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1 Introduction1

Income inequalities have returned to the center of many debates in economics, as rekindled by

the work of Piketty (2013) and his co-authors on the sharp increase of top incomes over the last

50 years in most countries, although the data on labor earnings inequalities at the national level,

in developed countries (Atkinson and Morelli, 2014) or at the global level (Milanovic, 2016) are

slightly more contrasted. Among economic factors, the heterogeneous evolution of wage rates

over the life cycle within a generation is at the heart of changes in inequalities of opportunity

(Lagakos, Moll, Porzio, Qian and Shoellman, 2018, for a international comparison). Namely,

wages are determined by labor market conditions facing each cohort (Jeong, Kim and Manovskii,

2015) and by individual abilities to earn and learn, while household labor earnings are ultimately

derived from a sequence of decisions like marriage, labor market participation and labor supply

which depend on wages and preferences (Chiappori, Costa Dias and Meghir, 2018).

Various competing theories can explain the shape of wage profiles over the life cycle and

investments in human capital, learning by doing, or job search are their most popular under-

pinnings (Rubinstein and Weiss, 2006). It is however diffi cult to test them apart, especially

when empirical researchers allow the parameters governing these models to be individual spe-

cific. These theories are nonetheless useful for disciplining the specification of wage profiles, for

the interpretation of empirical results when estimating models of wage profiles, and therefore,

for explaining the formation of inequalities over the life cycle.

In this article, we estimate the individual specific shape of (log) wage profiles —described by

level, slope and curvature —as derived from a tractable model of investment in human capital

à la Ben Porath (1967). We use French administrative data on a large cohort of around 7,500

men, who entered the labor market in 1977 and are followed until 2007. We focus on a single

cohort, first to analyze pure life cycle issues and second, for the instrumental reason that it

1We thank Christian Belzil, Richard Blundell, Laurent Gobillon, Jim Heckman, Nicolas Pistolesi, Bernard
Salanié, the editor and referees for helpful comments as well as participants in numerous seminars where we
presented earlier versions of this research This research has received financial support from the European Re-
search Council under the European Community’s Seventh Framework Program FP7/2007-2013 grant agreement
N◦295298, funding from ANR under grant ANR-17-EURE-0010 (Investissements d’Avenir program) as well as
funding from the Institut Universitaire de France. All errors remain ours.
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allows this cohort to be followed over thirty years. We checked using data from surrounding

cohorts that this cohort has nothing special. Another argument is that France is one of the

countries in which earnings inequalities have remained stable over these years (Atkinson and

Morelli, 2014) notwithstanding more unequal top incomes. Public policies have been found to

be responsible for the decoupling between the evolution of wages and labor costs, the latter being

unsurprisingly the same as in other industrialized countries such as the United States (Bozio,

Bréda and Guillot, 2020).

Our theoretical set-up, as developed in Magnac, Pistolesi and Roux (2018), leads to an

empirical linear factor model in which a (log) wage profile is the sum of a profile of human

capital stocks (in logs) and human capital (log) prices. The former is a linear function of three

individual-specific parameters, one for the level, one for the slope and one for the curvature. The

slope coeffi cient is expected to be positive, and the curvature negative, since profiles are mostly

increasing and concave. Human capital (log) prices are further decomposed into aggregate prices

that we identify using a "flat spot" approach (Heckman, Lochner and Taber, 1998, Bowlus and

Robinson, 2012) over 1977-2007. The remaining individual-and-time (log) prices are specified as

general ARMA processes. This empirical strategy allows the profile of individual human capital

stocks (in logs) to be identified in expectation from wage data and compared across individuals

in order to explain the formation of inequalities along the life cycle.

To estimate parameters of interest, we use an original sequence of random effect, first, and

fixed effect procedures, second. A random effect method —i.e. considering the individual spe-

cific parameters as random —(i) deals with issues of initial conditions, likely to be quite off the

stationary path in the case of wages, (ii) delivers an estimate of serial correlation of residual

individual-and-time specific shocks and (iii) provides an estimate of the covariance matrix of

individual specific paramers. We cannot however recover distributional characteristics of indi-

vidual specific parameters other than their first and second order moments, by random effects.

For this, we use fixed effect estimation methods that consist in estimating individual specific

parameters although we discipline them using random effect estimates. Furthermore, missing
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at random assumptions are weaker in a fixed effect setting. The price to pay with fixed effect

methods, however, is the presence of an asymptotic bias in 1/T when estimating distibutional

characteristics such as variances or quantiles which can nonetheless be corrected using Jochmans

and Weidner (2018).

Our analysis makes several empirical contributions.

First, modelling the curvature of wage profiles is important as forcefully argued by Lillard

and Reville (1999) while most of the literature is specifying linear functions —level and slope

only. The presence of the individual specific curvature, standing for horizon effects, is key in

predictions about wage profiles. Its estimate is correlated negatively with both level and slope

estimates so that the retraction force at the end of the life cycle, due to the shrinking horizon,

is larger for those with large levels and large slopes. In this sense horizon effects act as a brake

on inequalities.

Second, the correlations between estimated levels, slopes and curvatures obtained for skill

aggregates, or individual specific parameters, are similar in France in contrast with the US

(Heckman et al., 1998). The variance of the slope is also estimated to be smaller in France

when compared to US studies suggesting that the building up of inequality over the life-cycle

is smaller although it remains in the range of estimates reported by Lagakos et al. (2018) for

various countries.

Fourth, our linear factor model is able to generate a Mincer dip without any role for transitory

shocks whose variance is in fact slowly decreasing over time. As far as we know this is the first

time a Mincer dip appears in a pervasive heterogeneity set-up. Fifth, the estimation of the

correlation between wage and wage growth generated by our estimates confirms Rubinstein and

Weiss’s conjecture about human capital —in contrast with learning and job search theories —that

this correlation is first negative and then turns positive. Sixth, the estimation of the correlation

between initial wage and subsequent wage growth, interpreted as returns, is negative at the

beginning of the life cycle and then turns positive. This result stands in contrast with Gladden

and Taber (2009) and Sorensen and Vejlin (2014) in which this correlation is uniformly negative.
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Yet, there is no evidence of dynamic complementarities at least at the beginning of the life cycle.

Decomposing inequalities provides a final set of empirical contributions. First, we find that

the variance of the long-run value of a wage profile, as accounted by discounted sums of log-wages

over the (observed) life cycle, is smaller than the cross-section variance of log wages after 5 years

(1982) by about 20% (.138/.113) and by around 80% (.207/.113) after 25 years. This is in line

with estimates of Bonke, Cormeo and Lutken (2014) using German data. The decomposition of

variances by components tends to confirm the large share explained by permanent heterogeneity

as was found in the literature (Guvenen, 2007, Huggett, Ventura and Yaron, 2011). We confirm

this result by providing further evidence on inter-decile ranges. Our next decomposition in

terms of subcomponents of heterogeneity is also new to our knowledge. A single dimension

heterogeneity term does not describe well the variance of log wages in cross sections and our

multidimensional setting shows that curvature effects are getting much stronger at the end of

the life-cycle.

Literature review It is useful to start with a brief comparison with the extensive empirical

literature on earnings dynamics (see Meghir and Pistaferri, 2010, for a review). An important

part of this literature aims at fitting the empirical covariance structure of (log) earnings over the

life cycle using competing specifications like the one described as heterogeneous income profiles

(HIP) or restricted income profiles (RIP). Up to now, there is no consensus in the literature

about which specification fits the data best (see e.g. Baker, 1997, Guvenen, 2007, Hryshko, 2012

and Hoffmann, 2019). Our linear factor structure embeds both models since the permanent

component includes individual specific levels and growth rates of earnings as HIP does and

the stochastic component can be any mixture of permanent and transitory shocks like in RIP.

Nonetheless, our three factor structure invalidates the key identifying assumption about the

correlations between first differences of within shocks (for instance Blundell, 2014) because of

the presence of the curvature term. Our structure is also used by Cho, Phillips and Seo (2019)

to model conditional means, in a functional data set up.

Our paper also touches the estimation of the traditional homogeneous wage equation (Mincer,
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1974). The state-of-the-art study is Lagakos et al. (2018) which studies an impressive set of

countries and shows that experience-wage profiles are twice as steep in rich countries as in poor

countries. Furthermore, more educated workers have steeper profiles. Yet, what we observe in

our administrative data is similar to other studies (Engbom, 2017, using EHCP survey data)

which find that wage growth in France over the life cycle is relatively small among 12 OECD

countries, the same as in Germany but less than in the US and the UK.

Non-linear alternatives have been proposed in the recent literature such as Browning, Ejrnaes

and Alvarez (2012), Polachek, Das and Thamma-Apiroam, (2015), Hospido (2012), Song, Price,

Guvenen, Bloom, and Von Wachter (2018), Bowlus and Robin (2012) or Bonhomme and Robin

(2009) as well as Pora and Wilner (2017) using French data. There are also semiparametric

analyses such as Lochner and Shin (2014) and Arellano, Blundell and Bonhomme (2018) using

US data. It is generally diffi cult to compare these alternatives with ours because our linear

model is designed to capture means and covariances, while using pervasive heterogeneity. As a

bridge between those methods and ours, we also estimate bias-corrected quantiles and inter-decile

ranges.

In a different vein, a more economically oriented literature tries to contrast predictions derived

from theories of wage growth, namely, human capital, job search or learning by doing. Rubinstein

and Weiss (2006) takes stock of the literature before the 2000s, and distinguishes job search and

human capital theories by their predictions. Job search models predict a negative correlation

between wage and subsequent wage growth over the life cycle, while human capital models

predicts that it is negative at the beginning of the life cycle but turns positive afterwards. The

latter is what we find in our empirical analysis. Some recent literature explicitly models job

search, in contrast with this paper in which we treat job search as a transient residual cause.

Bowlus & Liu (2013) decomposes earnings growth into human capital (50%), job search (20%),

the rest being their interaction. In contrast, Bagger, Fontaine, Postel-Vinay and Robin (2014)

finds that job search, or "job-shopping", significantly contributes to wage growth although this

seems to be mostly over the first ten years of the working life. Furthermore, Burdett, Carrillo-
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Tudela and Coles (2016) finds that most of the effect of experience on wages is due to passive

learning-by-doing.

Contrasting human capital investments and learning by doing is the objective of fewer papers.

Heckman, Lochner and Cossa (2003) show that distinguishing job training and learning by doing

might use that wage subsidies, such as EITC, provide additional incentives to work, enhance

learning by doing and decrease investments in human capital. Belley (2017) contends that

learning by doing does not seem prevalent since it does not predict the trade-off between current

and future earnings, as observed in the data and predicted by human capital models. Blandin

(2018) also points out that learning by doing does not predict a decrease in investments at the

end of the working life.

Furthermore, within the human capital paradigm, Sanders and Taber (2011) reviews models

with multidimensional human capital. More recently, Taber and Vejlin (2020) and Lise and

Postel-Vinay (2020) estimate search and multidimensional human capital models, the former

using a Ben Porath investment model, the latter a learning-by-doing framework. These papers

restrict the heterogeneity dimension while our paper restricts the dimension of skills and models

search frictions as residuals. (Hicks) aggregation of skills into a single index, at the individual

level, would hold true if investment in skills keeps the composition of skills fixed over the life-

cycle, and it is somewhat unclear whether we can tell the two settings apart. In theirs, the

authors unsurprisingly find a greater importance of career shocks with respect to individual

effects than we do.

Some reduced-form studies on life-cycle profiles are usefully compared to our results. Sorensen

and Vejlin (2014) estimates the correlation between initial wages and later wage growth using

Danish data over 20 years. They, as well as Gladden and Taber (2009), find that this correlation

is negative. We find the same negative correlation over the first 20 years but it turns positive

afterwards. Our approach differs from theirs in two aspects. First, we have a 3-factor linear

model in which the curvature effect is key. Second, these authors use the observed initial wage,

which is transient at this age, while we try to filter out these transient initial conditions. We
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use the reconstructed non-transient initial log-wage by using a combination of random and fixed

effects.

Finally, we only touch upon lightly the issue that returns to observable components increased

dramatically, for instance in the US (Autor, Katz and Kearney, 2008) since this increase affects

the cost of labor much more than wages in France (Bozio et al., 2020). Fernandez-Val, Peracchi,

van Vuuren and Vella (2018) uses repeated cross-sections (US-CPS) and decomposes the evol-

ution of quantiles, for males and females, into selection, structural and compositional changes.

One of their conclusions is that selection effects seem small, as assumed here, notwithstanding

a different panel data context. Our analysis also abstracts from compositional effects because

of the single cohort and flat spot approach, and our analysis focuses on the structural effects

affecting life cycle wage profiles.

Section 2 briefly describes the evolution of earnings inequality in France and the data we use

and Section 3 details our empirical strategy. Section 4 reports estimation results and Section 5

gathers the results of various decompositions of life cycle inequalities.

Any reference to the Supplementary Appendices and Tables & Figures can be found in the

working paper version (Magnac and Roux, 2021).

2 A Brief Description of the Data

We briefly summarize the evolution of wage inequality in France over the last 40 years and

present stylized facts about means, variances and autocorrelations of log wages in our sample,

after reporting how we constructed this sample from administrative sources.

2.1 Earnings and Wage Inequality in France

The sharp increase in earnings inequality in the UK and in the US over the last thirty years

is a well known empirical fact (see for example Autor, Katz and Kearney, 2008, or Moffi tt and

Gottschalk, 2011, for the US and Blundell & Etheridge, 2010, for the UK). Yet, the picture is

more balanced in other OECD countries and while some European countries have experienced
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an increasing dispersion in earnings, others have not been affected by this trend and have had

stable or decreasing dispersion. Atkinson and Morelli (2014) computes international earnings

inequality comparisons over the second half, or so, of the twentieth century for 25 countries. As

regards European economies, they conclude that earnings inequality has increased in Germany,

Italy, Portugal, Sweden, Switzerland while in Finland, France, the Netherlands, Norway, and

Spain earnings dispersion has stayed constant or decreased over this period.

In France, earnings inequality in 2010 is broadly comparable to its level in the nineteen sixties

and if anything has decreased. Atkinson and Morelli (2014) report an unchanged Gini coeffi cient

for earnings over the period. Using Labour Force Surveys (LFS), they also compute yearly

measures of inequality and show a very stable inequality level. Using two different datasets,

the DADS, used here, and the French LFS, Verdugo (2014) concludes that the two data sets

provide strikingly similar figures of constant or decreasing earnings dispersion between 1964

and 2005. Verdugo (2014) decomposes the total earnings dispersion into upper and lower-tail

earnings inequality. The dispersion at the top of the distribution remained constant, since the

P90/P50 index in earnings fluctuates around 2, while the dispersion at the bottom measured

by the P50/P10 index decreased from 1.9 to 1.5. Charnoz, Coudin and Gaini (2011) also use

the DADS data to reach the same conclusion that earnings inequality in France has been rather

stable from 1976 to 1992 and has been slightly decreasing from 1995 to 2004. This stability has

been attributed, at least partly, to a strong policy driven increase in education at the end of

the 1980s and labor market policy regulations at the end of the 1990s (Charnoz, Coudin and

Gaini, 2014). Bozio, Breda and Guillot (2020) neatly demonstrate that inequality increases in

labor costs have been the same as in the US and other major developed countries although

French policy changes in payroll taxation, and in particular for low-skills, have counteracted

these changes in terms of wage inequalities.

A note of caution is in order. While these studies consider changes in the cross-sectional

earnings distributions, changes in the structure of the population and cohort effects that play

an important role in the previous studies (e.g. Jeong, Kim and Manovskii, 2015) are neutralized
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here. We follow a single cohort of males entering the labor market in 1977 to focus on inequalities

unraveling over the life cycle.

2.2 Our Working Sample

Our panel dataset on wages is extracted from a French administrative source named Déclarations

Annuelles de Données Sociales (DADS) which has been used for employee-employer studies as

in Abowd, Kramarz and Margolis (1999).2 DADS data are collected through a mandatory data

requirement for social security and tax verification purposes. All employers must send to the

social security and tax administrations the list of all persons who have been employed in their

establishments during the year. Firms report the full earnings they have paid to every employee

and payments exclude other labor costs borne by the firm. Each person is identified by a unique

individual social security number which facilitates the follow-up of individuals through time

although we cannot reconstruct taxes they pay. The tax system is household-based in France

and the linking of this dataset with fiscal records is not authorized yet.

The French National Statistical Institute (INSEE) has been drawing, since 1976, a sample

from this dataset at a sampling rate of around 4% by retaining all individuals who were born in

October of even years. Using administrative data is an important advantage since these data are

less subject to attrition or measurement errors. Unlike survey data, the collection of information

does not rely on individual response behavior and individuals are better followed over time.

Moreover, the large sample size enables us to use a single large cohort of individuals who entered

the labor market in the same year.

This dataset is restricted to individuals employed in the private sector, including publicly-

owned companies, and we consider only males to alleviate selection issues. Observations can

yet be missing for different reasons. Data were not collected in three years (1981, 1983 and

1990) for reasons specific to INSEE. It is also quite frequent that employees exit the panel and

a significant fraction of those reenter it after a few years (see Table S.i in the Supplementary

2These data are available through securitized access (casd.eu). Other contributions in the earnings literature
that use administrative data is Hoffmann (2019) and Daly, Hryshko and Manovskii (2016) (German and Danish
data).
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Appendix). Those absences might stand for spells in the public sector, as self-employed, or

out-of-employment. We also code as missing, part-time employment in any given year.

We restrict our analysis to labor market entrants in 1977, a set that we call "cohort" in the

following, even if their age is heterogenous. Entrants are defined as those who started working

full time for more than 6 months in 1977, and are still employed the following year, possibly

in a different firm. To make sure that these employees have a permanent attachment to the

private sector and to mitigate the issue of missing years in 1981 and 1983, we keep only those

who also worked in 1982 and 1984 and were aged between 16 and 30 in 1977. The characteristics

of the distribution of individual specific parameters that we estimate in the following, refer to

this subpopulation.

We define wages as the sum of all earnings during a year divided by the number of days

worked. This allows employees to have within-year periods out of the private sector. Short-

comings of administrative data are that other components of income, including other sources

of earnings, are missing and that few observable characteristics are available, apart from age at

labor market entry and the skill level of the first job.

First, it is likely that workers delaying entry have a higher education level than the ones

who entered earlier. Second, initial skills are grouped into three categories based on a two-digit

codification: high-skill (managers, professionals), medium-skill (blue-collar or white-collar skilled

workers) and low-skill jobs. Our 20 resulting "education" groups are defined by the interaction

between these two variables when groups are not too small (see Table 2 for the definition and

size of each group). Since education is defined according to characteristics recorded at labor

market entry, individuals are attached to the same education group during their whole working

life.

Other details completing this description can be found in Data Appendix A.

2.3 Wage dynamics over the life cycle

Table 1 reports descriptive statistics on the composition of the sample over time. The sample

size is 7446 observations in 1977 and 4670 in 2007. Human capital groups defined above are
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of unequal size, the groups with an early age of entry being the largest ones, and with a late

age of entry, the smallest. Attrition follows a somewhat irregular pattern due in part to the

original data and to our sampling design (see Supplementary Appendix, Table S.i). There are

also more surprising features for instance in 1994 (or 2003 at a lesser degree) a year in which

many observations are missing. This is due to the way INSEE reconstructed the data from the

information in the original files.

We report in Figure 1, the evolution of average log-wages over the life cycle, in 2007-euros,

for three age of entry groups (< 20, ≥ 20 and ≤ 24 and > 24) and these profiles display the

familiar increasing and concave shape.

By taking deviations of (log) wages with respect to their means in groups defined by age of

entry, skills and years of observation, we compute log-wage residuals. The left panel of Figure 2

plots the change in the cross-sectional variance of those (log) wage residuals for the full sample,

while the right panel graphs the variance by age of entry groups. Choosing the variance of

log wages as a description of the process is adapted to the random effect specification that

we estimate. Using other inequality measures (Gini , Theil or Atkinson) does not change the

qualitative features of our description. The first few years witness a strong variability of wages.

Until the sixth year of observation, 1982 (respectively the fourth, 1980), the variance of log

wages drops for the low skill groups (resp. for the other groups) whereas it increases gradually

afterwards till around 1995. The variance profile is flat after 1995 in contrast with the US where

it continues to grow (e.g. Rubinstein and Weiss, 2006, using PSID). From the right panel one

can notice that late entrants in the labor market experience higher levels and larger rates of

growth of the variance of log-wages over the life cycle as in most countries (Lagakos et al, 2018).

The covariance analysis of log-wage residuals over time is reported in Supplementary Appendix

S.II. It provides strong evidence that wages are becoming more stable as employees progress in

their life cycle.
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3 Empirical strategy

3.1 The set-up

We specify a linear factor model of (log) wage dynamics. Our starting point is a model of

human capital investments after leaving school that is developed in Magnac et al. (2018) and

that provides exact theoretical foundations à la Ben Porath (1967), for a Mincer (1974) reduced

form wage equation at the individual level. It assumes that consumption is intertemporally

smoothed through human capital investments only, and that the accumulation equation is log

linear as well as the value function at a terminal period. The assumption of decreasing returns to

investment in Ben Porath is replaced by making investments subject to an increasing and convex

utility cost interpreted as cost of effort, and utility is log linear in consumption. Departures from

these assumptions are the object of the discussion in Magnac et al. (2018) that we do not repeat

here.

In this set-up, the resulting (log) wage equation can be written as a linear factor model where

the three observed factors are ft =
(
1, t, β−t

)
:

ln yit = ηi1 + ηi2t+ ηi3β
−t + vit, (1)

in which yit is the log wage, t is potential experience (i.e. t = 1 in 1977), i is the individual

index and β < 1 is the discount factor, assumed homogenous. This reduced form, which is also

a random coeffi cient model, delivers the familiar increasing and concave shape when ηi2 > 0

and ηi3 < 0. This specification is more tractable to estimate, than non-linear alternatives when

heterogeneity is pervasive (Browning, Ejrnæs and Alvarez, 2012, Polachek et al., 2015).

The first three terms measure the logarithm of the current human capital stock (net of

current investments) while vit can be interpreted as the logarithm of the individual-specific price

of human capital, net of accumulated depreciations. Implicitly, the influence of job search, the

job ladder, or dismissals, are hidden in the latter component. This model nests the Heterogenous

Income Profile (HIP) and the Restricted Income Profile (RIP) as in Guvenen (2007, 2009) since

vit can be any time-series process. We do not take a stand on how this would be decomposed
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into persistent and transitory components since consumption data are not available so that the

decomposition cannot be identified (Ejrnæs & Browning, 2014).

Factor loadings or individual specific effects ηi1, ηi2 and ηi3 have a structural economic

interpretation. The first two ones are respectively related to levels of human capital – i.e. the

ability to earn —and to growth rates of human capital —i.e. the ability to learn (see Browning

et al., 1999). Furthermore, the ratio between ηi3 and ηi2, i.e. the ratio of the "curvature" of the

profile relative to the slope, can be structurally interpreted as the value given to human capital

at an arbitrary terminal period. The longer the horizon of investment, the smaller the curvature

(Lillard and Reville, 1999).

Estimating this very heterogenous reduced form leads to the decomposition of the hetero-

geneity of wage profiles in each of its structural components. Deriving the relative importance

of each component is the object of Section 5 which extends the calibration exercise of Huggett

et al. (2011) and other authors using US data. Moreover, it allows to predict wage profiles even

if some observations are missing as in our data and we will return to this point below.

Before that, we present our empirical strategy. As a first step, we decompose log wages into

aggregate and individual specific components to go beyond the usual demeaning of time and skill

effects in the earnings dynamics literature (Meghir and Pistaferri, 2010). Aggregate components

are constructed using the subsamples defined by the education groups that we constructed before,

from skill and age at labor market entry. We adopt the equilibrium framework of Heckman et

al. (1998), in which human capital stocks of different education groups are imperfect substitutes

in the aggregate production function so that aggregate components can be interpreted as the

sum of aggregate log human capital stocks of each skill group and the market (log) prices of

skills net of depreciation. Moreover, the so called flat spot approach that Heckman et al. (1998)

suggested, and that we present below using data from older cohorts, allows the identification of

stocks from prices.

In contrast with aggregate components, perfect substitution holds within groups, and the

remainder of individual specific shocks are interpreted as frictions orthogonal to aggregate com-
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ponents and individual specific parameters. As a result, the mechanisms that underlie the specific

dynamics of aggregate and individual specific components are allowed to differ, and are left un-

related. In consequence, we handle education group and individual specific effects separately

and recompose them afterwards to recover the full effects.

3.2 Aggregate components: Identifying restrictions and estimation

Following the logic above, equation (1) can be linearly aggregated, in each education group, as:

ln ygt = ηg1 + ηg2t+ ηg3β
−t + v̄gt, (2)

in which g denotes a group defined by skill and age of entry and ηgk = E(ηik | i ∈ g) for k = 1, 2

or 3, v̄gt = E(vit | i ∈ g). The term v̄gt stands for the market log-prices of human capital of

group g at time t.

Denote ϕgt the unknown expected aggregate log prices :

ϕgt = E(v̄gt | ft =
(
1, t, β−t

)
). (3)

Identifying ϕgt using external sources is the key restriction that separates quantities from

prices. If ϕgt is identified and substracted to equation (2), the new error term is orthogonal

to factors (1, t, β−t) and parameters ηg are identified. To identify ϕgt (up to a constant term),

Heckman et al. (1998) and Bowlus and Robinson (2012) use a flat spot method. They argue

that investments and depreciation shocks for individuals close to the end of their working life

(around 50) exactly balance each other so that the term ηg2t + ηg3β
−t ' 0 in equation (2).

Estimates of ϕgt are therefore the mean wages of those older cohorts who are observed at the

same calendar times t as our cohort of interest.3 This structural method is also a way to solving

the well known impossibility of separately identifying age, cohort and time effects in a linear

setting. In addition, the stability of the between and within group wage inequality in France

over this period supports the credibility of this procedure.

We apply this flat spot technique and from now on, we will consider that log wages, ln ygt,

are net of these estimates ϕ̂gt. OLS estimation of equation (2) is therefore unbiased because of

3As t is potential experience, calendar time is t+ 1977 and ϕgt is estimated using cohorts aged more than 50
at date t+ 1977 (see end of Data Appendix A)

15



condition (3). We estimate equation (2) group by group using 28 observations per group. It

provides consistent estimates of ηg, say η̂g, and standard errors are computed using a Newey

West procedure.

3.3 Individual specific components: identifying restrictions

Turning to within group variation, define centered individual effects as their deviations with

respect to their skill specific means, ηcik = ηik − ηg(i)k, for k = 1, 2, or 3 and vcit = vit − v̄g(i)t

where g(i) is the skill group to which individual i belongs. Demeaning the log wage equation

(1) with respect to their group averages yields log-wage deviations:

uit = ln yit − ln yg(i)t = ηci1 + ηci2t+ ηci3β
−t + vcit, (4)

Individual specific deviations, vcit, stand for frictions (e.g. job ladder, firms’heterogeneity) in a

model of search and mobility (see e.g. Postel-Vinay and Turon, 2010) as well as accidents of

life. These frictions are here described by a stochastic process which is supposed to be mean

independent of factors and factor loadings:4

E(vcit | ft =
(
1, t, β−t

)
, ηci) = 0. (5)

Note that it lets other moments of vcit depend freely on factors and individual effects η
c
i . The

mean independence of frictions, vcit, with respect to factors, ft, and individual effects, η
c
i , is the

main assumption underpinning the identification of individual-specific structural parameters.

The issue of missing data is potentially important in our empirical application since we

observe wages if and only if individuals are employed in the private sector. Missingness could

be due to periods spent in the public sector, as self-employed or as non employed. Absent

credible instruments or structural assumptions, we assume in the following that missingness

is at random (MAR). The existence of missing data becomes unconsequential for consistently

estimating aggregate effects while we show below that the random effect likelihood approach we

adopt, deals with missing data easily.

4In the empirical application below, we slightly relax the assumption of mean independence of frictions with
respect to individual effects by authorizing general initial conditions in the random effect model.
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3.4 Individual specific components: Estimation

At this step, our objective is to recover estimates of centered individual effects (ηci1, η
c
i2, η

c
i3) in

the linear factor structure (1) by using identifying restrictions presented in Section 3. Most of

the technical details are relegated to appendices.

Stacking log wage residuals uit, defined in equation (4), and the stochastic component vcit

into T × 1-vectors ui and vci as well as η
c
ik into a 3× 1-vector ηci , equation (4) writes:

ui = M (β) ηci + vci . (6)

in whichM (β) is a T ×3 matrix in which a constant, a linear and a geometric term are stacked.

We adopt a two-tier estimation strategy in which both tiers complement each other.

We first estimate a random-effect model in which the parameters of interests are the popula-

tion covariance matrices of individual specific effects V (ηci), and transitory errors V (vci ), as well

as allowing for some correlation between permanent and transitory terms, E((vci )
′ηci), due to

initial conditions. Identification conditions rely on the finite parameter specification of the cov-

ariance matrix V (vci ), here time-heteroskedastic ARMAs, as shown in Arellano and Bonhomme

(2012). The maximum likelihood estimation is taken from Arellano and Alvarez (2003) and is

well adapted to panel data with missing observations. The details of this estimation method,

and in particular all assumptions related to the time-heteroskedastic ARMA error process we

estimate, and step by step construction of the likelihood function, are given in Appendix B and

further completed in Supplementary Appendix S.III.

This random effect method is informative about second-order moments only. An alternative

estimation method is based on fixed effects in which ηci are considered as parameters and the

missing at random assumption is weakened to be conditional on parameters ηci . Those are estim-

ated using equation (6) individual by individual. Furthermore, to improve precision, we estimate

parameters by Feasible GLS in which the covariance matrix of vci is the estimate obtained by

the first-step random effect method.

Using estimated individual-specific parameters by a fixed effect method opens up the way to

the analysis of other summaries of their distributions, like quantiles, and not only second order
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moments. Yet there is a price to pay. As some data are missing, inference might be poor since

there are at most 28 observations per individual in our data. If Ti is the number of observations

for individual i, estimates of parameters ηi for every individual profile are consistent when Ti →

∞. Nonetheless, an asymptotic bias of order 1/Ti arises for individual specific parameters and for

most summaries like variance and quantiles (e.g. Arellano and Bonhomme, 2012) although means

are exceptions. This asymptotic bias affects inference since it decenters confidence intervals.

Nonetheless, correcting biases to a lower order of 1/T 2i is easily obtained using methods developed

by Jochmans and Weidner (2018). Appendix S.IV in the Supplementary Appendix provides a

description of the estimation method as well as the correction method for asymptotic biases of

variances as well as quantiles.

Arguments underpinning the two-tier estimation strategy are based on trading off the con-

sistency properties of random effect methods when the time dimension is small and the flexibility

of the fixed effect methods. On the one hand, using the covariance structure of the error terms

estimated by random effects in the first step, makes the fixed effect estimation more precise.

Furthermore, random effect estimation provides a benchmark against which we can assess the

amount of bias in the fixed effect estimation due to the finite length of the observation period

for each profile. On the other hand, fixed effect estimation brings about richer information on

the underlying distribution of individual specific parameters and weakens the missing at random

assumption.

Finally, we can combine aggregate and individual specific estimates yielding fixed effect

estimates of the original factor loadings:

η̂i = η̂g + η̂ci ,

and we use these estimates to compute predictions of wage moments or quantiles in the next

two Sections.
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4 Results

We first describe the estimated parameters of the aggregate equation (2) in Section 4.1 and turn

next to the estimation results of the within group wage equation by random effect methods in

Section 4.2. In Section 4.3 we comment the estimates of summaries constructed from estim-

ated individual effects. We wind up the section with comparisons between these results and

predictions appearing in the literature.

4.1 Aggregate estimation

Details of the flat spot approach for estimating series of human capital prices, ϕgt, in equation

(3) are presented at the end of the Data Appendix A as in Bowlus and Robinson (2012). In sum,

human capital prices are estimated using a population of older males whose potential experience

ranges from 25 to 40 (e.g. whose age stands between 43 and 58). These data are taken from

older cohorts than our cohort of interest, at the same calendar times, and those prices are used

to deflate log wages as described in Section 3.2.

As a result, Table 2 presents for each of the 20 groups the estimated aggregate group para-

meters from equation (2). They exhibit expected patterns. The first factor loading average η̄g1

ranges from 2.5 for the lowest skill groups to 3.5 for the highest skill groups —a 100% upward

translation. The estimated average slope , η̄g2 ranges from 0 to 0.05 in the range of Mincer’s

estimates (e.g. Lagakos et al., 2018). The slope is larger for the high-skilled groups than for the

low-skilled ones although the evidence is weaker. The geometric factor loading average η̄g3 is

mostly negative as expected, or non significantly different from zero.

4.2 Random effect estimates

We proceed as explained in Section 3.4. Our preferred random effect estimates are obtained

when disturbances, vcit, are time-heteroskedastic ARMA(3, 1) a slightly longer dependence than

usual.5 We start by reviewing our original results on the correlations between factor loadings,

5Results for general ARMA(p,q) processes in which p and q vary between 1 and 3 are reported in the Supple-
mentary Appendix in Tables S.iv and S.v. Time-varying variances of the noise are decreasing with time (Table
S.v). The values of the Akaike criterion are reported in Table S.iii. Increasing the order of the MA above 1
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ηci , and contrast them with correlations across groups of aggregate components as reported in

Table 2.

The estimated covariance matrix of the centered individual effects, ηci is stable across the

different specifications of ARMA processes as shown in Table 3. Their standard deviations

are very precisely estimated at around .30 for the "level" factor loading, ηci1, and .25 for the

curvature one, ηci3, and at around .04 for the slope, η
c
i2. The following results are more telling.

The correlation between the slope and curvature factor loadings is very strongly negative and

equal to −.95 consistently across ARMA specifications. The magnitude of this correlation and

its sign are consistent with the structural model that ties in parameters ηi2 and ηi3: the larger

the slope, the more curved the wage profile. The retraction force due to the horizon is stronger

for high wage growth employees.

The correlation coeffi cient between the curvature, ηci3, and the level, η
c
i1, factor loadings is

also significantly negative —around -0.6 —and reveals that the retraction force at the end of the

life cycle is also stronger for highly skilled workers. The correlation between the level and slope

factor loadings, ηci1 and η
c
i2, is positive and around .5, and its interpretation is given further

below.

Interestingly this pattern of correlations of centered factor loadings is very close to the cor-

relation pattern of the average aggregate estimates across education groups reviewed in the

previous subsection. The coeffi cient of correlation between η̄g1 and η̄g2 (i.e. obtained by varying

g and weighting by group size) is equal to 0.64 and close to the random effect estimate of the

correlation between ηci1 and η
c
i2, which is equal to 0.5. The estimated correlation between η̄g1

and η̄g3 is negative, −0.66 and very close to the random effect estimate, −0.636. The estim-

ated correlation between η̄g2 and η̄g3 of −0.96, is also very close to the random effect estimate,

−0.95. This result evinces that human capital investment patterns between and within groups

are similar in France in contrast with what was found in the US (Heckman et al., 1998).

Appendix C completes this empirical analysis by describing the correlation patterns with

decreases the AIC criterion very moderately and some of the parameters are very imprecisely estimated (see
Table S.iv).
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initial conditions, which is an important aspect of the random effect estimation method, as well

as goodness-of-fit diagnostics for variances and autocorrelations.

4.3 Fixed effect estimates

We now turn to the estimation results by FGLS of the three factor loadings for each individual

wage profile. Technical details are completed in Supplementary Appendix S.IV in which bias-

correction of variances and quantiles are presented.

Table 4 reports estimates of the bias-corrected covariance matrix of centered individual es-

timates and their random effect benchmark. Standard errors for any function of fixed effect

estimates are computed using sampling variability to which is added parameter uncertainty due

to the random effect pre-estimation of the covariance matrix of errors over time. We use Monte

Carlo simulations to compute the latter by sampling 1,000 times in the asymptotic distribution

of random effect estimates.

Our working sample to be used from now on, gathers individuals observed over more than 21

periods because small-Ti bias issues, even if corrected for first order bias seem to be lingering for

observations Ti ≤ 20.6 Even though random and fixed effects do not strictly refer to the same

population because of this selection, discrepancies seem very moderate between random and

fixed effect estimates —as Figure 3, reporting the profile of estimated variance of the interactive

effects, confirms.

Table 4 also reports these estimates by subsamples indexed by a varying number of periods

of observation from 21 to 28. It clearly appears that the longer the observation period, the

less variable individual effects. It might be due to a subsisting small-T bias that we imperfectly

control. It might also indicate that subpopulations, with exits or/and reentries, are more hetero-

genous that the subpopulation of those who remain in the private sector all along. We left this

point for further research since the literature is silent about higher order corrections. Random

effect estimates would reflect the mixture of these subpopulations.

6Tables S.vii and S.viii in the Supplementary Appendix report raw and bias-corrected estimates in the full
sample and provide the basis for such a selection.
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Complementary results including robustness checks and goodness-of-fit diagnostics are presen-

ted in Appendix C. Further results on the consistency of the missing at random assumption is

given in the Supplementary Appendix S.II.

4.4 Predictions

We now compare our results to those published in the literature. We can also assess whether

predictions of human capital models conform with our estimates. Our three original points

respectively develop the test and measure of the Mincer dip, the Rubinstein and Weiss (2006)

prediction about the covariance between wage and wage growth and finally, the correlation

between wage growth and initial wage level.

Literature estimates Table 5 completes Guvenen (2007, Table 4) with Guvenen’s own estim-

ates, those of Huggett et al., (2011) and ours, on the estimation method, the AR(1) coeffi cient

of transitory errors, and the covariance matrix of level and slope heterogeneity. Results in all

these papers are qualitatively similar except, as expected, that the variance of the level hetero-

geneity is much larger when the residual process is not decomposed into a random walk and a

transitory term (rows 1 and 4). To make our results comparable with others, we projected out

the curvature profile onto a level and a trend and restricted our model to having heterogeneity

in level and slope only. Our restricted results on the variance terms are smaller than results

in Baker (1997), Haider (2001) or Huggett et al. (2011), and in particular, the variance of the

slope is divided by two in the French data. The covariance of factor loadings of level and slope

is negative except in the pionnering work of Lillard and Weiss (1979), and more surprisingly, in

Huggett et al. (2011), a point to which we return below. Correlations, in absolute value, have

the same order of magnitude although slightly larger in the US.

Mincer dip Our estimates generate a U-shaped profile of log-wage variances over the life

cycle and thus, a neat Mincer dip at the beginning of the life cycle after 4 to 8 years (Mincer,

1974). This is shown by plotting, in Figure 3, the profile of predicted variances of (log) wages

along the life cycle computed using random and, raw and bias-corrected, fixed effect estimates.
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We display, in this graph, the life cycle profile of variances of the permanent effects (e.g. the

human capital stocks), given by the combination of factors and factor loadings (V (M(β)ηci)) in

which matrix M(β) is composed of a constant, trend and geometric terms as in equation (6).

Stochastic transitory earnings, vci , and initial conditions are excluded from this graph because

they obscure the comparison between different estimates of the permanent effects.

This graph shows that the Mincer dip is not dependent upon noisy estimates at the beginning

of the life cycle and supports the structural interpretation given by Mincer. The most able

workers have lower wages at the beginning of the life cycle because they are investing more in

human capital and their profile of wages crosses from below the profile of those who are less able

and invest less. This creates a trough in variances when potential experience is small.

Interestingly, note that the absence of a curvature parameter makes the variance profile,

V (ηci1+ tηci2), exhibit a Mincer dip (e.g. t
(Dip) = −Cov(ηci1,η

c
i2)

V (ηci2)
> 0) if and only if Cov(ηci1, η

c
i2) < 0.

It might explain why this estimated covariance is mostly negative in the literature as seen above

in Table 5 with some exceptions. It is only when we allow for the horizon or curvature effect (i.e.

our full results) that the covariance between the level and slope factor loadings, ηci1 and η
c
i2, is

positive (e.g. Table 3, fourth row). In consequence, our set-up accomodates the existence of a

Mincer dip as well as the insight that the ability to earn (ηci1) is positively correlated with the

ability to learn (ηci2), all other things being equal (i.e. η
c
i3) while a restriction to level and slope

heterogeneity cannot reconcile these two insights.

Finally, wage profiles using raw and bias-corrected fixed effect estimates reproduce the ran-

dom effect variance profile at a slightly higher level during the first years of working life in

Figure 3. Discrepancies with random effect estimates seem however second order in particular

at later periods in the life cycle and this also validates the use of the selected sample of males with

more than 21 observations in the decomposition of inequalities and counterfactual variations in

Section 5.

Correlation between wage and subsequent wage growth As developed in Rubinstein

and Weiss (2006), a human capital model predicts that the covariance between wage levels and
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subsequent wage growth should be negative when the person enters the labour market, and

should turn positive after some time, in contrast to a job search model in which the correlation

remains negative. This is what Table 6 neatly confirms. In the working sample, covariances are

negative in years 1977 and 1982 and turn positive and significant from 1987 onwards, although

the increase over time is non monotonic. This is slightly more pronounced for the high-skilled

group. Rubinstein and Weiss (2006) use data on residual wages, smoothed over three years and

show that this covariance increases over time although it remains negative (their Figures 8a-8e

in Section 4.2). Our focus on the permanent effects that filter out transitory components allows

to go a step further and produces a prediction in contradiction with a pure job-search rationale

at least after ten years in the labour market.

To contrast those results with the ones in the literature, we projected out the curvature

profile onto a level and a trend, as above, to restrict heterogeneity to level and slope only. In

this case, the correlation between wage levels and wage growth is unambiguously negative (-0.349

s.e. 0.053). It is thus only when a curvature effect is present that the prediction of Rubinstein

and Weiss holds.

Initial wage levels and returns to experience Initial skills and skills acquired during the

education stage, are shown to be complementary (see Heckman, Humphries and Veramendi,

2017). It is interesting to measure dynamic complementarities over the life cycle by computing

the correlation between the initial log wage and the returns at each point of the life cycle as in

Gladden and Taber (2009). By filtering out the transitory components at the beginning of the

life cycle, we are able to look more precisely at the complementarity between estimated initial

wage levels —by equation (1), computed as the estimate of ηi1 + ηi3 —and returns.

Returns to experience are computed as the marginal effects of potential experience, t, on the

permanent component —i.e. ηi2− log(β)β−tηi3. These returns are decreasing because log(β) < 0

and estimated ηi3s are mostly negative. As shown in Table 7, while the correlation is significant

and negative at the beginning of the life cycle (the first twenty years) as in Gladden and Taber

(2009) and Sorensen and Vejlin (2014), it turns positive and significant afterwards. This result
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of dynamic complementarity later in the life-cycle is true in the working sample and in various

skill subsamples.

The negative correlation at the beginning of the life cycle is due to the negative correlation

between the initial log wage, ηi1+ηi3, and the growth effect, ηi2. The positive correlation between

the second curvature term—− log(β)β−tηi3 —and the initial log wage kicks in after 20 years to

reverse this foregoing negative correlation. Individuals with high initial log wages tend to have

higher returns later in the life cycle. It again emphasizes the importance of including curvature

as a result of horizon effects (Lillard and Reville, 1998) in the analysis of wage profiles.

5 Wage profiles and inequalities over the life cycle

We now exploit those estimates to study the impact of heterogeneity on life cycle wages and

decompose wage inequalities at a point in time and over the life cycle. This evaluation starts

from the log wage equation (6) that gives the following wage profile:

log yi = M(β)(η̄g(i) + ηci) + vi.

It can be decomposed into (log) human capital stocks, M(β)(η̄g(i) + ηci) and (log) prices, vi, net

of depreciation. As mentioned earlier, some elements in the individual profile of wages can be

missing and can be imputed thanks to the assumption that the process of prices, vi, conditional

on human capital stock is known or estimated. In this sense, the estimated human capital stocks

(in logs), M(β)(η̄g(i) + ηci), are "coding in" available information about individual wage profiles

that allows each individual wage profile to be recovered.

As a consequence, we can consider a longer-run measure of wages over the observed life

cycle, an appropriately discounted aggregate of log wages — that happens to correspond to

intertemporal utility over the observed profile of wages, normalized in such a way that it can be

compared with the annual values (see Magnac et al., 2018):

log y
(LR)
i =

1− β
β(1− βT )

T∑
t=1

βt log yit. (7)

This longer-run measure of individual welfare can then be compared with short-run ones in

cross-section as in Bowlus and Robin (2012).
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Yet, extrapolation to a longer time horizon (i.e after T ) is not possible absent any assumption

about the behaviour of prices out of the observation window. We can nonetheless still extrapolate

the (log) human capital stocks, M(β)(η̄g(i) + ηci) out-of-sample.

In this section, we present diverse counterfactual and decompositions of dispersion of log

wages based on these arguments. When we use bias-corrected fixed effect estimates, we only use

information on the most stable individuals (Ti ≥ 21).

5.1 Counterfactual impacts on means

We assess the impact on average log wages of increasing each component of ηi by one tenth of

its standard deviation. Those experiments can be easily expressed as a transformation of ηi into

φ(ηi) and we have that:

∆ log yi = log yi(φ(ηi))− log yi,

= M(β)(φ(ηi)− ηi).

In Table 8, we report mean impacts, every five years, starting in 1977 —their year of entry

into the labor market —and finishing the last year of observation in 2007. Unsurprisingly because

only levels of log wages are affected, the impact of increasing the level, ηi1, by one tenth of its

standard deviation has a constant short-run and long-run impact around 0.03 —i.e. 3% on the

wage level —except in the first year because initial conditions blur the impact. This is somewhat

below the average slope of profiles (Table 2) and thus, somewhat below the effect of an additional

year of experience at the beginning of the life cycle. In contrast, the impacts of increases of one

tenth of a standard deviation in ηi2 (returns) and ηi3 (horizon) increase from 1977 to 2007 as

they accumulate over the life cycle. At the end of the period of observation, they have sizeable

magnitudes slightly above 0.15 on the log wage in the terminal year 2017. Effects on the long-run

value are less sizeable and around .06 (returns) or .07 (horizon). Overall, these results mean that

heterogeneities in level, slope and curvature that we consider are all economically significant.

We now address three questions related to the decomposition of the variance of log wages

into its different components.
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5.2 Short-run and long-run inequality decompositions

Table 9 provides decompositions of within-cohort inequalities and long-run inequality into its

components: observed heterogeneity by skill groups(η̄g(i)), unobserved permanent heterogeneity

(ηci) and transitory components. Because of initial conditions and their correlation with ηi

in equation (6),7 we first need to orthogonalize permanent and transitory components. Initial

conditions are first projected onto individual effects ηci and this projection is aggregated with

the impact of individual effects ηci in the term, Dη
c
i , and the residuals with the transitory ones

in the term ξi so that we can write the log wage equation as:

log yi = M(β)η̄g(i) +Dηci + ξi,

in which the three components η̄g(i), η
c
i and ξi are orthogonal to each other. Supplementary

appendix S.IV gives more details.

We report results obtained by random effects in the first panel of Table 9 and by fixed effects

in the second panel. Results obtained using random or fixed effect estimates are very close to each

other and we will comment the latter only. The last column of these Tables reports the predicted

variance of log-wages V (log yit) every five years from 1977 to 2007 as well as the predicted long-

run value defined in equation (7). These results conform with the inverted U-shaped profile of

variances as in Figure 2. The variance of long-run log wages is lower since transitory components

over the life cycle are partly averaged out. The ratio of short-run inequalities to the long run

ones is varying between 1.22 in 1982 and 1.82 in 2007, well in line with Bonke et al. (2014).

The first three columns respectively report the share of the variance due to observed het-

erogeneity, V (M(β)η̄g(i)), the share of the variance attributable to unobserved permanent het-

erogeneity, V (Dηci), and the share of the variance generated by transitory components, V (ξi).
8

7Initial conditions are negatively correlated with ηi1 and ηi3, and these effects play an important role but only
during the very first years of the working life (Table S.iv of the Supplementary appendix).

8The decomposition in 1977 seems to be quite different from the one in other years because of the eventful
process at the beginning of a working life. The weight in percentage terms of the transitory component is
similar to other years but the variance of unobserved heterogeneity is almost absent. This is partly due to the
orthogonalisation procedure that we have just discussed above, whereby negative correlations between initial
conditions and fixed effects lower the contribution of permanent unobserved heterogenity in the variance of log
wages.
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On average, 68% of the variance is due to the combination of the observed and unobserved

heterogeneity factors in 1977 and 1982. This share displays an increase over the life cycle from

68% to 91% thirty years later. As a mirror image, the share of the variance explained by trans-

itory components decreases sharply from 32% in 1982 to 8.5% in 2007 as well as the share due

to the observed heterogeneity component, albeit at a lesser degree from 35% to 25%. This is

the consequence of an increase in the importance of unobserved individual heterogeneity, which

doubles its contribution to the variance of log wages from 35% to 67%. Wage profiles are thus

stabilizing over the life-cycle and heterogeneity is getting less and less transitory.

As expected, these effects are weighted differently when the long-run value of log wages (i.e.

equation (7)) is computed. The transitory effect is smaller (less than 6%) and observed and

unobserved heterogeneity components have roughly equal contributions (45 and 49%).

These decompositions compare well with those of Guvenen (2009) given that, in that paper,

observed heterogeneity is excluded from the decomposition. For the same reason, the sum of the

observed and unobserved heterogeneity contributions is larger than the ones found by Huggett,

Ventura and Yaron (2011), who find that the initial endowments related to human capital (initial

human capital and learning ability as well as initial wealth) account for 60% of the variance of

lifetime wage. Their framework however allows for less pervasive unobserved heterogeneity, than

we do here, so that we capture more unobserved heterogeneity than they do. This is very much

in line with the importance of unobserved heterogeneity in explaining the variance of wages

(90%) found in Keane and Wolpin (1997, p508).

5.3 Interdecile ranges of log wages

We can also approach the dispersion of wages through other indicators. We here use the inter-

decile range, that is the difference between the .9-quantile and the .1-quantile of the distribution

of log wages that can be constructed using fixed effect estimates. The range cannot be decom-

posed as variances, and we thus report the inter-decile ranges of three variables: (1) observed

heterogeneity, M(β)η̄g(i), (2) the sum of observed and unobserved heterogenity components,

M(β)η̄g(i)+Dηci , (3) observed (log) wages (excluding missing observations). These statistics are
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again reported every 5 years for these variables as well as the long run value, except for the

"observed" long-run value since wages are not unobserved at all during three years.

As shown in column 3 of Table 10, the interdecile range of observed wages is large in the

first period, decreases to 0.786 in 1982 and increases again to reach 1.04 so that the interdecile

range of wages hovers around 100%. The range of the observed heterogeneity component is much

lower (first column) and is varing between .46 and .57 if we exclude the large 1977 observation.

Furthermore, the range of the sum of the observed and unobserved components is almost equal

to the range of observed log wages and confirm the results of the variance decomposition above:

the weight of unobserved heterogeneity increases over the life cycle and overcomes the weight of

observed heterogeneity when potential experience is equal to 25 years; in long-run values however,

the weight of observed heterogeneity remains predominant. In sum, those results confirm those

we obtained for variances.

We now return to variance decompositions involving each individual specific parameter.

5.4 Components of human capital stocks

We can further decompose observed and unobserved heterogeneity into its constituent parts:

level, ηi1, slope, ηi2, and curvature, ηi3. Denote the permanent heterogeneity variable, as defined

in equation (6):

pi = M(β)ηi, (8)

which stands for the profile of log human capital stocks between 1977 and 2007 as per equation

(1).

If observed heterogeneity only is present (i.e. ηi = η̄g(i)), the variance of pi is the variance of

an homogenous within-group Mincer equation. If there is as much heterogeneity as is estimated,

the estimated V (pi)might be computed as previously in Table 9. Between these two benchmarks,

we can compute hypothetical variances of the permanent effect by shutting down each or two of

its components.

For instance, in case 2 below, we re-estimated individual-specific parameters in a model of

log-wages whose individual specific parameters are restricted to one parameter only, namely a
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standard level fixed effect. More comprehensively, we consider the following four estimations:

1. Observable benchmark: heterogeneity in level, slope and curvature restricted to ob-

servables —ηi1 = η̄g(i)1, ηi2 = η̄g(i)2 and ηi3 = η̄g(i)3.

2. Heterogeneity in levels only: we reestimated for each individual a level fixed effect

applying optimal minimum distance to the estimated η̂ci using its estimated variance. The

restricted estimate is added to observable heterogeneity, η̄g(i). In other words, this is what

would be obtained in a model allowing for one fixed effect in levels only.

3. Heterogeneity in slope only: we reestimated for each individual a slope fixed effect

applying minimum distance to the estimated η̂ci using its estimated variance. The restricted

estimate is added to observable heterogeneity, η̄g(i). In other words, this is what would be

obtained in a model allowing for one fixed effect in slope only.

4. Heterogeneity in level and slope: we reestimated for each individual level and slope

fixed effects, applying minimum distance to the estimated η̂ci using its estimated variance.

These restricted estimates are added to observable heterogeneity, η̄g(i). In other words,

this is what would be obtained in a model allowing for two fixed effects in level and slope.

Table 11 reports variances of the predicted permanent profile of (log) wages, as defined in

equation (8) and in each case 1 to 4. Rows report them every five years from 1977 to 2007. We

also provide out-of-sample estimates for year 2013 as well as the out-of-sample long-run variance

including years after the observation period between 2007 and 2013. The last column reports the

estimated variance of pi when we allow for three heterogeneity terms (e.g. describing level, slope

and curvature). The first to the fourth columns report variances for every case 1 to 4 described

above. We compare these predictions to the complete case using the three heterogeneity terms

(last column).

First, as shown in the previous section, observables explain most of the permanent hetero-

geneity in 1977 while their explanatory power declines afterwards down to less that 30% in 2007

(column 1, Table 11). Second, if we restrict the heterogeneity to a level effect only (column 2),
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we overestimate the variance of the permanent component in 1982 and 1987 and underestimate

it after 1997. This is because this contribution remains almost constant over the years while

the variance of the permanent component increases (column 5) so that we are approximating a

U-shape profile (see Figure 3) by a horizontal straight line. This shows the limit of panel data

analyses in which a single unobserved heterogeneity component in levels is considered. Third, if

we restrict individual heterogeneity to slope only, we underpredict severely variances until 2002

and overpredict in 2007 (column 3). Considering two heterogeneity terms in level and slope com-

bines the previous effects (column 4) and slightly underpredicts variances in intermediate years

(1992 and 1997). The analogy is with an approximation of a U-shaped curve by a sloped straight

line. It however does a good job at predicting long run values even if they are partly composed

of out-of-sample elements. Noenetheless, all predictions restricting heterogeneity underpredicts

the out-of-sample variances in 2013 although the large standard errors of these estimates make

these differences insignificant.

We repeated this analysis by skill groups and those qualitative results are very similar across

groups even if variance levels are different.

6 Conclusion

In this paper, we analyze wage profiles by using an observable microfounded factor model,

based on a human capital investment model. Three factor loadings —level, slope and curvature

—describe wage profiles. We propose an estimation method of the factor loadings based on a

sequence of intertwined random and fixed effect methods. We show the importance of considering

pervasive heterogeneity to model wage profiles and we revisit the questions about the Mincer

dip, the correlation between wage level and wage growth or between wage growth and initial

wages. These analyses clearly call for having three heterogeneity terms in our model.

We also present a set of decompositions of wage inequalities in terms of observed and un-

observed heterogeneity as well as in terms of level, slope and curvature of the individual wage

profiles. This allows to compute short-run and long-run inequalities and to compare them as
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well as performing a set of decompositions. In those particular decompositions, heterogeneous

curvature, or horizon effects are not as important as level and slope since curvature and slope

are highly correlated.

Much remains of be done at the methodological level. The issue of missing data seems at the

top of the agenda since the selection of balanced panels, or the missing at random assumption,

might bias our view of inequalities as we select more stable subpopulations. Other ways of

modelling transitory components might be in order and in particular, more attention might be

paid to what can be anticipated by agents as in Cunha, Heckman and Navarro (2005). We leave

these issues for further research.
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APPENDICES

A Data Appendix

As in Le Minez and Roux (2002), we consider individuals right from their entry into the labor

market and onwards. Labor market entry is defined as being employed for more than 6 months

and being still employed the following year, possibly in different firms. For the entry cohort

of interest which starts in 1977, this leads us to select from the administrative data 36, 883

individuals who were employed more than 6 months in 1977 and at least one day in 1978.

Among them, 53% have worked but not permanently before. Conversely, individuals who have

worked in 1977 are not considered as entrants if their jobs are not permanent enough. They

may however enter with a subsequent cohort.

In addition, we aim at keeping employees with a permanent full-time attachment to the

private sector only. Firstly, we consider workers employed full time only and we censor inform-

ation about part-time jobs. In addition to the condition which requires workers to work in the

private sector during the year of entry and the following one, we further restrict the sample

to men who are working in the private sector in 1982 and 1984 as well. This is because we

want to avoid dealing, first with non participation issues for females, and second, with too many

exits from the sample since the bulk of entries into public service occurs at the beginning of

the working life. These restrictions lead us to retain in the 1977 entry cohort 16, 091 men who

entered the labor market in 1977 in a full-time position for more than 6 months and who were

also full-time employed in 1978. Adding the condition on the presence in a full-time position in

1982 and 1984 further restricts the sample to 8, 288 individuals. Finally, we keep only workers

who were aged between 16 and 30 at their entry in the labor market and this further restricts

the sample to 7, 446 workers.

We impose these restrictions in order to concentrate on a relatively homogeneous sample of

workers with a long term attachment to the private firms’labor market. Admittedly, it does not

represent the full working population. Because of the lack of a credible identification strategy

to correct for selection, we shall assume that selection is at random or can be conditioned

on individual-specific effects only. The distribution functions of unobserved factor loadings or

idiosyncratic components that we estimate in the following refer to this subpopulation.

The empirical analysis uses "annualized" labour earnings which are thus better called wages.

It is defined as the sum of all earnings during the year divided by the number of days worked

and remultiplied by 360 (total number of days during the year in the administrative data).

Accounting only for yearly earnings would miss other earnings from employment in the public

sector, self-employment income or unemployment benefits that are not observed in the data.

Considering annualized earnings instead limits this problem, although it may lead to overestim-

ating yearly income. In order to weaken the possible impact of measurement error, we coded
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as missing the first and last percentiles of the earnings distribution in every period. Inflation,

as measured by consumer prices, leads to subtracting a profile of inflaction factors to current

log-wages (e.g equal to 1.17 at the end of the period of observation). The whole period can be

roughly subdivided into two sub-periods between 1977 and 1986 in which the inflation factor

reaches .77 in 1986 and between 1986 and 2007 during which inflation levelled offand cumulative

inflation reaches .40 only.

Age at labor market entry (in 1977) can only take odd integer values from 17 to 29, i.e

seven different values because of the specific sampling of the dataset. As groups formed by age

at entry and skills are defined according to characteristics recorded at the entry on the labor

market, individuals are attached to the same group during their whole working life.

Estimation of human capital prices by a flat spot condition and robustness checks
We follow Bowlus and Robinson (2012). From the DADS, average log daily real wages by age

and year can be computed using full-time males employees in the Private Sector from 1976 to

2010. To identify the “flat spot”region where human capital remains stable, we ran regressions

of the average log daily real wage on potential experience (difference between current age and

16), an exponential term reflecting the curvature of the wage profile with respect to potential

experience, and year dummies. We used subsamples of individuals defined according to a range

of their potential experience, and selected the broadest range of potential experience for which

the coeffi cients of potential experience and exponential term were statistically non significant.

This leads us to select individuals who are aged between 43 and 58 whose average log-wage

profile did not exhibit any slope or curvature. The results of the regressions and the human

capital price profile of values are available upon request.

We then subtracted these prices from all log wages that lead to the estimates of Table 2 and

further Tables.

B Random effect specification

B.1 An overview

Equation (6) writes

ui = M (β)[1,T ] ηci + v
c[1,T ]
i

where u[1,T ]i = (ui1, ..., uiT )′, vc[1,T ]i = (vci1, ..., v
c
iT )′, ηci = (ηci1, η

c
i2, η

c
i3) are the centered versions of

the ηs and:

M (β)[1,T ] =

 1 1 1/β
...
...

...
1 T 1/βT

 ,
is a [T, 3] matrix.
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In the absence of correlation of the model with initial conditions (that are presented next

Section), mean independence restrictions (5) lead to:

E(ui | ηci) = M(β)ηci ,

V (ui | ηci) = V (vci | ηci) ≡ Ω(ηci),

and:

V (ui) = V (E(ui | ηci)) + E(V (ui | ηci)) = M(β)V (ηci)M(β)′ + E(Ω(ηci)). (B.1)

Our parameter of interest in this equation is the covariance matrix of the individual effects,

V (ηci) standing for the covariances between level, slope and curvature parameters. Identifying

this covariance matrix requires restrictions on the average variance of the idiosyncratic errors,

E(Ω(ηci)). An ARMA specification is common in the earnings dynamic literature and generally

low orders are used (see Guvenen, 2009, or Hryshko, 2012) whereas an alternative is a compos-

ition of permanent and transitory shocks with specific structures (Blundell, 2014, Bonhomme

and Robin, 2009, Lochner and Shin, 2014). We refrain from decomposing vci into its persist-

ent and transitory components since those are not identified absent additional restrictions and

consumption data (Ejrnæs and Browning, 2014).
Arellano and Bonhomme (2012) show that a finite lag ARMA specification is suffi cient to

identify V (ηci). We use this result and proceed by specifying that the processes v
c
it belong in the

family of time-heteroskedactic ARMA processes although we limit the orders of the AR and MA

to vary between 1 and 3. This allows the robustness of the estimated covariance of individual

effects, V (ηci), to the orders of the ARMA process to be assessed. Moreover, we allow for

time heteroskedasticity of the innovations whose importance is argued by Alvarez and Arellano

(2004). What the decomposition (B.1) shows in addition, is that a restricted form of individual

heterogeneity, possibly dependent on parameters, ηi, could be allowed in the ARMA process,

provided that the expected value, E(Ω(ηci)), remains in the ARMA family that we consider.

The most commonly used minimum distance method for estimating equation (B.1) is severely

small-sample biased since the range of moments involved when the time dimension becomes large

makes first order asymptotics a poor guide in empirical research. Okui (2009) derives the small

sample biases not only in the mean but also in the variance of GMM estimates due to the

presence of too many moments and he suggests some moment selection mechanism. This is why

some researchers proposed to return to an OLS set up adding a bias correction step (Fernandez-

Val and Weidner, 2018) or to maximum or pseudo-maximum likelihood methods that reduce the

number of moments available (Alvarez and Arellano, 2004).

Specifically, the estimation method proposed by Alvarez and Arellano (2004) seems to dom-

inate in Monte Carlo experiments other fixed T consistent estimators such as the maximum

likelihood estimator using differenced data, and the corrected within group estimator. This

method is particularly well adapted to the case in which there are missing data in wage dy-

namics. For any missing data configuration, it consists in deleting the rows and columns of the
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covariance matrix corresponding to missing data and write the likelihood function accordingly.

Under a normality assumption, the implicit moment selection underlying this estimation method

is optimal, and though the method loses optimality in the non-normal cases, it is still useful for

moment selection and for small-sample bias reduction (Okui, 2009).

B.2 Heteroskedastic ARMA Specification & Initial conditions

Redefining the time index accordingly, we shall assume that initial conditions of the process

ui = (ui(1−p), ., ui0) are observed. The dynamic process is thus a function of the random variables

zi = (vi(1−p), ., vi0, ζ i(1−q), ., ζ iT ) which collect initial conditions of the autoregressive process

(vci(1−p), ., v
c
i0), initial conditions of the moving average process (ζ i(1−q), ., ζ i0) and the idiosyncratic

shocks affecting random shocks between 1 and T . We write the quasi-likelihood of the sample

using a multivariate normal distribution

zi  N(0,Ωz)

We define vit as

vcit = α1v
c
i(t−1) + ...+ αpv

c
i(t−p) + σtwit,

where wit is MA(q):

wit = ζ it − ψ1ζ it−1 − ...− ψqζ it−q.

The construction of the structure of Ωz is detailed in the Supplementary Appendix S.III although

it can be summarized easily. The correlations between initial conditions and individual effects are

not constrained, while innovations ζ it are assumed orthogonal to any previous terms including

initial conditions. However, the initial conditions (vi(1−p), ., vi0) can be correlated with previous

shocks as ζ i0, ., ζ i(1−q).

As for the individual effects (ηci1, η
c
i2, η

c
i3) we assume that they are independent of the idio-

syncratic shocks ζ i(1−q), ., ζ iT while they can be correlated with the initial conditions of the

autoregressive process (vi(1−p), ., vi0) in an unrestricted way. From these restrictions it is possible

to build the covariance matrix of the observed variables

V ui = Ωu.

This covariance matrix, Ωu, is a function of the parameters of the model that are the autoregress-

ive parameters {αk}k=1,...,p, the moving average parameters {ψk}k=1,...,q, the covariance matrix
(conditional on groups) of ηc, Ση, the heteroskedastic components {σt}t=1,...,T and the covariance
of fixed effects and initial conditions, Γ0η.

The construction of the likelihood function is explained in Supplementary Appendix S.III.
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C Further empirical results

Initial conditions Irrespective of the order of the ARMA process, the initial conditions are

negatively correlated with the level factor loadings, ηci1, positively with the slope effect, η
c
i2, and

negatively with the curvature one, ηci3.
9 These initial conditions account for the strong transitory

conditions that seem to affect the wage process at the beginning of the working life (as well as

the impact of our data selection process).10 Even if the (log) wage process is asymptotically

stationary, initial conditions are definitely not set on the stationary path that corresponds to

this process. Moreover, in all ARMA specifications, the standard deviation of individual and

time specific transitory shocks is decreasing over time. Individual specific frictions decrease over

time and this result is found across different countries (e.g. Bagger et al., 2014, Bowlus et Liu,

2012).

Goodness of fit Goodness-of-fit is examined in different graphs. In Figure 2, we report how

the estimated variances as well as the observed variances evolve over time. They fit very nicely

in the first part of the sample (until 1994) but this breaks down after 1994 after which the shape

of the evolution of variances is similar, albeit at a level which is higher than the observed level.

It confirms that 1994 is an abnormal year even if the goodness-of-fit for autocorrelations is good

as reproduced in Figures S.iii and S.iv.

We tried different mechanisms in order to understand better the discrepancy between ob-

served and predicted variance profiles. One possibility is to allow for an additional measurement

error term in 1994 for instance, like in Guvenen (2009) or to drop this year altogether. These

attempts did not affect goodness-of-fit. A more disturbing explanation for those discrepancies is

that it reflects a failure in the missing at random hypothesis. When one represents the evolution

of the variance of wages over the life cycle using fixed effect estimates (see below), it clearly

appears that the level of these profiles negatively depends on the number of periods in which we

observe each individual. Variances are larger for individuals who have shorter spells in the panel.

Nevertheless, correcting for non random attrition seems out of the scope of this paper and we

leave it for further research. Furthermore, the conditions for consistency of fixed effect estimates

described below are less stringent since the missing at random assumption can be weakened and

taken as conditional on individual effects.

Robustness and other diagnostics We tested various departures from our baseline es-

timates to check that our results are robust. We also comment on additional goodness-of-fit

diagnostics.

9Estimates of the covariances between the factor loadings and the initial conditions are reported in Table S.iv
in the Supplementary Appendix.
10The strong decrease of the variance observed during the first years might partly be due to the very stringent

selection made in the 1977 entry cohort. The very flexible initial conditions, as they are accounted for in the
random effect estimation, also control for this selection.
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The first issue is the estimation of the series by a flat spot approach that underpins the

identifying restriction (3). The dynamics of human capital accumulation depends on whether

the average wage or productivity profile is attributed to human capital only or to other factors

(physical capital for instance). To control for this issue, we also repeated our procedures by

deflating real wage by a series of average labor productivity. Results change only marginally

with respect to the results that were presented above.

As serial correlation affects inference, we also vary the number of lags in the Newey West

procedures without much impact overall.

Bias correction Another issue is related to the quality of the correction of the bias in the fixed

effect estimates that we reported. In Tables S.vii and S.viii in the Supplementary Appendix which

report raw and bias-corrected estimates, the magnitude of all covariance estimates decreases with

the number of period of observations, as expected by the computations of Section S.IV. Bias-

correction flattens these estimates by factors of 2 to 3 when the number of periods is small

but it decreases to 10-20% when the number of periods is 20. There is a clear break in these

Tables between the estimates below and above 20 and this is why we chose to work with the 21+

sample. As expected the bias correction becomes negligible when Ti = 28. The counterfactual

analyses that we present below are robust to a change in this threshold.

The number of factors The comparison between random effect and fixed effect estimates

implicitly relies on an homogeneity assumption of the residuals, v̂ci as a function of ηi. When

plotting the variance profiles of these residuals in groups defined either by skills or by age of

entry, we find very little differences between those groups (see Figure S.v in the Supplementary

appendix). The three-factor structure seems to be suffi cient to describe the individual perman-

ent heterogeneity in our data and this partly justifies ex-post the homogeneity assumption of

the covariance matrix of transitory terms in the random effect specification as well as the ho-

mogeneity assumption of the discount factor which is used to measure the curvature or horizon

effect.
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Table 1: Sample size

Age of Entry in 1977
Below 20 Between 20 and 23 Above 23 All

1977 4460 2112 874 7446
1978 4460 2112 874 7446
1979 3855 1923 787 6565
1980 3748 1930 785 6463
1982 4460 2112 874 7446
1984 4460 2112 874 7446
1985 3792 1808 724 6324
1986 3683 1800 726 6209
1987 3569 1741 678 5988
1988 3402 1654 637 5693
1989 3486 1657 644 5787
1991 3319 1598 613 5530
1992 3299 1581 603 5483
1993 3330 1620 627 5577
1994 2508 1316 503 4327
1995 3256 1566 578 5400
1996 3236 1557 579 5372
1997 3202 1529 556 5287
1998 3208 1521 543 5272
1999 3218 1503 547 5268
2000 3180 1506 536 5222
2001 3117 1480 517 5114
2002 3018 1463 511 4992
2003 2800 1323 467 4590
2004 2844 1387 463 4694
2005 2851 1399 467 4717
2006 2896 1382 442 4720
2007 2864 1377 429 4670
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Table 2: Group averages of individual factor loadings ηg

Skill group Age group Nb Obs ηg1 ηg2 ηg3
2 17 1268 2.5 0.024 -0.049

(0.039) (0.0073) (0.056)
3 17 1224 2.5 0.023 -0.051

(0.04) (0.0059) (0.044)
1 19 41 2.8 0.053 -0.23

(0.04) (0.0068) (0.051)
2 19 934 2.6 0.027 -0.073

(0.035) (0.0052) (0.039)
3 19 994 2.6 0.025 -0.073

(0.044) (0.0074) (0.054)
1 21 117 2.9 0.035 -0.12

(0.085) (0.0088) (0.07)
2 21 710 2.8 0.031 -0.1

(0.022) (0.0039) (0.03)
3 21 512 2.7 0.025 -0.09

(0.019) (0.0035) (0.025)
1 23 171 3.1 0.038 -0.14

(0.017) (0.0032) (0.023)
2 23 348 2.8 0.033 -0.11

(0.03) (0.0051) (0.038)
3 23 254 2.8 0.035 -0.15

(0.049) (0.0063) (0.048)
1 25 191 3.4 0.045 -0.19

(0.053) (0.0058) (0.044)
2 25 146 2.9 0.021 -0.044

(0.061) (0.0065) (0.046)
3 25 93 2.7 0.016 0.0083

(0.025) (0.004) (0.033)
1 27 114 3.5 0.03 -0.12

(0.019) (0.0042) (0.031)
2 27 87 3.1 0.044 -0.22

(0.02) (0.0033) (0.024)
3 27 63 2.7 0.013 0.02

(0.034) (0.0048) (0.036)
1 29 58 3.3 0.024 -0.042

(0.054) (0.0067) (0.049)
2 29 67 2.9 0.021 -0.097

(0.089) (0.014) (0.11)
3 29 55 2.7 -6.2e-05 0.1

(0.055) (0.0079) (0.062)
Note: Estimation of equation (2). A flat spot deflator is used. Newey West standard errors in parentheses (5 lags).
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Table 3: Estimated standard errors and correlations of individual effects ηci : Random effect esti-
mation

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
ση1 .302 .302 .301 .310 .306 .304 .306 .300 .298

( .001) ( .003) ( .003) ( .003) ( .003) ( .003) (.003) ( .003) ( .004)
ση2 .038 .039 .039 .038 .039 .036 .038 .037 .037

( .005) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
ση3 .255 .259 .256 .263 .260 .248 .258 .247 .242

( .005) ( .006) ( .006) ( .004) ( .005) ( .005) (.005) ( .006) ( .007)
ρη1,η2 .473 .413 .454 .571 .486 .610 .505 .485 .365

( .016) ( .021) .021 ( .013) ( .017) ( .013) ( .017) ( .020) ( .030)
ρη1,η3 - .604 - .548 - .586 - .694 - .618 - .729 - .636 - .620 - .509

( .003) ( .020) .019 ( .011) ( .015) ( .012) ( .016) ( .019) ( .029)
ρη2,η3 - .946 - .948 - .947 - .945 - .946 - .941 - .946 - .943 - .944

( .023) ( .003) .003 ( .002) ( .002) ( .003) ( .002) ( .003) ( .004)

Note: The first line corresponds to the ARMA specification (AR-MA) used for the random effect estimation.

Standard errors in parentheses.

Table 4: Bias corrected covariance matrix of individual effects: fixed and random effect estimation

Sample periods V ar(η1) Cov(η1, η2) Cov(η1, η3) V ar(η2) Cov(η2, η3) V ar(η3)
21 0.18 0.012 -0.13 0.0034 -0.026 0.22

(0.029) (0.0032) (0.03) (0.00061) (0.0049) (0.043)
22 0.15 0.015 -0.13 0.0035 -0.027 0.22

(0.019) (0.0031) (0.026) (0.00067) (0.0053) (0.042)
23 0.16 0.012 -0.11 0.0035 -0.024 0.19

(0.017) (0.0024) (0.02) (5e-04) (0.0038) (0.03)
24 0.14 0.014 -0.12 0.0041 -0.03 0.23

(0.017) (0.0027) (0.022) (0.00061) (0.0047) (0.037)
25 0.13 0.01 -0.089 0.0028 -0.02 0.16

(0.014) (0.0023) (0.019) (0.00041) (0.0033) (0.027)
26 0.097 0.0066 -0.059 0.0025 -0.017 0.12

(0.0072) (0.00093) (0.0072) (0.00023) (0.0016) (0.012)
27 0.077 0.0046 -0.04 0.0017 -0.011 0.079

(0.0046) (0.00064) (0.0047) (0.00015) (0.001) (0.0074)
28 0.067 0.0036 -0.031 0.0015 -0.0097 0.067

(0.0049) (0.00067) (0.0047) (0.00016) (0.0011) (0.0074)
21+ sample 0.11 0.0078 -0.07 0.0025 -0.017 0.13

(0.0073) (0.00095) (0.0092) (0.00018) (0.0015) (0.013)
Random effects 0.093 0.0059 -0.05 0.0015 -0.0093 0.066

(0.0036) (0.00051) (0.004) (0.00011) (0.00079) (0.0059)
Notes: The first lines are obtained using fixed effect estimates. Sample periods = number of observed periods.

Standard errors (heteroskedastic-consistent sampling and parameter uncertainty, 1000 MC simulations) between

brackets. The working sample (21+) has 4873 observations
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Table 5: Covariance matrix of individual effects, literature estimates

Source ρ σ2
η1

σ2
η2

ση1,η2
Stochastic

process

Time
varying

variances
Lillard and
Weiss (1979)

0.707
(0.073)

0.0305
(0.0015)

0.00018
(0.00004)

0.00076
(0.0001)

AR(1)
No

Baker (1997)
0.674

(0.050)
0.139

(0.069)
0.00039

(0.00013)
−0.004
(0.003)

ARMA(1,2) Yes

Haider (2001)
0.639

(0.077)
0.295

(0.137)
0.00041

(0.00012)
−0.0083
(0.0036)

ARMA(1,1) Yes

Guvenen (2007)
0.821

(0.020)
0.022

(0.074)
0.00038

(0.00008)
−0.0020
(0.0032)

AR(1)
Yes

Huggett, Ventura
and Yaron (2011)

0.860
(0.010)

0.264
(0.024)

0.00006
(0.00006)

0.003
(0.001)

AR(1)
No

This paper: FE
(restricted)

0.702
(0.005)

0.12
(0.017)

0.00021
(8e− 6)

−0.0017
(0.0002)

ARMA(3,1) Yes

This paper: FE
(complete)

Idem
0.11

(0.0073)
0.0025

(0.00018)
0.0078

(0.0009)
Idem Yes

Note: ρ is the AR(1) coefficient and the second to fourth column report the variances of η1, η2 and their covariance.

Results in the first three rows are taken from Table 4, in Guvenen (2007). The fourth row is from Table 1 in Guvenen

(2007) and the fifth row from Huggett, Ventura and Yaron (2011). The seventh row reports bias corrected fixed

effect results taken from Table 4 in this paper. The sixth row projects out the last factor (β−t) onto an intercept

and a time trend and estimate a two-factor model whose results are comparable to rows (1)-(5). The value of ρ in

row 6 is taken from the comparable ARMA(1,1) estimate in Table S.iv in the Supplementary Appendix.
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Table 6: Covariances of wage level and subsequent growth

Years All Low skilled Medium skilled High skilled
1977 -0.00594 -0.00573 -0.00665 -0.00688

(0.000639) (0.000564) (0.000885) (0.00214)
1982 -0.000972 -0.00137 -0.00102 1.04e-05

(0.000388) (0.000303) (0.00052) (0.00149)
1987 0.00178 0.00113 0.00219 0.00336

(0.000271) (0.000198) (0.000402) (0.00119)
1992 0.00233 0.0018 0.00299 0.00334

(0.000207) (0.000162) (0.000357) (0.00089)
1997 0.00135 0.00115 0.00204 0.00133

(0.000174) (0.000139) (0.000324) (0.000637)
2002 0.000812 0.000838 0.00141 0.00108

(0.000269) (0.000229) (0.00042) (0.00108)
2007 0.00524 0.00459 0.00583 0.0109

(0.000666) (0.000593) (0.00114) (0.00304)
Observations 4873 2942 1433 498
Notes: The coefficient is the covariance between ηi1+ηi2t+ηi3β

−t and ηi2+β−t(1/β−1)ηi3.
Standard errors (heteroskedastic-consistent sampling and parameter uncertainty, 1000 MC
simulations) between brackets. The working sample (21+) has 4873 observations
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Table 7: Time varying correlation of initial levels and returns

Year All Low Med High
1977 -0.498 -0.674 -0.561 -0.379

(0.0521) (0.0425) (0.0682) (0.13)
1982 -0.505 -0.683 -0.564 -0.38

(0.0529) (0.043) (0.0705) (0.134)
1987 -0.509 -0.687 -0.561 -0.375

(0.0539) (0.0436) (0.0742) (0.139)
1992 -0.47 -0.635 -0.507 -0.31

(0.0527) (0.0436) (0.0776) (0.136)
1997 -0.186 -0.265 -0.201 0.000268

(0.0385) (0.042) (0.0664) (0.0796)
2002 0.156 0.207 0.186 0.212

(0.0346) (0.0392) (0.0458) (0.0765)
2007 0.286 0.389 0.338 0.276

(0.0387) (0.0387) (0.0444) (0.0888)
Note: The correlation is ρ = Corr(ηi1 + ηi3, ηi2 −
log(β)β−tηi3) Only observations with more than 21 peri-
ods. 4873 observations. First column reports results for
centered individual effects while the other columns include
aggregate effects. The last three columns for low, medium
and high skills.
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Table 8: Impacts of unobserved heterogeneity on mean log wages

Impact of {σj}j=1,.,3 on:
Level

η1 → η1 + σ1

Slope
η2 → η2 + σ2

Curvature
η3 → η3 + σ3

Log-wage 1977 0.0112 0.0116 0.0199
(0.000203) (0.000336) (0.00062)

Log-wage 1982 0.0303 0.0263 0.0448
(0.000549) (0.000765) (0.0014)

Log-wage 1987 0.0325 0.0499 0.0601
(0.000587) (0.00145) (0.00187)

Log-wage 1992 0.0326 0.0747 0.0778
(0.00059) (0.00217) (0.00242)

Log-wage 1997 0.0326 0.0996 0.101
(0.00059) (0.0029) (0.00313)

Log-wage 2002 0.0326 0.124 0.13
(0.00059) (0.00362) (0.00405)

Log-wage 2007 0.0326 0.149 0.168
(0.00059) (0.00435) (0.00523)

Long-run value 0.0287 0.0573 0.0672
(0.00052) (0.00167) (0.00209)

Note: Average impact on log wages of an increase of a tenth of the standard deviation of: 2nd column,
unobserved heterogeneity in the initial human capital; third column, wage growth or returns; fourth column,
curvature or horizon.
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Table 9: Variance decomposition: random and fixed effects

Random Effects Obs. het. % Unobs. het. % Transitory % Total var.
Log-wage 1977 65.2 1.18 33.6 0.481
Log-wage 1982 34.8 33.1 32.1 0.133
Log-wage 1987 32.8 42 25.3 0.153
Log-wage 1992 29.7 49.9 20.4 0.179
Log-wage 1997 27.2 56 16.8 0.201
Log-wage 2002 26.2 60.8 13 0.206
Log-wage 2007 25.1 66.4 8.47 0.202
Long-run value 50.2 44.5 5.31 0.118
(1977-2007)

Note: The variance (5th column) of each variable (1st column) is decomposed into its component
shares which are reported in percentages in column 2 (observed heterogeneity), column 3 (unob-
served heterogeneity) and column 4 (transitory component). The share of variance of log 1982
wage (0.133) explained by observed heterogeneity is 34.8

Fixed Effects Obs. het. % Unobs. het. % Transitory % Total var.
Log-wage 1977 64.4 1.48 34.1 0.475
Log-wage 1982 32.9 36 31.2 0.137
Log-wage 1987 33.2 40.7 26.1 0.148
Log-wage 1992 30.9 47.5 21.6 0.17
Log-wage 1997 28.7 53.3 18 0.188
Log-wage 2002 27.7 58.2 14 0.192
Log-wage 2007 24.2 67.5 8.28 0.206
Long-run value 51.6 42.8 5.58 0.112

Note: See Table above. Variances are biased corrected. Sample: 4873 individuals with more than
21 periods. Remark: 1977 is different from other years partly because of the orthogonalization
procedure discussed in the text (footnote 6).
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Table 10: Interdecile ranges

FE Obs. het. Obs. and Unobs. Heterogeneity Observed
Log-wage 1977 1.57 1.6 1.89
Log-wage 1982 0.463 0.742 0.786
Log-wage 1987 0.478 0.798 0.883
Log-wage 1992 0.498 0.884 0.987
Log-wage 1997 0.507 0.962 1.02
Log-wage 2002 0.502 1 1.05
Log-wage 2007 0.456 1.07 1.04
Long-run value 0.567 0.801 -
Note: Quantiles at levels .9 and .1 are bias-corrected and their difference is taken to compute
the inter-decile range. ”Observed” uses non-missing observations only and is subject to
selection issues. Sample: 4873 individuals with more than 21 periods. Fixed effect estimates.

Table 11: Variance decompositions of log-wage permanent component

Years
η1 = η̄1g
η2 = η̄2g
η3 = η̄3g

Heterogeneity
in: Levels Growth

Level
and Growth

All

Log-wage 1977 0.0404 0.05 0.0414 0.0479 0.0474
(0.0169) (0.0171) (0.0169) (0.0172) (0.017)

Log-wage 1982 0.0449 0.116 0.0499 0.101 0.094
(0.0181) (0.0182) (0.0181) (0.0183) (0.0207)

Log-wage 1987 0.0491 0.13 0.0672 0.111 0.109
(0.0197) (0.0198) (0.0197) (0.0199) (0.0285)

Log-wage 1992 0.0523 0.134 0.0929 0.121 0.133
(0.0221) (0.0222) (0.0221) (0.0222) (0.0438)

Log-wage 1997 0.0539 0.136 0.126 0.137 0.154
(0.0257) (0.0258) (0.0258) (0.0259) (0.069)

Log-wage 2002 0.0533 0.135 0.166 0.159 0.165
(0.0313) (0.0314) (0.0314) (0.0315) (0.107)

Log-wage 2007 0.05 0.132 0.213 0.188 0.189
(0.0402) (0.0403) (0.0405) (0.0405) (0.165)

Log-wage 2013∗ 0.0429 0.125 0.277 0.23 0.365
(0.0591) (0.0591) (0.0594) (0.0595) (0.28)

Long-run value∗ 0.0474 0.112 0.0775 0.101 0.0969
(0.0206) (0.0207) (0.0206) (0.0207) (0.038)

Note: ∗ = Out-of-sample predictions. Sample: 4873 observations with more than 21 periods.
The columns are described in the text and measure the influence of each component of
heterogeneity, in levels or/and growth.
Reading: In 1977, the variance of the permanent component is 0.0474 (last column). Absent
any unobserved heterogeneity, the variance is equal to 0.0404 (first column). The other
columns report the predicted variance in experiments 2 to 4 in the text
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Figure 1: Mean log earnings by age at entry: 1977-2007
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Figure 2: Cross-sectional variance of log wage residuals: 1977-2007
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Figure 3: Variance of the permanent components
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Note: The permanent component is M (β) ηci defined in equation (6). The sample is restricted
to long history profiles (more than 21 periods). ”Random effects” are using estimates derived
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estimation and ”Bias corrected f.e.” are the bias corrected version of them.
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Supplementary Appendix to Magnac and Roux
"Heterogeneity and Wage Inequalities over the Life

Cycle"
(for Web publication)

Thierry Magnac∗and Sébastien Roux†

8th March 2021

S.I Notation

S.I.1 The model

• t: time elapsed since the entry in the labor market.

• i: index for individuals.

• β: homogenous discount rate

• T : Arbitrary date at which we examine whether individuals goes on investing in human capital,

last date of observation in the empirical application.

• ηi1: individual-specific fixed level of log-wages.

• ηi2: individual-specific growth rate of log-wages.

• ηi3: individual-specific degree of curvature of log-wages.

• vit: (log) price of human capital net of cumulative depreciation.

• g: group of workers, defined by their age at entry and their skills
∗Toulouse School of Economics, Université de Toulouse Capitole, corresponding author, thierry.magnac@tse-

fr.eu
†Insee-Crest-Ined, Paris, sebastien.roux@insee.fr
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• ln ygt: average of ln yit over the group g

• ηgk: average of ηik over g, for k = 1, 2, 3

• vgt: average of vit over g

• ηcik: centered individual effect of ηik, for k = 1, 2, 3

• uit: centered wages, with respect to group g

• vcit: individual-specific variations of human capital prices

S.I.2 Econometric Modeling

• M (β): T, 3 matrix of factors.

• Ω (ηci ): covariance matrix of centered individual fixed effects.

• η̂ci : estimate of the centered individual fixed effect.

• B: matrix 3, T establishing the relationship between the centered individual fixed effects and the

wages residuals.

• B̂: estimate of B

• η̃ci : unfeasible estimator of ηci using B

• ξi: T -vector of residuals, orthogonal to ηci

• Ωξ: covariance matrix of ξi

• Ti: number of actual observations for the individual i.

S.II Supplementary Data Analysis

Auto-covariances The covariance matrix of log-wage residuals over time is reported Table

S.ii although this is easier to use graphs to describe the main features of wage autocorrelations.

Figure S.iii displays the autocorrelation of residuals of log wages in year t with residuals in an
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early (resp. late) year, 1986 (resp. 2007). This Figure reveals an asymmetric pattern over time

which is quite robust to the choice of these specific years (1986 and 2007). The correlation

between wages in year t and in 1986 is swiftly increasing when t is before 1986 and this is also

true for 2007 albeit at a lesser degree. In contrast, the correlation between wages in 1986 and

in year t is only slowly decaying in t, if time t postdates 1986. Figure S.iv takes a different view

that confirms the previous diagnostic by plotting the autocorrelations of order 1 and 6. Note

that their shape are very similar and increase uniformly over time although at different levels.

The closer to the end of the working life, the larger the autocorrelation coeffi cients are.

Moreover, in graph S.ii displays that this cohort has nothing specific when compared to

younger cohorts entering later into the labor market.

Means and variances of individual-specific factor loadings We also estimated the cor-

relation between mean estimates and the number of observed periods (reported in Table S.vi as

well as the decreasing pattern of estimated variances with the observed number of periods (the

raw version in Table S.vii and the bias-corrected one in Table S.viii.

We find that means of individual specific estimates are different when the number of missing

periods vary but those differences are not significant in contrast with variances even though

those are bias corrected.

S.III The random effect model : Model Specification and
Likelihood function

We build up step by step the likelihood function by deriving the covariance matrix of u[1−p,T ]i as

a function of the parameters of the different processes. We first describe the ARMA process and

then include the individual heterogeneity factors.

S.III.1 Time heteroskedastic ARMA specification

Following Alvarez and Arellano (2004) or Guvenen (2009), we specify

vcit = α1v
c
it−1 + ...+ αpv

c
it−p + σtwit
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where wit is MA(q):

wit = ζ it − ψ1ζ it−1 − ...− ψqζ it−q.

Let α = (α1, ., αp) and MT (α) a matrix of size [T, T + p] where p = dim(α):

MT (α) =


−αp ... −α1 1 0 ... 0

0 −αp ... −α1 1
. . .

...
...

. . . . . .
...

. . . . . . 0
0 ... 0 −αp ... −α1 1

 .

If vc[1−p,T ]i =
(
vci1−p, ..., v

c
iT

)
, we have:( (

Ip 0
)

MT (α)

)
v
c[1−p,T ]
i =

(
v
c[1−p,0]
i

σtw
[1,T ]
i

)

Since wit is MA (q), we have

w
[1,T ]
i = MT (ψ).ζ

[1−q,T ]
i

where ζ [1−q,T ]i = (ζ i1−q, ..., ζ iT ).

Denote Λ a diagonal matrix whose diagonal is (σ1, ., σT ) to get the following description of

the stochastic process as a function of initial conditions and idiosyncratic errors:(
Ip 0
MT (α)

)
.v
c[1−p,T ]
i =

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)(
v
c[1−p,0]
i

ζ
[1−q,T ]
i

)
. (S.III.1)

To compute the covariance of vc[1−p,T ]i , we derive the covariance matrix of
(
v
c[1−p,0]
i ζ

[1−q,T ]
i

)
.

Since ζ [1−q,T ]i are i.i.d and are of variance 1, the South-East corner of the matrix is the identity

matrix of size (1 + q + T ). The North West corner is assumed to be an unrestricted covariance

matrix V u[1−p,0]i = Γ00. Assuming as usual that E(uiτζ it) = 0 for any τ < t, we have that

E(v
c[1−p,0]
i .(ζ

[1,T ]
i )′) = 0. Only E(u

[1−p,0]
i .(ζ

[1−q,0]
i )′) remains to be defined:

E(v
c[1−p,0]
i .(ζ

[1−q,0]
i )′) = Ω = [ωrs]

where r ∈ [1− p, 0] and s ∈ [1− q, 0] and where:

r < s : ωrs = 0
r ≥ s : ωrs is not constrained

because the innovation ζ is is drawn after r and is assumed to be not correlated with y
r
i .
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Hence the covariance matrix of zi =

(
v
c[1−p,0]
i

ζ
[1−q,T ]
i

)
writes :

Ωz = V

(
v
c[1−p,0]
i

ζ
[1−q,T ]
i

)
= V

 v
c[1−p,0]
i

ζ
[1−q,0]
i

ζ
[1,T ]
i

 =

 Γ00 Ω 0
Ω′ Iq 0
0 0 IT

 .

S.III.2 Individual heterogeneity

The covariance matrix of the individual heterogeneity factors is denoted Ση. as said above,

we assume that the fixed heterogeneity terms are independent of the whole innovation process

ζ
[1−q,T ]
i . As for the covariance structure between initial conditions and those factors, we assume

that:

E
(
v
c[1−p,0]
i ηc′i

)
= Γ0η

Consider the covariance matrix of initial conditions Σ :

Σ = V

 v
c[1−p,0]
i

ηci
ζ
[1−q,0]
i

 =

 Γ00 Γ0η Ω
Γ′0η Ση 0
Ω 0 Iq

 .

and define,

RT (α) =

( (
Ip 0

)
MT (α)

)−1
ST,p(ψ,Λ) =

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)
Write the covariance matrix of vector u[1−p,T ]i :

Ωu = V
(
u
[1−p,T ]
i

)
= V

(
v
c[1−p,T ]
i +M (β)[1−p,T ] ηci

)
= V

[M (β)[1−p,T ] , RT (α).ST,p(ψ,Λ)
] ηci

v
c[1−p,0]
i

ζ
[1−q,T ]
i



Since vc[1−p,T ]i = RT (α).ST,p(ψ,Λ)

(
v
c[1−p,0]
i

ζ
[1−q,T ]
i

)
, the matrix

V
(
v
c[1−p,T ]
i

)
= RT (α).ST,p(ψ,Λ).Ωz.ST,p(ψ,Λ)′RT (α)′
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and

E
(
v
c[1−p,T ]
i η′i

)
M (β)[1−p,T ]′ = RT (α).ST,p(ψ,Λ)E

(
v
c[1−p,0]
i (ηci)

′

ζ
[1−q,T ]
i (ηci)

′

)
M (β)[1−p,T ]′

= RT (α).ST,p(ψ,Λ)

(
Γ0η

0T+q,3

)
M (β)[1−p,T ]′

= RT (α).

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)(
Γ0η

0T+q,3

)(
03,p,M (β)[1,T ]′

)
= RT (α).

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)(
0p,p Γ0ηM (β)[1,T ]′

0T+q,p 0T+q,T

)
= RT (α).

(
0p,p Γ0ηM (β)[1,T ]′

0T,p 0T,T

)
Hence,

Ωu = RT (α).ST,p(ψ,Λ).Ωz.ST,p(ψ,Λ)′RT (α)′ +M (β)[1−p,T ] ΣηM (β)[1−p,T ]′

+RT (α).

(
0p,p Γ0ηM (β)[1,T ]′

0T,p 0T,T

)
+

(
0p,p 0p,T

M (β)[1,T ] Γ′0η 0T,T

)
RT (α)′

The two first terms correspond to variances of the dynamic process and the individual hetero-

geneity factors, the other terms correspond to the correlation between the two processes induced

by initial conditions. Note that the parameters of the MA process don’t appear in the correla-

tion between the two processes since innovations are assumed to be independent with individual

heterogeneity factors. Initial conditions are given by ζ [1−q,0]i , ηc and vc[1−p,0]i .

The Choleski decomposition of matrix Σ can be parametrized expressing the following matrix

into a polar coordinate basis.

1 0 ... ... 0

0
. . .

. . .
. . .

.

.

.

.

.

. 0 1 0
. . .

... 0 1 0 0
. . .

ω12η 1 0

0 ω13η ω23η 1 0

.

.

. θ
(1)
1−q,1−p θη1,1−p θη2,1−p θη3,1−p 1

0

.

.

.
.
.
.

.

.

. θ2−p,2−p
. . . 1

θ
(1)
0,0 θη1,0 θη21,0 θη3,0 ...

. . . θ0,0 1



where θ(1)1−q,1−p = 0 if p > q and, more generally, θ(1)l,m = 0 if l > m.
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S.IV Fixed Effect Estimation Method

S.IV.1 Individual specific parameter estimates

The main equation is again:

u
[1−p,T ]
i = M(β)[1−p,T ]ηci + v

c[1−p,T ]
i ,

where ηci and v
c[1−p,T ]
i are centered by construction and where a row of M(β) is defined as

M(β)[t] = (1, t, 1/βt) as in Appendix S.III (with some 0s between 1− p and 0). The fixed effect

method consists in estimating by Feasible GLS this equation individual by individual using the

estimated covariance matrices obtained by random effect methods.

Note that even if the ARMA model is incorrect, those estimates are still consistent when

T → ∞ because what matters is the mean independence of individual effects with respect to

factors stated in equation (??), and not the specific form of serial dependence. Their standard

errors should, however, be corrected. We use Newey-West robust standard errors in the empirical

section. Nonetheless, FGLS relying on serial dependence as estimated by random effects, exploits

the information that we have about "aggregate" serial dependence, as opposed to a simple OLS

or non-linear least square estimation (Polachek et al, 2015). It enhances the quality of the

estimates if the term Ω (ηci) in equation (??), is not too heterogeneous and this will be checked

after estimation.

We now construct the fixed effect estimate of ηci . We consider first the case with no missing

values and extend it to the case with missing values.

First, to deal with the correlation between ηci and vi, we can always write:

v
c[1−p,T ]
i = Cηci + ξ

[1−p,T ]
i ,

where E((ηci)
′ξ
[1−p,T ]
i ) = 0 so that we get:

C = E(v
c[1−p,T ]
i (ηci)

′)(E(ηci(η
c
i)
′))−1,

and:

Ωξ = E(v
c[1−p,T ]
i v

c[1−p,T ]′
i )− E(v

c[1−p,T ]
i (ηci)

′)(E(ηci(η
c
i)
′))−1E(ηciv

c[1−p,T ]′
i ).

S.vii



This yields the estimating equation for ηci :

u
[1−p,T ]
i = Dηci + ξ

[1−p,T ]
i where D = M(β)[1−p,T ] + C,

that we can estimate by GLS methods since D can be estimated using random effect methods.

This yields and infeasible estimator (because B is unknown and should be estimated):

η̃ci = Bu
[1−p,T ]
i ,

in which:

B = (D′Ω−1ξ D)−1D′Ω−1ξ .

Furthermore:

η̃ci = B(Dηci + ξ
[1−p,T ]
i ) = ηci +Bξ

[1−p,T ]
i , (S.IV.2)

so that this infeasible estimator is unbiased:

E(η̃ci | ηci) = ηci .

The feasible estimator is now given by replacing B by the random effect estimate:

η̂ci = B̂u
[1−p,T ]
i .

Finally, the case with missing values is as follows. Suppose that u[1−p,T ]i is not observable,

only Siu
[1−p,T ]
i is where Si is the matrix of dimension (Ti, T + p+ 1) selecting non missing values

and where Ti is the number of such non missing values. Consequently,

η̃ci = BSiu
[1−p,T ]
i ,

and by analogy to results above, we have

η̂ci = B̂iu
[1−p,T ]
i ,

in which B̂i is a plug-in estimate of:

Bi = (D′S ′i(SiΩξS
′
i)
−1SiD)−1D′S ′i(SiΩξS

′
i)
−1.
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S.IV.2 Bias correction

Consistency properties could, however, be misleading since Ti varies in our sample between 4 and

28. To assess the magnitude of the bias, we shall compare the estimates of the covariance matrix

of ηci that we obtained by random effect and by fixed effect methods by grouping individual

profiles according to the length of the observation periods.

We start from showcasing the correction of the variance and turn to quantiles afterwards.

S.IV.2.1 Variances

Using the expression of the unfeasible estimate of individual effects as defined by equation

(S.IV.2) above, we get a biased estimate of V (ηci):

V (η̃ci) = EV (η̃ci | ηci) + V E(η̃ci | ηci)

=⇒ V (η̃ci) = BΩξB
′ + V (ηci), (S.IV.3)

in which Ωξ is defined in the previosu section. The bias term is BΩξB
′ and it is easy to show

that the dominating term is of order 1/Ti.

Our feasible estimate has an additional bias given by the measurement equation,

η̂ci = B̂ui = η̃ci + (B̂ −B)ξi,

although this term is in 1/
√
N and thus dominated, in large N and moderate Ti samples, by

the bias in 1/Ti.

We estimate the bias in equation (S.IV.3) by replacing, in the expression, BΩξB
′, the un-

knowns by their corresponding random effect estimates and derive a bias-corrected estimate of

the true variance of fixed effects, V (ηci) (e.g. Arellano and Bonhomme, 2012, and Jochmans and

Weidner, 2018).

S.IV.2.2 Quantiles

Let mit = e>t M(β)ηci the period t value of human capital stocks, or the predicted individual

specific level of log-wages (net of skill prices). Define q (τ) = infq {q |F (q) > τ } where F (.) is
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the distribution function of variable, mit. Realizations of mit are not observed and are replaced

by estimates m̂it = e>t M(β)η̂ci in which by teh section above we plug in

η̂ci = Bηci = ηci + B̂ξ
[1,T ]
i ,

to derive:
√
T (m̂it −mit) =⇒

T→∞
N(0, σ2it),

in which σ2it = lim
T−→∞

(Te>t M(β)BΩξB
>M(β)>et).

The estimation of q (τ) is a specific case of those studied by Jochmans and Weidner (2019).

Sort observations in increasing order of values m̂it and define the plug-in estimator for quantiles

of the distribution of m̂it by:

q̂t (τ) = m̂bτnc

where b.c denotes the integer function and n is the number of individuals whose wage is non-

missing at period t. Jochmans and Weidner (2019) argue that a direct analytical bias correction

is to be avoided since it requires to non-parametrically estimate the density f (.) of mit. They

propose instead to correct the rank τ at which the quantile is evaluated because the sampling

error inflates quantiles, by writing:

τ̂ (τ) = τ +
1

T
b̂F (q̂ (τ)) ,

and:

b̂F (q) = − 1

2nh2

∑
i
σ̂2itκ

′
(
m̂it − q
h

)
in which κ′ is the derivative of a Gaussian kernel, h a bandwidth, and σ̂2it is an estimator of σ

2
it.

JW proposed estimate:

q̃ (τ) = m̂bτ̂(τ)nc,

and proved that:
√
n (q̃ (τ)− q (τ)) −→ N

(
0, ω2 (τ)

)
(S.IV.4)

in which ω2 (τ) = τ(1− τ)/(f(q(τ)))2 in which f (.) is the density of mit.
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Table S.iii: AIC criterion

ARMA(p,q) q=1 q=2 q=3
p=1 -344885 -344899 -344906

(43) (45) (47)

p=2 -345301 -345447 -345733
(47) (50) (53)

p=3 -345839 -346133 -346293
(51) (54) (58)

AIC criterion computed as -2log(L)+2K, with L the like-
lihood and K the number of parameters. Number of pa-
rameters in brackets.
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Table S.iv: Estimated parameters of the Random Effects Model

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
α1 .702 .729 .711 .263 .186 .220 .200 .203 .194

( .005) ( .006) ( .007) ( .011) ( .011) ( .011) (.012) ( .011) ( .011)
α2 .145 .324 .143 .191 .143 .161

( .004) ( .008) ( .009) ( .005) ( .009) (.009)
α3 .022 .087 .187

( .003) ( .004) ( .008)
ψ1 .369 .391 .373 - .091 - .172 - .135 - .164 - .166 - .189

( .005) ( .005) ( .007) ( .011) ( .011) ( .012) (.012) ( .011) ( .011)
ψ2 .020 .017 .170 - .028 - .046 - .046

( .003) ( .003) ( .006) ( .008) ( .008) (.008)
ψ3 - .012 - .080 .114

( .004) ( .004) ( .007)
ση1 .302 .302 .301 .310 .306 .304 .306 .300 .298

( .001) ( .003) ( .003) ( .003) ( .003) ( .003) (.003) ( .003) ( .004)
ση2 .038 .039 .039 .038 .039 .036 .038 .037 .037

( .005) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
ση3 .255 .259 .256 .263 .260 .248 .258 .247 .242

( .005) ( .006) ( .006) ( .004) ( .005) ( .005) (.005) ( .006) ( .007)
ρη1,η2 .473 .413 .454 .571 .486 .610 .505 .485 .365

( .016) ( .021) .021 ( .013) ( .017) ( .013) ( .017) ( .020) ( .030)
ρη1,η3 - .604 - .548 - .586 - .694 - .618 - .729 - .636 - .620 - .509

( .003) ( .020) .019 ( .011) ( .015) ( .012) ( .016) ( .019) ( .029)
ρη2,η3 - .946 - .948 - .947 - .945 - .946 - .941 - .946 - .943 - .944

( .023) ( .003) .003 ( .002) ( .002) ( .003) ( .002) ( .003) ( .004)
σy0 .491 .506 .496 .448 .479 .429 .442 .455 .494

( .000) ( .007) ( .007) ( .004) ( .005) ( .004) (.004) ( .005) ( .008)
σy−1 .381 .424 .359 .387 .386 .428

( .004) ( .005) ( .004) ( .004) ( .005) (.008)
σy−2 .264 .270 .299

( .004) ( .006) ( .008)
cov(η1, y0) - .227 - .257 - .237 - .156 - .214 - .149 -.186 - .201 - .282

( .019) ( .017) .017 ( .015) ( .016) ( .016) ( .016) ( .017) ( .019)
cov(η1, y−1) - .127 - .183 - .113 - .153 - .168 - .253

( .016) ( .017) ( .017) ( .017) ( .018) (.020)
cov(η1, y−2) - .169 - .185 - .267

( .018) ( .019) ( .022)
cov(η2, y0) .358 .402 .374 .232 .335 .155 .219 .253 .361

( .022) ( .020) .021 ( .017) ( .019) ( .021) ( .020) ( .022) ( .026)
cov(η2, y−1) .218 .331 .119 .242 .235 .352

( .019) ( .021) ( .024) ( .022) ( .025) (.029)
cov(η2, y−2) .239 .253 .351

( .024) ( .027) ( .032)
cov(η3, y0) - .290 - .333 - .305 - .179 - .270 - .107 - .163 - .195 - .291

( .018) ( .023) .023 ( .020) ( .022) ( .023) ( .023) ( .024) ( .029)
cov(η3, y−1) - .169 - .272 - .077 - .190 - .181 - .287

( .021) ( .023) ( .025) ( .023) ( .027) (.032)
cov(η3, y−2) - .181 - .194 - .282

( .026) ( .029) ( .035)
cov(y0, ζ0) .809 .036 - .024 - .823 .826 - .931 .841 - .795 .812

( .023) (8.525) 26.529 ( .269) ( .059) ( .207) (.061) ( .416) ( .096)
cov(y0, ζ−1) .779 - .012 .408 - .352 - .208 .361

( .438) 1.245 ( .102) (17.542) (152.666) (31.114)
cov(y−1, ζ−1) .798 .722 - .066 .830 .234

(.813) ( .062) ( .148) (41.955) (17.858)
cov(y0, ζ−2) - .805 - .719

(3.931) (76.705)
cov(y−1, ζ−2) - .382 - .202

(11.249) (44.061)
cov(y−2, ζ−2) .752

( .094)

S.xiv



Table S.v: Yearly standard deviation of earnings

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
1978 .311 .312 .312

( .001) ( .002) ( .002)
1979 .254 .257 .255 .222 .232 .219

( .001) ( .001) ( .001) ( .001) ( .001) ( .001)
1980 .223 .223 .223 .222 .227 .221 .224 .224 .230

( .005) ( .001) ( .001) ( .001) ( .001) ( .001) (.002) ( .002) ( .002)
1981 .264 .260 .263 .000 .103 .002 .004 .006 .001

( .005) ( .005) ( .005) ( .096) ( .040) ( .066) (.082) ( .076) ( .060)
1982 .152 .150 .150 .194 .193 .197 .193 .195 .198

( .005) ( .005) ( .005) ( .002) ( .002) ( .002) (.002) ( .002) ( .002)
1983 .244 .243 .247 .040 .175 .096 .023 .039 .193

( .004) ( .005) ( .005) ( .063) ( .017) ( .037) (.048) ( .049) ( .021)
1984 .154 .149 .149 .189 .184 .187 .188 .188 .182

( .001) ( .004) ( .004) ( .002) ( .001) ( .002) (.001) ( .001) ( .002)
1985 .182 .182 .182 .181 .183 .183 .181 .183 .183

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1986 .187 .187 .187 .189 .189 .190 .190 .190 .192

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1987 .181 .182 .181 .176 .176 .177 .176 .177 .177

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1988 .180 .180 .181 .181 .181 .181 .181 .182 .183

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1989 .171 .172 .172 .168 .170 .169 .169 .170 .171

( .008) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1990 .012 .021 .005 .358 .303 .375 .349 .395 .363

( .002) ( .007) ( .008) ( .012) ( .008) ( .015) (.012) ( .016) ( .013)
1991 .182 .184 .180 .153 .167 .156 .161 .157 .163

( .001) ( .002) ( .002) ( .002) ( .001) ( .002) (.001) ( .002) ( .001)
1992 .162 .162 .162 .159 .155 .159 .157 .160 .161

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1993 .207 .207 .207 .209 .209 .209 .210 .209 .211

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1994 .237 .236 .237 .250 .250 .251 .252 .253 .254

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1995 .193 .195 .194 .177 .179 .177 .177 .178 .180

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1996 .177 .177 .177 .176 .178 .177 .177 .177 .178

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1997 .167 .167 .167 .162 .162 .162 .162 .162 .164

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1998 .137 .138 .138 .134 .137 .135 .135 .136 .138

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1999 .152 .152 .152 .155 .157 .157 .156 .157 .158

( .001) ( .001) ( .001) ( .000) ( .000) ( .000) (.000) ( .000) ( .001)
2000 .159 .159 .159 .159 .159 .159 .159 .159 .160

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2001 .158 .158 .158 .159 .159 .160 .159 .160 .161

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2002 .153 .153 .153 .146 .146 .146 .146 .147 .149

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2003 .168 .167 .168 .178 .178 .179 .179 .180 .181

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2004 .147 .148 .148 .133 .133 .134 .133 .134 .135

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2005 .128 .128 .128 .130 .132 .130 .131 .131 .133

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2006 .123 .124 .123 .124 .124 .124 .125 .125 .127

( .001) ( .001) ( .001) ( .000) ( .000) ( .000) (.000) ( .000) ( .000)
2007 .117 .117 .117 .115 .116 .116 .115 .117 .118

( .003) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
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Table S.vi: Mean individual effects by groups of non-missing periods

Sample periods E(η1) E(η2) E(η3)
(3,13] -0.184 -0.0179 0.164

(0.103) (0.00916) (0.113)
(13,20] -0.0285 -0.0115 0.0607

(0.0304) (0.00386) (0.0381)
(20,25] 0.0113 -0.00369 0.0157

(0.00932) (0.00152) (0.0115)
(25,28] 0.0191 -0.00132 0.0127

(0.00535) (0.000877) (0.00599)
Note: Heteroskedastic consistent standard errors in paren-
theses.
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Table S.vii: Raw covariance matrix by number of non-missing periods

Sample periods V ar(η1) Cov(η1, η2) Cov(η1, η3) V ar(η2) Cov(η2, η3) V ar(η3)
4 4.7 0.41 -5.5 0.16 -1.1 9.4

(889) (68) (956) (5.3) (74) (1029)
5 23 0.8 -20 0.1 -1.1 19

(101) (7.6) (108) (0.59) (8.2) (115)
6 21 1.5 -22 0.15 -1.8 24

(45) (3.3) (48) (0.25) (3.6) (51)
7 18 1.3 -18 0.13 -1.5 20

(36) (2.8) (39) (0.21) (3) (42)
8 20 1.6 -21 0.15 -1.8 24

(27) (2.3) (30) (0.19) (2.5) (33)
9 16 1.3 -17 0.12 -1.5 19

(14) (1.2) (16) (0.11) (1.4) (18)
10 15 1.4 -17 0.14 -1.6 20

(9.8) (0.88) (11) (0.081) (1) (13)
11 9.4 0.86 -11 0.087 -1 12

(5.1) (0.47) (5.9) (0.044) (0.54) (6.8)
12 5.6 0.52 -6.3 0.055 -0.63 7.4

(2.6) (0.25) (3) (0.025) (0.29) (3.5)
13 3.9 0.37 -4.4 0.039 -0.44 5.1

(1.3) (0.13) (1.5) (0.013) (0.15) (1.8)
14 2.9 0.33 -3.6 0.041 -0.43 4.5

(0.86) (0.1) (1.1) (0.012) (0.13) (1.4)
15 2.4 0.25 -2.8 0.03 -0.32 3.4

(0.72) (0.075) (0.86) (0.0081) (0.091) (1)
16 0.93 0.1 -1.1 0.016 -0.15 1.5

(0.24) (0.026) (0.29) (0.0032) (0.033) (0.36)
17 1.1 0.12 -1.3 0.019 -0.18 1.7

(0.26) (0.032) (0.33) (0.0043) (0.043) (0.44)
18 0.75 0.089 -0.9 0.014 -0.13 1.2

(0.17) (0.021) (0.22) (0.0029) (0.029) (0.3)
19 0.53 0.064 -0.61 0.012 -0.1 0.91

(0.085) (0.012) (0.11) (0.0018) (0.017) (0.16)
20 0.33 0.04 -0.37 0.0084 -0.069 0.59

(0.04) (0.0056) (0.052) (0.001) (0.0088) (0.077)
21 0.22 0.017 -0.17 0.0051 -0.039 0.32

(0.029) (0.0032) (0.03) (0.00062) (0.005) (0.044)
22 0.17 0.018 -0.16 0.0048 -0.037 0.3

(0.019) (0.0031) (0.026) (0.00068) (0.0053) (0.042)
23 0.18 0.014 -0.13 0.0047 -0.033 0.25

(0.017) (0.0024) (0.019) (0.00051) (0.0038) (0.03)
24 0.16 0.015 -0.13 0.0049 -0.036 0.28

(0.017) (0.0027) (0.022) (0.00061) (0.0047) (0.037)
25 0.14 0.011 -0.098 0.0035 -0.025 0.19

(0.014) (0.0023) (0.019) (0.00042) (0.0033) (0.027)
26 0.1 0.0071 -0.064 0.003 -0.02 0.15

(0.0072) (0.00093) (0.0071) (0.00023) (0.0016) (0.012)
27 0.082 0.0048 -0.043 0.0021 -0.014 0.099

(0.0046) (0.00063) (0.0047) (0.00015) (0.001) (0.0072)
28 0.071 0.0037 -0.033 0.0018 -0.012 0.081

(0.0049) (0.00067) (0.0047) (0.00016) (0.0011) (0.0073)
Complete sample 2.6 0.22 -2.8 0.024 -0.27 3.3

(3.4) (0.27) (3.7) (0.022) (0.29) (4)

Note: Heteroskedastic consistent standard errors in parentheses.
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Table S.viii: Bias corrected covariance matrix by number of sampling periods

Sample periods V ar(η1) Cov(η1, η2) Cov(η1, η3) V ar(η2) Cov(η2, η3) V ar(η3)
4 -22 -1.7 23 -0.0065 1.2 -22

(744) (56) (796) (4.3) (60) (852)
5 5.9 -0.54 -1.5 -0.0091 0.42 -0.98

(69) (5.2) (73) (0.4) (5.6) (78)
6 6.6 0.48 -6.9 0.064 -0.62 7.7

(23) (1.7) (24) (0.13) (1.8) (26)
7 3.9 0.14 -3.3 0.029 -0.23 3.3

(23) (1.7) (24) (0.13) (1.8) (26)
8 4.4 0.29 -4.4 0.034 -0.36 4.8

(16) (1.3) (18) (0.11) (1.5) (19)
9 4.1 0.29 -4.3 0.027 -0.33 4.6

(8) (0.69) (8.9) (0.061) (0.77) (9.9)
10 6.2 0.54 -6.9 0.054 -0.64 8

(6.4) (0.57) (7.3) (0.052) (0.65) (8.2)
11 4.2 0.35 -4.5 0.035 -0.41 5.2

(3.7) (0.33) (4.2) (0.03) (0.38) (4.7)
12 3.3 0.28 -3.6 0.027 -0.32 4

(2.3) (0.21) (2.6) (0.02) (0.24) (3)
13 1.6 0.11 -1.5 0.0089 -0.11 1.5

(1.5) (0.15) (1.8) (0.016) (0.18) (2.1)
14 1.7 0.18 -2 0.023 -0.24 2.5

(0.76) (0.088) (0.95) (0.011) (0.11) (1.2)
15 1.7 0.16 -1.9 0.019 -0.2 2.3

(0.65) (0.065) (0.76) (0.0068) (0.077) (0.89)
16 0.73 0.076 -0.81 0.011 -0.11 1.1

(0.25) (0.026) (0.29) (0.0031) (0.033) (0.35)
17 0.89 0.1 -1 0.015 -0.14 1.4

(0.26) (0.032) (0.33) (0.0042) (0.042) (0.43)
18 0.62 0.071 -0.72 0.01 -0.097 0.96

(0.17) (0.021) (0.22) (0.0028) (0.028) (0.29)
19 0.45 0.052 -0.49 0.0089 -0.077 0.7

(0.085) (0.012) (0.11) (0.0018) (0.017) (0.16)
20 0.27 0.032 -0.29 0.0062 -0.051 0.43

(0.04) (0.0057) (0.052) (0.001) (0.0087) (0.077)
21 0.18 0.012 -0.13 0.0034 -0.026 0.22

(0.029) (0.0032) (0.03) (0.00061) (0.0049) (0.043)
22 0.15 0.015 -0.13 0.0035 -0.027 0.22

(0.019) (0.0031) (0.026) (0.00067) (0.0053) (0.042)
23 0.16 0.012 -0.11 0.0035 -0.024 0.19

(0.017) (0.0024) (0.02) (5e-04) (0.0038) (0.03)
24 0.14 0.014 -0.12 0.0041 -0.03 0.23

(0.017) (0.0027) (0.022) (0.00061) (0.0047) (0.037)
25 0.13 0.01 -0.089 0.0028 -0.02 0.16

(0.014) (0.0023) (0.019) (0.00041) (0.0033) (0.027)
26 0.097 0.0066 -0.059 0.0025 -0.017 0.12

(0.0072) (0.00093) (0.0072) (0.00023) (0.0016) (0.012)
27 0.077 0.0046 -0.04 0.0017 -0.011 0.079

(0.0046) (0.00064) (0.0047) (0.00015) (0.001) (0.0074)
28 0.067 0.0036 -0.031 0.0015 -0.0097 0.067

(0.0049) (0.00067) (0.0047) (0.00016) (0.0011) (0.0074)
Complete sample 0.96 0.07 -0.95 0.0096 -0.094 1.1

(2) (0.16) (2.1) (0.013) (0.17) (2.3)
Random effects 0.093 0.0059 -0.05 0.0015 -0.0093 0.066

(0.0036) (0.00051) (0.004) (0.00011) (0.00079) (0.0059)

Note: Heteroskedastic consistent standard errors in parentheses.
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Figure S.i: Change over time in mean and variance of log earnings for cohorts 1977-2000
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Figure S.ii: First order autocorrelation relative to potential experience for 1977, 1987 and 1997
entry cohorts
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Figure S.iii: Autocorrelations with 1986 and 2007
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Figure S.iv: Forward autocorrelations of order 1 and of order 6
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Figure S.v: Estimated variance of residuals vit by potential experience and skill group
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