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Abstract—The deluge of new software services we are facing
is associated with an expansion of supporting infrastructures,
including networks and data centers, and a rapid renewal of end-
user devices. However, this surge is accompanied by significant
environmental impacts and encompassing factors, such as CO2e
emissions or the depletion of rare metals and minerals. Given
systems’ complexity and rapid evolution, the ICT domain still
struggles to understand its environmental impact and lacks
openly available data to facilitate such assessments. Indeed, to
the best of our knowledge, environmental impact assessments
of ICT services have to deal with high margins of errors,
which are insufficiently quantified and documented, yet wield
a significant influence on the final estimation outcome. This
paper, therefore, introduces an approach leveraging fuzzy logic
to model and propagate uncertainties from the reference impact
through the computations to the final results, encouraging their
consideration by stakeholders. Adhering to the established 3-tier
architecture used to conduct ICT services Life Cycle Assessments
(LCA), we outline how assumptions can be mapped to fuzzy
sets. We conclude with an illustrative example demonstrating
the propagation of uncertainties throughout the environmental
impact modeling process.

Index Terms—Data Quality Indicator, Fuzzy Logic, Life Cycle
Assessment, Life Cycle Inventory, Uncertainty

I. INTRODUCTION

Software services are a keystone of our society, serving a
wide range of purposes, from productivity to entertainment,
and from online shopping to controlling connected devices.
Due to their intangible nature, their environmental impact
could be dismissed, or reduced to their share of power usage
on end-user devices. Nonetheless, such a limited assessment
methodology may conceal a large part of their impacts [1].
Indeed, modern software executed on end-user devices de-
pends on network connectivity and interacts with multiple
servers hosted in data centers across the world. Consequently,
the environmental impact of such infrastructures must also
be accounted for when assessing the environmental impact
of software.

Furthermore, an exhaustive assessment of software impacts
must account for the complete life cycle of the hardware
entities involved in its usage. Indeed, as devices have a limited
lifespan, a share of the impact of the device manufacturing
impact can be imputed to the software under review. This is
particularly relevant for battery-powered devices, as the power
usage of software directly affects the lifespan of their battery.

In particular, 37% of users declare that they did not attempt to
repair their device when a failure occurred, including battery
failures [2]. In such situation, the whole device would be
replaced instead of the battery, further increasing environmen-
tal impacts. This imputation of manufacturing impacts on the
usage extends to network and back-end infrastructures.

Assessing the impacts stemming from the usage and man-
ufacturing of end-user devices, network, and back-end infras-
tructures, and subsequently allocating them to a given software
remains a challenging endeavor. These impacts can only be
estimated and thus not empirically validated, and the existing
estimations in the state-of-the-art can vary significantly. Life
Cycle Assessment (LCA) of ICT services heavily rely on
such estimations, coupled with a set of hypotheses regarding
the usage of software and impacts of underlying infrastruc-
tures. Consequently, the outcomes of such analyses represent
broad estimates associated with high uncertainty, potentially
overlooking the assessment of this uncertainty. Therefore, we
believe that there is a need for a more systematic uncertainty
management method in ICT services environmental LCA.
This paper thus investigates novel approaches to estimate the
impact of such services while systematically accounting for
uncertainty.

RQ1: How to manage the uncertainty caused by diver-
sity in sources of secondary data? LCAs depends on Life
Cycle Inventory (LCI) databases as sources of secondary data,
housing reference environmental impact factors for diverse re-
source types. In the rapidly evolving ICT sector, they are often
unavailable, necessitating substitutions. Furthermore, multiple
sources have to be combined for ICT services, which have
various levels of quality and may diverge in their estimations.
Therefore, there is a need for an uncertainty management
method accounting for variations in estimations and their
respective quality.

RQ2: How to allocate devices and infrastructure life
cycle impacts to a software functional unit, while tracking
and propagating the uncertainty of modeling hypotheses?
Beyond tracking the energy consumed by software from the
perspective of end-user’s device, we aim to capture the broader
impact of a functional unit implemented by a given software.
We, therefore, need an appropriate methodology to compute
resulting end-to-end impacts by considering the uncertainty
introduced by sources of secondary data and modeling hy-



potheses.
In the remainder of this paper, Section II introduces the

related work. Section III presents a solution to the management
of secondary data quality and uncertainty, and Section IV
introduces a novel impact estimation methodology to assesses
the environmental impact of a software functional unit, relying
on this quality and uncertainty management. Section V is
an application of the proposed hypothesis on a use-case.
Section VI discusses this approach and its limitations, and
Section VII concludes this paper.

II. RELATED WORK

Life Cycle Assessment (LCA) is a method defined in
ISO 14040 [3] and 14044 [4] to assess the potential environ-
mental impacts of a product or service over its whole life
cycle—i.e., from raw material acquisition to waste manage-
ment via production and use phases. By using a systematic
overview and perspective, LCA helps in identifying the shift-
ing of a potential environmental burden between life cycle
stages or individual processes [5]. All analyses conducted in
an LCA are performed for a specific functional unit, which is a
quantitative measure of the functions provided by the product
or service [4], and allows for comparing systems sharing the
same functional unit from an environmental perspective.

To complement the ISO 14040 [3] and 14044 [4] for the
ICT sector, the ITU L.1410 [6] recommendation proposes
a Methodology for environmental life cycle assessments of
information and communication technology goods, networks
and services. In the specific context of ICT services, a 3-
tier architecture can be considered—encompassing end-user
devices, networks, and data centers. Using a life cycle ap-
proach is crucial for ICT goods and services, as their embodied
impact can be significantly larger than their usage impact [7].
However, it is important to note that, while an LCA will
disclose direct environmental effects, it does not capture the
broader role of ICT as an enabling technology [8].

Estimating and collecting accurate data has proven to be a
challenging task within the ICT sector, due to its vast size,
complexity, and variability [9], [10], [11], [12]. Consequently,
the ecosystem lacks data regarding the environmental impact
of the resources it consumes [13]. Moreover LCI databases—
which serve as reference data for conducting LCA—are mostly
closed-source, hindering the objective of transparent and re-
producible research [14]. When openly available, scope and
system boundaries are not always explicitly stated and similar
to other studies [9], which hinders meaningful comparisons.

In such a rapidly evolving sector, environmental footprint
estimations frequently rely on old and outdated reference
data from LCI databases, leading to high inaccuracies within
the results [15]. As demonstrated by Hischier et al. [16],
assumptions made at the data inventory level significantly
influence the outcomes. Indeed, the use of secondary data
can pose a risk of derived errors, especially when considering
generic data instead of specific one [17].

Arushanyan et al. [18] notably emphasize that rapid tech-
nological development constitutes a substantial source of

variability in LCA results, affecting all ICT products and
services life cycle. They identify another source of variability
arising from the assumptions and hypotheses made during the
modeling process. Furthermore, the authors consider one of
the key challenges in ICT-related LCA as the documentation
of these assumptions and modeling hypotheses.

While ICT-related LCA is associated with high levels of un-
certainties, the uncertainty of results is rarely quantified [15],
[19]. To tackle these limitations, Hischier et al. [16] proposes
a systematic sensitivity analysis as a solution. Unfortunately,
such extensive analyses are time-consuming due to the large
data flows to handle.

The handling of uncertainties in LCAs is not limited to
the ICT sector. Indeed, the result interpretation phase in LCA
is particularly critical and can become subjective and time-
consuming. One common approach to propagate uncertainties
in LCA is the Monte Carlo method [20]. However, it requires
a high number of simulations, resulting in a high calculation
time [21]. To improve the clarity of interpretation, fuzzy sets
have been proposed and adopted as means to quantify and
propagate imprecision and uncertainties within various LCA
steps [22], [23], [24]. However, despite being promising, fuzzy
logic is not yet implemented in LCA software [21]. To the best
of our knowledge, such methodology has not yet been used
within ICT-related LCAs, a field involving particularly high
uncertainties.

III. QUALITY & UNCERTAINTY MANAGEMENT

In this paper, we leverage data quality indicators (DQI) to
assess the relevance of its sources of secondary data and fuzzy
logic to capture and propagate uncertainties within ICT-related
LCA. This section overviews DQI and fuzzy logic.

A. Defining Data Quality Indicators

As stated in Section II, ICT-related environmental assess-
ments encounter significant inaccuracies stemming from refer-
ence data sources. Such sources, referred to as LCI secondary
data in LCA terminology, may report diverging estimates for
the same variable and do not have a consistent quality. A
large variety of sources representing the state of the art must
be accounted for, but their relative weight within the results
should be different depending on their quality. To quantify this
quality, each LCI source is assessed with a DQI, following the
method introduced by Weidema et al. [25]. Specifically, the
DQI of a source covers 3 key aspects: reliability, temporality,
and technological correlation. The Technological correlation
highlights the similarity between the variable assessed by the
source and the variable to model. For instance, when assessing
the efficiency of a smartphone charger, studies regarding
smartphone chargers have a higher technological correlation
than studies focusing on laptop chargers. The temporality
assesses the obsolescence of the source: older sources are
deemed less representative than newer ones. For instance, a
source published within the last 3 years is considered very
recent, while a source published over 9 years ago is considered
highly obsolete. Such obsolescence is caused by both the



TABLE I
THE CRITERIA TO ASSESS THE DQI OF A SOURCE

Score Correlation Temporality Reliability
1 Not representative of >10 years Expert opinion

the regarded variable
2 Representative <10 years Peer-reviewed

of a similar variable expert opinion
3 Representative of the <6 years Manufacturer data

regarded variable
4 Highly representative <3 years Peer-review

of the regarded variable manufacturer data

improvements of estimation methods, as well as changes in
the manufacturing and production methods over time. Finally,
the reliability reflects the level of confidence placed in the
provenance of the source. A peer-reviewed source authored
by the device manufacturer is assigned the highest reliability,
while a non-peer-reviewed expert opinion has the lowest one.

In contrast to Weidema et al. [25], geographical correlation
is not accounted for, as most of the ICT hardware is pro-
duced within a limited geographical area. The completeness
parameter is also omitted, as its purpose is to account for
the limitations of sampling methods, which is not relevant
in the LCA of ICT devices. Indeed, LCA focuses on a
given subject, and results are not expected to vary between
instances of this subject. Moreover, our DQI scores rely on 4
possible values per indicator, instead of the 5 provided by [25].
Indeed, some levels of quality do not apply to ICT assessment
in technological correlation and reliability, while temporality
criterion is made stricter to fit such a scale. Finally, the scale
is reverted—a higher DQI indicates a higher quality—so that
DQIs can be used as coefficients when aggregating a collection
of sources. Hence, each category is assessed on a scale ranging
from 1 to 4, and the overall data source DQI is computed
as the sum of these individual scores. Table I maps the
possible values for each category to the corresponding quality
indicator. The total DQI of a source can thus vary between
3 and 12. For instance, a source that is representative of the
variable, published by the manufacturer and peer-reviewed, but
published more than 10 years ago gives a total DQI of 9.

B. Propagating Impact Factors Uncertainty

Different secondary sources can yield significantly varying
results for the same device. For instance, manufacturers reports
embodied impact of a smartphone such as 33, 57, or 94
kgCO2e [26], [27], [28]. Such variations can be caused by
divergences in the manufacturing process, or in the LCA
methodology. They can significantly influence the final esti-
mated impacts, and should be propagated within all compu-
tations to be exposed in the final estimation. While multiple
sources should be considered to capture a more comprehensive
reference impact, averaging these values can lead to errors.
Extreme values are not inherently incorrect and would not be
captured by an average value. Thus, each source should be
weighted by their respective DQI, presented in Section III-A,
as they do not have consistent quality.

To address this constraint, we build on fuzzy logic, fol-
lowing the methodology introduced in [29]. In fuzzy logic,
variables are not defined by a strict value in R, but rather by
a function µs : R → 0..1 capturing the degree of membership
of a value with a given fuzzy set s. A membership degree of
1 indicates the certainty that a value of x is possible, whereas
a membership degree of 0 reflects that the fuzzy sets does not
cover this value. Given this definition, two crisp sets are of
interest: the core capture the range of values with the highest
possibility of being correct, while the support represents the
values with a non-null membership degree.

A fuzzy number is a special case of a fuzzy set that is con-
vex, normalized, and defined in R as a piecewise continuous
membership function. As such, they act as fuzzy intervals. This
paper only considers Trapezoidal Fuzzy Numbers (TFN) as
they allow for a compromise between the complexity and pre-
cision of calculations. For fuzzy numbers with a membership
function defined as a trapezoidal shape, the support is wider
than the core and both are crisp intervals. As such, the core is
the interval [mL,mR], and the support ranges in [L,R], hence
resulting in the TFN fuzzy set < L,mL,mR, R >. Then,
Weckenmann et al. computes the TFN for any set of sampled
points with Equations 1–4, with x representing the weighted
average of the sampled variable, and Cv the coefficient of
variation [29] .

mL =
x

1 + (0.5× Cv)
(1)

mR = x× (1 + (0.5× Cv)) (2)

L = mL − x× (
1

1 + (0.5× Cv)
− 1

1 + (2.5× Cv)
) (3)

R = mR − (x× 2× Cv) (4)

To illustrate such intervals, Figure 1 depicts the TFN
capturing the embodied impact of a smartphone. To account
for quality variations in secondary sources, the main vertical
axis is the DQI of each estimated impact in the aggregated
secondary sources. Then, weighted secondary sources are con-
verted to a TFN, visible is on the secondary vertical axis, with
a support ranging from 31 to 102 kgCO2e, and a core between
48 and 65 kgCO2e. Therefore, x and Cv account for both
variations in sources regarding a variable, but also variations
in quality. While various data distributions may be reported
in practice, due to the lack of samples available, we assume
that any variable we consider is expected to follow a normal
distribution over a large enough set of secondary sources. This
assumption reflects the convergence of estimation and assess
the relevance of TFN as an appropriate structure for capturing
uncertainty of estimations at large.

Fuzzy logic supports arithmetic operations between fuzzy
sets—i.e., additions, subtractions, divisions, and multiplica-
tions. For instance, the sum of the sets [a1, a2, a3, a4] and
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as a TFN inferred from 24 secondary sources weighted by their DQI.

[b1, b2, b3, b4] is [a1 + b1, a2 + b2, a3 + b3, a4 + b4]. Subtrac-
tions and multiplications apply similarly, while in divisions,
the divisor is reverted—i.e., [a1/b4, a2/b3, a3/b2, a4/b1] [30].
Furthermore, any number x ∈ R can be converted to the fuzzy
set [x, x, x, x] to mix real numbers and fuzzy sets. Thus, the
result of an equation containing fuzzy sets is a fuzzy set [31].

Since a fuzzy set contains both the value and the uncertainty
of any hypothesis, arithmetic operations propagate uncertainty
throughout all steps. The results convey all the possible
estimations and uncertainties and, therefore, environmental
assessments performed with fuzzy logic do not require to
define scenarios, such as best or worst-case scenarios, or time-
costly simulations that need additional hypotheses.

RQ1: The quality of bibliographic sources can be as-
sessed using DQI dimensions to score their reliabil-
ity, temporality, and technological correlation. Multiple
sources are then aggregated with fuzzy logic to cap-
ture more representative estimates of the state-of-the-art,
where each variable is represented as a fuzzy set account-
ing for variations in sources and their respective quality.
These fuzzy sets can be further used to systematically
propagate uncertainty along all computation steps.

IV. UNCERTAINTY-AWARE IMPACT MODELS

Following LCA methodology to estimate the environmental
impact of software services, such as mobile apps and websites,
the analysis is carried out for a defined functional unit [4].
The functional unit provides a reference to which inputs (data
collected) and outputs (environmental impacts) are related or
normalized [6]. Consequently, data collection involves a realis-
tic user journey—i.e., a sequence of actions on the application
capturing the usage patterns on the reviewed functional unit.
To more accurately capture uncertainties in properties beyond
software measures, such as intrinsic network impacts, each of
such properties is represented as a fuzzy set constructed, either
from estimations drawn from a collection of sources, such
as industrial reports, scientific publications, LCI databases, or

from measured energy and data usage. Ultimately, the impact
assessment phase—where inventory data is translated into an
environmental impact [4]—employs the reference data source
fuzzy sets and DQI detailed in Section III.

In the following, we adopt a 3-tier architecture—covering
end-user devices, networks, and back-ends (cf. Section II)—to
estimate the environmental footprint of ICT services. For each
of these tiers, hypotheses and their associated uncertainties are
proposed to conduct estimations without requiring extensive
knowledge of their technical layout. For a given functional unit
capturing a user journey, the analysis covers the application
usage on the user’s device, the network usage resulting from
data transfers during the user journey, and the usage of remote
servers to process and store such data. The impacts of these
3 layers are estimated from 3 separate components, and the
total impact generated by the user journey under review is thus
computed as their sum.

As highlighted in Section II, the embodied impacts of ICT
devices—arising from manufacturing, raw materials extrac-
tion, transport, end of life—can surpass their usage impacts.
Consequently, both the embodied and usage impacts are ac-
counted for. The embodied impact is depreciated over the
lifespan and usage of the related hardware components, for
example as the total time spent using a device or the number
of requests handled by network equipment. We describe this
depreciation process per component.

The LCA methodology requires to consider multiple impact
categories to build a comprehensive analysis of the environ-
mental impacts associated with an ICT service. A description
of those proposed by Product Environmental Footprint (PEF)
recommendation [32], along with their respective units, is
presented in Table II. It is important to note, as indicated
in Section II, that reference environmental impact data for
the rapidly evolving ICT sector remains scarce and is often
restricted to a single impact category, namely climate change
expressed in kg CO2e.

In the remainder of the paper environmental impacts are
expressed in an abstract unit, impact unit. To compute the
impact of a software service in a given category, impact unit
should be replaced by the effective unit associated to the
impact category under consideration.

The fuzzy set Fem represents the impact of the worldwide
electricity mix, in impact unit per joule. However, it is possible
to replace this default set with the electricity mix of a given
country, or subset of countries. Furthermore, the impact of
the electricity mix can vary across components to better
represent the geographic dispersion of the different tiers. For
instance, the end-user devices and network infrastructures may
rely on the worldwide electricity mix, while the back-end
infrastructures only uses the electricity mix of the country
where servers are hosted.

A. Modeling End-user Device Impacts

ICT services rely extensively on ICT end devices, which
can be powered either by batteries or electrical outlets. Con-



TABLE II
IMPACT CATEGORIES SUPPORTED BY OUR FRAMEWORK

PEF impact category Impact unit Domain
Photochemical ozone formation kg NMVOCe Human health
Particulate matter disease incidence Human health (respiratory issues)
Ionizing radiation kBq U235e Human health (cancer)
Climate change kg CO2e Climate change
Acidification mol H+e Water and soil acidification
Mineral & metals resource use kg Sbe Abiotic resources depletion
Fossils resource use MJ Abiotic resources depletion
Freshwater ecotoxicity CTUe Ecosystems

TABLE III
INPUT VARIABLES OF THE OUTLET DEVICE MODEL, PER TYPE OF DEVICE

Variables Unit
Embodied impact (Idevicee ) Impact unit
Lifespan (L) Seconds
Daily usage time (Ud) Hours
User journey duration (T ) Seconds
Average power (P ) Watts

sequently, the impact of such devices is computed through
distinct hypotheses and computation formulas.

1) Outlet-powered devices: The embodied impact of outlet-
powered devices is distributed over the days of their life
expectancy. Consequently, the more a device is used daily, the
lower its impact for each hour of usage will be. Usage impact
is computed based on the power consumed by the device
during the user journey, wrt. the location-based electricity mix.

Table III presents the variables needed to estimate the
impacts of outlet-powered devices. Each variable is adapted
to represent the specific type of device under study, such as
desktop PCs, Consoles, TVs, or set-up boxes. Embodied im-
pact (Idevicee ) encompasses the impacts caused by raw material
extraction, product manufacturing, transportation, and disposal
or reuse. Life expectancy (L) represents the number of years
of usage, and daily usage time (Ud) represents the number
of hours the device is used daily, while user journey duration
(T ) corresponds to the time required to perform the functional
unit. Power (P ) is the average power usage of the device.
Finally, the electricity-mix impact factor (Fem) represents the
environmental impacts associated with energy production and
transport. An impact factor Fx gives an environmental impact
per functional unit, such as impact unit/J for Fem.

All such variables are fuzzy sets to capture and propagate
their associated uncertainty, and can be refined by experts
based on their system knowledge. When an hypothesis is
refined, its fuzzy set can ultimately be replaced with a single
value. For instance, a company using the software under
review on company-owned devices can use precise values for
life expectancy, daily usage time, and usage time.

The impact induced by a user journey on an outlet-powered
device is computed from a share of its embodied impact
Idevicee imputed to the user journey, and the impact of the
device consumption during this journey.

Then, Equation 5 models the device’s embodied impact

imputed to software F device
e , expressed in impact unit per

second of usage. This factor is estimated as the depreciation
of the embodied impact Idevicee over the life expectancy of the
device L, at the rate of the device’s daily usage time Ud.

The software usage impact factor per second F device
u is

computed in Equation 6 by multiplying the electricity-mix
impact factor Fem per second by P the average power usage
of the device.

The total impact of the device Idevice is finally estimated
in Equation 7 as the sum of the embodied and usage impacts
attributed to the application for the duration of the user journey
T . To better represent the average user journey, the total impact
is the sum of the total impacts of each type of outlet-powered
device, prorata their respective share of the audience S. For
instance, a share of the audience may watch a streamed video
from a desktop, while others watch it from a TV.

F device
e =

Idevicee × 24

L× Ud
(5)

F device
u = Fem × P (6)

Idevice =
∑

d∈devices

(F device
e(d) + F device

u(d) )× T × S(d) (7)

2) Battery-powered devices: Unlike outlet-powered de-
vices, battery-powered devices, such as smartphones, tablets,
or laptops have a lifespan closely tied to their usage. Indeed
charging a battery diminishes its capacity, implying that a
battery can only undergo a limited number of charge cycles
before its capacity becomes unusable, mandating users to
replace either the battery or the entire device. Therefore, our
hypothesis assumes that the greater the software drains the
battery, the higher its environmental impact is. The embodied
impact of the device is thus allocated across the total energy
capacity that the device can hold over its lifespan.

Table IV introduces the variables to model battery-powered
devices. This hypothesis covers different types of devices, such
as smartphones, tablets, and laptops, with different properties.
Thus, all such variables are only applicable to a given type
of device and must be duplicated according to the number
of device types to consider. For instance, the average battery
capacity of a smartphone Bsmartphone

cap is lower than the aver-
age battery capacity of a tablet Btablet

cap . The battery embodied
impact Ibat.e captures the various impacts of the battery (incl.
manufacture, transport), and is also included in the device



TABLE IV
INPUT VARIABLES OF THE BATTERY DEVICE MODEL PER TYPE OF DEVICE

Variables unit
Measured device discharge (Ed) Amp-hour
Device embodied impact (battery included) (Idevicee ) Impact unit
Battery embodied impact (Ibat.e ) Impact unit
Maximum battery cycles (Cmax) Cycles
Battery Voltage (V ) Volts
Battery capacity (Bcap) Amp-hour
Charger efficiency (C) %
Battery-to-device replacement ratio (R) %
Average batteries replacements (R) /
Share of users (S) %

embodied impact Ie. The maximum number of battery cycles
Cmax counts the maximum complete charges that the battery
can sustain while remaining usable. The battery capacity Bcap

and battery voltage V are used to quantify the drainage of
the battery, wrt. to battery usage Em, which is measured in
a controlled environment. Meanwhile, the charger efficiency
C is used to assess the actual energy usage of the device.
Then, the battery-to-device replacement ratio R quantifies how
frequently a user opts to replace the battery instead of the
whole device when the maximum number of cycles Cmax is
reached. R is the average number of replacements that a user
is willing to perform in that situation.

The primary assumption of this hypothesis is that the battery
of the device has a finite number of cycles, and therefore
a limited lifespan. When this lifespan is reached, the user
will either replace the battery, with the probability R, or
the whole device, with the probability of 1 − R. Thus, the
embodied impact of a given type of device (including its
battery) Ibat.e is depreciated over the total quantity of energy
that the battery can hold in its lifespan, Cmax × Bcap, as
presented in Equation 8. However, when the battery is replaced
(R), its embodied impact is fully depreciated over its lifespan,
but only a share of the embodied impact of the remainder of
the device—i.e., Idevicee − Ibat.e , is depreciated.

F bat.
e =

R× (Ibat.e +
Idevice
e −Ibat.

e

1+R
) + (1−R)× Idevicee

Cmax ×Bcap
(8)

For instance, if the user replaces its battery once, the device
will feature 2 batteries over its lifespan, so only half of the
embodied impact of the device is depreciated over the lifespan
of each battery. For users replacing the whole device, the
embodied impact of Idevicee is depreciated on this total quantity
of energy. However, for users only replacing their battery, the
embodied impact of the battery Ibat.e is depreciated over its
capacity, but the embodied impact of the remainder of the
device, Idevicee − Ibat.e , is only depreciated over the number of
batteries it will contain—i.e., R+1 with R being the number
of replacements.

The usage impact factor F bat.
u of a given device type is

estimated using V the voltage of the battery and the electricity-
mix impact Fem, while accounting for C the efficiency of the

TABLE V
INPUT VARIABLES OF THE NETWORK MODEL, PER NETWORK TYPE

Variables Unit
Device data transfer (D) GB
Network type share (S) %
Access network - Usage impact (Faccess

u ) Wh/GB
Access network - Embodied impact (Faccess

e ) Impact unit/GB
Core network – Usage impact (F core

u ) Wh/GB
Core network – Embodied impact (F core

e ) Impact unit/GB
Network average bandwidth usage (Bnet) GB/s
CPE – Average power usage (P cpe) Watts
CPE – Embodied impact (Icpee ) Impact unit
CPE - Daily usage (Ucpe) Seconds

charger, as reported in Equation 9.

F bat.
u =

V × Fem

C
(9)

Both Equation 8 and Equation 9 compute an impact factor
per unit of electric charge. Thus, the sum of F bat.

e and F bat.
u

is the total impact factor per unit of energy, which can then
be multiplied by the measured electric discharge of the user
journey Ed, as modelled in Equation 10. The total impact of
the functional unit on end-user devices, Idevice, is thus the
sum of the total impact of each type d of battery-powered
device prorata S(d) their respective share of the audience.

Idevice =
∑

d∈devices

Ed × (F bat.
e(d) + F bat.

u(d))× S(d) (10)

B. Modeling Network Layers Impacts

The network tier is composed of heterogeneous layers. The
core network represents the internal network of the network
service provider, while the access network is the infrastructure
allowing end-users to reach this network. In addition, the
Local Area Network (LAN) of the user can be accounted for.
Notably, in fiber or xDSL networks, the user is equipped with
Customer-Premises Equipment (CPE), but not in GSM net-
works. To accurately model these different technical layouts,
the impact of the core and access networks, the CPE and the
LAN itself, their respective impact are computed separately.

To better capture an average user journey, a combination of
various types of network connections (ADSL, fiber, mobile. . . )
is considered. In contrast to end-user devices, the network
impact is not estimated wrt. a power usage. The geographic
distribution of network components makes it challenging to
precisely assess the overall consumption of a given request.
Such impacts are thus estimated as an impact per unit of
transmitted data.

1) Core & Access Networks: Embodied impacts are sepa-
rately accounted for access F access

e and core networks F core
e ,

and usage impacts with F access
u and F core

u , respectively. The
combined embodied impact for both core and access networks
F can
e , as impact unit per unit of data transmitted, is computed

in Equation 11. Similarly, the total usage impact for both
networks F can

e is computed as the sum of energy consumption



TABLE VI
INPUT VARIABLES PER LAN EQUIPMENT

Variables Unit
Access point bandwidth (Bnet) GB/s
Average power usage (P ) W
LAN bandwidth (B) GB/s
Embodied impact (Ilane ) Impact unit
Lifespan (L) Seconds

per data transmitted, converted into the relevant impact factor
using the electricity mix emission Fem, in Equation 12.

Finally in Equation 13 the resulting embodied and usage
impact per data transmitted for a given network n is multiplied
by the amount of data transmitted by the software D, to obtain
Ican the total impact of the core and access network.

F can
e = F core

e + F access
e (11)

F can
u = (F core

u + F access
u )× Fem (12)

Ican = (F can
e + F can

u )×D (13)

2) CPE: Wired connections—i.e., fiber or xDSL—rely on
Customer-Premise Equipment (CPE), such as a modem or
optical network terminal. In contrast to the core and access
networks, the power usage of the CPE can be empirically
assessed. As such devices are outlet-powered, the impact of
a CPE, denoted as Icpe, can be estimated using Equation 5,
Equation 6 and Equation 7, where Idevicee , Ud, and P are
replaced by Icpee , Ucpe, and P cpe, respectively.

3) LAN: Finally, the LAN of the user is modeled as a set
of equipment including firewalls, switches, and WiFi access
points. As for the CPE, the LAN impacts are quantified wrt.
a usage time. The associated variables are listed in Table VI.

The embodied impact of the devices is depreciated over their
average lifespan, prorata their usage ratio in Equation 14, by
providing a depreciation in impact factor per unit of time.
Similarly, the sum of energy consumptions of all the LAN
components is converted into impact factor per unit of time
F lan
u by reusing Equation 6. The resulting embodied and usage

impacts per unit of time are then summed and multiplied by
the usage duration—i.e., the transmitted data D divided by the
network speed—in Equation 15.

F lan
e =

I lane ×Bnet

L×B
(14)

I lan =
D

Bnet
×

∑
q∈eq

(F lan
e(q) + F lan

u(q)) (15)

4) Total: The total impact of the network In is then
computed in Equation 16 as the sum of impacts of the core
and access networks, the CPE, and the LAN for all network
types, prorata S(n) the share of users behind such network.
For network without CPE, Icpen is 0, while software only used
within a company may have a network mix of 100% fiber,
with CPE and LAN. Contrarily, software used by users on
their own device use a network mix, such as 50% 5G, no
CPE and no LAN, and 50% fiber, with CPE and no LAN.

TABLE VII
INPUT VARIABLES OF THE BACK-END MODEL

Variables Unit
Request count (Nr) /
Server max requests per second (Nrps) /
Server embodied impact (Iservere ) Impact unit
Server lifespan (L) Seconds
Server average usage (load) (U ) / (%)
Average power usage (P ) Watts
Power usage efficiency (PUE) /

Inetwork =
∑

n∈network

(Icann + Icpen + I lann )× S(n) (16)

C. Modeling Back-end Infrastructures Impacts

The back-end tier estimates the environmental impact of
servers wrt. to the requests executed by the software during a
given user journey.
Iservere represents the embodied impact of a server, which

is deprecated over the maximum number of requests that this
server will handle throughout its lifetime L × Nrps × U , to
obtain an embodied impact unit per request handled, F backend

e .
To assess the usage impact of servers, the usage impact

factor per request F backend
u is computed in Equation 18. It is

the total impact per second P × PUE × Fem of the server,
divided by the average number of requests handled every
second Nrps × U .

Finally, to estimate the server’s total impact, the embodied
and usage impacts per request are multiplied by the number of
requests performed during the user journey Nr in Equation 19.

F backend
e =

Iservere

L×Nrps × U
(17)

F backend
u =

P × PUE × Fem

Nrps × U
(18)

Ibackend = (F backend
e + F backend

u )×Nr (19)

D. Combining Impact Models

Finally, the total impact of a single execution of the user
journey under review, It, is computed in Equation 20 as the
sum of the devices, network, and back-end impacts induced
by the user journey—i.e., the functional unit.

I = Idevice + Inetwork + Ibackend (20)

To be compliant with ICT services functional unit [3], [6],
this value representing a single reference scenario should be
multiplied by the total number of executions by all users over
a period of time.

V. MODEL APPLICATION

This section reports on a practical application of the models
introduced in Section IV, aiming to illustrate the results
derived and the impact of fuzzy logic on the outcomes. Then,
the section explores some potential strategies to reduce the
observed uncertainty.



TABLE VIII
SELECTED HYPOTHESES TO APPLY THE APPROACH

Variables Unit Fuzzy set Central Uncertainty
L mL mR R value (%)

Input
Measured discharge (Em) Ah 0.0267 0.0267 0.0267 0.0267 0.0267 0
Device data transfer (D) GB 0.0031 0.0031 0.0031 0.0031 0.0031 0
Measured request count (Nrq) / 200 200 200 200 200 0
Electricity-mix impact (Iem) gCO2e/J 0.0001 0.0002 0.0003 0,0005 0.0002 ±24.11

Hypotheses - End-user device
Device & battery emb. impact (Idevicee ) KgCO2e 31.41 48.75 65.62 101.84 57.18 ±14.74
Battery emb. impact (Ibatterye ) KgCO2e 0.72 1.17 1.63 2.62 1.40 ±16.47
Maximum battery cycles (Cmax) Cycles 328.72 500.07 661.16 1,005.79 580.61 ±13.87
Battery Voltage (V ) V 3.79 3.81 3.82 3.84 3.81 ±0.12
Battery capacity (Bcap) Ah 1.73 2.62 3.45 5.23 3.03 ±13.71
Charger efficiency (C) / (%) 0.59 0.68 0.75 0.87 0.72 ±4.13
Battery/device rep. ratio (R) / (%) 0.09 0.17 0.29 0.55 0.23 ±25.41
Average batteries replacements (R) / 0.81 1.29 1.77 2.82 1.53 ±15.79
Share of users (S) / 1 1 1 1 1 0

Hypotheses - Network
Access Network usage (Faccess

u ) Wh/GB 34.98 94.93 290.65 788.84 192.79 ±50.76
Access Network emb. (Faccess

e ) kgCO2e/GB 0.012 0.018 0.030 0.035 0.023 ±25.00
Core Network usage (F core

u ) Wh/GB 2.69 7.53 24.91 69.75 16.22 ±53.56
Core Network emb. (F core

e ) kgCO2e/GB 0.0004 0.0009 0.0021 0.0050 0.0010 ±39.09
Hypotheses - Back-end

Core requests per second (max) (Nrps) / 292 320 499 518 409 ±21.85
Server emb. impact (Iservere ) KgCO2e 427.06 1,018.65 2,383.90 5,686.25 1,701.28 ±40.12
Server lifespan (L) Years 9.2E7 1.2E8 1.3E8 1.7E8 1.2E8 ±6.85
Server average usage (load) (U ) / (%) 1 1 1 1 1 0
Average power (P ) Watts 165.49 282.68 417.38 712.94 350.03 ±19.24
Power usage efficiency (PUE) / 1.30 1.62 1.84 2.30 1.73 ±6.41

A. Application of the Approach

To illustrate our approach, we introduce an example appli-
cation scenario. This user journey is exclusively performed on
smartphones, using a 5G connection and, therefore, not relying
on CPE or LAN equipment. For a specified user journey of
this mobile app, 26.7 mAh was consumed by the device and
3.1 MB of data was conveyed by 200 network requests. This
user journey is considered worldwide and relies on the global
electricity-mix impact factor. The assessment focuses solely
on the CO2e emissions associated with this user journey.

Table VIII introduces the values used for this specific
scenario, including the measured data used as inputs, as well
as the hypothesis regarding the values of each variable. These
values are provided for illustrative purposes and should not
be considered as the state of the art, as they should be
tailored for each software service context. To illustrate their
respective weight on the total uncertainty, this table also
contains the central value and uncertainty of each hypothesis.
This uncertainty is estimated with the core method [33], using
the average between mL and mR as the central value, and the
difference between this central value and mL and mR as the
symmetric margin of uncertainty. The results are presented as
the before scope in Figure 2, while the after one corresponds
to an uncertainty reduction is discussed later.

The estimated impact of the end-user device is composed
of 0.8 gCO2e of embodied impact and 0.1 gCO2e of usage
impact. In this specific use case, the imputed embodied impact
is an order of magnitude larger than the usage impact. Thus,
the impact of this application is caused by the reduction of the

lifespan of the device, rather than by the production of energy.

This trend is reverted for network and back-end infras-
tructures. Indeed, such infrastructures are largely mutualised,
hence enforcing a dilution of their respective embodied im-
pacts. Therefore, their imputed embodied impact can be lim-
ited compared to their usage, depending on the electricity
mix. Specifically in our use case, the impact of the network
is composed of 0.1 gCO2e of imputed embodied impact and
0.5 gCO2e of usage impact. The impact of the server is
composed of less than 0.01 gCO2e of imputed embodied
impact and 0.7 gCO2e of usage impact.

The total impact for a user journey is the sum of the impacts
of the average end-user’s device, network, and back-end. In
particular, the device, network, and back-end represent 57%,
38%, and 5% of the total impact, respectively. This impact
is composed of 55% of imputed embodied impact. Thus,
our recommendation to reduce the impacts of such a mobile
application would be to focus on optimizing its power usage,
affecting the lifespan of the device, rather than its data usage,
affecting network and back-end layers.

The impact assessment results are strongly correlated to the
measured power and data usage, as well as the electricity mix.
For instance, reducing the power usage and increasing the
data usage of the mobile application would shift the impacts
toward network and back-end layers. Similarly, altering the
electricity mix would mostly affect the allocation between
imputed embodied impacts and usage impacts.
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Fig. 2. Estimated impacts of an example user journey, before and after uncertainty reduction (gCO2e).

B. Reducing Uncertainty

Fuzzy logic allows for propagating uncertainty at all calcu-
lation steps. Due to the high uncertainty caused by divergences
in sources and the high number of modeling hypotheses, the
uncertainty of the result is also high. However, such hypothe-
ses can be refined to better capture the user journey under
review. For instance, the estimated power usage of servers,
computed based on a collection of sources regarding a set of
servers, is represented as a fuzzy set. Such a fuzzy set can be
replaced by a fixed value, obtained through physical measures
or additional information regarding the specific servers used
by the application. The process of specifying variables allows
experts to significantly reduce the uncertainty of the result.

Some hypotheses are better candidates for reducing uncer-
tainty. For instance, the charger efficiency or battery capacity
of the battery component cannot be fixed for publicly available
software, as such hypotheses must remain representative of
the population of users. However, when the regarded applica-
tion is used on a fleet of company-maintained devices, such
hypotheses can be fixed to the specific deployed hardware.
Contrarily, the uncertainty of network impacts is particularly
challenging to reduce. Such infrastructures are inherently
largely mutualised and geographically scattered, affecting the
ability to provide exact values.

In the example user journey introduced above, only the
minimal amount of parameters are specified—i.e., the mea-
sured discharge, the amount of transferred data, and the request
count. To illustrate the effect of specifying additional variables,
hypotheses can be modified with more precise information
regarding the software characteristics. To demonstrate the
impact of such a process, the above-introduced use case can be
specified with the following data. End-user devices are owned
and provided to users by the company using the application.
A single model of device is issued, with a 4Ah and 3.8V
battery, delivered with a charger with an efficiency of 75%.
The company does not plan to replace the battery when failure
occurs. The application relies on a 400W server that can handle

500 requests per second, in a data center with a PUE of
1.4. These values replace the respective hypothesis and thus
reduce their respective uncertainty to 0. The results of these
hypotheses replacement by real values are available in the after
scope of Figure 2. The other hypotheses of this application
are the default variables introduced in Table VIII. While to
final result is not dramatically different, the uncertainty is
substantially reduced.

In particular, the uncertainty of the device impact is reduced
from ±36%, to ±27%. The uncertainty of the back-end layer
is reduced from ±62%, to ±26%. As a consequence, the
uncertainty of the total impact is reduced from ±47%, to
±42%. The remaining overall uncertainty is largely caused by
the uncertainty of the network layer, which can not be reduced
for the reasons introduced above.

RQ2: Following LCA methodology, data is collected and
normalized according to a functional unit. The accom-
plishment of this functional unit affects not only the
end-user device, but also the underlying networks and
back-ends, which are thus accounted for in the impact
assessment. However, data is not always accessible for all
three tiers of the software services architecture, implying
modeling hypotheses associated with a high level of
uncertainty. Particularly, the embodied impact of ICT
devices should be depreciated according to their usage,
which spans further uncertainties. For each of these
modeling hypotheses, the adoption of fuzzy logic en-
ables systematic tracking and propagation of uncertainties
throughout computation steps.

VI. DISCUSSION

From a scientific perspective, the LCA method lacks empiri-
cal validation regarding the overall result [34]. Therefore, even
if using fuzzy logic in ICT services LCA offers a systematic
approach to evaluate and propagate uncertainties, the outcome



keeps lacking empirical validation. A comparison with the
standard Monte Carlo method would not be relevant, as fuzzy
logic not only enables the propagation of uncertainty, but also
provides an aggregation method for secondary data sources.

Furthermore, it is also significantly influenced by the
secondary-origin data used to build a set of hypotheses regard-
ing the environmental impact of considered functional units.
Ultimately, the quality of estimations is largely constrained
by the quality of such sources and the hypothesis derived
from them. In particular, environmental impact data sources
are still scarce (cf. Section II), and certain impact categories
are almost not quantified at all. For instance, to the best of
our knowledge, very few sources address the environmental
impacts of network infrastructures in other categories than
climate change.

a) End-user devices: It is assumed that the lifespan of
battery-powered devices is solely determined by the lifespan
of their battery and that users replace their devices when the
battery becomes unusable. However, such a hypothesis may
overlook other factors influencing the decision to replace these
devices. Specifically, hardware and software obsolescence are
not accounted for. Battery-powered devices, such as older
smartphones, can be replaced due to slowness when executing
recent applications, outdated operating systems unsupported
by newer applications, or the availability of newer models in
the market.

Similarly, it is assumed that the lifespan of outlet-powered
devices is fixed and independent of their usage. As the
embodied impact of these devices is depreciated over their
daily usage, increasing usage reduces the impact per unit of
time. However, higher usage may also lead users to replace
their devices earlier, thus increasing this impact factor. Such
considerations are not modeled as they are particularly difficult
to detect and quantify. Due to these different hypotheses,
the modeling of battery-powered and outlet-powered devices
diverges. In low-impact electricity mixes, increasing the us-
age of battery-powered devices increases their total impact,
whereas increasing the usage of outlet-powered devices di-
minishes their total impact. Such divergences require specific
explanations when discussing the analysis outcomes.

b) Network: The network component relies on hypothe-
ses regarding the imputed embodied impact and usage impact
of such infrastructures. Such hypotheses are expressed as
energy or impact units per amount of data transmitted and
are drawn from the literature with no additional imputation
formula. Indeed, the network is considered as a black box.
The exact network topology of an average user is not rea-
sonably ascertainable, and thus such hypothesis can not be
specified. Thus, the uncertainty of network impacts can not
be reduced. The total uncertainty of the results remain high
after specifying hypotheses regarding end-user devices and
back-end infrastructures. Therefore, additional research on the
specific impact of the network is necessary in future work, to
improve this component and reduce uncertainty when specific
information are available regarding the network.

c) Back-end: Finally, the modelling of back-end infras-
tructures faces some limitations. The embodied impact of a
server is allocated to the maximum number of requests it can
handle throughout its lifespan. This hypothesis assumes that
the hardware operates at maximal load during its entire lifes-
pan, which is largely an overestimation [35]. Consequently,
the result of the back-end layer may be underestimated. If the
server only receives half of the maximum requests per second,
then the impact factor of each request would be twice as high.

Furthermore, the inventory data is collected according to
LCA methodology, wrt. to the functional unit. This means
that a black-box approach is used for back-ends, assuming a
set of requests rather than the technical processes involved
in handling such requests. This can lead to significant un-
derestimations, as the infrastructure considered only includes
the server, excluding components such as management layers,
virtualization, or storage. Finally, third-party services that can
be integrated to the software are not accounted for, such as
analytics or external content. All requests toward such services
are imputed to the back-end of the software under review.

In future work, finer modeling of back-end infrastructures
and data centers may offer more representative estimations.

VII. CONCLUSION

Due to the intricate complexity, rapid evolution, and geo-
graphical distribution of ICT services, conducting life cycle
assessments to evaluate their potential environmental impact
is a challenging endeavor. It requires the adoption of modeling
hypotheses, which inherently entails high uncertainties in the
estimation outcomes. Furthermore, these assessments heavily
rely on secondary data, which are still scarcely available and
with varying quality. However, these uncertainties are not often
adequately quantified in ICT-related LCAs.

In this paper, we introduce an approach based on fuzzy
logic to track both the uncertainty arising from secondary
data, and modeling choices. We propose hypotheses compliant
with ICT services LCA principles to assess the embodied
and usage impact across the end-user device, infrastructure,
and back-end for a given functional unit. To deal with these
uncertainties, we leverage fuzzy logic to aggregate multiple
sources, weighted by their respective Data Quality Index
(DQI), to obtain more representative estimates of the state-
of-the-art. We demonstrate how fuzzy logic improves the
quality of results by systematically propagating uncertainties
to identify their primary sources, aiming to mitigate them.

In future work, we intend to improve hypotheses by tackling
their current limitations, in particular regarding the back-end
impacts of larger projects involving, for instance, Content
Delivery Networks (CDN).
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