuille’s (2023a) Theorem 3 focuses on the
two-treatment case instead of E treatments as in Eq. (21).

26I do not go further in analyzing contamination bias in TWFE regressions as it is not particularly relevant
to the main argument of the paper - so long as there is indeed contamination bias in TWFE regressions - and
given that they have already attracted a lot of attention in the literature (de Chaisemartin and D’Haultfœuille,
2023a, for several treatments; de Chaisemartin and D’Haultfœuille, 2020; Goodman-Bacon, 2021; Sun and
Abraham, 2021; Borusyak et al., 2024, among others, for a single treatment).
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de Chaisemartin and D’Haultfœuille (2023a) also propose an estimator to solve this issue.

It requires to select valid controls (i) that have the same treatments in t− 1 as the switching

group, and (ii) that keep the same treatments between t−1 and t. The first condition is quite

restrictive for real-world applications of the split-treatment design. The FD-DiD solution I

propose below only requires for the second condition to be satisfied. It also has the practical

advantage of being estimable by regression. Its obvious drawback is that it is developed for

a more restrictive setting than de Chaisemartin and D’Haultfœuille’s (2023a).

6.2 Not-quite static effects

It is straightforward to see from the analysis in Section 4 that the split-treatment design

can accommodate some form of dynamic effects: so long as both treated and counterfactual

units included in the FD-DiD at time Ee
g don’t experience additional effects from prior events

between Ee
g − 1 and Ee

g , the FD-DiD will identify the proper estimand.

It directly implies that, in cases when it actually makes sense for an event to have dynamic

effects for a few periods, it is possible to use a local-projection based difference-in-differences

(LP-DiD) to identify them:

∆hYi,t = δht + βLP−DiD,e,h∆De
i,t + ϵi,t

where ∆hYi,t = Yi,t+h − Yi,t, and where the sample is restricted to (i) observations newly

“treated” for event e and for which no other event occurs before t + h, i.e., cells such that:

1{Ee
i =t} = 1 and De+1

i,t+h = 0, and (ii) corresponding control observations for which no event

occurs between t and t+h, i.e., cells such that: ∀(e′, j) ∈ {1, . . . , E}×{0, . . . , h}, 1{Ee′
i =t+j} =

0. It additionally requires the additional restriction that (iii) the effects of events that affected

these units - both treated and controls - prior to t do not change between t− 1 and t+ h.

Under these conditions, β̂LP−DiD,e,h identifies a convex combination of all group-specific

effects for event e at horizon h. It only remains efficient under random walk errors (i) if no

untreated observation enters or leaves the sample between t and t+h, (ii) if none of the units

that could serve as control is left out because it goes through an event between t and t+ h,
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and (iii) if none of the units that could serve as control is left out because it is expected to

experience changes in the effect of prior events between t and t+ h (see Harmon, 2023).27

6.3 Covariates

To account for heterogeneous trends between units, consider now an extension of the DGP

such that parallel trends only hold conditional on covariates.

Assumption 1’. (Conditional parallel trends)

For all (t, t′) ∈ {1, . . . , T}2 and (i, i′) ∈ {1, . . . , N}2:

E[Y 0
i,t − Y 0

i,t′ |D, x1
i,t, . . . , x

Q
i,t] = E[Y 0

i′,t − Y 0
i′,t′ |D, x1

i,t, . . . , x
Q
i,t] (22)

Also assume a linear functional form of potential outcomes such that, on the restricted sample

associated with Eq. (17), the following specification is valid:

∆Yi,t = δ0t + βFD−DiD,e∆De
i,t +

Q∑
q=1

γqx
q
i,t + ϵi,t (23)

In this more general setting, one has:

E[β̂FD−DiD,e] = E

 G′∑
g=1

NCCSe
g(G′)∑

i=1

∆̃D
e

i,Ee
g(G′)

∑
g′∈g(G′) 1{i∈g′(G)}τ

e
i∑G′

g=1

∑NCCSe
g(G′)

i=1 (∆̃D
e

i,Ee
g(G′)

)2



where ∆̃D
e

i,Ee
g(G′)

now refers to the residuals in the regression of ∆De
i,t on time indicators

and covariates on the restricted FD-DiD sample. β̂FD−DiD,e still identifies a combination

of all group-specific effects for event e. However, covariates alter the weighting scheme so

that it becomes difficult to characterize weights analytically. Still, they can be computed

in empirical applications through an auxiliary regression. Moreover, an equally-weighted

average effect can be estimated using an imputation approach (see Section 5.1). It is also

27The later condition implies that the LP-DiD would not take advantage of the sample in the most efficient
manner as variations in the outcome of such observations could be used in a stepwise difference-in-differences
(SWDD) estimator (Harmon, 2023) in periods when the effects of past events are not expected to change.
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possible to control for pre-treatment characteristics semi-parametrically with methods in the

spirit of Sant’Anna and Zhao (2020) and Callaway and Sant’Anna (2021).

7 Application

7.1 Context

I use the method developed in this paper to revisit the application of Bernstein et al. (2019)

published in the Journal of Political Economy.28 Bernstein et al. (2019) use an almost-

perfect historical experiment to study the effect of the multilateral netting function of a

clearinghouse on counterparty risk. Before the introduction of multilateral netting, NYSE

equities settled on a bilateral basis, which implies that brokers needed to write and receive

checks/securities for every transaction. At the time, settlement needed to be made by the

next day at 2:15 p.m. and brokers rarely had enough assets on hand to pay every single

transaction. Additionally, customers would also buy securities on margin so that brokers

often had to borrow the necessary additional funds. Banks were then forced to extend

significant uncollateralized credit and day loans to brokers, and effectively provided them

short-term leverage to finance their daily positions. Brokers also needed to finance positions

via overnight collateralized borrowing at the call loan rate.

The volatility of the call loan rate led to an important number of broker defaults. One

then understands that this bilateral system involved a large degree of exposure with both

direct and contagion counterparty risks. With multilateral netting, transactions are netted

by the clearinghouse so that the transfers of checks/securities vastly fall. Consequently, the

number of transactions that can be defaulted on drops, and there is a reduction in both direct

and contagion counterparty risk.

The historical experiment relies on the fact that, during the late nineteenth and early

twentieth centuries, two exchanges, the New York Stock Exchange (NYSE) and the Con-

solidated Stock Exchange (CSE), coexisted. The CSE traded securities listed on the NYSE

28I would like to thank the authors for kindly providing data and information regarding their paper.
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and was located just across the street. While the small exchange netted stock transactions

through a clearinghouse starting in 1886, the NYSE did not until May 1892. Bernstein et al.

(2019) use identical securities on the two exchanges to identify the effect of the introduction

of multilateral netting at the NYSE using CSE-traded securities as controls. Since the two

exchanges were so close geographically, arbitragers could indeed prevent price discrepancies

not due to market liquidity or counterparty risk premia. They find that the introduction of

netting on the NYSE increased the value of stocks by 24 basis points relative to the CSE.

7.2 Methodology

Periods of panics and threats from banks to suspend overcertification to NYSE brokers led to

the creation of the NYSE clearinghouse in May 1892. The clearinghouse then engaged in mul-

tilateral netting across all NYSE members for a gradually-growing list of stocks. The NYSE

started to introduce multilateral netting for four stocks on May 17 1892, and progressively

extended this system to more stocks throughout the end of the nineteenth and beginning of

the twentieth centuries as members became more familiar with it. The Committee of the

clearinghouse of the NYSE met when they decided to clear additional stocks.

Bernstein et al. (2019) rely on monthly data to identify the effect of the introduction of

the clearing house on counterparty risk. They focus on dual-listed stocks that are part of the

original Dow Jones index between September 1886 and October 1896, and of its successors,

the Dow Jones Railroad Index and the Industrial index, following its split. In finance theory,

if markets are sufficiently liquid, new information should be integrated rapidly into prices.

Therefore, the fall in counterparty risk should be priced in NYSE-traded stocks shortly after

multilateral clearing is introduced. I extend Bernstein et al.’s (2019) analysis using daily

prices hand-collected from archives of the New York Times.

Starting from Bernstein et al.’s (2019) analysis, the price of a stock can be decomposed

as follows:

Pi,t,E = P Fun
i,t − PMktLq

i,t,E − PCP
i,t,E + ϵi,t,E

Where Pi,t,E is the price on exchange E for stock i at time t, P Fun
i,t is the stock’s fundamental
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value, PMktLq
i,t,E is the discount caused by the market illiquidity premia, PCP

i,t,E is the discount

caused by the counterparty risk premium, and ϵi,t,E is market microstructure noise with mean

zero. Taking expected value of the first difference gives:

E[∆Pi,t,E] = E[∆P Fun
i,t ]− E[∆PMktLq

i,t,E ]− E[∆PCP
i,t,E]

The focus is on the estimation of E[∆PCP
i,t,E]. Because the introduction of the clearinghouse

may not be exogenous but related to market turmoil, one needs to account for changes in

fundamental value.

Contrary to Bernstein et al. (2019), I do not restrict my analysis to stocks in the Dow

Jones index and its successors. Instead, I use the minutes of the Committee of the clearing-

house of the NYSE to collect the dates at which all dual-listed stocks starts being cleared

through the clearinghouse.29 I choose to do so to increase the size of the dataset that would

have otherwise been too short, since there are not necessarily transactions in both exchanges

for all stocks around the dates at which they start being centrally cleared at the NYSE. I

then construct two-day price changes as the difference between the closing price of the day

following the first clearing day and the closing price of the day preceding it.30 I choose this

two-day periods to account for the fact that market liquidity was not as important as today,

and that information may take a little bit longer to be integrated into prices. Because this

historical experiment provides a natural counterfactual for every stock, I only include stock

prices at the CSE in the control group of each stock being newly centrally cleared at the

NYSE. Occasionally, there are a few dates with more than two individuals as a few stocks

may be added to the list simultaneously. The dataset is eventually composed of 158 data

points for 79 individual stocks traded on both exchanges.

How does this application relate to the split-treatment design? Consider the fact that,

29Some stocks may be added to the clearing list before being dropped and added again. I only consider
first addition to the list. From their dataset, it seems to have been the choice of Bernstein et al. (2019) as
well.

30If there is no transaction either on the preceding day or the following day for one of the exchange, I
exclude this stock from the dataset. If, however, the preceding or following day is a Sunday or a holiday, I
take the closest closing price instead.
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following the approval by the Committee of the clearinghouse that a stock would join clearing,

market participants anticipate a rise in the price of this stock - because of a lower expected

counterparty-risk discount -, and that they decide to make money off of it. Informed traders

could buy this stock and sell it a few days later after it actually joined clearing. Even though

it is a risky bet, in the sense that counterparty risk did not actually fall just yet, and that

its holder would then be exposed to changes in fundamentals for a few days, these stocks

may still have had high expected returns. There are typically between two days and two

weeks between the approval by the Committee and the implementation of the new system.

Therefore, some of the reduction in counterparty risk may already be priced the day before

a stock joins clearing. In this situation, analyzing the effect of multilateral netting on the

change of stock prices just around the dates they start being centrally cleared may lead to

an underestimation of the fall in counterparty risk. Prices can then react to two events: (i)

the approval by the Committee that a stock will be cleared through the clearinghouse, and

(ii) the actual implementation of this new system. Hence, I also construct two-day price

changes around dates of meetings of the Committee of the clearinghouse when it is decided

that some new stocks will be centrally cleared. This dataset is composed of 154 data points

for 77 individual stocks traded on both exchanges.

I estimate the following regressions:

∆Pi,t,E = δt + βFD−DiD,e∆De
i,t + ϵi,t,E

with e ∈ {ann, imp}, where ann and imp denote announcement and implementation, respec-

tively. δt denote time fixed effects. In most time periods, when there are only two individuals

- the price of the stock on the NYSE being newly centrally cleared and its control on the CSE

-, stock fixed effects would be confounded with time fixed effects. Although taking the first

difference of a variable should make individual fixed effects disappear, I still use cluster-robust

variance estimates at the stock level to account for possible changes in fundamental value.

Changes in the fundamental value are time varying, but since, in this setting, I only include

prices of individual stocks at one date, clustering at the stock level should be sufficient. ∆De
i,t
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is a dummy that takes the value 1 for stocks listed on the NYSE - treated individuals - and

0 for stocks listed on the CSE - controls.31

7.3 Results

Table 1 show the results. Columns 1 and 3 show results for the first event with, respectively,

price change and return as the dependent variable, while columns 2 and 4 show results for

the second event. Results suggest that there was no price reaction following the formal

approval by the Committee of the clearinghouse that a stock will be centrally cleared. There

is, however, a significant rise in NYSE prices following the implementation of multilateral

netting. Using the return specification - although it is just below standard significance

thresholds -, the introduction of multilateral clearing on the NYSE reduces the average

counterparty risk premium by 28 bp. It is reassuring that this result is of the same order as

Berstein et al.’s (2019) first specification (column 1 in Table 2 of their paper).32 It suggests

that, even at the time, prices reacted to new information rapidly.

Table 1: Application - results

(1) (2) (3) (4)

β̂FD−DiD,ann 0.018
(0.174)

0.190
(0.875)

β̂FD−DiD,imp 0.214
(2.567)

** 0.282
(1.643)

Notes: Figures in parentheses are t-statistics. *, **, and *** denote

rejections of the null hypothesis, H0: β̂FD−DiD = 0, at the 10%, 5%, and

1% significance level, respectively.

31I also controlled for the average volume, volume change, and volume percentage change over the three-
day period to account for difference in market liquidity between the two exchanges as well as for possible
change in market liquidity premia. It is not significant and does not change the results. Similarly, including
day fixed effects does not affect the results. Results are available upon request.

32Berstein et al. (2019) found a reduction in the counterparty risk premium of 24 bp. The slightly larger
estimation obtained in this paper is most likely due to the different specification of the dependent variable
or to the different sample.
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8 Conclusion

In this paper, I introduce the split-treatment design, a framework in which the response to

some treatment is split in the reactions to two or more events. I show that estimators in

standard regression-based methods have no sensible causal interpretation in this setting as

they may be subject both to negative weights and contamination bias. I then propose a simple

method, a first-difference regression with sample constraints - the FD-DiD -, that allows to

identify and estimate sensible causal parameters of interest. This estimator is straightforward

to compute and efficient under random walk errors and unrestricted heterogeneity across

groups and events.

Although I develop the FD-DiD with the split-treatment design in mind, it has a larger

appeal. Specifically, in settings with several treatments that have a nonlinear relationship -

as in the case of mutually exclusive treatments -, the FD-DiD allows estimation of average

treatment effects on the treated (ATT) for each treatment without contamination. It is a

regression-based estimator, which implies that it is straightforward to control for covariates

and easy to implement. Moreover, although the estimator is derived for static effects for

ease of exposition, this assumption can weakened to allow for some dynamics. Therefore, it

may be the main takeaway of this paper that Dube et al.’s (2023) method can be adapted

to settings with multiple treatments provided it is sensible to constraint treatment effect

dynamics.
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Appendix

A Identifying assumptions

According to my setup and identifying assumptions, it is possible to decompose the expected

value of Yi,t+h and ∆hYi,t as follows.

E[Yi,t+h|D] = E[Y 0
i,t+h|D] +

G∑
g=1

(E[Yi,t+h(g)− Y 0
i,t+h|D]1{i∈g})

= E[Y 0
i,t+h|D] +

G∑
g=1

(
E∑

e=1

(
E[Y e

i,t+h(g)− Y 0
i,t+h|D]1{Ee

g≤t+h<Ee+1
g }

)
1{i∈g}

)

= E[Y 0
i,t+h|D] +

G∑
g=1

(
E∑

e=1

(
E[Y e

i,t+h(g)− Y 0
i,t+h|D](De

g,t+h −De+1
g,t+h)

)
1{i∈g}

)

= E[Y 0
i,t+h|D] +

G∑
g=1

(
E∑

e=1

(
E

[
e∑

r=1

(Y r
i,t+h(g)− Y r−1

i,t+h)|D

]
(De

g,t+h −De+1
g,t+h)

)
1{i∈g}

)

= E[Y 0
i,t+h|D] +

G∑
g=1

(
E∑

e=1

(
e∑

r=1

E[Y r
i,t+h(g)− Y r−1

i,t+h|D](D
e
g,t+h −De+1

g,t+h)

)
1{i∈g}

)

= E[Y 0
i,t+h|D] +

G∑
g=1

(
E∑

e=1

(
e∑

r=1

τ ri,t+h−Er
g
(De

g,t+h −De+1
g,t+h)

)
1{i∈g}

)

= α + αi + δt+h +
G∑

g=1

(
1{i∈g}

E∑
e=1

(
(De

g,t+h −De+1
g,t+h)

e∑
r=1

τ ri,t+h−Er
g

))

= α + αi + δt+h +
G∑

g=1

(
1{i∈g}

E∑
e=1

(
τ ei,t+h−Ee

g

E∑
r=e

(Dr
g,t+h −Dr+1

g,t+h)

))

Note that:

1{i∈g}

E∑
e=1

(
τ ei,t+h−Ee

g

E∑
r=e

(Dr
g,t+h −Dr+1

g,t+h)

)

= 1{i∈g}

E∑
e=1

(
τ ei,t+h−Ee

g
De

g,t+h

)
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Hence:

E[Yi,t+h|D] = α + αi + δt+h +
G∑

g=1

(
1{i∈g}

E∑
e=1

(
τ ei,t+h−Ee

g
De

g,t+h

))

= α + αi + δt+h +
G∑

g=1

(
1{i∈g}

E∑
e=1

(
∞∑

j=−h

τ ei,h+j1{Ee
g=t−j}D

e
g,t+h

))

= α + αi + δt+h +
G∑

g=1

(
1{i∈g}

E∑
e=1

(
∞∑

j=−h

τ ei,h+j1{Ee
g=t−j}

))

= α + αi + δt+h +
G∑

g=1

(
1{i∈g}

E∑
e=1

(
τ ei,h1{Ee

g=t}

))

+
G∑

g=1

(
1{i∈g}

E∑
e=1

(
∞∑
j=1

τ ei,h+j1{Ee
g=t−j}

))

+
G∑

g=1

(
1{i∈g}

E∑
e=1

(
h∑

j=1

τ ei,h−j1{Ee
g=t+j}

))

Where the third equality stems from the fact that 1{Ee
g=t−j} = 1 always implies that De

g,t+h =

1 for −h ≤ j < ∞. For h = −1, the equation above results in:

E[Yi,t−1|D] = α + αi + δt−1 +
G∑

g=1

(
1{i∈g}

E∑
e=1

(
∞∑
j=1

τ ei,j−11{Ee
g=t−j}

))

And subtracting E[Yi,t−1|D] from E[Yi,t+h|D] gives:

E[∆hYi,t|D] = δht +
G∑

g=1

(
1{i∈g}

E∑
e=1

(
τ ei,h1{Ee

g=t}

))

+
G∑

g=1

(
1{i∈g}

E∑
e=1

(
∞∑
j=1

(τ ei,h+j − τ ei,j−1)1{Ee
g=t−j}

))

+
G∑

g=1

(
1{i∈g}

E∑
e=1

(
h∑

j=1

τ ei,h−j1{Ee
g=t+j}

))

with δht = δt+h − δt−1.
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B A first-difference DiD estimator

B.1 First-difference estimator

I develop here the expression of the population regression coefficient associated with regres-

sion (13). First, according to the Frisch-Waugh-Lovell theorem:

E[β̂FD,e|D] =
∑

i,t ∆̃D
e

i,tE[∆Yi,t|D]∑
i,t(∆̃D

e

i,t)
2

where ∆̃D
e

i,t = ∆De
i,t − ∆De

.,t are residuals from the auxiliary regression of ∆De
i,t on time

fixed effects. Using Eq. (10) and the fact that
∑

i ∆̃D
e

i,t = 0, one gets:

E[β̂FD,e|D] =

∑
i,t ∆̃D

e

i,t

∑G
g=1

(
1{i∈g}

∑E
e′=1

(
τ e

′
i 1{Ee′

g =t}

))
∑

i,t(∆̃D
e

i,t)
2

=

∑
i,t ∆̃D

e

i,t

∑G
g=1

(
1{i∈g}

∑E
e′=1

(
τ e

′
i ∆De′

g,t

))
∑

i,t ∆̃D
e

i,t∆De
i,t

=

∑E
e′=1

∑G
g=1

∑
i,t:i∈g ∆̃D

e

i,tτ
e′
i ∆De′

g,t∑
i,t:∆De

i,t=1 ∆̃D
e

i,t

=

∑E
e′=1

∑G
g=1

∑
i,t:i∈g,∆De′

g,t=1 ∆̃D
e

g,tτ
e′
i∑

i,t:∆De
g,t=1 Ng∆̃D

e

g,t

=

∑E
e′=1

∑
g,t:∆De′

g,t=1 ∆̃D
e

g,tNgτ
e′
g∑

g,t:∆De
g,t=1Ng∆̃D

e

g,t

=
E∑

e′=1

∑
g,t:∆De′

g,t=1

Ng∆̃D
e

g,t∑
g,t:∆De

g,t=1Ng∆̃D
e

g,t

τ e
′

g

=
∑

g,t:∆De
g,t=1

Ng∆̃D
e

g,t∑
g,t:∆De

g,t=1Ng∆̃D
e

g,t

τ eg +
E∑

e′=1,e′ ̸=e

∑
g,t:∆De′

g,t=1

Ng∆̃D
e

g,t∑
g,t:∆De

g,t=1Ng∆̃D
e

g,t

τ e
′

g

=
∑

g,t:∆De
g,t=1

Ng(1−∆De
.,t)∑

g,t:∆De
g,t=1Ng(1−∆De

.,t)
τ eg −

E∑
e′=1,e′ ̸=e

∑
g,t:∆De′

g,t=1

Ng∆De
.,t∑

g,t:∆De
g,t=1Ng(1−∆De

.,t)
τ e

′

g

where the fifth equality comes from τ e
′

g = 1
Ng

∑Ng

i=1 τ
e′
i . Eq. (14) follows from the law of

iterated expectations.
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B.2 First-difference based difference-in-differences (FD-DiD)

Proof of Theorem 1. I recompose the sets of groups G = {1, . . . , G} into a smaller set of

groups G ′ = {1, . . . , G′} according to the timing of event e, so that each group in G ′ is

composed of units that go through event e at the same date. In the following, I use (G) or

(G ′) to make it clear whether a group belongs to G or G ′. I can then define the clean control

sample (CCS) for an event e for a particular group g(G ′), denoted CCSe
g(G′), as the set of

observations at time t = Ee
g that satisfy the restrictions associated with Eq. (17).

One then has an unbalanced panel dataset defined by the clean control condition that

can be ordered as a stacked dataset in which observations are grouped into consecutive and

non-overlapping CCSe
g(G′). For variable ∆De

i,t, for instance, for a given event e, this vector

would first be composed of the subvector of ∆De, at time t = Ee
1, whose observations satisfy

CCSe
1, i.e., observations of units that either go through event e at time t = Ee

1 or are clean

controls (i.e., units that do not go through any event at time t = Ee
1), then of a second

subvector of ∆De, at time t = Ee
2, whose observations satisfy CCSe

2, and so on until the

subvector whose observations satisfy CCSe
G′ .

Moreover, for any observation {i, t} ∈ CCSe
g(G′), ∆De

i,t = ∆De
i,Ee

g(G′)
= De

i,Ee
g(G′)

. This

equality follows from the fact that De
i,t−1 = De

i,Ee
g(G′)−1 = 0 by virtue of the clean control

condition.

One can create a set of G′ binary indicators that identify the CCS that an observation

belongs to. For each g, the corresponding indicator is equal to 1 if {i, t} ∈ CCSe
g(G′), and

0 otherwise. By definition of treatment groups and CCS, these indicators are fully collinear

with time indicators.

Let ∆̃D
e

i,Ee
g(G′)

be the residuals from a regression of ∆De on time indicators in the sample

satisfying restrictions associated with Eq. (17). In matrix form, the regression is:

∆De = λδ + ∆̃D
e

with λ = (λe
1, . . . , λ

e
G′), where λe

g(G′) is a (
∑G′

g′=1 NCCSe
g′(G′)

× 1)-vector that takes the value
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1 when observation i belongs to CCSe
g(G′) and 0 otherwise, and NCCSe

g′(G′)
is the number

of observations in CCSe
g′(G′); δ = (δ1, . . . , δG′)′ is a (G′ × 1) vector of coefficients; ∆De =

(∆De
1,Ee

1
, . . . ,∆De

NCCSe
1
,Ee

1
,∆De

1,Ee
2
, . . . ,∆De

NCCSe
G′

,Ee
G′
)′ is a (

∑G′

g′=1 NCCSe
g′(G′)

× 1) vector; and

∆̃D
e
= (∆̃D

e

1,Ee
1
, . . . , ∆̃D

e

NCCSe
1
,Ee

1
, ∆̃D

e

1,Ee
2
, . . . , ∆̃D

e

NCCSe
G′

,Ee
G′
)′ is a (

∑G′

g′=1NCCSe
g′(G′)

×1) vec-

tor of residuals. λ are CCS indicators that conveniently replace time indicators. Using OLS

to estimate δ, one gets δ̂ = (N1/NCCSe
1
, . . . , NG′/NCCSe

G′ ), where Ng(G′) is the number of

observations in group g, g ∈ G ′. One then obtains:

∆̃D
e

i,Ee
g(G′)

= ∆De
i,Ee

g(G′)
−Ng(G′)/NCCSe

g(G′)
= De

i,Ee
g(G′)

−Ng(G′)/NCCSe
g(G′)

and, for all observations i that belongs to group g:

∆̃D
e

i,Ee
g(G′)

= ∆De
g(G′),Ee

g(G′)
−Ng(G′)/NCCSe

g(G′)
= 1−Ng(G′)/NCCSe

g(G′)

Using FWL:

E[β̂FD−DiD,e|D] =

∑G′

g=1

∑NCCSe
g(G′)

i=1

[
∆̃D

e

i,Ee
g(G′)

E[∆Yi,Ee
g(G′)

|D]
]

∑G′

g=1

∑NCCSe
g(G′)

i=1 (∆̃D
e

i,Ee
g(G′)

)2

One can develop E[∆Yi,Ee
g(G′)

|D]:33

E[∆Yi,Ee
g(G′)

|D] = δEe
g(G′)

− δEe
g(G′)−1 +

G∑
g′=1

(
1{i∈g′(G)}

E∑
e′=1

(
τ e

′

i 1{Ee′
g′(G)

=Ee
g(G′)}

))

= δ0Ee
g(G′)

+
∑

g′∈g(G′)

(
1{i∈g′(G)}τ

e
i

)

where g(G ′) is the group in G ′ that includes all groups of G that have event e occur at time

33With the FD-DiD, the sample is restricted to satisfy a clean control condition. Let s =
(si,t)(i,t)∈{1,...,N}×{1,...,T} be a vector of selection indicators with si,t equal to 1 if cell {i, t} is used in
the FD-DiD and 0 otherwise. The required strict exogeneity assumption now is: E[ϵi,t|D, s] = 0, ∀(i, t).
Since the selection process is made based on the double condition that, at period t, ∆De′

i,t ̸= 0 for some
units, and ∆De

i,t = 0, e = 1, . . . , E, for some other units, s is a deterministic function of D. It implies
that E[ϵi,t|D, s] = E[ϵi,t|D] = 0. Hence, the strict exogeneity assumption necessary for the selected sample
immediately follows from A3.
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Ee
g(G′). The second inequality comes from the fact that only event e for treated group g(G ′)

can occur at time Ee
g(G′). The intercept can then get out of the sum on i and since, for a

given g(G ′),
∑NCCSe

g(G′)
i=1 ∆̃D

e

i,Ee
g(G′)

= 0, the expression of E[β̂FD−DiD,e] becomes:

E[β̂FD−DiD,e|D] =

∑G′

g=1

∑NCCSe
g(G′)

i=1

[
∆̃D

e

i,Ee
g(G′)

∑
g′∈g(G′) 1{i∈g′(G)}τ

e
i

]
∑G′

g=1

∑NCCSe
g(G′)

i=1 (∆̃D
e

i,Ee
g(G′)

)2

=
G′∑
g=1

NCCSe
g(G′)∑

i=1

∆̃D
e

i,Ee
g(G′)

∑
g′∈g(G′) 1{i∈g′(G)}τ

e
i∑G′

g=1

∑NCCSe
g(G′)

i=1 (∆̃D
e

i,Ee
g(G′)

)2

=
G′∑
g=1

∑
g′∈g(G′)

N
g′(G)

CCSe
g(G′)∑

i=1

∆̃D
e

i,Ee
g(G′)

∑
g′∈g(G′) 1{i∈g′(G)}τ

e
i∑G′

g=1

∑NCCSe
g(G′)

i=1 (∆̃D
e

i,Ee
g(G′)

)2

=
G′∑
g=1

∆̃D
e

g(G′),Ee
g(G′)

∑
g′∈g(G′)

N
g′(G)

CCSe
g(G′)∑

i=1

∑
g′∈g(G′) 1{i∈g′(G)}τ

e
i∑G′

g=1

∑NCCSe
g(G′)

i=1 (∆̃D
e

i,Ee
g(G′)

)2

=
G′∑
g=1

∆̃D
e

g(G′),Ee
g(G′)

∑
g′∈g(G′)

N
g′(G)
CCSe

g(G′)
τ eg′(G)∑G′

g=1

∑NCCSe
g(G′)

i=1 (∆̃D
e

i,Ee
g(G′)

)2

=
G′∑
g=1

∆̃D
e

g(G′),Ee
g(G′)

∑
g′∈g(G′)

Ng′τ
e
g′(G)∑G′

g=1

∑NCCSe
g(G′)

i=1 (∆̃D
e

i,Ee
g(G′)

)2

=
G′∑
g=1

∑
g′∈g(G′)

∆̃D
e

g(G′),Ee
g(G′)

Ng′τ
e
g′(G)∑G′

g=1

∑NCCSe
g(G′)

i=1 (∆̃D
e

i,Ee
g(G′)

)2

=
G∑

g′=1

∆̃D
e

g′(G),Ee
g′(G)

Ng′τ
e
g′(G)∑G′

g=1

∑NCCSe
g(G′)

i=1 (∆̃D
e

i,Ee
g(G′)

)2

=
G∑

g′=1

ωFD−DiD,e
g′ τ eg′(G)

where N
g′(G)
CCSe

g(G′)
is the number of units in subgroup g′(G) of g(G ′) such that g′(G) is a treated

group, and τ eg′(G) = (1/N
g′(G)
CCSe

g(G′)
)
∑N

g′(G)

CCSe
g(G′)

i=1 τ ei . In the eighth equality, ∆̃D
e

g′(G),Ee
g′(G)

will be

the same for two groups g′(G) for which event e occurs at the same period. Eq. (18) follows

44



from the application of the law of iterated expectations to this result.

Moreover, one has:

ωFD−DiD,e
g′ =

Ng′∆̃D
e

g′(G),Ee
g′(G)∑G′

g=1

∑NCCSe
g(G′)

i=1 (∆̃D
e

i,Ee
g(G′)

)2

=
Ng′(1−Ng(G′)/NCCSe

g(G′)
)∑G′

g=1

∑NCCSe
g(G′)

i=1 ∆̃D
e

i,Ee
g(G′)

(∆De
i,Ee

g(G′)
−Ng(G′)/NCCSe

g(G′)
)

=
Ng′(1−Ng(G′)/NCCSe

g(G′)
)∑G′

g=1

∑NCCSe
g(G′)

i=1 ∆̃D
e

i,Ee
g(G′)

∆De
i,Ee

g(G′)
−
∑G′

g=1Ng(G′)/NCCSe
g(G′)

∑NCCSe
g(G′)

i=1 ∆̃D
e

i,Ee
g(G′)

=
Ng′(1−Ng(G′)/NCCSe

g(G′)
)∑G′

g=1

∑NCCSe
g(G′)

i=1 ∆̃D
e

i,Ee
g(G′)

∆De
i,Ee

g(G′)

=
Ng′(1−Ng(G′)/NCCSe

g(G′)
)∑G′

g=1

∑NCCSe
g(G′)

i=1:De
i,Ee

g(G′)
=1 ∆̃D

e

i,Ee
g(G′)

=
Ng′(1−Ng(G′)/NCCSe

g(G′)
)∑G′

g=1Ng(G′)(1−Ng(G′)/NCCSe
g(G′)

)

=
NCCSe

g(G′)
ne
g′n

e
gn

e
c,g∑G′

g=1NCCSe
g(G′)

ne
gn

e
c,g

where, in the numerator, 1 − Ng(G′)/NCCSe
g(G′)

is the residual in the auxiliary regression of

∆De
i,Ee

g(G′)
on λ associated with group g′ ∈ G, which is the same for groups g′ ∈ G that have

event e occur in the same period. ne
g = Ng(G′)/NCCSe

g(G′)
and ne

c,g = 1−Ng(G′)/NCCSe
g(G′)

are the

shares of treated units and of control units in CCSe
g(G′), respectively, while ne

g′ = Ng′/Ng(G′)

is the share of group g′ ∈ G in treated units of recomposed group g ∈ G ′. Weights are

all positive, proportional to the variance of the treatment dummy, ∆̃D
e

i,Ee
g(G′)

, on subsample
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CCSe
g(G′) and to its size, NCCSe

g(G′)
. Moreover, weights sum to 1:

G∑
g′=1

ωFD−DiD,e
g′ =

G∑
g′=1

NCCSe
g(G′)

ne
g′n

e
gn

e
c,g∑G′

g=1NCCSe
g(G′)

ne
gn

e
c,g

=
G′∑
g=1

∑
g′∈G

NCCSe
g(G′)

ne
g′n

e
gn

e
c,g∑G′

g=1 NCCSe
g(G′)

ne
gn

e
c,g

=
G′∑
g=1

NCCSe
g(G′)

ne
gn

e
c,g

∑
g′∈G n

e
g′∑G′

g=1NCCSe
g(G′)

ne
gn

e
c,g

=
G′∑
g=1

NCCSe
g(G′)

ne
gn

e
c,g∑G′

g=1 NCCSe
g(G′)

ne
gn

e
c,g

= 1

so that E[βFD−DiD,e] identifies a convex combination of all group-specific effects for event e.

Consider the special case where an event e always occurs at a different date for two different

groups. It implies that each observation satisfying restrictions associated with Eq. (17)

enters into one and only one CCS. This case leads to the simplified result:

E[β̂FD−DiD,e|D] =
G∑

g=1

Ng∆̃D
e

g,Ee
g∑G

g=1

∑NCCSe
g

i=1 (∆̃D
e

i,Ee
g
)2
τ eg

=
G∑

g=1

ωFD−DiD,e
g τ eg

with:

ωFD−DiD,e
g =

Ng(1−Ng/NCCSe
g
)∑G

g=1Ng(1−Ng/NCCSe
g
)

=
NCCSe

g
ne
gn

e
c,g∑G

g=1NCCSe
g
ne
gn

e
c,g

Weights are positive and sum to 1. Footnote 17 follows from application of the law of iterated

expectations to the result above.
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C Decompositions

The FD estimator with one event, β̂FD,e, can be decomposed to show that it leverages

comparisons of treated units with units in the same period that may have been through

other events:

β̂FD,e =

∑
i,t ∆̃D

e

i,t∆Yi,t∑
i,t(∆̃D

e

i,t)
2

=

∑
i,t:∆De

i,t=1(1−∆De
.,t)∆Yi,t −

∑
i,t:∆De

i,t=0∆De
.,t∆Yi,t∑

g,t:∆De
g,t=1 Ng(1−∆De

.,t)

=
∑
t

(1−N e
t /N)

∑
i:∆De

i,t=1 ∆Yi,t − (N e
t /N)

∑
i:∆De

i,t=0∆Yi,t∑
g,t:∆De

g,t=1Ng(1−∆De
.,t)

=
∑
t

(1−N e
t /N)

∑Ne
t

i=1 ∆Yi,t − (N e
t /N)

∑N0
t

i=1∆Yi,t∑
g,t:∆De

g,t=1 Ng(1−∆De
.,t)

=
∑
t

(1−N e
t /N)

Ne
t∑

i=1

∆Yi,t − (1/N0
t )
∑N0

t
i=1 ∆Yi,t∑

g,t:∆De
g,t=1Ng(1−∆De

.,t)

where N e
t and N0

t denote the number of units that go through event e in period t and the

number of units that don’t, respectively.

The FD-DiD estimator can be developed to show that it leverages comparisons of the

outcome of every unit treated for event e with every control unit untreated at the same
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period:

β̂FD−DiD,e =

∑G′

g=1

∑NCCSe
g(G′)

i=1 ∆̃D
e

i,Ee
g(G′)

∆Yi,Ee
g(G′)∑G′

g=1

∑NCCSe
g(G′)

i=1 (∆̃D
e

i,Ee
g(G′)

)2

=

∑G′

g=1

(
(1−∆De

.,Ee
g(G′)

)
∑Ng(G′)

i=1 ∆Yi,Ee
g(G′)

−∆De
.,Ee

g(G′)

∑N0
g(G′)

i=1 ∆Yi,Ee
g(G′)

)
∑G′

g=1

∑NCCSe
g(G′)

i=1 (∆̃D
e

i,Ee
g(G′)

)2

=

∑G′

g=1

(
(1−Ng(G′)/NCCSe

g(G′)
)
∑Ng(G′)

i=1 ∆Yi,Ee
g(G′)

−Ng(G′)/NCCSe
g(G′)

∑N0
g(G′)

i=1 ∆Yi,Ee
g(G′)

)
∑G′

g=1

∑NCCSe
g(G′)

i=1 (∆̃D
e

i,Ee
g(G′)

)2

=

∑G′

g=1(1−Ng(G′)/NCCSe
g(G′)

)
∑Ng(G′)

i=1

(
∆Yi,Ee

g(G′)
− (1/N0

g(G′))
∑N0

g(G′)
j=1 ∆Yj,Ee

g(G′)

)
∑G′

g=1

∑NCCSe
g(G′)

i=1 (∆̃D
e

i,Ee
g(G′)

)2

=

∑G′

g=1(1−Ng(G′)/NCCSe
g(G′)

)
∑Ng(G′)

i=1

(
∆Yi,Ee

g(G′)
− (1/N0

g(G′))
∑N0

g(G′)
j=1 ∆Yj,Ee

g(G′)

)
∑G′

g=1Ng(G′)(1−Ng(G′)/NCCSe
g(G′)

)

D Efficiency

Proof of Theorem 2. Under unrestricted treatment effect heterogeneity, a well-defined model

is: Yi,t = α + αi + δt +
∑E

e=1 D
e
i,tτ

e
i + ui,t. Taking the first difference gives:

∆Yi,t = δ0t +
E∑

e=1

∆De
i,tτ

e
i + ϵi,t (24)

where ϵi,t = ∆ut. Recall that under A4 the estimand of interest is: τ e =
∑

i ωiτ
e
i , with

τ ei = E[Y e
i,Ee

i
− Y e−1

i,Ee
i
|D]. The proof is divided in four steps. First, an efficient estimator for

τ = (τ ei )i,e is identified using the law of total variance. Second, an efficient estimator is then

straightforwardly derived for τ e. Third, I show that this estimator has an imputation form.

Finally, I demonstrate that this imputation estimator is identical to the FD-DiD.

Step 1. Let τ̂ ∗ denote the OLS estimator of the vector composed of all {τ̂ e∗i }i,e in the

regression of ∆Yi,t on time fixed effects and individual treatment indicators (Eq. (24)). By
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the law of total variance: Var(τ̂ ∗) = Var(E[τ̂ ∗|D])+E[Var(τ̂ ∗|D)]. τ̂ ∗ is conditionally unbiased

for any treatment assignment D so that Var(τ̂ ∗) = E[Var(τ̂ ∗|D)]. Let τ̂ be any other linear

unbiased estimator of τ . Conditional on information D, the Gauss-Markov theorem implies

that Var(τ̂ ∗|D) will be lower than Var(τ̂ |D). Averaging over D, τ̂ ∗ is best linear unbiased for

τ .

Step 2. Define τ̂ e∗ =
∑

i ωiτ̂
e∗
i . Here, I extend the efficiency of τ̂ ∗ for τ to τ̂ e∗ for τ e. For

every linear estimator τ̂ e unbiased for τ e for all τ , there is a linear unbiased estimator τ̂ of τ for

which τ̂ e = ω′τ̂ , where ω is the vector of relevant weights ωi for τ
e
i . Conditional on information

set D, τ̂ ∗ is best linear unbiased for τ with variance Στ̂∗ that is minimal among the variances

of linear unbiased estimators of τ . Hence, Var(ω′τ̂ ∗|D) − Var(ω′τ̂ |D) = ω′(Στ̂∗ − Στ̂ )ω ≤ 0

establishes efficiency conditional on the treatment design. Using the law of total variance

again: Var(τ̂ e∗) = Var(E[τ̂ e∗|D]) + E[Var(τ̂ e∗|D)] where the first term is null and the second

averages estimator variances that are minimal among linear unbiased estimators conditional

on D.

Step 3. In matrix form, Eq. (24) is equivalent to ∆Y = λδ +∆Dτ + ϵ. λ is a matrix of

T time indicators. δ is a vector of T coefficients. ∆D is a (NT × N1) matrix, where N1 is

the number of (i, t) cells in which an event occurs, i.e., a cell such that ∆De
i,t = 1, for some

e ∈ {1, . . . , E}. τ is a vector of coefficients of size N1. Using FWL, the OLS estimator of δ

can be obtained from the regression of the residuals of ∆Y on the residuals of λ with respect

to ∆D:

δ̂∗ = (λ′(INT −∆D(∆D′∆D)−1∆D′)λ)−1λ′(INT −∆D(∆D′∆D)−1∆D′)∆Y

= (λ0
′λ0)

−1λ0
′∆Y0

where λ0 and∆Y0 are the (N0×T ) matrix of time indicators and (N0×1) vector of outcomes

for the restricted sample of observations such that no event occurred in cells (i, t), i.e., (i, t)

cells such that ∆De
i,t = 0, for all e ∈ {1, . . . , E}.

The OLS estimator τ̂ ∗ of τ in ∆Y = λδ +∆Dτ + ϵ is the same as the OLS estimator in

the regression of ∆Y − λδ̂
∗
on ∆D. Indeed, (δ̂∗, τ̂ ∗) minimizes the sum of squares ||∆Y −
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λδ̂ −∆Dτ̂ ||2 over choices (δ̂, τ̂) so that τ̂ ∗ minimizes ||∆Y − λδ̂∗ −∆Dτ̂ ||2 over τ̂ given δ̂∗.

One gets:

τ̂ ∗ = (∆D′∆D)−1∆D′(∆Y − λδ̂
∗
)

= ∆D′∆Y −∆D′λδ̂∗

= ∆Y1 − λ1δ̂
∗

where λ1 and∆Y1 are the (N1×T ) matrix of time indicators and (N1×1) vector of outcomes,

respectively, for the restricted sample of observations such that an event occurred in cells

(i, t), i.e., (i, t) cells such that ∆De
i,t = 1, for some e ∈ {1, . . . , E}.

It implies that the efficient estimator of τ e can be obtained by imputation with the

following procedure:

1. Estimate δ̂∗t in the regression ∆Yi,t = δ0t + ϵi,t on the set of (i, t) cells such that no event

occurs.

2. Estimate the counterfactual outcomes for treated units as ∆̂Y 0
i,t = δ̂∗t .

3. Estimate individual event effects as τ̂ e∗i = ∆Yi,t − ∆̂Y 0
i,t.

4. Compute τ̂ e∗ =
∑

i ωiτ̂
e∗
i .

Step 4. It remains to show that the FD-DiD estimator is the same as this imputation

estimator. First, note that the FD-DiD estimator has the following form:34

β̂FD−DiD,e =

∑G′

g=1(1−Ng(G′)/NCCSe
g(G′)

)
∑Ng(G′)

i=1

(
∆Yi,Ee

g(G′)
− (1/N0

g(G′))
∑N0

g(G′)
j=1 ∆Yj,Ee

g(G′)

)
∑G′

g=1 Ng(G′)(1−Ng(G′)/NCCSe
g(G′)

)

This result highlights that β̂FD−DiD,e leverages comparisons of the outcome evolution of every

unit treated for event e with every control unit untreated at the same period. β̂FD−DiD,e is a

subgroup difference-in-differences (SGDD) estimator in the terminology of Harmon (2023),

34This result is shown in Section C of the Appendix.
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i.e., the last untreated period is used as the baseline. It has the form: β̂FD−DiD,e =
∑

i ωiτ̂
e
i ,

where the sum is taken over all individuals treated for event e, where weights ωi = (1 −

Ng(G′)/NCCSe
g(G′)

)/(
∑G′

g=1 Ng(G′)(1 − Ng(G′)/NCCSe
g(G′)

)) are identical for all individuals in the

same group and are considered conditional on the treatment design, and τ̂ ei = ∆Yi,Ee
g(G′)

−

(1/N0
g(G′))

∑N0
g(G′)

j=1 ∆Yj,Ee
g(G′)

.

δ̂∗t obtained in step 3 is simply the average of observations ∆Yi,t at time t across untreated

units i, that is (1/N0
g(G′))

∑N0
g(G′)

j=1 ∆Yj,t. Plugging this estimate into τ̂ e∗i gives:

τ̂ e∗i = ∆Yi,Ee
g(G′)

− (1/N0
g(G′))

N0
g(G′)∑
j=1

∆Yj,Ee
g(G′)

Finally, with the vector of individual treatment estimators (τ̂ e∗i )i,e, the estimator of the target

estimand for a given e is τ̂ e∗ =
∑

i ωiτ̂
e∗
i , with ωi = (1 − Ng(G′)/NCCSe

g(G′)
)/(
∑G′

g=1Ng(G′)(1 −

Ng(G′)/NCCSe
g(G′)

)), i.e., the FD-DiD estimator: τ̂ e∗ = β̂FD−DiD,e.

E Asymptotic properties

Proof of Theorem 3. First, from the decomposition of β̂FD−DiD,e in Section C of the Appendix,

it is straightforward to show that the FD-DiD has the following representation:

β̂FD−DiD,e =
G′∑
g=1

NCCSe
g(G′)∑

i=1

vi,Ee
i
Yi,Ee

i

Where the sum is taken over the restricted set of observations that satisfy Eq. (15), and

with:

vi,Ee
i
=

 ωi(g) if i ∈ g(G ′)

(−Ng(G′)/N
0
g(G′))ωi(g) if i ∈ CCSe

g(G′) and i /∈ g(G ′)

To prove consistency of β̂FD−DiD,e, it is sufficient that E[β̂FD−DiD,e] = τe - which has
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been proven in Section 4 - and that Var(β̂FD−DiD,e) → 0. One has:

Var(β̂FD−DiD,e|D) = Var

 G′∑
g=1

NCCSe
g(G′)∑

i=1

vi,Ee
i
Yi,Ee

i
|D


= Var

 G′∑
g=1

NCCSe
g(G′)∑

i=1

vi,Ee
i
ϵi,Ee

i
|D


= Var

(∑
i∈ΩN

G′∑
g=1

vi,Ee
i(g)

ϵi,Ee
i(g)

|D

)

=
∑
i∈ΩN

Var

(
G′∑
g=1

vi,Ee
i(g)

ϵi,Ee
i(g)

|D

)

≤
∑
i∈ΩN

(
G′∑
g=1

|vi,Ee
g
|

)2

σ̄2

Where I use A5’ in the fourth equality and the inequality. Moreover:

∑
i∈ΩN

(
G′∑
g=1

|vi,Ee
g
|

)2

≤ 2
∑
i∈ΩN

 G′∑
g=1:∆De

i,Ee
g
=0

|vi,Ee
g
|


2

+ 2
∑
i∈ΩN

 G′∑
g=1:∆De

i,Ee
g
=1

|vi,Ee
g
|


2

≤ 2G′
∑
i∈ΩN

G′∑
g=1:∆De

i,Ee
g
=0

v2i,Ee
g
+ 2

∑
i∈ΩN

 G′∑
g=1:∆De

i,Ee
g
=1

|wi(g)|


2

≤ 2G′
G′∑
g=1

N0
g∑

i=1

v2i,Ee
g
+ 2

G′∑
g=1

Ng∑
i=1

w2
i

= 2G′
G′∑
g=1

(Ng/N
0
g )Ngw

2
g + 2

G′∑
g=1

Ngw
2
g

Where I use Jensen’s inequality in the first two steps: ∀b ≥ 1, S ∈ N, ∀(a1, . . . , as),

|
∑S

s=1 as|b ≤ Sb−1
∑S

s=1 |as|b. It is straightforward to show that, with Ng/NCCSe
g(G′)

bounded

between 0 and 1 and with G′ ∈ N
∗, G′∑G′

g=1(Ng/N
0
g )Ngw

2
g → 0 ⇒

∑G′

g=1Ngw
2
g → 0. There-

fore, it is sufficient to focus on convergence of the first sum.

Note that Ng/N
0
g = (Ng/NCCSe

g(G′)
)(NCCSe

g(G′)
/N0

g ) with Ng/NCCSe
g(G′)

bounded between 0

and 1 and with NCCSe
g(G′)

/N0
g < ∞. Hence, 2G′∑G′

g=1(Ng/N
0
g )Ngw

2
g goes to 0 if G′Ngw

2
g goes
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to 0 for all g. Moreover:

G′Ngw
2
g = G′Ng

 N0
g /NCCSe

g(G′)∑G′

g=1Ng(N0
g /NCCSe

g(G′)
)

2

≤ G′Ng(∑G′

g=1NgN0
g /NCCSe

g(G′)

)2
Therefore, using the assumption of Proposition 1: Var(β̂FD−DiD,e|D) → 0. Moreover, by the

law of total variance:

Var(β̂FD−DiD,e) = Var(E[β̂FD−DiD,e|D]) + E[Var(β̂FD−DiD,e|D)] = E[Var(β̂FD−DiD,e|D)] → 0

Hence, β̂FD−DiD,e converges in quadratic mean. The proof of Theorem 3 is completed.

Proof of Theorem 4. One has:

β̂FD−DiD,e − τ e =
G′∑
g=1

NCCSe
g(G′)∑

i=1

vi,Ee
i
ϵi,Ee

i
=
∑
i∈ΩN

ξi

with ξi = v′iϵi =
∑

t:(i,t)∈Ω vi,tϵi,t, E[ξi|D] = 0, Var(ξi|D) = v′iΣivi = (
∑

t:(i,t)∈Ω vi,tϵi,t)
2. Write

p = 2+κ and let q be the solution to 1/p+1/q = 1 (so 1 < q < 2 < p). Using Hölder’s inequal-

ity to establish:
∑

t:(i,t)∈Ω |vi,t|1/q
(
|vi,t|1/p|ϵi,t|

)
≤
(∑

t:(i,t)∈Ω |vi,t|q/q
)1/q (∑

t:(i,t)∈Ω |vi,t|p/p|ϵi,t|p
)1/p

,
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∀i, and using E[|ϵi,t|p|D] ≤ C and p/q + 1 = p, one has:

E[|ξi|2+κ|D] = E

| ∑
t:(i,t)∈Ω

vi,tϵi,t|p|D


≤ E

 ∑
t:(i,t)∈Ω

|vi,tϵi,t|

p

|D


= E

 ∑
t:(i,t)∈Ω

|vi,t|1/q|vi,t|1/p|ϵi,t|

p

|D


≤

 ∑
t:(i,t)∈Ω

|vi,t|

p/q ∑
t:(i,t)∈Ω

|vi,t|E [|ϵi,t|p|D]

≤

 ∑
t:(i,t)∈Ω

|vi,t|

p/q+1

C

=

 ∑
t:(i,t)∈Ω

|vi,t|

p

C

Then:

∑
i∈ΩN

E[|ξi|2+κ|D]

(
G′∑
g=1

NCCSe
g(G′)

)(2+κ)/2

≤
∑
i∈ΩN

 ∑
t:(i,t)∈Ω

|vi,t|

2+κ(
G′∑
g=1

NCCSe
g(G′)

)(2+κ)/2

C

=
∑
i∈ΩN

√√√√ G′∑
g=1

NCCSe
g(G′)

∑
t:(i,t)∈Ω

|vi,t|

2+κ

C

Since, by assumption,
√∑G′

g=1NCCSe
g(G′)

/
(∑G′

g=1NgN
0
g /NCCSe

g(G′)

)
→ 0, one also has that√∑G′

g=1NCCSe
g(G′)

|vi,t| → 0 for all weight vi,t. It follows that:

∑
i∈ΩN

E[|ξi|2+κ|D]

(
G′∑
g=1

NCCSe
g(G′)

)(2+κ)/2

→ 0

Moreover, the assumption σ2
e

∑G′

g=1 NCCSe
g(G′)

> 0 is equivalent to 1/
(
σ2
e

∑G′

g=1NCCSe
g(G′)

)
<
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∞, which implies 1/
(
σ2+κ
e (

∑G′

g=1 NCCSe
g(G′)

)(2+κ)/2
)
< ∞. Hence:

∑
i∈ΩN

E[|ξi|2+κ]

σ2+κ
e

=

∑
i∈ΩN

E[|ξi|2+κ](
∑G′

g=1NCCSe
g(G′)

)(2+κ)/2

σ2+κ
e

(∑G′

g=1 NCCSe
g(G′)

)(2+κ)/2
→ 0

Then, by the Lyapunov central limit theorem: σ−1
e (β̂FD−DiD,e− τ e)

d−→ N (0, 1). The proof of

Proposition 4 is completed.

F Asymptotic properties with errors clustered at the

CCS level

Assumption 5”. (Clustered errors at the clean control sample level)

Error terms ϵi,t are independent across periods t and have bounded variance Var(ϵi,t|D) ≤ σ̄2

for all (i, t) ∈ ΩN × ΩT uniformly.

Ng/NCCSe
g(G′)

is assumed to be bounded away from 0 and 1.

Theorem 3’. Denote ωg = (1 − Ng(G′)/NCCSe
g(G′)

)/(
∑G′

g=1 Ng(G′)(1 − Ng(G′)/NCCSe
g(G′)

)). As-

sume that A1-A4 and A5’ hold and that, ∀g ∈ G ′, (NgN
0
g /NCCSe

g(G′)
)2/(

∑G′

g=1NgN
0
g /NCCSe

g(G′)
)2 →

0. Then: β̂FD−DiD,e − τ e
L2−→ 0.

Proof of Proposition 3’.

Var(β̂FD−DiD,e|D) = Var

 G′∑
g=1

NCCSe
g(G′)∑

i=1

vi,Ee
i
ϵi,Ee

i
|D


≤

G′∑
g=1

 ∑
i:(i,t)∈Ω

|vi,Ee
g
|

2

σ̄2
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Moreover:

G′∑
g=1

 ∑
i:(i,t)∈Ω

|vi,Ee
g
|

2

≤ 2
G′∑
g=1

 ∑
i:(i,t)∈Ω,∆De

i,Ee
g
=0

|vi,Ee
g
|


2

+ 2
G′∑
g=1

 ∑
i:(i,t)∈Ω,∆De

i,Ee
g
=1

|vi,Ee
g
|


2

≤ 2
G′∑
g=1

N0
g

∑
i:(i,t)∈Ω,∆De

i,Ee
g
=0

v2i,Ee
g
+ 2

G′∑
g=1

Ng

∑
i:(i,t)∈Ω,∆De

i,Ee
g
=1

v2i,Ee
g

= 2
G′∑
g=1

(N0
g )

2
(
ωgNg/N

0
g

)2
+ 2

G′∑
g=1

(Ngωg)
2

= 4
G′∑
g=1

(NgN
0
g /NCCSe

g(G′)
)2

(
∑G′

g=1NgN0
g /NCCSe

g(G′)
)2

Therefore, using the assumption of Proposition 1’: Var(β̂FD−DiD,e|D) → 0, and by the law of

total variance: Var(β̂FD−DiD,e) → 0. β̂FD−DiD,e converges in quadratic mean, and the proof

of Proposition 1’ is completed.

Proposition 4’. Under A1-A4 and A5’, if there exists κ > 0 such that E[|ϵi,t|2+κ|D] is uni-

formly bounded, that, ∀g ∈ G ′,
√∑G′

g=1 NCCSe
g(G′)

NgN
0
g /NCCSe

g(G′)
/
(∑G′

g=1 NgN
0
g /NCCSe

g(G′)

)
→

0, and that: σ2
e

∑G′

g=1NCCSe
g(G′)

> 0 with σ2
e = Var(β̂FD−DiD,e), then: σ−1

e (β̂FD−DiD,e − τ e)
d−→

N (0, 1).

Proof of Proposition 4. One has:

β̂FD−DiD,e − τ e =
G′∑
g=1

ξg

with ξg =
∑

i:(i,t)∈Ω vi,tϵi,t, E[ξg|D] = 0, Var(ξg|D) = (
∑

i:(i,t)∈Ω vi,tϵi,t)
2. Write p = 2 + κ

and let q be the solution to 1/p + 1/q = 1 (so 1 < q < 2 < p). Using Hölder’s inequality,

E[|ϵi,t|p|D] ≤ C and p/q + 1 = p, one gets:

E[|ξg|2+κ|D] ≤

 ∑
t:(i,t)∈Ω

|vi,t|

p

C
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Then:

G′∑
g=1

E[|ξg|2+κ|D]

(
G′∑
g=1

NCCSe
g(G′)

)(2+κ)/2

≤
G′∑
g=1

√√√√ G′∑
g=1

NCCSe
g(G′)

∑
i:(i,t)∈Ω

|vi,t|

2+κ

C

Moreover:√√√√ G′∑
g=1

NCCSe
g(G′)

∑
i:(i,t)∈Ω

|vi,t| =

√√√√ G′∑
g=1

NCCSe
g(G′)

 ∑
i:(i,t)∈Ω,∆De

i,t=0

|vi,t|+
∑

i:(i,t)∈Ω,∆De
i,t=1

|vi,t|


= 2

√√√√ G′∑
g=1

NCCSe
g(G′)

Ngωg

= 2

√∑G′

g=1 NCCSe
g(G′)

NgN
0
g /NCCSe

g(G′)∑G′

g=1NgN0
g /NCCSe

g(G′)

Since, by assumption, ∀g ∈ G ′,
√∑G′

g=1 NCCSe
g(G′)

NgN
0
g /NCCSe

g(G′)
/
(∑G′

g=1NgN
0
g /NCCSe

g(G′)

)
→

0, it follows that:
G′∑
g=1

E[|ξg|2+κ|D]

(
G′∑
g=1

NCCSe
g(G′)

)(2+κ)/2

→ 0

Moreover, the assumption σ2
e

∑G′

g=1 NCCSe
g(G′)

> 0 is equivalent to 1/
(
σ2
e

∑G′

g=1NCCSe
g(G′)

)
<

∞, which implies 1/
(
σ2+κ
e (

∑G′

g=1 NCCSe
g(G′)

)(2+κ)/2
)
< ∞. Hence:

∑G′

g=1E[|ξg|2+κ]

σ2+κ
e

=

∑G′

g=1E[|ξg|2+κ](
∑G′

g=1 NCCSe
g(G′)

)(2+κ)/2

σ2+κ
e

(∑G′

g=1NCCSe
g(G′)

)(2+κ)/2
→ 0

Then, by the Lyapunov central limit theorem: σ−1
e (β̂FD−DiD,e−τ e)

d−→ N (0, 1), and the proof

of Proposition 2 is completed.
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