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Abstract [248 of max. 250 words]: 

 

We review the evidence for the conceptual association between arithmetic and space and 

quantify the effect size in meta-analyses. We focus on three effects: (a) the operational 

momentum effect (OME), which has been defined as participants’ tendency to overestimate 

results of addition problems and underestimate results of subtraction problems, (b) the 

arithmetic cueing effect, in which arithmetic problems serve as spatial cues in target detection 

or temporal order judgment tasks, and (c) the associations between arithmetic and space 

observed with eye- and hand-tracking studies. The OME was consistently found in paradigms 

that provided the participants with numerical response alternatives. The OME shows a large 

effect size, driven by an underestimation during subtraction while addition was unbiased. In 

contrast, paradigms in which participants indicated their estimate by transcoding their final 

estimate to a spatial reference frame revealed no consistent OME. Arithmetic cueing studies 

show a reliable small to medium effect size, driven by a rightward bias for addition. Finally, 

eye- and hand-tracking studies point to replicable associations between arithmetic and eye or 

hand movements. To account for the complexity of the observed pattern, we introduce the 

Adaptive Pathways in Mental Arithmetic (APiMA) framework. The model accommodates 
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central notions of numerical and arithmetic processing and helps identifying which pathway a 

given paradigm operates on. It proposes that the divergence between OME and arithmetic 

cueing studies comes from the predominant use of non-symbolic versus symbolic stimuli, 

respectively. Overall, our review and findings clearly support an association between 

arithmetic and spatial processing.   
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Introduction 

 

Spatial thinking has long been thought to play an important role in mathematics. This 

is obvious in domains such as geometry or measurement, which involve the explicit mapping 

of numbers to space. But a large body of evidence also indicates that numerical quantities in 

themselves may rely on spatial representations in the human mind (Hubbard, Piazza, Pinel, & 

Dehaene, 2005; Toomarian & Hubbard, 2018). Specifically, a central theoretical framework 

for interpreting a range of effects in numerical cognition is that of the mental number line 

(MNL), according to which numerical magnitude is represented along a spatially oriented 

one-dimensional manifold. It has been argued that whenever we are processing a given 

number, its position on the MNL is activated. Noise in the cognitive system would lead to the 

concurrent coactivation of adjacent positions with an activation strength that decreases as 

numerical distance to the perceived number increases (Nieder & Dehaene, 2009). The MNL 

metaphor can provide a comprehensive explanation for a plethora of empirical findings, 

including hallmark effects in numerical cognition such as numerical distance (or ratio) and 

size effects, and can even account for congruency effects between the internally activated 

position of a number and object positions in physical space (Gianelli et al., 2012). Its 

explanatory power is also bolstered by the existence of number-sensitive neurons in the 

parietal and frontal cortices (Nieder, 2016). These neurons are topographically organized in a 

manner that reflects major principles of the MNL (Harvey, Ferri, & Orban, 2017), which 

supports its biological implementation at the neural level.  

 

The idea that numbers are spatially organized along the MNL more generally suggests 

that the cultural achievement of mathematics might coopt neural mechanisms that have 

evolved for interacting with physical space, for example while planning our next saccade or 

guiding the movement of our hands (Hubbard et al., 2005). In a seminal paper, Hubbard et al. 

(2005) notably hypothesized that mental arithmetic can be conceptualized as attentional 

movements along the MNL, such that “when human participants compute additions or 

subtractions on numerical symbols, they should shift their attention to the left for subtraction 

problems, and to the right for addition problems” (p. 446, Hubbard et al., 2005). In other 

words, there might be space-arithmetic associations (SAA) much like there are associations 

between space and numbers (see also Fischer & Shaki, 2014).  

Here, we review the relevant body of work conducted since that hypothesis was made 

and evaluate the strength of evidence for SAAs through the lens of three empirical 
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phenomena: (a) the operational momentum effect (OME), (b) the arithmetic cueing effect, 

and (c) the attentional biases measured with eye- or hand-tracking during arithmetic 

calculation. For the former two phenomena, we amend our review by formal meta-analyses. 

We then present the currently prevailing theoretical accounts for SAAs and interpret the 

results of our review against this background before introducing the Adaptive Pathways in 

Mental Arithmetic (APiMA) framework that accommodates central notions of numerical and 

arithmetic processing.  

 

Evidence for space-arithmetic associations (SAAs)  

The Operational Momentum Effect 

 

Historically, the first main phenomenon suggesting the presence of SAAs is the 

operational momentum effect (OME), which involves the study of patterns of errors made by 

participants while they add or subtract approximate quantities. The OME describes a 

systematic bias in evaluating and estimating the outcomes of arithmetic problems. 

Specifically, for a given arithmetic outcome that is identical in addition and subtraction (e.g., 

9 + 7 = 16 & 24 – 8 = 16), participants prefer larger outcomes for addition as compared to 

subtraction problems. For example, when both operands and response alternatives are 

presented as sets of dots, participants are more likely to accept an outcome such as 21 as the 

outcome of the problem 9 + 7 compared to the actual outcome (16) (McCrink, Dehaene, & 

Dehaene-Lambertz, 2007). However, for the corresponding subtraction problem 24 – 8, 

participants would be more prone to accept an outcome such as 10 as compared to the actual 

outcome (McCrink et al., 2007).  

 

While a consensus exists concerning the basic finding described above (i.e., the 

moderating role of the arithmetic operation on performance), the definition of the OME 

remains a matter of debate. Initially, the effect was defined as the overestimation of addition 

results and the underestimation of subtraction results as compared to the actual outcome 

(McCrink et al., 2007). Later studies, such as Knops, Viarouge, & Dehaene (2009) (whose 

paradigm is depicted on Figure 1A), defined the OME as the relative difference between 

addition and subtraction estimates that can both be subject to an overall bias (e.g., 

underestimation in the context of non-symbolic arithmetic). Here, we adopt the more lenient 
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definition of the OME: We consider that the relative difference between estimates from 

different arithmetic operations such as addition and subtraction is the minimally necessary 

element that would reflect a moderating role of the arithmetic operation on performance.  

 

Figure 1. Sample trials of paradigms used to study SAAs. (A) Operational momentum task 

(from Knops, Viarouge, et al., 2009). Participants are sequentially presented with two 

quantities and have to estimate the outcome of their addition by choosing among different 

options. (B) Arithmetic cueing task (from Masson & Pesenti, 2014). After solving an addition 

problem, participants have to detect a target in either the left or right visual field. (C) TOJ 

task (from Glaser & Knops, 2020). After solving an addition problem (presented auditorily), 

participants have to judge which of two lateralized targets is presented first. 

 

 

Initially, the OME was described by McCrink et al. (2007) as a bias in approximate 

non-symbolic arithmetic (using dot patterns as stimuli). However, the effect was quickly 

found to generalize to symbolic notations as well (Knops, Viarouge, et al., 2009; Pinhas & 

Fischer, 2008), whether operations are matched with respect to operands or results (Knops, 
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Viarouge, & Dehaene, 2009). Because symbolic arithmetic has long been thought to involve 

verbal retrieval of answers from memory (Ashcraft & Fierman, 1982; Campbell & Xue, 

2001; Seyler, Kirk, & Ashcraft, 2003), the presence of a OME with symbolic notations was 

interpreted in a dual-process approach of mental arithmetic where the exact and verbally 

mediated retrieval process is paralleled by an arithmetic approximation process that operates 

on the MNL. While this dual-process may in theory be present in both symbolic and non-

symbolic arithmetic, the OME is stronger with non-symbolic stimuli because these are 

associated with exact verbal retrieval processes to a much lesser extent (e.g., Knops, 

Viarouge, et al., 2009). Hence, the exact verbal-numerical processes might reduce and 

overshadow the effects emerging from the approximate (spatial-attentional) processes. 

 

Consistent with Hubbard and colleagues’ (2015) hypothesis that mental arithmetic 

might involve shifts of attention along the MNL (Hubbard et al., 2005), the OME has often 

been interpreted as reflecting a cognitive momentum that emerges from attentional processes. 

In other words, attention would mediate a displacement along a spatially oriented mental 

number representation (Knops, Thirion, Hubbard, Michel, & Dehaene, 2009; Knops, 

Viarouge, et al., 2009; McCrink et al., 2007). Yet, some findings are not necessarily easily 

accounted by this hypothesis of attentional shifts along a MNL. For example, this hypothesis 

would predict that the size of the displacement (i.e., the numerical magnitude of the second 

operand) might modulate the OME. However, the size of the first or the second operand does 

not appear to be systematically linked to the size of the OME (Charras, Molina, & Lupiáñez, 

2014; Knops, Viarouge, et al., 2009). In contrast, the OME increases with the arithmetic 

outcome (i.e., the problem size; Knops, Viarouge, et al., 2009) and an overall underestimation 

is observed in tie problems (i.e., where both operands are identical) (Charras et al., 2014).  

 

Attentional resources also appear to modulate the OME in a way that is not 

necessarily consistent with the idea of attentional shifts. For example, using a dual-task 

design, McCrink & Hubbard (2017) hypothesized that the OME would be reduced when less 

attentional resources are available. McCrink and Hubbard compared the amount of 

operational momentum in a baseline condition with two conditions in which participants had 

to concurrently process the non-symbolic arithmetic operands and monitor whether simple 

(color patches) or complex visual stimuli (‘greebles’, Gauthier & Tarr, 1997) would be 

presented repeatedly. Surprisingly, compared to baseline, they observed an increased OME in 

addition trials in both simple and complex dual-task conditions while the OME in subtraction 
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was unaffected by the concomitant task. McCrink and Hubbard interpreted these results as 

being at odds with the attentional shift hypothesis, as they predicted decreased OME in the 

dual-task conditions. Rather, they argue, the results are in line with the idea that the OME is a 

special case of representational momentum effect, which in turn is increased by heuristics. 

With reduced attentional resources available, heuristics such as ‘addition leads to more, 

subtraction leads to less’ prevail and lead to an increased OME. Note that, while this may 

explain the increased OME in addition, it does not explain the differential impact of the dual-

task load on OME under the two arithmetic operations (i.e., the absence of increased OME in 

subtraction).  

 

As mentioned above, the OME can be minimally defined as the relative difference 

between estimates from addition and subtraction. To formally explore whether the OME is 

driven by an overestimation of addition or an underestimation of subtraction, we included 

relevant studies in a meta-analysis. Studies were identified from the PubMed database using 

the search terms: "Operational AND Momentum AND Arithmetic”. This search identified 31 

manuscripts. A second search using the terms “operational momentum AND numerical 

cognition” yielded 23 results. This was amended by a Pubmed search for articles that cited 

McCrink et al. (2007), Knops, et al., 2009, or Pinhas and Fischer (2008), which yielded 67, 

55, and 49 results, respectively. Using an ancestral search on www.scholar.google.com, we 

identified another three studies that were not listed in the PubMed search. After removing 

duplicates, we identified a total of 118 manuscripts. Next, we excluded all non-empirical 

reports, studies that investigated children, non-human participants, report results of 

computational simulations, or investigated other arithmetic operations than addition or 

subtraction. We excluded studies with non-canonical orientations (diverging from left-to-

right reading direction in Western cultures) of the response dimension since it was unclear 

how to code these results with respect to right and left sided biases. Finally, we included only 

those studies that reported the mean numerical deviation between correct outcomes and 

participants’ choices or between operations (e.g., focused on reaction time differences 

instead) in order to quantify the amount of the OME (see flowchart in Fig. 2).  
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Figure 2: Flowchart of literature search, identification of eligible articles for the meta-analysis of the operational 
momentum effect. 

 

 

With these inclusion criteria, we identified 13 studies investigating the OME, 7 using 

a direct evaluation or production of the internally generated outcome and 6 adopting a 

transcoding approach (where the internally generated outcome had to be transcoded into a 

position on a line, see below). 

 

For a formal evaluation of the OME, we entered effect sizes (Cohen’s d) from 7 

studies using a direct evaluation or production of the internally generated outcome into the 

analysis using the MAJOR package in the Jamovi 2.3.19.0 software (see Fig. 3). The overall 

effect size across the studies was calculated based on a weighted average accounting for 

differences in statistical power between studies. A random effects model was used to account 

for the possibility of systematic variation across studies. For each measure was calculated the 

ninety-five percent confidence intervals (CI) as well as the Z and p values corresponding to 

the estimate of the overall effect size. Beyond testing effect sizes for significant differences 

against zero, MAJOR also uses a “two one-sided tests” (TOST) test of equivalence that tests 

whether “the observed effect falls within the equivalence bounds and is close enough to zero 
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to be practically equivalent” (Lakens, 2017, p. 355). A list of identified studies can be found 

at 

https://osf.io/download/6606ba5358fa4908a2e4ecf2/?view_only=144d8aab62884d608d3762f

9b0bdd06d.   

 

Overall, we found no overestimation in addition trials, with a mean effect size of d = 

0.09 (CI95%= [-0.42 – 0.24], Z = 0.56, p = 0.58). Given equivalence bounds of -0.50 and 0.50, 

the equivalence test was significant (Z = 2.43, p = 0.008) suggesting that the observed effect 

is statistically not different from zero and statistically equivalent to zero. For subtraction, 

however, we observed a significant underestimation, with a mean effect size of d = -1.38 

(CI95%= [-2.27 – -0.50], Z = -3.06, p = 0.002). Consequently, an overall significant OME was 

observed when comparing addition to subtraction with a mean effect size d = 0.96 (CI95%= 

[0.36 – 1.57], Z = 3.11, p = .002). Taken together, this quantitative meta-analysis indicates a 

reliable OME across studies. However, the effect appears to be mainly driven by an 

underestimation of subtraction problems, while addition overall leads to unbiased estimates.  

 

https://osf.io/download/6606ba5358fa4908a2e4ecf2/?view_only=144d8aab62884d608d3762f9b0bdd06d
https://osf.io/download/6606ba5358fa4908a2e4ecf2/?view_only=144d8aab62884d608d3762f9b0bdd06d
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Figure 3. Forest plots of the OME for addition and subtraction problems (as well as a 

comparison between operations). The square boxes show the effect size in each study. The 

size of each box reflects the sample size and error bar the 95% confidence interval. The 

midline of the diamond indicated the mean pooled effect size and the diamond’s width the 

95% confidence interval. Positive (negative) effect sizes indicate an overestimation 

(underestimation).  

To separate arithmetic processing from the impact of the arithmetic operator, a 

number of studies have examined the OME with zero as a second operand. In such so-called 

zero-problems (e.g. 3 + 0 = ?; 7 – 0 = ?), a regular OME has been observed both when 

participants produce the non-symbolic outcomes (Lindemann & Tira, 2011) and when they 

indicate the position of the outcome on a left-to-right oriented labeled number line (Pinhas & 

Fischer, 2008; Shaki, Pinhas, & Fischer, 2018). These results have been interpreted as 

evidence against the attentional shift explanation of the OME, since no attentional 

displacement would be required with zero as second operand. Yet, when participants are 

asked to transcode the estimated outcome to a line length, no statistically significant 

difference between addition and subtraction is observed (Mioni et al., 2021).  

 

 To elucidate the temporal and contextual malleability of the mental number 

representation, some researchers asked participants to indicate where the result of an 

arithmetic problem would be positioned on a labeled line. In these studies, the orientation 

(i.e., increasing numerical magnitude from left to right or from right to left) of the labeled 

number line was manipulated and pitted against the hypothesized left-to-right orientation of 

the MNL in long-term memory. The results demonstrated that the bias induced by addition is 

not consistently driving responses to the right side of space (Klein, Huber, Nuerk, & Moeller, 

2014; Pinhas, Shaki, & Fischer, 2015). For example, both Klein et al. (2014) and Pinhas, 

Shaki & Fischer (2015) have shown that when the larger numbers are on the left side (and the 

smaller numbers on the right side) of the external response dimension, responses are biased 

towards the larger number. Note, however, that Pinhas, Shaki & Fischer (2015) found that 

this effect was moderated by the type of arithmetic problem. That is, with non-zero problems 

(i.e., where none of the operands is zero) with either 4 or 6 as a result, the authors observed a 

reverse OME for 6 (i.e., addition was oriented further to the left compared to subtraction) and 

a regular OME for 4 (i.e., addition led to responses that were further to the right compared to 

subtraction). For zero problems, however, responses for addition problems were displaced to 
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the left side compared to responses in subtraction problems. Overall, then, there is some 

evidence that the layout of the mental number representation during OM tasks is relatively 

flexible and task-dependent. This is reminiscent of the discussion on whether or not the 

spatial orientation of the mental number line is systematically oriented from left to right in 

long-term memory, for example as a result of cultural conventions such as reading and 

writing direction (e.g., Shaki, Fischer, & Petrusic, 2009), or whether it is constructed in a 

task-dependent manner in working memory (Fias, van Dijck, & Gevers, 2011; van Dijck & 

Fias, 2011). Interestingly, in Pinhas, Shaki and Fischer (2015), the same participant sample 

who showed a flexible OME also exhibited a standard SNARC effect both before and after 

being presented with the right-to-left-oriented number line in the OM task. Together with 

earlier findings showing that the SNARC effect, too, is task- and context-dependent 

(Bächtold, Baumüller, & Brugger, 1998), these results underline the idea that the spatial 

layout of the internal representations that are deployed during number processing and mental 

arithmetic is highly flexible and adaptive to situational (spatial layout of external response or 

stimulus space) and cultural factors (e.g. reading and writing habits).  

 
 

Besides paradigms where participants choose the preferred outcome amongst several 

alternatives, the OME, and in particular the OME in zero problems, has also been tested in a 

paradigm where participants have to transcode the internally generated results. Two variants 

of this paradigm can be found in the literature. In one variant, participants transcode the result 

into a spatial position which they indicate on a labeled number line. In a second variant, 

participants produce lines whose length corresponds to the numerical magnitude of the target 

(e.g., the internally generated result). We now consider these studies in a meta-analysis that is 

separate from the one reported above for two reasons. First, this response mode might involve 

an additional transcoding process, which may be a source of additional biases and differences 

with the classic OME paradigms. For example, for number ranges that are unfamiliar to the 

participants, a variety of individual strategies have been identified that deviate from a linear 

mapping (Landy, Charlesworth, & Ottmar, 2017; Landy, Silbert, & Goldin, 2013). Second, 

the use of an explicit and external spatial representation may reinforce the association 

between numbers and space as opposed to the implicit (or at least un-ordered) character of 

the response modality in tasks that do not rely on number-to-space mappings. This implicit-

explicit distinction also figures amongst the main organizational principles of a recent 

taxonomy of spatial-numerical associations (Cipora, Patro, & Nuerk, 2015). Third, the results 
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of these studies have been used to establish zero problems as the gold standard for measuring 

the OME (see above). Note that we only included studies that adopted a canonical orientation 

of the response metric (i.e., small numbers on the left and large numbers on the right).  

 

 When computing the mean effect size in studies that required participants to 

transcode the outcome of a given problem to a position on a labeled line or a line length, the 

OME in zero problems only emerges when directly contrasting addition to subtraction (mean 

d = 0.51; CI95%= [0.01 – 1.02], Z = 2.0; p = .046) (see Fig. 4). This paradigm neither yielded 

strong evidence for significant effects in zero addition (mean d = 0.38; CI95% = [-0.09 - 0.86], 

Z = 1.59, p = .111) nor subtraction (mean d = -0.32; CI: -0.9 – 0.26) problems against 

baseline. However, in both cases, non-significant equivalence tests with boundaries [-.5, .5] 

suggested that the observed effects are not equivalent to zero (addition: Z=-0.479, p = .319; 

subtraction = 0.614, p = .270). Hence, the overall picture that emerges remains ambiguous, 

most likely due to the limited number of studies included (n=4).  

 

A similar picture emerged for pointing experiments with operands that are different 

from zero (see Fig. 5). For addition (mean d =- 0.39; CI95%= [-0.70 - -0.08], Z=-2.463, p = 

.014), a significant underestimation was observed. Neither subtraction (mean d =- 0.21; CI95% 

= -0.86 – 0.43; Z = -.649, p =.516) nor the comparison between addition and subtraction 

(mean d = -0.06; CI95% = -0.57 – 0.45; Z =-0.225, p = .822) yielded significant results. For 

subtraction, the equivalence test was non-significant (Z = 0.865, p = .193), allowing no 

statistical conclusion. For the direct comparison of addition and subtraction (corresponding to 

the minimal definition of the OME) the equivalence test was significant (Z = 1.692, p = .045, 

with the boundaries [-.5, .5], allowing the conclusion that the effect is statistically equivalent 

to zero. The data from studies involving a spatial transcoding are hence overall less 

conclusive than in the previous meta-analysis and only show an OME in zero problems 

(when comparing addition and subtraction) and an inverse OME in nonzero addition 

problems. Since neither of the arithmetic operations yields significant effects against 

baseline, the question of what drives the OME in studies that involve a transformation during 

or before the responses remains open. One explanation for this lack of consistency may be 

that the paradigm in and of itself requires an additional mapping from an internally generated 

outcome to an external reference frame (position on a line of a certain length). This may 

induce additional biases and involve strategies such as visual anchoring on salient reference 

points (e.g., the middle).  
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Figure 4. Forest plots of the OME measured in pointing tasks with zero problems for 

addition and subtraction problems (as well as a comparison between operations). The square 

boxes show the effect size in each study. The size of each box reflects the sample size and 

error bar the 95% confidence interval. The midline of the diamond indicated the mean pooled 

effect size and the diamond’s width the 95% confidence interval. Positive (negative) effect 

sizes indicate an overestimation (underestimation).  

 
Figure 5. Forest plots of the OME measured in pointing tasks with nonzero problems for 

addition and subtraction problems (as well as a comparison between operations). The square 

boxes show the effect size in each study. The size of each box reflects the sample size and 

error bar the 95% confidence interval. The midline of the diamond indicated the mean pooled 

effect size and the diamond’s width the 95% confidence interval. Positive (negative) effect 

sizes indicate an overestimation (underestimation).  

 

Arithmetic cueing 

 

In arithmetic cueing tasks, arithmetic problems are designed to serve as implicit 

spatial cues for subsequent lateralized targets presented in either the left or right visual field. 

Such paradigms are largely inspired by previous research on an effect that is sometimes 

called “attentional SNARC” (Fischer, Castel, Dodd, & Pratt, 2003). By asking adult 

participants to detect lateralized targets briefly presented after a non-informative central digit 

cue, Fischer and colleagues showed an interaction between the size of the digit (relatively 

small or relatively large) and the side of presentation of the target (left or right). That is, the 

presentation of task-irrelevant digits smaller than five facilitated the detection of subsequent 

targets in the left visual field whereas the presentation of task-irrelevant digits larger than five 

facilitated the detection of subsequent targets in the right visual field. Fischer et al.’s results 

have been influential in the field because they support the idea that the mental number line is 

spatially organized from left to right, though there is a debate regarding the replicability of 

these findings. Recent studies exploiting eye tracking data such as gaze position (Loetscher, 

Bockisch, Nicholls, & Brugger, 2010; Myachykov, Ellis, Cangelosi, & Fischer, 2016; 

Salvaggio, Masson, & Andres, 2019) or pupil dilatation (Salvaggio, Andres, Zénon, & 
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Masson, 2022) seem to support the idea that number cues do induce shifts of spatial attention. 

On the one hand, both a multi-site replication attempt of the study (Colling et al., 2020; 

Fischer, Dodd, Castel, & Pratt, 2020) and recent behavioral studies investigating manual 

reaction times (as in the original paradigm) have failed to show that attentional deflections 

are induced by number cues (Galarraga, Pratt, & Cochrane, 2022; Hesselmann & Knops, 

2023). The depth with which the central number cues needs to be processed has been 

identified as a modulating factor for the observation of attentional shifts, recently (Shaki & 

Fischer, 2024). While the exact conditions under which numbers potentially shift attention (or 

not) are still elusive, the idea inspired subsequent research on attentional deflections during 

mental arithmetic where depth of semantic processing does not play a huge role.  

 

Masson & Pesenti (2014) were the first to adapt the (manual) attentional SNARC task 

in the domain of mental arithmetic. In their version of the task, participants also had to detect 

targets in the left or right visual field. However, a visually (and sequentially) presented 

arithmetic problem (addition or subtraction) that participants had to solve replaced the digit 

cue of Fischer et al.’s experiment (see Fig. 1B). The hypothesis was that associations 

between arithmetic operations and representational number space would translate into an 

interaction between type of operation and target position in physical space. That is, if 

subtraction is associated with the left side of representational space, left targets should be 

detected faster than right targets when they follow subtraction problems. Likewise, left 

targets should be detected faster when they follow subtraction compared to addition 

problems. In contrast, if addition is associated with the right side of representational space, 

right targets should be detected faster than left targets when they follow addition problems 

and right targets should be detected faster when they follow addition than subtraction 

problems. Overall, Masson and Pesenti (2014) reported the expected interaction between type 

of operation and target position in two experiments, with single-digit subtraction speeding up 

the detection of left (as compared to right) targets and double-digit addition speeding up the 

detection of right (as compared to left) targets.  

 

Masson and Pesenti (2014)’s results inspired a number of studies that subsequently 

investigated the relation between arithmetic processing and spatial attention in a more explicit 

manner than with the OME. These studies are reviewed in what follows. For the sake of the 

present review, studies were identified from the PubMed database using the following search 

terms: “((arithmetic [ot]) OR (addition [ot]) OR (subtraction [ot])) AND (space [ot] OR 
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attention [ot] OR attentional [ot] OR shift [ot] OR bias [ot]) AND (journalarticle [Filter])”. 

This was completed by two additional searches. First, we used Google Scholar to conduct a 

systematic search for articles that cited Masson & Pesenti (2014). Second, we conducted an 

ancestral search based on the references of a review of eye and hand tracking studies in 

numerical cognition (Faulkenberry, Witte, & Hartmann, 2018). The search from PubMed 

returned 86 papers, while the search from Google Scholar returned 97 papers and the 

ancestral search returned 77 papers. After removing duplicates, books, and articles that were 

unrelated to math cognition, 172 papers were screened (see flowchart in Fig. 6). Papers are 

mentioned here if they (1) are not review or meta-analysis articles, (2) involve adult 

participants, (3) do not involve the operational momentum effect, and (4) explicitly 

investigate the relation between arithmetic processing and spatial attention using cueing 

paradigms, eye-tracking, hand-tracking, lesion studies, and neuroimaging.  A list of identifed 

studies can be found at 

https://osf.io/fd7c3?view_only=144d8aab62%20243%20884d608d3762f9b0bdd06d . 

 

 

Figure 6. Flowchart of literature search, identification of eligible articles for the meta-

analysis of the arithmetic cueing effect.  

 

https://osf.io/fd7c3?view_only=144d8aab62%20243%20884d608d3762f9b0bdd06d
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Out of all the studies identified in our systematic search, seven studies employed 

variations of Masson & Pesenti’s arithmetic cueing task, using either visual or auditory 

presentations of the arithmetic problems (Campbell, Chen, & Azhar, 2021; D’Ascenzo, Lugli, 

Nicoletti, & Fischer, 2020; Liu, Cai, Verguts, & Chen, 2017; Liu, Verguts, Li, Ling, & Chen, 

2017; Masson, Letesson, & Pesenti, 2018; Mathieu, Gourjon, Couderc, Thevenot, & Prado, 

2016; Zhu, Luo, You, & Wang, 2018). Liu, Cai, et al. (2017), for example, reported 

associations between different stages of arithmetic processing and spatial positions. 

Specifically, the authors observed a leftward advantage for subtraction and a rightward 

advantage for addition when targets were presented after the second operand or the result. 

This is consistent with the idea that these biases reflect attentional shifts elicited by 

calculation. There was also a rightward advantage before the onset of the second operand in 

addition problems, i.e., when the target directly followed the ‘+’ sign. However, no 

association was observed after the ‘+’ sign when it was not preceded by the first operand. 

This suggests that arithmetic operators may be associated with attentional biases during 

mental arithmetic if they come after an operand. Liu, Verguts, et al. (2017) further presented 

targets in the vertical dimension, but could not find any association in that specific study 

(which conflicts with eye-tracking studies reviewed later). As another example, both Mathieu 

et al. (2016) and Campbell et al. (2021) used a version of the arithmetic cueing task in which 

the second operand was presented either to the left or to the right side of space, essentially 

acting as the target of Masson and Pesenti’s task. To the extent that addition problems were 

intermixed with subtraction problems (thereby making the operator maximally relevant, see 

Prado & Thevenot, 2021), both studies reported that addition problems were solved faster 

when the second operand appeared to the right than to the left side. Evidence for an 

association between subtraction and left targets, however, was not found in Campbell et al. 

(2021).  

 

Taken together, a qualitative review of arithmetic cueing studies appears to suggest 

stronger associations between addition and right-lateralized targets than between subtraction 

and left-lateralized targets. To formally assess whether this is the case, we extracted from 

these studies the effect sizes (Cohen’s d) associated with detecting a left versus a right target 

either after or at different points during a subtraction and after an addition problem.1 This was 

                                                      
1 Note that we included in this meta-analysis experiments with a variety of experimental parameters (e.g., 
different SOAs, different measurement time points). As reviewed above, there is evidence in the literature that 
arithmetic cueing effects depend on such parameters (e.g., Liu, Cai, et al., 2017). However, because our goal 
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possible for seven studies, some of them including different experiments (Campbell et al., 

2021; Liu, Cai, et al., 2017; Liu, Verguts, et al., 2017; Masson et al., 2018; Masson & 

Pesenti, 2014; Mathieu et al., 2016; Zhu et al., 2018). Effect sizes were entered in a 

quantitative meta-analysis using the MAJOR package in the Jamovi 2.3.19.0 software, using 

the same protocol as for the OME (see Fig. 7). Results show that addition problems are 

indeed associated with faster detection of right than left targets, with a mean effect size of d = 

0.31 (CI95%= [0.22 – 0.41], Z = 6.38, p < 0.001). In contrast, subtraction problems are not 

associated with faster detection of left than right targets across these studies (d = -0.03, 

CI95%= [-0.16 – 0.09], Z = -0.52, p = 0.60). Given equivalence bounds of -0.50 and 0.50, the 

equivalence test was significant (Z = 7.30, p < 0.001), indicating that the observed effect was 

statistically not different from zero and statistically equivalent to zero. Together, an overall 

significant difference was observed when comparing addition to subtraction, with a mean 

effect size of d = 0.37 (CI95%= [0.20 – 0.54], Z = 4.35, p < 0.001). 

 

 

                                                      
was to provide an estimate as objective as possible of the overall effect size associated with arithmetic cueing, 
we chose to include all conditions without discrimination. By doing so, we argue that our estimate provides a 
lower bound of the effect size that could be obtained under the most favorable conditions.  
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Figure 7. Forest plots of the lateralized effects obtained in arithmetic cueing studies 

involving target detection along the horizontal dimension for addition and subtraction 

problems (as well as a comparison between operations). The square boxes show the effect 

size for the difference between left target and right target in each study. In addition, positive 

effect sizes indicate a cueing advantage for items on the right side; in subtraction, negative 

effect sizes indicate a cueing advantage for items on the left size. The size of each box 

reflects the sample size and error bar the 95% confidence interval. The diamond reflects the 

pooled effect size and the width of the 95% confidence interval.  

 

Recent studies have also embedded temporal order judgments (TOJs) into arithmetic 

cueing tasks to probe the relation between arithmetic and spatial processing (see Fig. 2C). 

TOJs involve the presentation of two lateralized targets with different stimuli onset 

asynchrony (SOA) (Casarotti, Michielin, Zorzi, & Umiltà, 2007). Participants are typically 

asked to indicate which target is presented first. Although the probability of judging which 

target appears first clearly depends on SOA, that judgment is also influenced by the location 

of spatial attention. The TOJ paradigm builds on a long-standing stance in experimental 

psychology that goes back to (Titchener, 1908) and is known as the prior-entry hypothesis: 

“the object of attention comes to consciousness more quickly than the objects which we are 

not attending to” (Titchener, 1908, p. 251). The target that is in the focus of attention enters 

the cognitive system first. This is even the case if the attended target is lagging behind in 

time. For example, directing attention toward the left visual field will bias participants to 

judge left targets as appearing earlier than right targets even if the SOA is null or if left 

targets are presented slightly after right targets. By presenting TOJs after asking participants 

to solve subtraction or addition problems, it is then possible to probe the location of spatial 

attention after arithmetic problem-solving. Overall, TOJs tend to be more strongly biased 

towards the right side when targets followed from addition than subtraction problems 

(Andres, Salvaggio, Lefèvre, Pesenti, & Masson, 2020; Glaser & Knops, 2020; Masson, 

Andres, Alsamour, Bollen, & Pesenti, 2020). That effect was observed across a range of 

problem sizes (Glaser & Knops, 2020) as well as with participants with different reading 

habits (Masson et al., 2020). However, a comparison of that effect against a baseline TOJ 

assessment revealed that it is more likely driven by addition being associated with the right 

side of space than by subtraction being associated with the left side of space (Glaser & 

Knops, 2020), in line with the meta-analysis described above. Interestingly, asking 
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participants to judge which target appeared first or which target appeared last does not change 

participants’ biases, which has been taken as evidence that the effect may depend more on 

semantic associations between operations and space than on movements along the mental 

number line (Andres et al., 2020). 

 

Eye- and hand-tracking during calculation 

 

Another approach that has been used to gather evidence for SAA involves measures 

of eye- and hand-tracking during arithmetic calculation. Most studies have used eye-tracking, 

which is one of the most straightforward measures of visual attention in cognitive psychology 

as it captures online gaze position during a task with excellent spatial and temporal accuracy 

(Kiefer, Giannopoulos, Raubal, & Duchowski, 2017). One of the earliest studies of this kind 

is from Werner & Raab (2014). The authors measured the gaze behavior of two groups of 

participants who were presented with both subtractive and additive problems involving the 

displacement of water between different recipients. The findings suggest a difference in gaze 

position between the groups, with a rightward bias for additive problems and a leftward bias 

for subtractive problems. Subsequent studies investigated gaze behavior of participants who 

were asked to solve symbolic arithmetic problems presented auditorily. These studies 

generally show evidence of systematic biases in gaze behavior that are dependent on the 

operation, though the timing, dimension, and in one case direction (Yu et al., 2016) of these 

shifts are not always consistent across experiments.  

 

Combining eye-tracking with an arithmetic cueing design, Masson et al. (2018) 

measured eye position during different stages of an arithmetic problem while also asking 

participants to detect targets presented in either the left or right visual field after the problem 

had been solved. Although no gaze shift was measured from the onset of the first operand, 

operator, or second operand, a systematic rightward bias was observed in addition compared 

to subtraction between the offset of the second operand and the verbal response (i.e., the 

calculation stage). This finding was replicated in two recent studies by Blini, Pitteri, & Zorzi 

(2019) and Salvaggio, Masson, Zénon, & Andres (2022), who also showed that this rightward 

movement is accompanied by an upward shift (note that Blini et al., 2019 also found a 

leftward and downward shift for subtraction). It is also consistent with the finding that 

participants’ gaze is shifted rightward (and upward) when participants successively add 



 23 

numbers in a counting task (Hartmann, Mast, & Fischer, 2016). Altogether, these studies 

suggest that shifts of attention may manifest themselves through both the horizontal and 

vertical dimensions during the calculation stage of an arithmetic problem (see also Zhu, You, 

Gan, & Wang, 2019).  

 

Associations between arithmetic and space in the vertical dimension are consistent 

with an earlier study by Wiemers, Bekkering, & Lindemann (2014), who reported motion-

arithmetic compatibility effects due to active body movements in both the horizontal and 

vertical dimensions, while eye movements pursuing the moving operands led to such effects 

only in the vertical dimension. It has been argued that vertical associations might differ from 

horizontal associations: While the former could be grounded in early-developing 

sensorimotor experience (e.g., moving upward when stacking objects), the latter may be 

particularly affected by later-developing cultural practices (e.g., reading and writing habits) 

(Blini et al., 2019; Hartmann, 2022; Wiemers et al., 2014). Future studies, however, are 

needed to substantiate this intriguing hypothesis. 

 

Whether they are horizontal or vertical, late occurring shifts of attention are consistent 

with the idea that they might reflect movements along the mental number line. However, 

there is also evidence of differences in eye position before the onset of the second operand. 

For example, both Salvaggio, Masson, et al. (2022) and Hartmann, Mast, & Fischer (2015) 

found evidence for an operation-dependent bias in eye position even before the presentation 

of the second operand. That is, gaze was found to be moved upward (Hartmann et al., 2015) 

and rightward (Salvaggio, Masson, et al., 2022) after the presentation of the ‘+’ sign (as 

compared to a ‘-’ sign). This is consistent with arithmetic cueing studies that reported 

response biases induced by arithmetic operators in target detection tasks (as long as they are 

preceded by a first operand) (Liu, Cai, et al., 2017). Finally, evidence for a relation between 

findings from arithmetic cueing and eye-tracking studies is suggested by Masson et al. 

(2018). In that study, the more a participant’s gaze was shifted rightward after an addition 

problem (as compared to a subtraction problem), the faster that participant was at detecting a 

target in the right visual field (as compared to the left visual field). Thus, online shifts of 

attention measured through gaze movements appear related to the response biases measured 

in classic arithmetic cueing tasks.  
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Tracking eye movement is perhaps the most direct way to measure spontaneous shifts 

of attention during mental arithmetic. However, shifts might manifest themselves through 

other effectors as well. For example, Marghetis, Núñez, & Bergen (2014) asked participants 

to select which of two numbers presented at the top left and top right corners of a screen is 

the correct solution of a single-digit addition or subtraction problem presented at the bottom 

of that screen. By tracking hand trajectories, the authors showed systematic rightward and 

leftward deflections when participants had to select the answer of an addition or a 

subtraction, respectively. Using a similar finger tracking methodology, Pinheiro-Chagas, 

Dotan, Piazza, & Dehaene (2017) asked participants to indicate the result of single-digit 

addition and subtraction problems on a number line. The findings give an interesting insight 

into the calculation process, with participants first pointing towards the largest operand 

before slowing deviating towards the result in a way that is proportional to the size of the 

smaller operand. While this pattern is clearly supportive of the idea that participants move 

along a mental number line when adding or subtracting, the study also shows the operator-

dependent bias observed in many of the studies discussed above (with ‘+’ signs attracting the 

finger to the right and ‘-’ signs to the left). 

 

Functional relevance of SAAs 

 

By and large, all of the studies reviewed above investigate the presence of 

associations between arithmetic calculation and spatial processing. Therefore, such evidence 

is entirely correlational. Specifically, these studies do not make it possible to determine to 

what extent the attentional shifts that are observed during calculation are necessary to 

arithmetic processing or are simply a by-product of that processing with little functional 

relevance. Interestingly, a handful of studies suggest that attentional shifts may functionally 

matter for arithmetic calculation. Evidence for a causal role of attentional shifts during 

arithmetic processing comes from studies that examined arithmetic performance while 

attentional shifts are either impaired or manipulated.  

 

For instance, an attention disorder that has a long history of investigation in 

neuropsychology is left unilateral neglect (Bisiach & Vallar, 2000). After a lesion in the right 

hemisphere (typically around the parietal cortex), these patients exhibit severe difficulties 

attending stimuli in the left visual field. By asking several of these patients to solve series of 
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addition and subtraction problems, (Dormal, Schuller, Nihoul, Pesenti, & Andres, 2014) 

showed that they were less accurate than control groups to solve large subtraction problems, 

whereas no difference was observed for large addition problems. In contrast, a patient with a 

rare right unilateral neglect (following from a left-hemisphere lesion) showed the reverse 

pattern, with specific impairment in solving addition but not subtraction problems (Masson, 

Pesenti, Coyette, Andres, & Dormal, 2017). In other words, there appears to be a double 

dissociation between subtraction and addition problem solving in patients with left versus 

right unilateral neglect, demonstrating a causal role of spatial attention in arithmetic 

calculation.  

 

Other studies have experimentally manipulated attentional shifts during arithmetic 

calculation in normal adults. In arithmetic cueing studies, for example, the target detection 

task follows from the response given by participants for the arithmetic problem. Masson & 

Pesenti (2016) reversed that timeline, asking participants to pay attention to a flickering target 

between the second operand and the prompt to respond to the arithmetic problem. In a first 

experiment, Masson and Pesenti demonstrated that the flickering target captured attentional 

resources and slowed reaction times compared to a condition without flickering target 

presentation. In other words, the flickering targets acted as attention-capturing distractor in 

that study. In a second experiment with lateralized flickering targets, the authors observed an 

interaction between operation and side of the distractor, with subtraction being responded 

slower when distractors were on the left side and addition being responded slower when 

distractors were on the right side. Both Masson, Pesenti, & Dormal (2017) and Blini et al., 

(2019) also manipulated attentional shifts during arithmetic calculation, this time by using 

optokinetic stimulation (OKS). OKS is a technique that uses moving visual displays to orient 

eye movements (and therefore attention) in the direction of the display movement. This 

allows researchers to manipulate the location of overt attention in a way that is either 

congruent or incongruent to the expected SAAs. Masson, Pesenti, & Dormal (2017) found 

that shifting attention to the right facilitates addition problem solving as compared to shifting 

attention to the left (or not shifting attention), to the extent that these problems involve a 

carrying procedure. No reverse effect, however, was observed for subtraction problems. 

Using more complex problems and vertical as well as horizontal OKS, Blini et al. (2019) 

further showed that shifting attention downward reduced decade errors in subtraction 

problems (whereas shifting attention upward increased these errors). Therefore, studies do 

not consistently show similar causal effects of attentional shifts on arithmetic calculation, 
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which may be due to differences in experimental procedures and materials. Nonetheless, 

several lines of evidence suggest that attentional shifts do have a causal effect on arithmetic 

calculation: experimentally manipulating shifts of attention appears to affect arithmetic 

performance (see also Hartmann, 2022; Masson & Pesenti, 2023). 

 

Theoretical frameworks of SAAs 

 

Several accounts of SAAs have been proposed over the years. Although most of these 

accounts have first attempted to explain the OME, some can be broadened to explain explicit 

associations between arithmetic and space (as measured by arithmetic cueing and eye- or 

hand-tracking paradigms). Below we briefly review some major theoretical frameworks 

conceptualizing SAAs. 

 

Compression account 

 

Relatively early on, number compression has been proposed as an explanation of the 

OME (Chen & Verguts, 2012; McCrink et al., 2007). According to this idea, the OME is 

caused by a systematically inaccurate decompression of presumably logarithmically 

compressed magnitude representations. As an extreme example, imagine that the addition of 

two operands (O1 + O2) would be computed on their logarithmically compressed internal 

representations (log(O1) + log(O2)). Since addition (subtraction) on the logarithmic scale 

corresponds to a multiplication (division) on a linear scale, this would lead to massive 

overestimations for addition (log(O1) + log(O2) = O1 × O2) and underestimations for 

subtraction. This mechanism has been implemented in a computational model of numerical 

cognition (Chen & Verguts, 2012) which was able to reproduce empirically observed 

performance patterns in addition and subtraction task with adults. Nonetheless, the 

compression account is not without challenges. First, it predicts that the amount of 

compression is linearly related to the size of the OME. In support of this notion, Knops et al. 

(2009) reported that OME increases with the numerical magnitude of the outcome. However, 

when measuring the compression in a numerosity naming task, no correlation between OM 

and compression (or any other psychophysical property of the number system) was observed 

(Knops, Dehaene, Berteletti, & Zorzi, 2014). Second, it has been argued that the numerical 

magnitude representation in children is subject to a more pronounced compression, which 
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would suggest that the OME should be stronger in children compared to adults. However, the 

OME appears to emerge only around the age of 9 or 10 and is absent or reversed in younger 

children (Pinheiro-Chagas, Didino, Haase, Wood, & Knops, 2018). Third, and perhaps most 

importantly, the compression account is limited to the OME and does not readily explain 

other effects such as arithmetic cueing. As such, it is not a parsimonious theory of SAAs. 

 

Attentional shift account 

 

According to the attentional shift account, SAAs stem from attentional movements 

along the MNL. For example, it has been proposed that approximate mental arithmetic may 

be mediated by a dynamic interaction between positional codes on the MNL (place coding) 

and an attentional system that shifts the spatial focus to the left or right (Knops, Thirion, et 

al., 2009). At the neural level this may be instantiated in the functional interactions between 

areas along the intraparietal sulcus and posterior, superior parietal areas (Hubbard et al., 

2005). This places mental arithmetic in the realm of dynamic updating processes of spatial 

coordinates in parietal cortex and stipulates that the efficiency of this system is linked with 

arithmetic performance. Due to the approximate nature of this process the shifts may 

‘overshoot’, leading to over- and underestimation in addition and subtraction, respectively. 

Not only does this account explain the OME, it also suggests a functional coupling between 

eye movements and arithmetic. 

 

The attentional shift account has also been extended to the domain of exact symbolic 

arithmetic. For example, although classic models have long assumed that simple arithmetic 

problems (e.g., single-digit addition) were retrieved from memory in educated adults 

(Ashcraft, 1992; Campbell & Tarling, 1996), it has recently been proposed that these 

problems may also be solved using counting procedures that would become automatized over 

the course of learning and turn into mental scanning of the MNL (Barrouillet & Thevenot, 

2013; Mathieu et al., 2016; Uittenhove, Thevenot, & Barrouillet, 2016). Such a fast mental 

scanning might potentially explain associations between arithmetic operations and space 

(Mathieu et al., 2016), though it has also been argued that this process might only be efficient 

enough to solve problems with small operands (Uittenhove et al., 2016). Nonetheless, this 

idea is consistent with those studies that have observed SAAs at the outset of problems, either 

immediately after the second operand (Liu, Cai, et al., 2017) or slightly after (Masson et al., 
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2018; Salvaggio, Masson, et al., 2022). This is also in keeping with Pinheiro-Chagas et al. 

(2017)’s findings that SAAs (measured through finger tracking along a number line) are 

proportional to the size of the second operand. To date, however, there is no evidence that 

either eye movements or magnitudes of spatial biases in arithmetic cueing studies relate to the 

size of the problem, as would be expected if these effects are due to movements along the 

MNL. The observation of an OME in zero problems (see above) has also challenged this 

explanation since no spatial displacement is involved when the second operand is zero. Yet, 

taken together, the attentional shift account provides a relatively parsimonious explanation of 

SAAs in the variety of paradigms reviewed above. 

 

Heuristics account 

A number of authors have proposed that heuristics are at the heart of SAAs. For 

instance, according to the ''if adding, accept more" and ''if subtracting, accept less" heuristics 

(McCrink et al., 2007; McCrink & Wynn, 2009), the OM is caused by the application of the 

general principle that for addition (subtraction) outcomes are accepted as long as they are 

larger (smaller) than the initial operand. McCrink & Hubbard (2017) recently proposed that 

the heuristics account and the attentional shift account might even belong to one single 

mechanism (heuristics-via-spatial shifts account). They suggested a greater reliance on a 

heuristic where information from the visuo-spatial system is fed into the decision when 

attentional load is high. Indeed, McCrink & Hubbard (2017) observed a stronger OME in 

non-symbolic addition and subtraction problems in a dual-task situation where participants 

divided attention between numerosity processing and a secondary feature-detection task 

compared to a single-task context where only the non-symbolic arithmetic problems were 

solved (McCrink & Hubbard, 2017).  

 

Heuristics have also been proposed to account for SAAs in arithmetic cueing 

paradigms. Specifically, associations between operators and space might stem from 

conceptual metaphors associating operations and space, which might help subsequent 

calculation by providing heuristics narrowing down the range of possible answers (Andres et 

al., 2020). For example, by associating addition and subtraction to the right and left side of 

space (respectively), participants might come to infer that “more is right” and “less is left”. 

They will thus shift their attention either to the right or to the left to anticipate that the result 
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of an addition will be larger than the first operand, whereas the result of a subtraction will be 

smaller than the first operand.  

 

Although heuristics such as those described above can explain a range of findings, 

they should not only apply to addition and subtraction, but also to multiplication and division. 

First, because multiplication leads to outcomes generally larger than the first operand and 

division leads to outcomes generally smaller than the first operand, participants should 

overestimate results of multiplication and underestimate results of division. In line with this 

prediction, Katz & Knops (2014) did observe overestimations in multiplications and 

underestimation in division. However, this was limited to the non-symbolic notation. No 

OME was observed for symbolic multiplication or division. This pattern remained stable 

even when approximate calculation (as compared to exact retrieval from rote memory) was 

endorsed by presenting only incorrect response choices for symbolic problems amongst 

which the one closest to the correct outcome should be selected (Katz, Hoesterey, & Knops, 

2017). In the non-symbolic multiplication and division problems, the OME correlated with 

the reorienting cost due to invalid cueing in a Posner task. Therefore, while the presence of 

the OME in non-symbolic multiplication and division is consistent with the heuristics 

approach, the absence of the effect in symbolic notation and the correlation with the 

reorienting effect are not predicted by this account. Second, in arithmetic cueing tasks, a 

heuristic such as ‘more is right’ should apply to multiplication as much as it applies to 

addition. Yet, multiplication has not been found to be associated with a rightward shift of 

attention (Mathieu et al., 2016). The multiplication operator (‘×’) has also been found to elicit 

less activity than the addition operator (‘+’) in brain regions underlying spatial attention 

(Mathieu, Epinat-Duclos, Léone, et al., 2018; Mathieu, Epinat-Duclos, Sigovan, et al., 2018). 

Therefore, studies on multiplication and division have generally failed to support the heuristic 

account of SAAs. The observation that SAAs are flexibly adapting to contextual factors such 

as the right-to-left orientation of an external response medium further undermines the 

heuristics account. That is, finding that addition can induce biases to the left and subtraction 

to the right side of space (Klein et al., 2014; Pinhas et al., 2015) is at odds with the heuristics 

account. One might argue that the heuristic operates on the situated, context-dependent 

representation of mental magnitude, which would bias participants’ responses to the left 

(towards larger numbers) for addition and to the right (towards smaller numbers) for 

subtraction in the study by Klein et al. (2014). Yet, even under this interpretation, we argue 

that it is unclear why the heuristic would bias only the second, corrective saccade rather than 
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the first saccadic landing point, which supposedly reflects the result obtained via heuristic 

problem solving.  

 

Spatial competition & arithmetic heuristics and biases (AHAB) account 

The spatial competition account assumes that SAAs (including the OME) result from 

the competing spatial biases invoked by the operands, the operation sign, and the result of an 

arithmetic problem. This account has been recently expanded and replaced by the more 

general idea (termed arithmetic heuristics and biases account or AHAB account) that 

different biases interact during mental arithmetic, namely the anchoring bias, the operator-

space association, and the more-or-less heuristic (Mioni, Fischer, & Shaki, 2021). For 

example, the anchoring bias predicts that for problems with matched outcome, subtraction 

would induce an overestimation compared to addition because of the comparably larger first 

operand (9 – 3 = 6 vs. 4 + 2 = 6). The operator-space association predicts a rightward bias for 

additions and a leftward bias for subtractions (though to take effect, this association depends 

on the use of spatially distributed responses). Finally, the more-or-less heuristic results from 

the repeated experience that addition leads to larger outcomes and subtraction to smaller 

outcomes. The AHAB framework therefore integrates elements from the previously 

described accounts. 

 

The AHAB account is supported by a number of findings. For example, there is 

evidence that SAAs are not uniquely observed after the second operand or during calculation 

per se. Several studies have found that arithmetic operators may be associated with shifts of 

attention before the second operand is even known to participants (Hartmann et al., 2015; 

Liu, Cai, et al., 2017; Salvaggio, Masson, et al., 2022), though these shifts may only occur 

when operators are preceded by an operand (Liu, Cai, et al., 2017; Pinhas, Shaki, & Fischer, 

2014). The first indication that arithmetic operators do have spatial association comes from a 

study by Pinhas et al. (2014), who asked participants to classify arithmetic operators (‘+’ or ‘-

’) using different response mappings (either the left or right hand). The study showed that ‘+’ 

signs were classified faster with the right than the left hand, whereas ‘-’ signs were classified 

faster with the left than the right hand (see also Brennan, Rutledge, & Faulkenberry, 2021) 

for a replication of that finding). Neuroimaging findings also indicate a relation between 

arithmetic operators and spatial attention. For example, both Mathieu, Epinat-Duclos, Léone, 

et al. (2018) and Mathieu, Epinat-Duclos, Sigovan, et al. (2018) measured brain activity of 
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children and adults while they were presented with a ‘+’ sign in anticipation of a forthcoming 

addition problem. Interestingly, the mere presentation of that ‘+’ sign elicited enhanced 

activity in brain regions that were identified in the same experiments as supporting saccadic 

eye movements. These findings thus suggest that ‘+’ signs are processed in brain regions that 

underlie spatial attention, in keeping with behavioral findings showing that such operators do 

elicit shits of attention (to the right side of space).  

 

Despite these findings supporting the operator-space association, a number of 

challenges remain for the AHAB account. For example, no study with two-operand problems 

has provided empirical support for the anchoring bias. The AHAB account also provides 

some very specific predictions that have not been confirmed yet. For example, it assumes that 

“when the sign–space association is largely irrelevant to the task, [...] the anchoring bias 

outweighs the more-or-less heuristic” (p. 538; Mioni et al., 2021), leading to inverse OMEs. 

This is, however, at odds with results from studies that used no arithmetic operator (McCrink 

et al., 2007) and show regular OMEs even with matched results (Knops, Viarouge, et al., 

2009). Overall, the boundary conditions of the interaction between these biases remain to be 

specified and – importantly – empirically tested. Considering the difficulties associated with 

mapping paradigms (see above), this test should make use of paradigms that do not require 

the participants to map an internally generated numerical outcome onto an external non-

numerical dimension such as line length or temporal duration. This additionally required 

mapping may in and by itself induce biases that obfuscate the exploration of the factors 

underlying SAAs. 

 

Evaluating the theoretical accounts against the observed OME and arithmetic cueing 

effects 

 

Overall, all theoretical accounts can successfully explain a number of findings. At the 

same time, they also face empirical challenges that require the precise definition of boundary 

conditions. This conclusion is substantiated by some of the results that have been revealed in 

our meta-analyses of OME and arithmetic cueing studies and that were not evident when 

assessing the literature qualitatively. We briefly summarize these findings before presenting a 

tentative theoretical framework that accommodates them. The new framework makes it 

possible (a) to explain the observed dissociations between OME and attentional curing 
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studies and – more importantly - (b) to derive testable predictions that may inspire future 

studies. 

 

 A key finding from our meta-analyses is that, when addition is compared to 

subtraction, both an OME and a lateralization effect after arithmetic cueing are consistently 

observed across studies. The effect is in the small to medium range in arithmetic cueing 

studies (d = 0.37) and in the medium to very large range (d = 0.96) in OME studies. 

Combined with findings from studies tracking eye and hand movements during arithmetic 

calculation, the current literature clearly supports the view that arithmetic processing is 

subject to biases that indicate (in the case of tracking and arithmetic cueing studies) or 

suggest (in the case of OME studies) spatial processing. While the spatial interpretation of 

arithmetic cueing effects is obvious due to the explicit interaction between the spatial and the 

numerical dimensions in these paradigms, the OME is only a numerical bias. Under the 

premise of a spatial organization of numerical magnitude, it is nevertheless suggesting the 

involvement of spatial processes during mental arithmetic (Knops, Thirion, et al., 2009). The 

only major exception to this picture comes from studies on the OME that require participants 

to transcode the results to an external spatial scale (position on a line or line length). At least 

for the moment, these do not provide coherent evidence for an OME. While a small to 

medium pooled effect size emerged for zero problems, the effect size for problems involving 

operands that are different from zero was equivalent to zero. As stated before, we argue that 

this paradigm involves an additional mapping of an internal representation onto an external 

spatial dimension that is far from trivial and open to a number of different strategies. 

Disentangling how these strategies might influence performance remains an interesting 

challenge for future work. 

 

Despite the fact that most OME and arithmetic cueing studies reliably find response 

biases, the operation driving the effect appears to differ between OME and arithmetic cueing 

studies. On the one hand, the OME is driven by an underestimation of the result in 

subtraction (d = -1.38) rather than by an overestimation in addition (d = -0.09). On the other 

hand, the lateralization effect after arithmetic cueing is driven by a rightward bias for addition 

(d = 0.34) rather than a leftward bias for subtraction (d = -0.01). In other words, arithmetic 

cueing effects dissociate from the OME since the former are mainly driven by an association 

between addition and the right side of space while the latter is mainly driven by an 

underestimation in subtraction problems. In fact, this dissociation is in line with a recent 
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study that measured attentional focus via a target detection task in the context of non-

symbolic arithmetic (Glaser & Knops, 2023). The authors did not observe any arithmetic 

cueing effects, while at the same time replicating the OME that was driven by subtraction 

only (Glaser & Knops, 2023). None of the theoretical frameworks described above can 

comprehensively explain such a dissociation, which calls for refined theorization. Clearly, 

such a dissociation is relatively problematic for theoretical accounts that provide a joint 

framework for both effects, such as the attentional shift account or the heuristics account. 

 

We can see at least two potential explanations for the fact that the OME and the 

arithmetic cueing effects dissociate. First, it might be that either the OME or the arithmetic 

cueing effect (or both) does not reflect attentional shifts along the MNL but stems from other 

(and different) sources, as suggested by some studies. For instance, the OME has been 

explained by non-attentional accounts, such as the compression account (Chen & Verguts, 

2012; McCrink et al., 2007). It has also been proposed that arithmetic cueing effects may be 

due to heuristics associating operations with space (McCrink et al., 2007; McCrink & Wynn, 

2009). Yet, it is unclear how these effect-specific accounts might explain that (a) the OME 

would be driven by subtraction rather than addition and (b) arithmetic cueing would be 

stronger for addition than subtraction. A specific concern with the compression account is 

also that it does not provide an explanation for the resemblance of parietal activation patterns 

associated with attentional shifts and arithmetic operations (Knops et al., 2009).  

 

Second, it is possible that the dissociation between the OME and the arithmetic cueing 

effect might be more apparent than real. That is, both effects could still stem from attentional 

shifts along the MNL, but confounding experimental factors might allow for different biases 

to intervene and obscure the effects. One factor that is – albeit not perfectly – confounded 

with this distinction is the format of the problems. Specifically, studies that measure the OME 

have mostly used non-symbolic stimuli while arithmetic cueing studies mostly utilized 

symbolic stimuli. Critically, the choice of stimulus format (as well as type of arithmetic 

problem) can favor different factors to influence the arithmetic processing.  

 

For example, the use of non-symbolic numerosities in most studies examining the 

OME provides an opportunity for visual-perceptual biases (which are not involved in 

processing symbolic stimuli) to interfere with arithmetic processing (Santens, Roggeman, 

Fias, & Verguts, 2010). Candidate biases include recently described attractive serial 
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dependency effects (Fornaciai & Park, 2020). The core idea is that the numerosities presented 

as operands leave a memory trace that influences the processing of subsequently presented 

items. The first operand may leave activation traces which serves as an attractor for 

subsequently presented numerosities (operand attractor hypothesis). In subtraction problems 

where the first operand is always larger than the second operand this would lead to an 

overestimation of the second operand, which in turn would lead to an underestimation of the 

outcome. In addition problems, the situation is less clear since the first operand is not 

necessarily larger than the second operand and hence sequential attraction may go either way 

– diminishing potential biases. Therefore, operand attractor may be a factor enhancing the 

underestimation of subtraction. Note that serial attraction effects may also be observed in the 

context of symbolic arithmetic, where they are sometimes referred to as ‘anchoring’ effects. 

Although such effects may also affect the perceived numerical magnitude of symbolic 

numbers (Charras, Brod, & Lupiáñez, 2012; Pinhas & Fischer, 2008), due to the exact nature 

of the verbal labels, we would argue that these effects are smaller for symbolic stimuli. 

  

In addition to serial attraction between operands, there might also be an overall 

tendency to underestimate sets of items in non-symbolic numerosities. This would offset all 

final estimates in non-symbolic tasks to the left of the MNL and enhance even further the 

OME observed with subtraction. While we see that this theoretical stance is not 

unproblematic since the underestimation mostly affects transcoding to verbal formats, which 

is not required systematically, we propose that participants routinely apply verbal labels to 

the non-symbolic quantities. Nonetheless, an open question is how much this applies to 

paradigms that do not require any transcoding at all. 

 

Finally, strategy choice is also a factor that may affect symbolic arithmetic to a greater 

extent than non-symbolic arithmetic. Two prominent strategies that may impact the 

manifestation of attentional biases are direct retrieval of solutions from long-term memory for 

multiplication problems and the solution of subtraction problems via addition (e.g. 8 + ? = 12 

for 12 – 8 = ?; Campbell, 2008; Torbeyns, Peters, De Smedt, Ghesquière & Verschaffel, 

2018; ). Direct retrieval from long-term memory would leave little room for any attentional 

bias compared to an estimation procedure for non-symbolic multiplication problems, which is 

consistent with the findings from Katz & Knops (2014). Solving subtraction problems via an 

addition strategy, in turn, would explain smaller biases in symbolic subtraction problems.  
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In sum, our meta-analysis showed that arithmetic cueing effects are mainly driven by 

addition problems while the OME is mainly driven by subtraction problems. This may 

coincide with the idea that arithmetic cueing paradigms are particularly strategy-sensitive 

(e.g., subtraction-by-addition might reduce spatial associations for subtraction problems) 

while OME paradigms are more sensitive to biases induced by serial dependency effects that 

may be more prominent in the non-symbolic notation. Note that we do not mean to imply 

here that no other factors may influence the size or presence of arithmetic cueing and OM 

effects. For instance, the effects may be affected by the range of numbers (e.g., single- vs. 

multi-digit), the difficulty of the problems (e.g., small versus large, problems involving 

carrying or borrowing versus problems that do not involve these), or even some 

characteristics of the problems that may influence spatial associations independently of the 

operation (e.g., whether subtraction and addition are matched for operands or results)2, as 

suggested by several studies (e.g., Salvaggio et al., 2022; Masson & Pesenti, 2023).  

 

The adaptive pathways in mental arithmetic (APiMA) framework 

 

Though a number of factors may influence arithmetic cueing and OM effects (see 

above), one prominent factor may be a difference in notation format (non-symbolic vs. 

symbolic) between most studies investigating the OME and most studies investigating 

arithmetic cueing. This might potentially explain why the effects are driven by different 

operations (subtraction for the OME and addition for arithmetic cueing). To illustrate this 

point, we introduce the adaptive pathways in mental arithmetic framework (APiMA; Figures 

8 and 9), which summarizes processing instances during mental arithmetic as well as the 

underlying codes with their most prominent characteristics. The APiMA model incorporates 

basic notions of the Triple Code Model (Dehaene & Cohen, 1995), the separated input 

pathways stipulated by Santens et al. (2010), and a parallel pathway assumption of mental 

arithmetic, hypothesizing that approximate estimation and verbally mediated calculation 

strategies are carried out in parallel (Ashcraft & Stazyk, 1981). The APiMA focuses on 

                                                      
2 Because results of addition problems are larger than results of subtraction problems when problems are 
matched for operands, it is difficult to disentangle spatial associations that would be due to the type of 
operation from associations that would be driven by the size of the result. A potential way to disentangle these 
factors is to match addition and subtraction problems in terms of results rather than operands (e.g., Knops, 
Viarouge & Dehaene, 2009; Masson & Pesenti, 2014). 
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perceptual and semantic elaboration processes as opposed to retrieval of arithmetic facts from 

long-term memory, although these processes need to operate in synchrony (Klein & Knops, 

2023).  

 

The APiMA model provides a detailed overview of instances where notation-specific 

biases may operate. This is because the processing pathways for symbolic and non-symbolic 

information differ and these differences run through all processing steps from perception over 

semantic elaboration until response-related instances. When numbers are presented 

symbolically (either through visual or auditory stimulation, see Figure 8), quantity may be 

represented using both a verbal and a magnitude code (Dehaene & Cohen, 1995). As 

hypothesized by Dehaene & Cohen (1995), these codes provide the basis for giving an exact 

answer to the arithmetic problems using either verbal retrieval or algorithmic computing. 

However, the APiMA model also assumes that the magnitude code may also provide an 

estimation of the result, through spatial shifts along the MNL3. These may be useful to 

narrow down the range of possible answers (Salvaggio, Masson, et al., 2022). Critically, 

because symbolic multiplication problems are learned by rote in school, it is largely assumed 

that these are directly retrieved from memory in adults (or solved through backup strategies if 

retrieval is not possible). As such, studies have failed to find arithmetic cueing and OM 

effects with symbolic multiplication problems (Katz & Knops, 2014, Mathieu et al., 2016). 

But an estimation of the result might be relatively frequent when adding numbers (leading to 

a rightward shift attention along the MNL), at least more so than when multiplying numbers3. 

Much like addition, the APiMA model also assumes that estimation is present in subtraction 

as well. However, because subtraction problems can be solved either by backward counting 

or subtraction-by-addition (Campbell, 2008), shifts along the MNL may occur either leftward 

or rightward depending on the strategy. Overall, the APiMA model explains why arithmetic 

cueing effects are observed more reliably in symbolic addition than in symbolic subtraction 

or multiplication.  

 

                                                      
3 Note that it has been proposed that shifts along the MNL may also provide the exact answer to symbolic 
arithmetic problems in some situations, as these shifts could correspond to counting procedures that have 
been automatized (Poletti, Díaz-Barriga Yáñez, Prado, & Thevenot, 2023; Uittenhove, Thevenot, & Barrouillet, 
2016). This process, however, is believed to be restricted to operands that are smaller than 4 and therefore 
cannot account for the range of associations between symbolic arithmetic and space (though it might account 
for some associations in small problems; (Mathieu, Gourjon, Couderc, Thevenot, & Prado, 2016). 
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Figure 8. APiMA framework for symbolic numbers (see text for details). The figure shows 

how the model considers the manipulation of the numbers ‘13’ and ‘8’ within multiplication, 

addition, and subtraction. 

 

Though number coding pathways differ between symbolic and non-symbolic 

quantities, non-symbolic numerosities may also be represented using a verbal and a 

magnitude code (see Figure 9). These may also provide the basis for giving an exact answer 

to the arithmetic problems using algorithmic computing (verbal retrieval being much less 

prevalent with non-symbolic stimuli). As for symbolic numbers, the APiMA model also 

assumes that the magnitude code may provide an estimation of the result through spatial 

shifts along the MNL. However, as detailed above, there might be serial dependency between 

magnitude representations of two sequential numerosities, which would lead to either an 

overestimation of the second operand when the first operand is the largest numerosity or an 

underestimation of the second operand when the first operand is the smallest numerosity (see 

red dots on sample numerosities in Figure 9). In subtraction, the first operand is always the 

largest as non-symbolic subtraction cannot typically be associated with negative results. This 

would lead to an overestimation of the second operand and an enhancement of the leftward 

shift along the MNL. In addition, because the first operand may be the largest or the smallest, 

the second operand may be either overestimated or underestimated. Rightward shifts along 

the MNL may therefore be either enhanced or diminished, and on average weaker in addition 
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than in subtraction. The model predicts that multiplication should be similar to addition in 

that respect. Nonetheless, the APiMA framework accounts for the observation that OME has 

been observed with non-symbolic but not with symbolic multiplication and division because 

the latter predominantly calls on the recall of arithmetic facts from long-term memory who 

have a weak association with the semantic code only (Didino, Knops, Vespignani, & 

Kornpetpanee, 2015; Katz & Knops, 2014).  

 

 

 

Figure 9. APiMA framework for non-symbolic numerosities (see text for details). The figure 

shows how the model considers the manipulation of seven dots and three dots within 

multiplication, addition, and subtraction. Full and dotted red dots on the upper panel 

represents hypothetical changes in numerosity representations due to attractive serial 

dependence. For addition and multiplication, attractive serial dependence tends to increase 

the number of dots of the second operand when the largest numerosity is the first operand 

(leading to overestimation) while it tends to decrease the number of dots of the second 

operand when the smallest numerosity is the first operand (leading to underestimation). For 

subtraction, attractive serial dependence systematically tends to increase the number of dots 

of the second operand because the largest numerosity is always the first operand (leading to 

underestimation). 
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The APiMA model is based on the assumption that attentional shifts underlie both the 

OME and the arithmetic cueing effects. It further assumes that the consistency of attentional 

shifts with the overall displacement along the spatial numerical representation leads to a 

stronger bias. As a second mechanism, APiMA includes the notion of serial attraction effects 

that affect the perceived magnitude of the operands (and potentially the response 

alternatives). Interestingly, serial attraction effects may modulate attentional biases in 

predictable ways.  

 

For addition, we can differentiate between problems where (a) the first operand (O1) 

is smaller than the second (O2) and the result (R), or (b) problems where the O2 is smaller 

than O1. According to the consistency hypothesis, both problem types lead to an OME. If we 

additionally assume serial attraction effects, O1 influences (‘attracts’) the subjectively 

perceived numerical magnitude of O2. In problems of type (a), this leads to a smaller 

subjective magnitude of O2 compared to problems of type (b), all else being equal. 

Consequently, this would lead to a larger OME for problems of type (b) where the O2 is 

smaller than O1. Interestingly, this is what Charras and colleagues observed in a series of 

experiments (Charras et al., 2012, 2014) where the order of operands in addition problems 

was systematically varied. They observed a larger overestimation for problems with operands 

in descending order (e.g. 26 + 22) compared to problems with the inverse operand order (i.e. 

22 + 26).  

 

For subtraction problems, too, we can differentiate two types of problems. In 

problems of type (a), O2 is smaller than O1 but larger than the result (e.g. 24 – 15 = 9). In 

problems of type (b), O2 is smaller than both O1 and the result (e.g. 24 – 9 = 15). According 

to the consistency hypothesis, problems of type (a) should produce a larger OME due to the 

consistent displacement to the left compared to problems of type (b). At the same time, 

problems of type (a) are more prone to the application of a subtraction-via-addition strategy, 

which should diminish the OME. Hence, the analysis of the adopted strategy appears a 

necessary factor in the future exploration of attentional biases in the context of mental 

arithmetic. Sequential attraction effects, however, would lead to a larger OME in problems of 

type (b) compared to problems of type (a).  
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We believe that the above hypotheses, which can be inferred from the APiMA 

framework, represent exciting starting points for a further refinement of the theoretical 

mechanisms underlying OME and arithmetic cueing effects in the context of mental 

arithmetic.  

Conclusion 

  

More than 15 years has passed since Hubbard et al. (2005) hypothesized that mental 

arithmetic involves attentional movements along the MNL. As reviewed here, there is now 

convergent evidence that arithmetic calculation is indeed associated with response biases that 

appear to be spatial in nature. Although there is still a debate about whether these biases 

reflect movements along a MNL per se, studies indicate that such spatial associations are not 

simply a byproduct of calculation (Dormal et al., 2014; Masson & Pesenti, 2016; Masson, 

Pesenti, & Dormal, 2017). Rather, they might reflect mechanisms that are at the heart of 

arithmetic processing and even pertain to the arithmetic combination of non-numerical (i.e. 

temporal) quantities (Bonato, D’Ovidio, Fias, & Zorzi, 2021). That being said, the literature 

also raises a number of challenges for future theories and paradigms. First, although the OME 

and the arithmetic cueing effect are often seen as two manifestations of the same 

phenomenon, some may doubt that they stem from the same mechanism. Second, the 

framework emerged from analyzing studies that examined arithmetic-space associations in a 

horizontal plane (i.e. left-right). Future frameworks might embrace number-space interactions 

in down-up or near-far planes (Holmes & Lourenco, 2012; Hartmann, Gashaj, Stahnke, & 

Mast, 2014; Aleotti et al., 2020). The literature on associations of arithmetic with these 

alternative dimensions, however, is still scarce at the moment (e.g. Wiemers, Bekkering, and 

Lindemann, 2014), mostly exploiting eye movement recordings (Blini, Pitteri, & Zorzi, 2018; 

Hartmann, 2022). Finally, the studies analyzed here are characterized by some degree of 

heterogeneity in terms of tasks and materials, which makes it difficult to evaluate to what 

extent spatial biases in mental arithmetic depend on specific task features (e.g., non-symbolic 

vs. symbolic quantities, problem size, response output). The proposed framework may guide 

future work that seeks to elucidate the cognitive characteristics of the described spatial-

numerical associations. For example, the model we propose assumes that the dissociation 

observed between OME and arithmetic cueing studies has more to do with a difference in the 

nature of stimuli (non-symbolic vs. symbolic) than in underlying mechanisms. Specifically, a 

greater variety in strategies used to solve symbolic subtractions may explain why arithmetic 
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cueing effects are stronger in addition than subtraction. Critically, the model predicts that 

problems solved by subtraction-by-addition should be associated with a rightward shift while 

other problems should be associated with a leftward shift. We also predict that attractive 

serial dependence between non-symbolic numerosities and a tendency to underestimate may 

explain why the OME is stronger in subtraction than addition. Here, the model notably 

predicts that the OME observed in addition problems should be stronger when the first 

operand is larger than the second (compared to the other way around). These are testable 

predictions that future studies may investigate. 

 

On a final note, the current review exclusively focuses on adult participants. Only a 

small number of studies have investigated the development of spatial biases during mental 

arithmetic in children (Díaz-Barriga Yáñez et al., 2020; Pinheiro-Chagas et al., 2018). Yet, 

we believe that this research is crucial as it might inform on the mechanisms through which 

these biases emerge and how they are modulated by instructional context, thereby shedding 

light on the sources of both the OME and arithmetic cueing effects in expert adults. On a 

more general note, our findings reverberate with recent efforts to characterize the relation 

between internal and external attention that have been theorized to operate via shared neural 

and cognitive mechanisms (Kiyonaga & Egner, 2013). The current results support this idea 

by demonstrating that attentionally mediated arithmetic operations on an internal 

representational space affect the perceptual performance of external visual stimuli and vice 

versa. Whether or not the reciprocal influence is entirely symmetric or not remains to be seen 

in future studies (Lim & Pratt, 2023). 
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