
HAL Id: hal-04531993
https://hal.science/hal-04531993

Submitted on 4 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mutual interactions between plasma filaments in a
tokamak evidenced by fast imaging and machine learning

Sarah Chouchene, Frédéric Brochard, Nicolas Lemoine, Jordan Cavalier,
Mikael Desecures, Vladimir Weinzettl

To cite this version:
Sarah Chouchene, Frédéric Brochard, Nicolas Lemoine, Jordan Cavalier, Mikael Desecures, et al.. Mu-
tual interactions between plasma filaments in a tokamak evidenced by fast imaging and machine learn-
ing. Physical Review E , 2024, 109 (4), pp.045201. �10.1103/PhysRevE.109.045201�. �hal-04531993�

https://hal.science/hal-04531993
https://hal.archives-ouvertes.fr


Mutual interactions between plasma filaments in a tokamak evidenced by fast imaging1

and machine learning2

Sarah Chouchene,1, 2, ∗ Frédéric Brochard,1, † Nicolas Lemoine,1, ‡3

Jordan Cavalier,3, § Mikael Desecures,2, ¶ and Vladimir Weinzettl3, ∗∗4
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Magnetically confined fusion plasmas are subject to various instabilities that cause turbulent9

transport of particles and heat across the magnetic field. In the edge plasma region, this transport10

takes the form of long filaments stretched along the magnetic field lines. Understanding the dynamics11

of these filaments, referred to as blobs, is crucial for predicting and controlling their impact on12

reactor performance. To achieve this, highly-resolved passive fast camera measurements have been13

conducted on the COMPASS tokamak. These measurements are analyzed using both conventional14

tracking methods and a custom-developed machine learning approach designed to characterize more15

particularly the mutual interactions between filaments. Our findings demonstrate that up to 18%16

of blobs exhibit mutual interactions in the investigated area close to the separatrix, at the border17

between confined and non-confined plasma. Notably, we present direct observations and radial18

dependence of blob coalescence and splitting, as well as rapid reversals in the blob’s propagation19

direction, as well as their dependence on the radial position. The comparison between observations20

realized with passive imaging and Gas Puff Imaging does not evidence any significant bias due to21

the use of the latter technique.22

Keywords: Turbulent transport, Plasma filament, Machine learning, Magnetic confinement, High-23

temperature plasma, Tokamak24

I. INTRODUCTION25

Nuclear fusion holds the promise of providing an al-26

most limitless source of clean energy. While the potential27

role of fusion in the energy transition is debated, industri-28

ally worldwide important countries have included fusion29

as one of the proposed solutions with the highest poten-30

tial [1]. Despite significant progresses have been made,31

with important milestones achieved in recent years [2–32

6], the ability to generate electricity from nuclear fusion33

on a large scale and within a reasonable time frame is34

still unclear. Currently, the most promising device for35

producing electricity by nuclear fusion is the tokamak, a36

type of fusion reactor that utilizes nested magnetic sur-37

faces to confine and stabilize a high-temperature plasma.38

Several such devices are in operation or under develop-39

ment in the world, including the ITER project [7], which40

aims to demonstrate the feasibility of large-scale nuclear41

fusion power generation. However, even with the latest42

technological and scientific advances, the production of43

electricity through nuclear fusion remains a formidable44

task. The emergence of private companies promising the45

first fusion power plants in the coming decade [8] should46

not overshadow that numerous challenges persist in cru-47
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cial areas such as plasma confinement, plasma heating,48

materials and tritium fuel cycle [9].49

Magnetically confined plasma are susceptible to var-50

ious instabilities that contribute to turbulent transport51

through the magnetic surfaces [10]. The losses of par-52

ticles and heat resulting from this transport across the53

magnetic field have been a challenging research topic for54

decades. One key phenomenon involved in this transport55

is the formation and propagation of plasma filaments, re-56

ferred to as blobs [11–14]. Blobs are coherent structures57

elongated along the magnetic field lines, propagating ra-58

dially outward in the edge region of tokamaks. They can59

induce mixing between the core and edge plasma, leading60

to energy and particle transport across the magnetic field61

lines. In addition to energy losses, blobs can also con-62

tribute to wall erosion and to the injection of impurities63

from the wall into the confined region, posing significant64

challenges that need to be addressed to enhance device65

performance and longevity [10].66

Experimental studies utilizing different plasma diag-67

nostic methods have shown that blobs cross-sections in68

the poloidal plane have a diameter ranging from a few69

millimeters to a few centimeters and a characteristic life-70

time of the order of 10 µs [15]. Achieving the necessary71

spatial and temporal resolutions to adequately resolve72

blob dynamics with cameras often relies on a technique73

called gas puff imaging (GPI), which involves the local-74

ized injection of gas at the camera’s focal plane to im-75

prove the signal-to-noise ratio (SNR) and enhance struc-76

ture localization [16]. Such measurements have demon-77

strated that blobs are often expelled from the Last Closed78

Flux Surface (LCFS) region [17]. In order to study the79
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rapid dynamics of filaments, various imaging techniques80

have been developed since the early 2000s. Temporal res-81

olutions of 1µs were achieved as early as 2003 on Alca-82

tor C-mod and NSTX tokamaks by using GPI, but with83

cameras that could only record short sequences (typi-84

cally six consecutive images), or temporally uncorrelated85

snapshots [18–20]. In 2010, long sequences with an un-86

precedented temporal resolution of 500 ns were achieved87

on Alcator C-mod [21], and more recently on the TCV88

tokamak [15] still with GPI, enabling to resolve individ-89

ual blob dynamics and to conduct statistically robust in-90

vestigations. At the COMPASS tokamak [22], the recy-91

cling of neutrals at the wall can provide sufficient vis-92

ible light to investigate the dynamics of blobs without93

the necessity of additional gas injection, on condition to94

use a tomographic inversion method for their localiza-95

tion [23, 24]. Although measurements obtained with this96

approach have a less favorable SNR compared to GPI97

measurements, they offer the advantage of being com-98

pletely non-perturbative, while disturbances induced by99

GPI are challenging to evaluate [16].100

The results presented in this paper are based on mea-101

surements obtained during the last operational campaign102

of the COMPASS tokamak before its final shutdown,103

where passive fast imaging data with frame rates up to104

1.008 million frames per second have been obtained in105

L-mode discharges. These high-speed recordings reveal106

dynamical behaviors that could only be speculated upon107

with recordings made at lower rates. Our observations108

unequivocally show that the poloidal velocity of blobs at109

a given point frequently reverses, regardless of their radial110

location in the vicinity of the LCFS. This feature may111

pose significant tracking challenges in videos recorded at112

lower frame rates, as we explain in section III- Data anal-113

ysis and results. Furthermore, our observations reveal114

that blobs interact with each other, exhibiting phenom-115

ena such as coalescence and splitting. Previous theoret-116

ical works and simulations have debated whether inter-117

actions occur between blobs. Some simulations, starting118

with isolated blobs, suggest little to no interaction [25],119

while others, where blobs exist within a consistent tur-120

bulent plasma background, suggest that almost half of121

them interact with each other [26].122

Experimentally the large waiting time between events123

identified as blobs in probe data at a single point in the124

Scrape-Off-Layer (SOL) has long been used to argue in125

favor of independence between filaments and low prob-126

ability of mutual interactions between filaments [27–29],127

until experimental evidence of this type of interactions128

was provided by GPI recordings on several tokamaks.129

The possibility of blob collisions, merging or splitting is130

thus taken into account in several analysis tools set up131

to study ELMs or blob dynamics, e.g. on NSTX [30, 31]132

or TCV [32, 33]. However, the experimental studies pub-133

lished to date did not focus on the study of these inter-134

actions, and the methods used are not necessarily able135

to provide statistically significant data. For instance, the136

frequency of these events is generally not discussed, and137

even if Offeddu et al. estimate the splitting frequency at138

10% and the merging frequency at 3%, the total num-139

ber of filaments considered, 154, is certainly too low to140

draw firm conclusions [32]. In contrast to these work,141

the method we have developed and which is presented142

in this study is specifically designed to target this type143

of interactions and enable their statistical study in large144

datasets. For example, on shot #20846 alone, for which145

the video recording corresponds to 50 ms of discharge,146

our method counts 6025 filaments, 18% of which are in-147

teracting. As the analysis is fully automated (after the148

model has been properly trained), our method makes it149

easy to analyze a large number of videos, and confers real150

statistical value to the study of filament interactions.151

In order to automate the detection of interaction phe-152

nomena between blobs, we have opted for a machine153

learning (ML) approach. ML methods and particularly154

convolutional neural networks (CNNs) have proven to be155

highly effective in computer vision and image recogni-156

tion tasks, and have been successfully applied in quan-157

tum physics [34], nuclear physics [35], human sciences158

[36], medicine [37] and many other domains [38, 39]. In159

plasmas physics, such techniques have been recently used160

to detect and track blobs in 2D videos [15], an approach161

different to the one that we present in this paper, which162

is based on the application of YoloV7-segmentation [40]163

to time-integrated pictures, as explained in section III.164

More specialized approaches using Deep-Learning (DL)165

have also been used to recover the plasma dynamics from166

partial observations [41] and recently to quantify inter-167

action forces such as electric field between blobs on tur-168

bulent scale [42].169

II. EXPERIMENTAL SETUP170

Our investigations are based on tomographically171

inverted data captured by a single fast visible camera172

observing the edge plasma region in L-mode D-shaped173

discharges, considering constant light emissivity along174

the magnetic field lines [24]. This approach produces175

2D maps of light fluctuations in a poloidal plane, in a176

10 cm square located on both sides of the LCFS, with177

a pixel (node) resolution of 2 mm. We primarily focus178

on the COMPASS discharge #20846, which has been179

captured at a high frame rate of 1,008 million frames per180

second (fps) and an exposure time of 0.68 µs. The high181

spatial and temporal resolutions enable to resolve the182

turbulence dynamics and to evidence mutual interactions183

between blobs, but the presence of an intermittent gas184

puff source in the camera field of view might perturb the185

dynamics and questions the validity of the tomographic186

inversion. To investigate theses issues, two other shots,187

recorded at 900 kfps are analyzed, one involving a stable188

gas puff injection during the video acquisition (discharge189

#20849) and another one completely without gas puff190

during the acquisition (discharge #20987). A sketch191

presenting the experimental setup is given in Fig.1.192
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Table I provides a summary of the most important193 parameters used in this study.194

195

FIG. 1: a) Schematic of the optical setup installed on COMPASS (top view). b) Poloidal cross-section of the
camera field of view. [24].

TABLE I: Main parameters of the shots investigated in our study

Shots Frame rate Exposure time Toroidal magnetic Plasma current Flat-top plasma Camera window
(kfps) (µs) field BT (Tesla) Ip(kA) density ne (1019m−3) Width x Height (pixels)

20846 1008 0.68 -1.15 182 4 128 x 40
20849 900 0.79 -1.5 383 3 128 x 56
20987 900 0.79 -1.38 -271 6 128 x 56

III. DATA ANALYSIS AND RESULTS196

A. Highly resolved conventional analysis197

Inverted camera data are first analyzed using the AX198

R&D software [43] in order to detect and track turbulent199

structures individually. This analysis is carried out with200

conventional thresholding techniques for blob contouring201

and a bayesian approach for their tracking. Fig. 2202

depicts the 2D map of the temporally averaged poloidal203

blob velocities thus reconstructed for shot #20846. The204

core plasma is located on the left side of the LCFS, while205

the right side represents the SOL. The mean poloidal206207

velocities map exhibits a shear zone radially distant208

between 2 mm to 4 mm outside the LCFS. The LCFS209

position itself is obtained by the EFIT reconstruction,210

which has a precision of about 1 cm, as checked by211

probe measurements [44]. The time-averaged probability212

density functions (PDFs) of poloidal velocities in a 4 mm213

square are depicted in Fig. 3(a), as well as the time214

series of poloidal velocities in the same zone (Fig. 3(b)).215

FIG. 2: 2D map of the mean poloidal velocities per
pixel (m/s) of shot 20846 at [1100 - 1146.6] ms; The

black square is the selected area. [color online]
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This figure shows that while time-averaged velocity216

maps offer a comprehensible and apparently satisfactory217

picture of flows in the vicinity of the LCFS, they do218

not capture the true complexity of blob dynamics as219

already illustrated in [32, 45] for instance. Indeed, Fig. 3220

reveal that average (or most probable) velocities only221

imperfectly account for the movement of blobs, whose222

direction frequently reverses, even relatively far from223

the shear zone. These fast reversals of the propagation224

direction are observed whatever the location of the225

area selected in the 2D map and are common to all our226

analyses, whatever the discharge conditions. The manual227

analysis of different sequences confirms that these are228

not tracking errors, which are likely to occur if the frame229

rate is too low. Such fast reversal is illustrated in Fig. 4,230

where a sequence showing downstream filament motion231

(Fig. 4(a)) is shortly followed by upstream motion in232

the poloidal direction (Fig. 4(b)). Some sequences233

show that the speed reversal sometimes takes only a234

few microseconds, with the same blob reversing its235

movement, ordinary in the presence of another blob,236

suggesting possible mutual interactions. Two other237

features are not visible, or at least not unequivocally238

so, at lower acquisition frequencies: the merging or239

splitting of blobs. Fig. 4(c) illustrates an example of240

a coalescence interaction sequence where three blobs241

merge to form a single one, while Fig. 4(d) represents242

the splitting of one filament into two distinct structures.243

244

(a) (b)

FIG. 3: (a) Probability density function (PDF) of the poloidal velocities VP of filaments in the area included in the
black square depicted in Fig. 1, where the most probable velocity MPV = −4000 m/s and the Mean VP = −40

m/s; (b) Temporal variations of poloidal velocities, inside the selected area. In the captions, P stands for poloidal.

B. Poloidal dynamics of filaments245

In order to determine whether these dynamical behav-246

iors are statistically significant, it is necessary to auto-247

mate their detection, which is complex with conventional248

methods. Restricting ourselves to the poloidal dynamics249

of blobs, it is however possible to simply visualize them250

by constructing kymographs, i.e. spatio-temporal repre-251

sentations of the temporal evolution of the light taken252

along a magnetic flux surface, as shown in Fig. 5 (a),253

which evidences the poloidal dynamics of blobs over a254

time interval of 100 µs in the window localized 4 mm255

radially outside the LCFS depicted in Fig. 5 (b). In256

such representations, the poloidal propagation direction257

is immediately inferred from the orientation of the stripes258

(to the top-right for upstream displacement or to the259

bottom-right for downstream displacement), while bifur-260

cations are related to either blob coalescence (two stripes261

merging into a single one as time increases) or blob split-262

ting (one stripe being divided into several ones as time263

increases). Such patterns can rather easily be extracted264

with a customized machine learning (ML) approach, as265

we now explain.266

C. Machine Learning characterization and dataset267

benchmark268

To achieve the final detection results using machine269

learning (ML), data undergoes a two-step process. First,270

as illustrated in Fig. 6, data is preprocessed as follows:271

2D turbulence images of a specific discharge are obtained272

from the ultrafast camera (Photron SA-Z). The tempo-273

ral median is subtracted from the raw image to enhance274

light fluctuations, revealing blobs [46]. A tomographic275

inversion is then applied [23, 24] after determination of276

the lines of sights with the Calcam software [47]. Ad-277

ditionally, a Bernsen local threshold is used to remove278
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FIG. 4: Downward displacement of filament (a) quickly followed by upward displacement (b), coalescence (c) and
splitting (d) observed after tomographic reconstruction in horizontal sequences of successive frames for each

phenomena taken each 1 µs in shot #20846. [color online]

FIG. 5: (a) Kymograph showing the time evolution of the image of filaments along a given magnetic flux surface
4 mm outward the LCFS represented as the red (light gray) line, as highlighted in (b). Various behaviors can be
observed, such as merging, splitting and fast reversal of the poloidal propagation direction. Sθ is the poloidal

curvilinear abcissa. [color online]

reconstruction artifacts. This threshold is based on the279 local contrast of the image and set to the average of the280
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FIG. 6: Overview of the procedure used to generate kymographs. [color online]

maximum and minimum pixel values in the local win-281

dow. Finally, kymographs are generated from the result-282

ing thresholded images by selecting pixels aligned along283

constant flux surfaces (corresponding to the selected area284

”+” in Fig. 5 and Fig. 6), with a time interval of 100 µs,285

for different distances from the LCFS. Then, object de-286

tection deep learning network based on three essential287

modules is applied, as explained in Appendix A and as288

summarized in Fig. 8. The ML approach has been set to289

detect five categories of blob dynamics: merging, split-290

ting, up -for upward motion, down -for downward mo-291

tion, and reverse for single blobs reversing their poloidal292

motion in the observation window. Once trained using293

2300 manually annotated kymographs with 13,900 labels294

of the five filament dynamics categories as input of the295

customized Yolov7-seg network, it allows for the quan-296

tification of filament interactions and displacements near297

the LCFS without human assistance (Appendix A).298

By analyzing kymographs generated along different mag-299

netic flux surfaces, it is possible to investigate the radial300

dependence of the five categories of blob dynamics. The301

studied region was therefore divided into 10 equidistant302

stripes aligned along flux surfaces, and kymographs were303

generated by averaging the light within 4 mm (2 pix-304

els) in the radial direction. 10 series of 500 kymographs305

were generated, corresponding to a total time interval306

of 50 ms during which the EFIT reconstruction shows307

stable LCFS. The radial profiles of occurrences of the308

five categories of blob dynamics are displayed in Fig. 7.309

First, it can be seen that blobs moving upstream or down-310

stream the poloidal direction are met at any radius. More311

specifically, whereas most blobs move poloidally upward312

in the confined region (corresponding to negative radial313

distances relatively to the LCFS), the trend reverses at314

a distance of about 4 mm towards the wall. This ob-315

servation is perfectly consistent with the observation of316

the shear zone depicted in Fig. 2 after conventional 2D317

tracking analysis. Mutual interactions are also shown318

to be dominated by splitting processes, whose occurence319

is relatively constant within the range of radii investi-320

gated, while merging processes are mostly detected in321

the confined region and become more and more negligi-322

ble after crossing the shear layer. Fast reversals of single323

blob motion exist whatever the radius, but are unsignifi-324

cant compared to the other studied phenomena. At both325

extremities of the radial domain, the total number of326

detections decreases whatever the category, due to the327

degraded SNR ratio: indeed, the visible light emission328

in these region is much lower, resulting in choppy kymo-329

graphs more difficult to analyze.330

Additionally, the slope defined by the aspect ratio331

of the bounding box surrounding the detected features332

can be used to calculate automatically a mean poloidal333

velocity for each blob, and then mean and most probable334

poloidal velocities profiles at each radius. The accuracy335

of these velocities was validated by comparing them336

with the conventional tracking analysis conducted337

with the AX R&D software. The comparison reveals338

consistent positions of the shear zone and nearly similar339

poloidal velocities, except for poloidal velocities lower340

than 1 km/s, which are never found with the ML341

approach. Actually, 2D tracking shows that such blobs342

relatively slow in the poloidal direction have a more343

significant radial motion, and hence leave only a slight344

trace on the poloidal kymograph. On the contrary,345

the ML/kymograph approach is expected to be more346

efficient in tracking fast blobs than conventional 2D347

tracking based on predictions made with an insufficient348

number of frames. All in all, combining both approaches349

enables to better characterize blob poloidal motion.350

The analysis carried out for the other discharges pre-351

sented in table I yields similar results, indicating that352
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7% to 18% of blobs experience merging, splitting or353

quick reversal of the structures’ poloidal direction in354

a close vicinity of the LCFS. This ratio is 11% for355

discharge #20987, without gas puff, suggesting that356

there is no blatant bias in our analysis due to the gas puff.357

358

FIG. 7: Instance of detected classes in kymographs generated at different distances from the LCFS, spatially
averaged over 4 mm in the radial direction, for discharge #20846. The shear zone is evidenced close to R = +4 mm
with respect to the LCFS, where the numbers of structures going up and down almost correspond. [color online]

IV. CONCLUSION359

In this work, we have presented a machine learning360

technique that is well suited to characterizing the361

complex dynamic behavior of blobs and their mutual362

interactions. The observation of such interactions first363

rely on highly resolved fast visible camera measurements,364

with both high temporal and spatial resolutions. In our365

earlier measurements recorded at lower frame rates (up366

to 480 kfps) but with the same spatial resolution [24],367

mutual blob interactions went unnoticed and tracking368

results using conventional methods were questionable,369

as there were doubts about the reality of rapid reversals370

of blob movement in the poloidal direction, which are371

indisputable with the improved temporal resolution of372

1 µs.373

Our observations are consistent with former experi-374

mental work which evidenced this type of interactions375

by using GPI [31, 33] and they support results of376

simulations with a consistent turbulent background [26],377

as opposed to seeded blob simulations. The percentage378

of blobs being involved in mutual interactions, up to379

18%, is significant and might be underestimated, given380

that i) the studied area allowed by the visible light381

emission is limited to a narrow band close to the LCFS382

and ii) our method is currently unable to track blobs383

in adjacent kymographs. This ratio is lower than the384

value of 50% given in [26] and of the same order as385

the value of 13% previously found on TCV with a386

conventional analysis carried out with GPI on a much387

smaller data set of 154 filaments [32]. The presented ML388

method has been benchmarked against a state-of-the-art389

conventional 2D tracking software. Analysis results390

from 2D tracking show the existence of a large number391

of counter-propagating structures in both poloidal and392

radial directions (Appendix B) and are consistent again393

with similar observations realized with GPI on other394

tokamaks [32, 33, 45], as well as with simulations results395

[26]. The ML approach that we have implemented is not396

suited to the study of radial displacements, but it shows397

excellent agreement with the tracking results in the398

poloidal direction. This excellent overall agreement be-399

tween two approaches, which are based on very different400

principles and limitations, give us good confidence that401

our measurements of the poloidal velocity is correct.402

In our opinion, the evidence of such a large fraction of403

counter-propagating blobs heavily questions the validity404

of the tracking results obtained with conventional405

techniques at lower frame rates. Obviously, the critical406

temporal resolution to resolve blobs’ dynamics depends407

on the experimental conditions, therefore to reduce408

errors resulting from insufficient acquisition speed,409

we recommend comparing the results obtained with410

manual tracking performed on a few sequences of frames.411

Alternatively, an automated analysis can be run on412

downsampled data, for example by removing one image413

out of two, and comparing the results. In tests carried414

out on such downsampled data, the filaments’ velocities415
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derived from the ML-kymographs method proved more416

robust than the conventional tracking method. However417

the ratio of blobs involved in mutual interactions was418

found significantly lower than in the original 1 MHz419

dataset, underlining the importance of achieving such a420

high frame rate under our experimental conditions.421

The strong similarities between the observations realized422

with and without gas puff finally suggest that the blobs423

interactions are not strongly affected by GPI used to424

feed the plasma, and that mutual interactions between425

blobs are inherent to their dynamics in the LCFS region.426

This means that one of the main drawback of our427

method, the rather poor SNR at high frame rates, could428

be overcome by performing GPI measurements which429

could be considered as non significantly perturbative.430

431

To summarize, the ML method developed for our in-432

vestigation is clearly complementary to more conven-433

tional 2D tracking analysis approaches, and offers sev-434

eral interesting perspectives. It can, for instance, be ap-435

plied to simulation results in order to improve the cross-436

comparison with experiments, in the perspective of val-437

idating or improving theoretical models. It will be ap-438

plied to the wide database of COMPASS in order to in-439

vestigate blobs dynamics under various conditions such440

as different plasma densities, current and triangularity,441

L-H transition and the influence of probes on blob’s dy-442

namics. By training models on such large datasets, it443

will become possible to predict and anticipate filament444

behaviors in various scenarios. This predictive capability445

can guide experimental design and optimization, reduc-446

ing the need for exhaustive trial and error. Real-time447

prediction would be possible in tokamaks using models448

such as custom Yolov7-segmentation. To interpret the449

observations presented in this paper, it is necessary to450

study the physical mechanisms involved in filament in-451

teractions. Quantifying the interaction forces between452

filaments could be achieved by using a physics-informed453

neural network approach such as the one proposed in454

[42]. Finally, the application of such ML algorithms to455

turbulent media paves the way for future researches, en-456

abling not only a better understanding and prediction of457

blobs dynamics in fusion devices, but also for investigat-458

ing the interactions between coherent structures in other459

fields such as fluid mechanics, materials science or low-460

temperature and dusty plasma, where similar behaviors461

can be studied [48].462
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Appendix A: ML method explanation482

After the preprocessing step, a machine learning483

method is applied to the kymographs as explained in484

Fig. 8. The backbone module, as shown in Fig. 8485

(a), is responsible for feature extraction and is based on486

the efficient layer aggregation networks (ELAN) [49]. It487

uses a set of convolutional layers to perform feature selec-488

tion and dimensionality reduction. The extended efficient489

layer aggregation networks (E-ELAN) is developed and490

used as the core of the Yolov7 architecture, incorporating491

an attention mechanism to the layer aggregation module492

to improve information on the dimensionality of feature493

extraction channels [50]. The neck module, depicted in494

Fig. 8 (b), fuses features from different levels of the back-495

bone network to improve detection accuracy. It employs496

feature pyramid networks (FPN) [51], which address the497

issue of scale variation in object detection and image seg-498

mentation tasks. FPN creates a feature pyramid consist-499

ing of feature maps at multiple scales, combining fea-500

ture maps from higher and lower levels of the network501

hierarchy. This improves the accuracy of detection and502

segmentation tasks, especially for objects appearing at503

different scales. Path Aggregation Network (PAN) [52]504

is also used to assign a class label to each pixel in an im-505

age. It is designed for semantic segmentation tasks, and506

combines fine-grained and coarse-grained features using507

a path aggregation module. Finally, the head module, as508

shown in Fig. 6 (c), predicts bounding boxes and class509

probabilities for each anchor. It utilizes YOLOR base510

[53] and includes a segmentation head for class label pre-511

diction and a fully-connected (FC) layer for generating a512

one-dimensional vector representing the flattened feature513

maps. The outputs are divided into classification proba-514

bilities and bounding box coordinates for each object in515

the image. Region of interest (ROI) pooling is employed516

to extract small feature maps for object detection or seg-517

mentation tasks. Non-maximum suppression (NMS) [54]518

is applied as a post-processing technique to remove re-519

dundant and overlapping detections, selecting the most520

likely detection based on confidence scores. As an ex-521

ample, Fig. 9 illustrates the automatic detection of the522

five classes in a single kymograph, displaying the level of523

confidence normalized to 1 for each category recognition.524
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FIG. 8: Overview of the kymograph detection procedure using machine learning method. (a) Backbone module is
responsible for feature extraction, (b) Neck module is used to fuse features from different levels of the backbone

network to improve detection accuracy, (c) Head is responsible for predicting bounding boxes and class probabilities
for each anchor. [color online]

FIG. 9: Kymograph depicting the five detected classes with the ML method. The numbers refer to the model level
of certainty, normalized to 1. [color online]
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Appendix B: Blobs radial motion dynamics525

In addition to the dynamics of the blobs in the526

poloidal direction, conventional tracking techniques can527

be used to characterize their radial motion. The 2D528

map of the temporally averaged radial velocities for shot529

#20846 is depicted in Fig. 10.530

531

In a similar way to poloidal dynamics, the time-532

averaged radial flow does not account for the complexity533

of the individual radial movement of the blobs. The time-534

averaged probability density functions (PDFs) of radial535

velocities in a 4 mm square are depicted in Fig. 11(a),536

as well as the time series of radial velocities in the same537

zone (Fig. 11(b)). This figure demonstrates that there538

exist counter-propagating blobs and fast reversal of the539

blob motion also in the radial direction.540

FIG. 10: 2D map of the mean radial velocities per pixel (m/s) of shot 20846 at [1100 - 1146.6]ms; the black square is
the selected area used in Fig.11. [color online]

(a)
(b)

FIG. 11: (a), PDF of the radial velocities of filaments in the area included in the black square depicted in Fig. 10,
where the most probable velocity MPV = 2000 m/s and the Mean VR = 1235 m/s; (b) temporal variations of radial

velocities, inside the selected area. In the captions, R is for radial velocity. [color online]
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