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Abstract [248 of max. 250 words]:

We review the evidence for the conceptual association between arithmetic and space and
quantify the effect size in meta-analyses. We focus on three effects: (a) the operational
momentum effect (OME), which has been defined as participants’ tendency to overestimate
results of addition problems and underestimate results of subtraction problems, (b) the
arithmetic cueing effect, in which arithmetic problems serve as spatial cues in target detection
or temporal order judgment tasks, and (c) the associations between arithmetic and space
observed with eye- and hand-tracking studies. The OME was consistently found in paradigms
that provided the participants with numerical response alternatives. The OME shows a large
effect size, driven by an underestimation during subtraction while addition was unbiased. In
contrast, paradigms in which participants indicated their estimate by transcoding their final
estimate to a spatial reference frame revealed no consistent OME. Arithmetic cueing studies
show a reliable small to medium effect size, driven by a rightward bias for addition. Finally,
eye- and hand-tracking studies point to replicable associations between arithmetic and eye or
hand movements. To account for the complexity of the observed pattern, we introduce the
Adaptive Pathways in Mental Arithmetic (APiMA) framework. The model accommodates



central notions of numerical and arithmetic processing and helps identifying which pathway a
given paradigm operates on. It proposes that the divergence between OME and arithmetic
cueing studies comes from the predominant use of non-symbolic versus symbolic stimuli,
respectively. Overall, our review and findings clearly support an association between

arithmetic and spatial processing.



Introduction

Spatial thinking has long been thought to play an important role in mathematics. This
is obvious in domains such as geometry or measurement, which involve the explicit mapping
of numbers to space. But a large body of evidence also indicates that numerical quantities in
themselves may rely on spatial representations in the human mind (Hubbard, Piazza, Pinel, &
Dehaene, 2005; Toomarian & Hubbard, 2018). Specifically, a central theoretical framework
for interpreting a range of effects in numerical cognition is that of the mental number line
(MNL), according to which numerical magnitude is represented along a spatially oriented
one-dimensional manifold. It has been argued that whenever we are processing a given
number, its position on the MNL is activated. Noise in the cognitive system would lead to the
concurrent coactivation of adjacent positions with an activation strength that decreases as
numerical distance to the perceived number increases (Nieder & Dehaene, 2009). The MNL
metaphor can provide a comprehensive explanation for a plethora of empirical findings,
including hallmark effects in numerical cognition such as numerical distance (or ratio) and
size effects, and can even account for congruency effects between the internally activated
position of a number and object positions in physical space (Gianelli et al., 2012). Its
explanatory power is also bolstered by the existence of number-sensitive neurons in the
parietal and frontal cortices (Nieder, 2016). These neurons are topographically organized in a
manner that reflects major principles of the MNL (Harvey, Ferri, & Orban, 2017), which

supports its biological implementation at the neural level.

The idea that numbers are spatially organized along the MNL more generally suggests
that the cultural achievement of mathematics might coopt neural mechanisms that have
evolved for interacting with physical space, for example while planning our next saccade or
guiding the movement of our hands (Hubbard et al., 2005). In a seminal paper, Hubbard et al.
(2005) notably hypothesized that mental arithmetic can be conceptualized as attentional
movements along the MNL, such that “when human participants compute additions or
subtractions on numerical symbols, they should shift their attention to the left for subtraction
problems, and to the right for addition problems” (p. 446, Hubbard et al., 2005). In other
words, there might be space-arithmetic associations (SAA) much like there are associations
between space and numbers (see also Fischer & Shaki, 2014).

Here, we review the relevant body of work conducted since that hypothesis was made

and evaluate the strength of evidence for SAAs through the lens of three empirical



phenomena: (a) the operational momentum effect (OME), (b) the arithmetic cueing effect,
and (c) the attentional biases measured with eye- or hand-tracking during arithmetic
calculation. For the former two phenomena, we amend our review by formal meta-analyses.
We then present the currently prevailing theoretical accounts for SAAs and interpret the
results of our review against this background before introducing the Adaptive Pathways in
Mental Arithmetic (APiMA) framework that accommodates central notions of numerical and

arithmetic processing.

Evidence for space-arithmetic associations (SAAS)

The Operational Momentum Effect

Historically, the first main phenomenon suggesting the presence of SAAs is the
operational momentum effect (OME), which involves the study of patterns of errors made by
participants while they add or subtract approximate quantities. The OME describes a
systematic bias in evaluating and estimating the outcomes of arithmetic problems.
Specifically, for a given arithmetic outcome that is identical in addition and subtraction (e.g.,
9+ 7=16 & 24 — 8 = 16), participants prefer larger outcomes for addition as compared to
subtraction problems. For example, when both operands and response alternatives are
presented as sets of dots, participants are more likely to accept an outcome such as 21 as the
outcome of the problem 9 + 7 compared to the actual outcome (16) (McCrink, Dehaene, &
Dehaene-Lambertz, 2007). However, for the corresponding subtraction problem 24 — 8,
participants would be more prone to accept an outcome such as 10 as compared to the actual
outcome (McCrink et al., 2007).

While a consensus exists concerning the basic finding described above (i.e., the
moderating role of the arithmetic operation on performance), the definition of the OME
remains a matter of debate. Initially, the effect was defined as the overestimation of addition
results and the underestimation of subtraction results as compared to the actual outcome
(McCrink et al., 2007). Later studies, such as Knops, Viarouge, & Dehaene (2009) (whose
paradigm is depicted on Figure 1A), defined the OME as the relative difference between
addition and subtraction estimates that can both be subject to an overall bias (e.g.,

underestimation in the context of non-symbolic arithmetic). Here, we adopt the more lenient



definition of the OME: We consider that the relative difference between estimates from
different arithmetic operations such as addition and subtraction is the minimally necessary

element that would reflect a moderating role of the arithmetic operation on performance.
A

Figure 1. Sample trials of paradigms used to study SAAs. (A) Operational momentum task
(from Knops, Viarouge, et al., 2009). Participants are sequentially presented with two
quantities and have to estimate the outcome of their addition by choosing among different
options. (B) Arithmetic cueing task (from Masson & Pesenti, 2014). After solving an addition
problem, participants have to detect a target in either the left or right visual field. (C) TOJ
task (from Glaser & Knops, 2020). After solving an addition problem (presented auditorily),
participants have to judge which of two lateralized targets is presented first.

Initially, the OME was described by McCrink et al. (2007) as a bias in approximate
non-symbolic arithmetic (using dot patterns as stimuli). However, the effect was quickly
found to generalize to symbolic notations as well (Knops, Viarouge, et al., 2009; Pinhas &

Fischer, 2008), whether operations are matched with respect to operands or results (Knops,



Viarouge, & Dehaene, 2009). Because symbolic arithmetic has long been thought to involve
verbal retrieval of answers from memory (Ashcraft & Fierman, 1982; Campbell & Xue,
2001; Seyler, Kirk, & Ashcraft, 2003), the presence of a OME with symbolic notations was
interpreted in a dual-process approach of mental arithmetic where the exact and verbally
mediated retrieval process is paralleled by an arithmetic approximation process that operates
on the MNL. While this dual-process may in theory be present in both symbolic and non-
symbolic arithmetic, the OME is stronger with non-symbolic stimuli because these are
associated with exact verbal retrieval processes to a much lesser extent (e.g., Knops,
Viarouge, et al., 2009). Hence, the exact verbal-numerical processes might reduce and

overshadow the effects emerging from the approximate (spatial-attentional) processes.

Consistent with Hubbard and colleagues’ (2015) hypothesis that mental arithmetic
might involve shifts of attention along the MNL (Hubbard et al., 2005), the OME has often
been interpreted as reflecting a cognitive momentum that emerges from attentional processes.
In other words, attention would mediate a displacement along a spatially oriented mental
number representation (Knops, Thirion, Hubbard, Michel, & Dehaene, 2009; Knops,
Viarouge, et al., 2009; McCrink et al., 2007). Yet, some findings are not necessarily easily
accounted by this hypothesis of attentional shifts along a MNL. For example, this hypothesis
would predict that the size of the displacement (i.e., the numerical magnitude of the second
operand) might modulate the OME. However, the size of the first or the second operand does
not appear to be systematically linked to the size of the OME (Charras, Molina, & Lupiafiez,
2014; Knops, Viarouge, et al., 2009). In contrast, the OME increases with the arithmetic
outcome (i.e., the problem size; Knops, Viarouge, et al., 2009) and an overall underestimation
is observed in tie problems (i.e., where both operands are identical) (Charras et al., 2014).

Attentional resources also appear to modulate the OME in a way that is not
necessarily consistent with the idea of attentional shifts. For example, using a dual-task
design, McCrink & Hubbard (2017) hypothesized that the OME would be reduced when less
attentional resources are available. McCrink and Hubbard compared the amount of
operational momentum in a baseline condition with two conditions in which participants had
to concurrently process the non-symbolic arithmetic operands and monitor whether simple
(color patches) or complex visual stimuli (‘greebles’, Gauthier & Tarr, 1997) would be
presented repeatedly. Surprisingly, compared to baseline, they observed an increased OME in

addition trials in both simple and complex dual-task conditions while the OME in subtraction



was unaffected by the concomitant task. McCrink and Hubbard interpreted these results as
being at odds with the attentional shift hypothesis, as they predicted decreased OME in the
dual-task conditions. Rather, they argue, the results are in line with the idea that the OME is a
special case of representational momentum effect, which in turn is increased by heuristics.
With reduced attentional resources available, heuristics such as ‘addition leads to more,
subtraction leads to less’ prevail and lead to an increased OME. Note that, while this may
explain the increased OME in addition, it does not explain the differential impact of the dual-
task load on OME under the two arithmetic operations (i.e., the absence of increased OME in

subtraction).

As mentioned above, the OME can be minimally defined as the relative difference
between estimates from addition and subtraction. To formally explore whether the OME is
driven by an overestimation of addition or an underestimation of subtraction, we included
relevant studies in a meta-analysis. Studies were identified from the PubMed database using
the search terms: "Operational AND Momentum AND Arithmetic”. This search identified 31
manuscripts. A second search using the terms “operational momentum AND numerical
cognition” yielded 23 results. This was amended by a Pubmed search for articles that cited
McCrink et al. (2007), Knops, et al., 2009, or Pinhas and Fischer (2008), which yielded 67,
55, and 49 results, respectively. Using an ancestral search on www.scholar.google.com, we
identified another three studies that were not listed in the PubMed search. After removing
duplicates, we identified a total of 118 manuscripts. Next, we excluded all non-empirical
reports, studies that investigated children, non-human participants, report results of
computational simulations, or investigated other arithmetic operations than addition or
subtraction. We excluded studies with non-canonical orientations (diverging from left-to-
right reading direction in Western cultures) of the response dimension since it was unclear
how to code these results with respect to right and left sided biases. Finally, we included only
those studies that reported the mean numerical deviation between correct outcomes and
participants’ choices or between operations (e.g., focused on reaction time differences

instead) in order to quantify the amount of the OME (see flowchart in Fig. 2).



Pubmed searches Articles citing Articles citing McCrink,
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Figure 2: Flowchart of literature search, identification of eligible articles for the meta-analysis of the operational
momentum effect.

With these inclusion criteria, we identified 13 studies investigating the OME, 7 using
a direct evaluation or production of the internally generated outcome and 6 adopting a
transcoding approach (where the internally generated outcome had to be transcoded into a

position on a line, see below).

For a formal evaluation of the OME, we entered effect sizes (Cohen’s d) from 7
studies using a direct evaluation or production of the internally generated outcome into the
analysis using the MAJOR package in the Jamovi 2.3.19.0 software (see Fig. 3). The overall
effect size across the studies was calculated based on a weighted average accounting for
differences in statistical power between studies. A random effects model was used to account
for the possibility of systematic variation across studies. For each measure was calculated the
ninety-five percent confidence intervals (Cl) as well as the Z and p values corresponding to
the estimate of the overall effect size. Beyond testing effect sizes for significant differences
against zero, MAJOR also uses a “two one-sided tests” (TOST) test of equivalence that tests

whether “the observed effect falls within the equivalence bounds and is close enough to zero



to be practically equivalent” (Lakens, 2017, p. 355). A list of identified studies can be found
at
https://osf.io/download/6606ba5358fa4908a2e4ecf2/?view_only=144d8aab62884d608d3762f
9b0bdd06d.

Overall, we found no overestimation in addition trials, with a mean effect size of d =
0.09 (Clgs%=[-0.42 — 0.24], Z = 0.56, p = 0.58). Given equivalence bounds of -0.50 and 0.50,
the equivalence test was significant (Z = 2.43, p = 0.008) suggesting that the observed effect
is statistically not different from zero and statistically equivalent to zero. For subtraction,
however, we observed a significant underestimation, with a mean effect size of d = -1.38
(Clgsw=[-2.27 — -0.50], Z = -3.06, p = 0.002). Consequently, an overall significant OME was
observed when comparing addition to subtraction with a mean effect size d = 0.96 (Clgsy=
[0.36 — 1.57], Z=3.11, p =.002). Taken together, this quantitative meta-analysis indicates a
reliable OME across studies. However, the effect appears to be mainly driven by an

underestimation of subtraction problems, while addition overall leads to unbiased estimates.


https://osf.io/download/6606ba5358fa4908a2e4ecf2/?view_only=144d8aab62884d608d3762f9b0bdd06d
https://osf.io/download/6606ba5358fa4908a2e4ecf2/?view_only=144d8aab62884d608d3762f9b0bdd06d

10

v € ¢z L 0 - z ¥ z 0 z - o € z L ] L e

L 1 1 Il 1 1 L | | L | L L L i | |
lst ‘sE0log0 — BPON Y [ogo- ‘sz 2 8eL — ePON Y 20 ‘zrol e - e
"”M .mﬂ." “ MWM —— “..Mm.u Mm M”w“ mwmw M“““u M MMMM leLi-'egzl gL - whs-N (z dx3) £20z sdouyl ¥ JeselD 550 ‘oeo-lzLo — whs-N (z dx3) £20z sdouy P Jese|D
legz ‘tz1Llz0z — wAS-N 0Z0Z € 18 UuBwIEH [eri-erelese ——— wig-N (| dx3) €20z sdouy ¥ 1aseD 150 "1wrolsoo —— wig-N (1 dx3) £20z sdouy B Jaseln
[6t0- ‘9¥'1-] L6°0- —— Kioypne (z dx3) 610 |2 18 ung [612-"89'v-] BE'E- —— WAS-N 0Z0Z [B 1@ UuewieH [Lo0- ‘201 2570 —— WAS-N 0Z0Z [ 19 UUBWLEH
[e9°0- 2911611 @ Aoppne (| dx3) 6L0Z |2 18 1uIg [es'0 “1z0l 610 i Msoypne (z dx3) 610 1238 UG leeo- ‘szl 6270 —— Kioypne (z dx3) 6L0Z (818 g
[i9¢ ‘6¥'L]1852 —— whS-N Z WAS-N $10Z €19 sdouy [8g'0 ‘v0'0] av0 B3 Aioypne (). dx3) 610Z 11 iulig Iszo-‘suloro — - fioypne (1 dx3) 610 I8 19 1Ig
[er' “zz'0lz80 —— WwAs 7 WwAs-N 10Z | 16 sdouy| a2 1-¥2'¥-] LO'E- —. WAS-N Z WAS-N FLOZ 2 1o sdouy ls+'0 ‘09°0-] 80°0- — whS-N z WAS-N F10Z 2 10 sdouy|
1850 ‘210 ev0 —_y WAS-N 2 WAS pLOZ [E10 SO [p)-0-gz2] 1571~ —.— WS 7 WAS-N $1L0Z [ 18 sdouy [sz0- ‘s34 160 —a——  wis z wis-N #10Z 12 10 sdouy|
WWM wwu o ek ?m.mz.wu I et e wewopun, 1822 sL0] 25 . wis-NZwAS Pz e sdouy (002 'ge 0162 ) e WAS-N Z WAS 107 [€ 18 sdouy)
662 ‘LeLlsiz - wAg-N (z dx3) 600z [e 1o sdouy| [85°z- "z 66'€- ————  wis-N (z dx3) 6002 |2 1o sdouy [s00 ‘160l EvO- —— wAg-N (Z dx3) 600Z 1218 sdouy
[s6'Z ‘1z'L 1802 — wAs-N (1 dx3) 600Z IB 18 sdouy leg's-"zre] 2972 - whs-N (1 dx3) 600Z (e 18 sdouy se0 ‘090l LLO- —. wAg-N (1 dx3) 600Z |2 18 sdouy
[#6°0 ‘€0°0-) 90 — WAS (z dx3) 600z [2 1 sdouy| [o-‘zrilego - wAg (z dx3) B00Z |E Jo sdouy lov'0 ‘ov'0-l 000 —— wAs (z dx3) 600Z 12 18 sdouy|
[ge'L ‘szolezeo - WAS (1 dx3) 6002 Ie 1o sdouy| [90'0 ‘2601 st0- 2 N wiAs (| dx3) 600z |2 1 sdouy 60 ‘Lol ovo [ wig (1 dx3) 600g 1& 12 sdouy
los'z ‘srolost —_— wihg-N 2002 12 10 YU [20°0 ‘081l 980~ —a— WASN L00Z 1€ 18 YUuDoW vz Lolebt [ m— WAS-N L00Z [2 18 JUUDIW

UONOBIGNS - UOHIPPY uonoengns uonippy



Figure 3. Forest plots of the OME for addition and subtraction problems (as well as a
comparison between operations). The square boxes show the effect size in each study. The
size of each box reflects the sample size and error bar the 95% confidence interval. The
midline of the diamond indicated the mean pooled effect size and the diamond’s width the
95% confidence interval. Positive (negative) effect sizes indicate an overestimation

(underestimation).

To separate arithmetic processing from the impact of the arithmetic operator, a
number of studies have examined the OME with zero as a second operand. In such so-called
zero-problems (e.g. 3+ 0=7?; 7 -0 =?), aregular OME has been observed both when
participants produce the non-symbolic outcomes (Lindemann & Tira, 2011) and when they
indicate the position of the outcome on a left-to-right oriented labeled number line (Pinhas &
Fischer, 2008; Shaki, Pinhas, & Fischer, 2018). These results have been interpreted as
evidence against the attentional shift explanation of the OME, since no attentional
displacement would be required with zero as second operand. Yet, when participants are
asked to transcode the estimated outcome to a line length, no statistically significant

difference between addition and subtraction is observed (Mioni et al., 2021).

To elucidate the temporal and contextual malleability of the mental number
representation, some researchers asked participants to indicate where the result of an
arithmetic problem would be positioned on a labeled line. In these studies, the orientation
(i.e., increasing numerical magnitude from left to right or from right to left) of the labeled
number line was manipulated and pitted against the hypothesized left-to-right orientation of
the MNL in long-term memory. The results demonstrated that the bias induced by addition is
not consistently driving responses to the right side of space (Klein, Huber, Nuerk, & Moeller,
2014; Pinhas, Shaki, & Fischer, 2015). For example, both Klein et al. (2014) and Pinhas,
Shaki & Fischer (2015) have shown that when the larger numbers are on the left side (and the
smaller numbers on the right side) of the external response dimension, responses are biased
towards the larger number. Note, however, that Pinhas, Shaki & Fischer (2015) found that
this effect was moderated by the type of arithmetic problem. That is, with non-zero problems
(i.e., where none of the operands is zero) with either 4 or 6 as a result, the authors observed a
reverse OME for 6 (i.e., addition was oriented further to the left compared to subtraction) and
a regular OME for 4 (i.e., addition led to responses that were further to the right compared to

subtraction). For zero problems, however, responses for addition problems were displaced to

11



the left side compared to responses in subtraction problems. Overall, then, there is some
evidence that the layout of the mental number representation during OM tasks is relatively
flexible and task-dependent. This is reminiscent of the discussion on whether or not the
spatial orientation of the mental number line is systematically oriented from left to right in
long-term memory, for example as a result of cultural conventions such as reading and
writing direction (e.g., Shaki, Fischer, & Petrusic, 2009), or whether it is constructed in a
task-dependent manner in working memory (Fias, van Dijck, & Gevers, 2011; van Dijck &
Fias, 2011). Interestingly, in Pinhas, Shaki and Fischer (2015), the same participant sample
who showed a flexible OME also exhibited a standard SNARC effect both before and after
being presented with the right-to-left-oriented number line in the OM task. Together with
earlier findings showing that the SNARC effect, too, is task- and context-dependent
(Béchtold, Baumiiller, & Brugger, 1998), these results underline the idea that the spatial
layout of the internal representations that are deployed during number processing and mental
arithmetic is highly flexible and adaptive to situational (spatial layout of external response or

stimulus space) and cultural factors (e.g. reading and writing habits).

Besides paradigms where participants choose the preferred outcome amongst several
alternatives, the OME, and in particular the OME in zero problems, has also been tested in a
paradigm where participants have to transcode the internally generated results. Two variants
of this paradigm can be found in the literature. In one variant, participants transcode the result
into a spatial position which they indicate on a labeled number line. In a second variant,
participants produce lines whose length corresponds to the numerical magnitude of the target
(e.g., the internally generated result). We now consider these studies in a meta-analysis that is
separate from the one reported above for two reasons. First, this response mode might involve
an additional transcoding process, which may be a source of additional biases and differences
with the classic OME paradigms. For example, for number ranges that are unfamiliar to the
participants, a variety of individual strategies have been identified that deviate from a linear
mapping (Landy, Charlesworth, & Ottmar, 2017; Landy, Silbert, & Goldin, 2013). Second,
the use of an explicit and external spatial representation may reinforce the association
between numbers and space as opposed to the implicit (or at least un-ordered) character of
the response modality in tasks that do not rely on number-to-space mappings. This implicit-
explicit distinction also figures amongst the main organizational principles of a recent

taxonomy of spatial-numerical associations (Cipora, Patro, & Nuerk, 2015). Third, the results
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of these studies have been used to establish zero problems as the gold standard for measuring
the OME (see above). Note that we only included studies that adopted a canonical orientation

of the response metric (i.e., small numbers on the left and large numbers on the right).

When computing the mean effect size in studies that required participants to
transcode the outcome of a given problem to a position on a labeled line or a line length, the
OME in zero problems only emerges when directly contrasting addition to subtraction (mean
d =0.51; Clesw=[0.01 — 1.02], Z = 2.0; p = .046) (see Fig. 4). This paradigm neither yielded
strong evidence for significant effects in zero addition (mean d = 0.38; Closy% = [-0.09 - 0.86],
Z =1.59, p =.111) nor subtraction (mean d = -0.32; CI: -0.9 — 0.26) problems against
baseline. However, in both cases, non-significant equivalence tests with boundaries [-.5, .5]
suggested that the observed effects are not equivalent to zero (addition: Z=-0.479, p = .319;
subtraction = 0.614, p = .270). Hence, the overall picture that emerges remains ambiguous,

most likely due to the limited number of studies included (n=4).

A similar picture emerged for pointing experiments with operands that are different
from zero (see Fig. 5). For addition (mean d =- 0.39; Clgse=[-0.70 - -0.08], Z=-2.463, p =
.014), a significant underestimation was observed. Neither subtraction (mean d =- 0.21; Clgsw
=-0.86 — 0.43; Z =-.649, p =.516) nor the comparison between addition and subtraction
(mean d = -0.06; Clgsy% = -0.57 — 0.45; Z =-0.225, p = .822) yielded significant results. For
subtraction, the equivalence test was non-significant (Z = 0.865, p = .193), allowing no
statistical conclusion. For the direct comparison of addition and subtraction (corresponding to
the minimal definition of the OME) the equivalence test was significant (Z = 1.692, p = .045,
with the boundaries [-.5, .5], allowing the conclusion that the effect is statistically equivalent
to zero. The data from studies involving a spatial transcoding are hence overall less
conclusive than in the previous meta-analysis and only show an OME in zero problems
(when comparing addition and subtraction) and an inverse OME in nonzero addition
problems. Since neither of the arithmetic operations yields significant effects against
baseline, the question of what drives the OME in studies that involve a transformation during
or before the responses remains open. One explanation for this lack of consistency may be
that the paradigm in and of itself requires an additional mapping from an internally generated
outcome to an external reference frame (position on a line of a certain length). This may
induce additional biases and involve strategies such as visual anchoring on salient reference

points (e.g., the middle).
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Figure 4. Forest plots of the OME measured in pointing tasks with zero problems for
addition and subtraction problems (as well as a comparison between operations). The square
boxes show the effect size in each study. The size of each box reflects the sample size and
error bar the 95% confidence interval. The midline of the diamond indicated the mean pooled
effect size and the diamond’s width the 95% confidence interval. Positive (negative) effect

sizes indicate an overestimation (underestimation).

Figure 5. Forest plots of the OME measured in pointing tasks with nonzero problems for
addition and subtraction problems (as well as a comparison between operations). The square
boxes show the effect size in each study. The size of each box reflects the sample size and
error bar the 95% confidence interval. The midline of the diamond indicated the mean pooled
effect size and the diamond’s width the 95% confidence interval. Positive (negative) effect

sizes indicate an overestimation (underestimation).

Arithmetic cueing

In arithmetic cueing tasks, arithmetic problems are designed to serve as implicit
spatial cues for subsequent lateralized targets presented in either the left or right visual field.
Such paradigms are largely inspired by previous research on an effect that is sometimes
called “attentional SNARC” (Fischer, Castel, Dodd, & Pratt, 2003). By asking adult
participants to detect lateralized targets briefly presented after a non-informative central digit
cue, Fischer and colleagues showed an interaction between the size of the digit (relatively
small or relatively large) and the side of presentation of the target (left or right). That is, the
presentation of task-irrelevant digits smaller than five facilitated the detection of subsequent
targets in the left visual field whereas the presentation of task-irrelevant digits larger than five
facilitated the detection of subsequent targets in the right visual field. Fischer et al.’s results
have been influential in the field because they support the idea that the mental number line is
spatially organized from left to right, though there is a debate regarding the replicability of
these findings. Recent studies exploiting eye tracking data such as gaze position (Loetscher,
Bockisch, Nicholls, & Brugger, 2010; Myachykov, Ellis, Cangelosi, & Fischer, 2016;
Salvaggio, Masson, & Andres, 2019) or pupil dilatation (Salvaggio, Andres, Zénon, &
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Masson, 2022) seem to support the idea that number cues do induce shifts of spatial attention.
On the one hand, both a multi-site replication attempt of the study (Colling et al., 2020;
Fischer, Dodd, Castel, & Pratt, 2020) and recent behavioral studies investigating manual
reaction times (as in the original paradigm) have failed to show that attentional deflections
are induced by number cues (Galarraga, Pratt, & Cochrane, 2022; Hesselmann & Knops,
2023). The depth with which the central number cues needs to be processed has been
identified as a modulating factor for the observation of attentional shifts, recently (Shaki &
Fischer, 2024). While the exact conditions under which numbers potentially shift attention (or
not) are still elusive, the idea inspired subsequent research on attentional deflections during

mental arithmetic where depth of semantic processing does not play a huge role.

Masson & Pesenti (2014) were the first to adapt the (manual) attentional SNARC task
in the domain of mental arithmetic. In their version of the task, participants also had to detect
targets in the left or right visual field. However, a visually (and sequentially) presented
arithmetic problem (addition or subtraction) that participants had to solve replaced the digit
cue of Fischer et al.’s experiment (See Fig. 1B). The hypothesis was that associations
between arithmetic operations and representational number space would translate into an
interaction between type of operation and target position in physical space. That is, if
subtraction is associated with the left side of representational space, left targets should be
detected faster than right targets when they follow subtraction problems. Likewise, left
targets should be detected faster when they follow subtraction compared to addition
problems. In contrast, if addition is associated with the right side of representational space,
right targets should be detected faster than left targets when they follow addition problems
and right targets should be detected faster when they follow addition than subtraction
problems. Overall, Masson and Pesenti (2014) reported the expected interaction between type
of operation and target position in two experiments, with single-digit subtraction speeding up
the detection of left (as compared to right) targets and double-digit addition speeding up the
detection of right (as compared to left) targets.

Masson and Pesenti (2014)’s results inspired a number of studies that subsequently
investigated the relation between arithmetic processing and spatial attention in a more explicit
manner than with the OME. These studies are reviewed in what follows. For the sake of the
present review, studies were identified from the PubMed database using the following search
terms: “((arithmetic [ot]) OR (addition [ot]) OR (subtraction [ot])) AND (space [ot] OR
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attention [ot] OR attentional [ot] OR shift [ot] OR bias [ot]) AND (journalarticle [Filter])”.
This was completed by two additional searches. First, we used Google Scholar to conduct a
systematic search for articles that cited Masson & Pesenti (2014). Second, we conducted an
ancestral search based on the references of a review of eye and hand tracking studies in
numerical cognition (Faulkenberry, Witte, & Hartmann, 2018). The search from PubMed
returned 86 papers, while the search from Google Scholar returned 97 papers and the
ancestral search returned 77 papers. After removing duplicates, books, and articles that were
unrelated to math cognition, 172 papers were screened (see flowchart in Fig. 6). Papers are
mentioned here if they (1) are not review or meta-analysis articles, (2) involve adult
participants, (3) do not involve the operational momentum effect, and (4) explicitly
investigate the relation between arithmetic processing and spatial attention using cueing
paradigms, eye-tracking, hand-tracking, lesion studies, and neuroimaging. A list of identifed

studies can be found at
https://osf.io/fd7c3?view only=144d8aab62%20243%20884d608d3762f9b0bdd06d .
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Figure 6. Flowchart of literature search, identification of eligible articles for the meta-

analysis of the arithmetic cueing effect.
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Out of all the studies identified in our systematic search, seven studies employed
variations of Masson & Pesenti’s arithmetic cueing task, using either visual or auditory
presentations of the arithmetic problems (Campbell, Chen, & Azhar, 2021; D’ Ascenzo, Lugli,
Nicoletti, & Fischer, 2020; Liu, Cai, Verguts, & Chen, 2017; Liu, Verguts, Li, Ling, & Chen,
2017; Masson, Letesson, & Pesenti, 2018; Mathieu, Gourjon, Couderc, Thevenot, & Prado,
2016; Zhu, Luo, You, & Wang, 2018). Liu, Cai, et al. (2017), for example, reported
associations between different stages of arithmetic processing and spatial positions.
Specifically, the authors observed a leftward advantage for subtraction and a rightward
advantage for addition when targets were presented after the second operand or the result.
This is consistent with the idea that these biases reflect attentional shifts elicited by
calculation. There was also a rightward advantage before the onset of the second operand in
addition problems, i.e., when the target directly followed the ‘+’ sign. However, no
association was observed after the ‘+’ sign when it was not preceded by the first operand.
This suggests that arithmetic operators may be associated with attentional biases during
mental arithmetic if they come after an operand. Liu, Verguts, et al. (2017) further presented
targets in the vertical dimension, but could not find any association in that specific study
(which conflicts with eye-tracking studies reviewed later). As another example, both Mathieu
et al. (2016) and Campbell et al. (2021) used a version of the arithmetic cueing task in which
the second operand was presented either to the left or to the right side of space, essentially
acting as the target of Masson and Pesenti’s task. To the extent that addition problems were
intermixed with subtraction problems (thereby making the operator maximally relevant, see
Prado & Thevenot, 2021), both studies reported that addition problems were solved faster
when the second operand appeared to the right than to the left side. Evidence for an
association between subtraction and left targets, however, was not found in Campbell et al.
(2021).

Taken together, a qualitative review of arithmetic cueing studies appears to suggest
stronger associations between addition and right-lateralized targets than between subtraction
and left-lateralized targets. To formally assess whether this is the case, we extracted from
these studies the effect sizes (Cohen’s d) associated with detecting a left versus a right target

either after or at different points during a subtraction and after an addition problem.* This was

1 Note that we included in this meta-analysis experiments with a variety of experimental parameters (e.g.,
different SOAs, different measurement time points). As reviewed above, there is evidence in the literature that
arithmetic cueing effects depend on such parameters (e.g., Liu, Cai, et al., 2017). However, because our goal
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possible for seven studies, some of them including different experiments (Campbell et al.,
2021; Liu, Cai, et al., 2017; Liu, Verguts, et al., 2017; Masson et al., 2018; Masson &
Pesenti, 2014; Mathieu et al., 2016; Zhu et al., 2018). Effect sizes were entered in a
quantitative meta-analysis using the MAJOR package in the Jamovi 2.3.19.0 software, using
the same protocol as for the OME (see Fig. 7). Results show that addition problems are
indeed associated with faster detection of right than left targets, with a mean effect size of d =
0.31 (Clgsw=[0.22 — 0.41], Z = 6.38, p < 0.001). In contrast, subtraction problems are not
associated with faster detection of left than right targets across these studies (d = -0.03,
Clos%=[-0.16 — 0.09], Z = -0.52, p = 0.60). Given equivalence bounds of -0.50 and 0.50, the
equivalence test was significant (Z = 7.30, p < 0.001), indicating that the observed effect was
statistically not different from zero and statistically equivalent to zero. Together, an overall
significant difference was observed when comparing addition to subtraction, with a mean
effect size of d = 0.37 (Clgsw=[0.20 — 0.54], Z = 4.35, p < 0.001).

was to provide an estimate as objective as possible of the overall effect size associated with arithmetic cueing,
we chose to include all conditions without discrimination. By doing so, we argue that our estimate provides a
lower bound of the effect size that could be obtained under the most favorable conditions.
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Figure 7. Forest plots of the lateralized effects obtained in arithmetic cueing studies
involving target detection along the horizontal dimension for addition and subtraction
problems (as well as a comparison between operations). The square boxes show the effect
size for the difference between left target and right target in each study. In addition, positive
effect sizes indicate a cueing advantage for items on the right side; in subtraction, negative
effect sizes indicate a cueing advantage for items on the left size. The size of each box
reflects the sample size and error bar the 95% confidence interval. The diamond reflects the

pooled effect size and the width of the 95% confidence interval.

Recent studies have also embedded temporal order judgments (TOJs) into arithmetic
cueing tasks to probe the relation between arithmetic and spatial processing (see Fig. 2C).
TOJs involve the presentation of two lateralized targets with different stimuli onset
asynchrony (SOA) (Casarotti, Michielin, Zorzi, & Umilta, 2007). Participants are typically
asked to indicate which target is presented first. Although the probability of judging which
target appears first clearly depends on SOA, that judgment is also influenced by the location
of spatial attention. The TOJ paradigm builds on a long-standing stance in experimental
psychology that goes back to (Titchener, 1908) and is known as the prior-entry hypothesis:
“the object of attention comes to consciousness more quickly than the objects which we are
not attending to” (Titchener, 1908, p. 251). The target that is in the focus of attention enters
the cognitive system first. This is even the case if the attended target is lagging behind in
time. For example, directing attention toward the left visual field will bias participants to
judge left targets as appearing earlier than right targets even if the SOA is null or if left
targets are presented slightly after right targets. By presenting TOJs after asking participants
to solve subtraction or addition problems, it is then possible to probe the location of spatial
attention after arithmetic problem-solving. Overall, TOJs tend to be more strongly biased
towards the right side when targets followed from addition than subtraction problems
(Andres, Salvaggio, Lefevre, Pesenti, & Masson, 2020; Glaser & Knops, 2020; Masson,
Andres, Alsamour, Bollen, & Pesenti, 2020). That effect was observed across a range of
problem sizes (Glaser & Knops, 2020) as well as with participants with different reading
habits (Masson et al., 2020). However, a comparison of that effect against a baseline TOJ
assessment revealed that it is more likely driven by addition being associated with the right
side of space than by subtraction being associated with the left side of space (Glaser &

Knops, 2020), in line with the meta-analysis described above. Interestingly, asking
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participants to judge which target appeared first or which target appeared last does not change
participants’ biases, which has been taken as evidence that the effect may depend more on
semantic associations between operations and space than on movements along the mental
number line (Andres et al., 2020).

Eye- and hand-tracking during calculation

Another approach that has been used to gather evidence for SAA involves measures
of eye- and hand-tracking during arithmetic calculation. Most studies have used eye-tracking,
which is one of the most straightforward measures of visual attention in cognitive psychology
as it captures online gaze position during a task with excellent spatial and temporal accuracy
(Kiefer, Giannopoulos, Raubal, & Duchowski, 2017). One of the earliest studies of this kind
is from Werner & Raab (2014). The authors measured the gaze behavior of two groups of
participants who were presented with both subtractive and additive problems involving the
displacement of water between different recipients. The findings suggest a difference in gaze
position between the groups, with a rightward bias for additive problems and a leftward bias
for subtractive problems. Subsequent studies investigated gaze behavior of participants who
were asked to solve symbolic arithmetic problems presented auditorily. These studies
generally show evidence of systematic biases in gaze behavior that are dependent on the
operation, though the timing, dimension, and in one case direction (Yu et al., 2016) of these

shifts are not always consistent across experiments.

Combining eye-tracking with an arithmetic cueing design, Masson et al. (2018)
measured eye position during different stages of an arithmetic problem while also asking
participants to detect targets presented in either the left or right visual field after the problem
had been solved. Although no gaze shift was measured from the onset of the first operand,
operator, or second operand, a systematic rightward bias was observed in addition compared
to subtraction between the offset of the second operand and the verbal response (i.e., the
calculation stage). This finding was replicated in two recent studies by Blini, Pitteri, & Zorzi
(2019) and Salvaggio, Masson, Zénon, & Andres (2022), who also showed that this rightward
movement is accompanied by an upward shift (note that Blini et al., 2019 also found a
leftward and downward shift for subtraction). It is also consistent with the finding that

participants’ gaze is shifted rightward (and upward) when participants successively add

22



numbers in a counting task (Hartmann, Mast, & Fischer, 2016). Altogether, these studies
suggest that shifts of attention may manifest themselves through both the horizontal and
vertical dimensions during the calculation stage of an arithmetic problem (see also Zhu, You,
Gan, & Wang, 2019).

Associations between arithmetic and space in the vertical dimension are consistent
with an earlier study by Wiemers, Bekkering, & Lindemann (2014), who reported motion-
arithmetic compatibility effects due to active body movements in both the horizontal and
vertical dimensions, while eye movements pursuing the moving operands led to such effects
only in the vertical dimension. It has been argued that vertical associations might differ from
horizontal associations: While the former could be grounded in early-developing
sensorimotor experience (e.g., moving upward when stacking objects), the latter may be
particularly affected by later-developing cultural practices (e.g., reading and writing habits)
(Blini et al., 2019; Hartmann, 2022; Wiemers et al., 2014). Future studies, however, are

needed to substantiate this intriguing hypothesis.

Whether they are horizontal or vertical, late occurring shifts of attention are consistent
with the idea that they might reflect movements along the mental number line. However,
there is also evidence of differences in eye position before the onset of the second operand.
For example, both Salvaggio, Masson, et al. (2022) and Hartmann, Mast, & Fischer (2015)
found evidence for an operation-dependent bias in eye position even before the presentation
of the second operand. That is, gaze was found to be moved upward (Hartmann et al., 2015)
and rightward (Salvaggio, Masson, et al., 2022) after the presentation of the ‘+’ sign (as
compared to a ‘-’ sign). This is consistent with arithmetic cueing studies that reported
response biases induced by arithmetic operators in target detection tasks (as long as they are
preceded by a first operand) (Liu, Cai, et al., 2017). Finally, evidence for a relation between
findings from arithmetic cueing and eye-tracking studies is suggested by Masson et al.
(2018). In that study, the more a participant’s gaze was shifted rightward after an addition
problem (as compared to a subtraction problem), the faster that participant was at detecting a
target in the right visual field (as compared to the left visual field). Thus, online shifts of
attention measured through gaze movements appear related to the response biases measured

in classic arithmetic cueing tasks.

23



Tracking eye movement is perhaps the most direct way to measure spontaneous shifts
of attention during mental arithmetic. However, shifts might manifest themselves through
other effectors as well. For example, Marghetis, NUfiez, & Bergen (2014) asked participants
to select which of two numbers presented at the top left and top right corners of a screen is
the correct solution of a single-digit addition or subtraction problem presented at the bottom
of that screen. By tracking hand trajectories, the authors showed systematic rightward and
leftward deflections when participants had to select the answer of an addition or a
subtraction, respectively. Using a similar finger tracking methodology, Pinheiro-Chagas,
Dotan, Piazza, & Dehaene (2017) asked participants to indicate the result of single-digit
addition and subtraction problems on a number line. The findings give an interesting insight
into the calculation process, with participants first pointing towards the largest operand
before slowing deviating towards the result in a way that is proportional to the size of the
smaller operand. While this pattern is clearly supportive of the idea that participants move
along a mental number line when adding or subtracting, the study also shows the operator-
dependent bias observed in many of the studies discussed above (with ‘+’ signs attracting the

finger to the right and ‘-’ signs to the left).

Functional relevance of SAAs

By and large, all of the studies reviewed above investigate the presence of
associations between arithmetic calculation and spatial processing. Therefore, such evidence
is entirely correlational. Specifically, these studies do not make it possible to determine to
what extent the attentional shifts that are observed during calculation are necessary to
arithmetic processing or are simply a by-product of that processing with little functional
relevance. Interestingly, a handful of studies suggest that attentional shifts may functionally
matter for arithmetic calculation. Evidence for a causal role of attentional shifts during
arithmetic processing comes from studies that examined arithmetic performance while

attentional shifts are either impaired or manipulated.

For instance, an attention disorder that has a long history of investigation in
neuropsychology is left unilateral neglect (Bisiach & Vallar, 2000). After a lesion in the right
hemisphere (typically around the parietal cortex), these patients exhibit severe difficulties

attending stimuli in the left visual field. By asking several of these patients to solve series of
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addition and subtraction problems, (Dormal, Schuller, Nihoul, Pesenti, & Andres, 2014)
showed that they were less accurate than control groups to solve large subtraction problems,
whereas no difference was observed for large addition problems. In contrast, a patient with a
rare right unilateral neglect (following from a left-hemisphere lesion) showed the reverse
pattern, with specific impairment in solving addition but not subtraction problems (Masson,
Pesenti, Coyette, Andres, & Dormal, 2017). In other words, there appears to be a double
dissociation between subtraction and addition problem solving in patients with left versus
right unilateral neglect, demonstrating a causal role of spatial attention in arithmetic

calculation.

Other studies have experimentally manipulated attentional shifts during arithmetic
calculation in normal adults. In arithmetic cueing studies, for example, the target detection
task follows from the response given by participants for the arithmetic problem. Masson &
Pesenti (2016) reversed that timeline, asking participants to pay attention to a flickering target
between the second operand and the prompt to respond to the arithmetic problem. In a first
experiment, Masson and Pesenti demonstrated that the flickering target captured attentional
resources and slowed reaction times compared to a condition without flickering target
presentation. In other words, the flickering targets acted as attention-capturing distractor in
that study. In a second experiment with lateralized flickering targets, the authors observed an
interaction between operation and side of the distractor, with subtraction being responded
slower when distractors were on the left side and addition being responded slower when
distractors were on the right side. Both Masson, Pesenti, & Dormal (2017) and Blini et al.,
(2019) also manipulated attentional shifts during arithmetic calculation, this time by using
optokinetic stimulation (OKS). OKS is a technique that uses moving visual displays to orient
eye movements (and therefore attention) in the direction of the display movement. This
allows researchers to manipulate the location of overt attention in a way that is either
congruent or incongruent to the expected SAAs. Masson, Pesenti, & Dormal (2017) found
that shifting attention to the right facilitates addition problem solving as compared to shifting
attention to the left (or not shifting attention), to the extent that these problems involve a
carrying procedure. No reverse effect, however, was observed for subtraction problems.
Using more complex problems and vertical as well as horizontal OKS, Blini et al. (2019)
further showed that shifting attention downward reduced decade errors in subtraction
problems (whereas shifting attention upward increased these errors). Therefore, studies do

not consistently show similar causal effects of attentional shifts on arithmetic calculation,
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which may be due to differences in experimental procedures and materials. Nonetheless,
several lines of evidence suggest that attentional shifts do have a causal effect on arithmetic
calculation: experimentally manipulating shifts of attention appears to affect arithmetic
performance (see also Hartmann, 2022; Masson & Pesenti, 2023).

Theoretical frameworks of SAAs

Several accounts of SAAs have been proposed over the years. Although most of these
accounts have first attempted to explain the OME, some can be broadened to explain explicit
associations between arithmetic and space (as measured by arithmetic cueing and eye- or
hand-tracking paradigms). Below we briefly review some major theoretical frameworks
conceptualizing SAAS.

Compression account

Relatively early on, number compression has been proposed as an explanation of the
OME (Chen & Verguts, 2012; McCrink et al., 2007). According to this idea, the OME is
caused by a systematically inaccurate decompression of presumably logarithmically
compressed magnitude representations. As an extreme example, imagine that the addition of
two operands (O1 + O2) would be computed on their logarithmically compressed internal
representations (log(O1) + log(02)). Since addition (subtraction) on the logarithmic scale
corresponds to a multiplication (division) on a linear scale, this would lead to massive
overestimations for addition (log(O1) + log(02) = O1 x O2) and underestimations for
subtraction. This mechanism has been implemented in a computational model of numerical
cognition (Chen & Verguts, 2012) which was able to reproduce empirically observed
performance patterns in addition and subtraction task with adults. Nonetheless, the
compression account is not without challenges. First, it predicts that the amount of
compression is linearly related to the size of the OME. In support of this notion, Knops et al.
(2009) reported that OME increases with the numerical magnitude of the outcome. However,
when measuring the compression in a numerosity naming task, no correlation between OM
and compression (or any other psychophysical property of the number system) was observed
(Knops, Dehaene, Berteletti, & Zorzi, 2014). Second, it has been argued that the numerical

magnitude representation in children is subject to a more pronounced compression, which
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would suggest that the OME should be stronger in children compared to adults. However, the
OME appears to emerge only around the age of 9 or 10 and is absent or reversed in younger
children (Pinheiro-Chagas, Didino, Haase, Wood, & Knops, 2018). Third, and perhaps most
importantly, the compression account is limited to the OME and does not readily explain

other effects such as arithmetic cueing. As such, it is not a parsimonious theory of SAAs.

Attentional shift account

According to the attentional shift account, SAAs stem from attentional movements
along the MNL. For example, it has been proposed that approximate mental arithmetic may
be mediated by a dynamic interaction between positional codes on the MNL (place coding)
and an attentional system that shifts the spatial focus to the left or right (Knops, Thirion, et
al., 2009). At the neural level this may be instantiated in the functional interactions between
areas along the intraparietal sulcus and posterior, superior parietal areas (Hubbard et al.,
2005). This places mental arithmetic in the realm of dynamic updating processes of spatial
coordinates in parietal cortex and stipulates that the efficiency of this system is linked with
arithmetic performance. Due to the approximate nature of this process the shifts may
‘overshoot’, leading to over- and underestimation in addition and subtraction, respectively.
Not only does this account explain the OME, it also suggests a functional coupling between

eye movements and arithmetic.

The attentional shift account has also been extended to the domain of exact symbolic
arithmetic. For example, although classic models have long assumed that simple arithmetic
problems (e.g., single-digit addition) were retrieved from memory in educated adults
(Ashcraft, 1992; Campbell & Tarling, 1996), it has recently been proposed that these
problems may also be solved using counting procedures that would become automatized over
the course of learning and turn into mental scanning of the MNL (Barrouillet & Thevenot,
2013; Mathieu et al., 2016; Uittenhove, Thevenot, & Barrouillet, 2016). Such a fast mental
scanning might potentially explain associations between arithmetic operations and space
(Mathieu et al., 2016), though it has also been argued that this process might only be efficient
enough to solve problems with small operands (Uittenhove et al., 2016). Nonetheless, this
idea is consistent with those studies that have observed SAAs at the outset of problems, either

immediately after the second operand (Liu, Cali, et al., 2017) or slightly after (Masson et al.,
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2018; Salvaggio, Masson, et al., 2022). This is also in keeping with Pinheiro-Chagas et al.
(2017)’s findings that SAAs (measured through finger tracking along a number line) are
proportional to the size of the second operand. To date, however, there is no evidence that
either eye movements or magnitudes of spatial biases in arithmetic cueing studies relate to the
size of the problem, as would be expected if these effects are due to movements along the
MNL. The observation of an OME in zero problems (see above) has also challenged this
explanation since no spatial displacement is involved when the second operand is zero. Yet,
taken together, the attentional shift account provides a relatively parsimonious explanation of

SAA:s in the variety of paradigms reviewed above.

Heuristics account

A number of authors have proposed that heuristics are at the heart of SAAs. For
instance, according to the "if adding, accept more™ and "if subtracting, accept less" heuristics
(McCrink et al., 2007; McCrink & Wynn, 2009), the OM is caused by the application of the
general principle that for addition (subtraction) outcomes are accepted as long as they are
larger (smaller) than the initial operand. McCrink & Hubbard (2017) recently proposed that
the heuristics account and the attentional shift account might even belong to one single
mechanism (heuristics-via-spatial shifts account). They suggested a greater reliance on a
heuristic where information from the visuo-spatial system is fed into the decision when
attentional load is high. Indeed, McCrink & Hubbard (2017) observed a stronger OME in
non-symbolic addition and subtraction problems in a dual-task situation where participants
divided attention between numerosity processing and a secondary feature-detection task
compared to a single-task context where only the non-symbolic arithmetic problems were
solved (McCrink & Hubbard, 2017).

Heuristics have also been proposed to account for SAAs in arithmetic cueing
paradigms. Specifically, associations between operators and space might stem from
conceptual metaphors associating operations and space, which might help subsequent
calculation by providing heuristics narrowing down the range of possible answers (Andres et
al., 2020). For example, by associating addition and subtraction to the right and left side of
space (respectively), participants might come to infer that “more is right” and “less is left”.

They will thus shift their attention either to the right or to the left to anticipate that the result
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of an addition will be larger than the first operand, whereas the result of a subtraction will be

smaller than the first operand.

Although heuristics such as those described above can explain a range of findings,
they should not only apply to addition and subtraction, but also to multiplication and division.
First, because multiplication leads to outcomes generally larger than the first operand and
division leads to outcomes generally smaller than the first operand, participants should
overestimate results of multiplication and underestimate results of division. In line with this
prediction, Katz & Knops (2014) did observe overestimations in multiplications and
underestimation in division. However, this was limited to the non-symbolic notation. No
OME was observed for symbolic multiplication or division. This pattern remained stable
even when approximate calculation (as compared to exact retrieval from rote memory) was
endorsed by presenting only incorrect response choices for symbolic problems amongst
which the one closest to the correct outcome should be selected (Katz, Hoesterey, & Knops,
2017). In the non-symbolic multiplication and division problems, the OME correlated with
the reorienting cost due to invalid cueing in a Posner task. Therefore, while the presence of
the OME in non-symbolic multiplication and division is consistent with the heuristics
approach, the absence of the effect in symbolic notation and the correlation with the
reorienting effect are not predicted by this account. Second, in arithmetic cueing tasks, a
heuristic such as ‘more is right” should apply to multiplication as much as it applies to
addition. Yet, multiplication has not been found to be associated with a rightward shift of
attention (Mathieu et al., 2016). The multiplication operator (‘x”) has also been found to elicit
less activity than the addition operator (“+°) in brain regions underlying spatial attention
(Mathieu, Epinat-Duclos, Léone, et al., 2018; Mathieu, Epinat-Duclos, Sigovan, et al., 2018).
Therefore, studies on multiplication and division have generally failed to support the heuristic
account of SAAs. The observation that SAAs are flexibly adapting to contextual factors such
as the right-to-left orientation of an external response medium further undermines the
heuristics account. That is, finding that addition can induce biases to the left and subtraction
to the right side of space (Klein et al., 2014; Pinhas et al., 2015) is at odds with the heuristics
account. One might argue that the heuristic operates on the situated, context-dependent
representation of mental magnitude, which would bias participants’ responses to the left
(towards larger numbers) for addition and to the right (towards smaller numbers) for
subtraction in the study by Klein et al. (2014). Yet, even under this interpretation, we argue

that it is unclear why the heuristic would bias only the second, corrective saccade rather than
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the first saccadic landing point, which supposedly reflects the result obtained via heuristic

problem solving.

Spatial competition & arithmetic heuristics and biases (AHAB) account

The spatial competition account assumes that SAAs (including the OME) result from
the competing spatial biases invoked by the operands, the operation sign, and the result of an
arithmetic problem. This account has been recently expanded and replaced by the more
general idea (termed arithmetic heuristics and biases account or AHAB account) that
different biases interact during mental arithmetic, namely the anchoring bias, the operator-
space association, and the more-or-less heuristic (Mioni, Fischer, & Shaki, 2021). For
example, the anchoring bias predicts that for problems with matched outcome, subtraction
would induce an overestimation compared to addition because of the comparably larger first
operand (9 —3 =6 vs. 4 + 2 = 6). The operator-space association predicts a rightward bias for
additions and a leftward bias for subtractions (though to take effect, this association depends
on the use of spatially distributed responses). Finally, the more-or-less heuristic results from
the repeated experience that addition leads to larger outcomes and subtraction to smaller
outcomes. The AHAB framework therefore integrates elements from the previously
described accounts.

The AHAB account is supported by a number of findings. For example, there is
evidence that SAAs are not uniquely observed after the second operand or during calculation
per se. Several studies have found that arithmetic operators may be associated with shifts of
attention before the second operand is even known to participants (Hartmann et al., 2015;
Liu, Cali, et al., 2017; Salvaggio, Masson, et al., 2022), though these shifts may only occur
when operators are preceded by an operand (Liu, Cai, et al., 2017; Pinhas, Shaki, & Fischer,
2014). The first indication that arithmetic operators do have spatial association comes from a
study by Pinhas et al. (2014), who asked participants to classify arithmetic operators (‘+’ or -
’) using different response mappings (either the left or right hand). The study showed that ‘+’
signs were classified faster with the right than the left hand, whereas -’ signs were classified
faster with the left than the right hand (see also Brennan, Rutledge, & Faulkenberry, 2021)
for a replication of that finding). Neuroimaging findings also indicate a relation between
arithmetic operators and spatial attention. For example, both Mathieu, Epinat-Duclos, Léone,

et al. (2018) and Mathieu, Epinat-Duclos, Sigovan, et al. (2018) measured brain activity of
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children and adults while they were presented with a ‘+’ sign in anticipation of a forthcoming
addition problem. Interestingly, the mere presentation of that ‘+’ sign elicited enhanced
activity in brain regions that were identified in the same experiments as supporting saccadic
eye movements. These findings thus suggest that ‘+’ signs are processed in brain regions that
underlie spatial attention, in keeping with behavioral findings showing that such operators do

elicit shits of attention (to the right side of space).

Despite these findings supporting the operator-space association, a number of
challenges remain for the AHAB account. For example, no study with two-operand problems
has provided empirical support for the anchoring bias. The AHAB account also provides
some very specific predictions that have not been confirmed yet. For example, it assumes that
“when the sign—space association is largely irrelevant to the task, [...] the anchoring bias
outweighs the more-or-less heuristic” (p. 538; Mioni et al., 2021), leading to inverse OMESs.
This is, however, at odds with results from studies that used no arithmetic operator (McCrink
et al., 2007) and show regular OMEs even with matched results (Knops, Viarouge, et al.,
2009). Overall, the boundary conditions of the interaction between these biases remain to be
specified and — importantly — empirically tested. Considering the difficulties associated with
mapping paradigms (see above), this test should make use of paradigms that do not require
the participants to map an internally generated numerical outcome onto an external non-
numerical dimension such as line length or temporal duration. This additionally required
mapping may in and by itself induce biases that obfuscate the exploration of the factors

underlying SAAs.

Evaluating the theoretical accounts against the observed OME and arithmetic cueing

effects

Overall, all theoretical accounts can successfully explain a number of findings. At the
same time, they also face empirical challenges that require the precise definition of boundary
conditions. This conclusion is substantiated by some of the results that have been revealed in
our meta-analyses of OME and arithmetic cueing studies and that were not evident when
assessing the literature qualitatively. We briefly summarize these findings before presenting a
tentative theoretical framework that accommodates them. The new framework makes it

possible (a) to explain the observed dissociations between OME and attentional curing
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studies and — more importantly - (b) to derive testable predictions that may inspire future

studies.

A key finding from our meta-analyses is that, when addition is compared to
subtraction, both an OME and a lateralization effect after arithmetic cueing are consistently
observed across studies. The effect is in the small to medium range in arithmetic cueing
studies (d = 0.37) and in the medium to very large range (d = 0.96) in OME studies.
Combined with findings from studies tracking eye and hand movements during arithmetic
calculation, the current literature clearly supports the view that arithmetic processing is
subject to biases that indicate (in the case of tracking and arithmetic cueing studies) or
suggest (in the case of OME studies) spatial processing. While the spatial interpretation of
arithmetic cueing effects is obvious due to the explicit interaction between the spatial and the
numerical dimensions in these paradigms, the OME is only a numerical bias. Under the
premise of a spatial organization of numerical magnitude, it is nevertheless suggesting the
involvement of spatial processes during mental arithmetic (Knops, Thirion, et al., 2009). The
only major exception to this picture comes from studies on the OME that require participants
to transcode the results to an external spatial scale (position on a line or line length). At least
for the moment, these do not provide coherent evidence for an OME. While a small to
medium pooled effect size emerged for zero problems, the effect size for problems involving
operands that are different from zero was equivalent to zero. As stated before, we argue that
this paradigm involves an additional mapping of an internal representation onto an external
spatial dimension that is far from trivial and open to a number of different strategies.
Disentangling how these strategies might influence performance remains an interesting

challenge for future work.

Despite the fact that most OME and arithmetic cueing studies reliably find response
biases, the operation driving the effect appears to differ between OME and arithmetic cueing
studies. On the one hand, the OME is driven by an underestimation of the result in
subtraction (d = -1.38) rather than by an overestimation in addition (d = -0.09). On the other
hand, the lateralization effect after arithmetic cueing is driven by a rightward bias for addition
(d = 0.34) rather than a leftward bias for subtraction (d = -0.01). In other words, arithmetic
cueing effects dissociate from the OME since the former are mainly driven by an association
between addition and the right side of space while the latter is mainly driven by an

underestimation in subtraction problems. In fact, this dissociation is in line with a recent
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study that measured attentional focus via a target detection task in the context of non-
symbolic arithmetic (Glaser & Knops, 2023). The authors did not observe any arithmetic
cueing effects, while at the same time replicating the OME that was driven by subtraction
only (Glaser & Knops, 2023). None of the theoretical frameworks described above can
comprehensively explain such a dissociation, which calls for refined theorization. Clearly,
such a dissociation is relatively problematic for theoretical accounts that provide a joint

framework for both effects, such as the attentional shift account or the heuristics account.

We can see at least two potential explanations for the fact that the OME and the
arithmetic cueing effects dissociate. First, it might be that either the OME or the arithmetic
cueing effect (or both) does not reflect attentional shifts along the MNL but stems from other
(and different) sources, as suggested by some studies. For instance, the OME has been
explained by non-attentional accounts, such as the compression account (Chen & Verguts,
2012; McCrink et al., 2007). It has also been proposed that arithmetic cueing effects may be
due to heuristics associating operations with space (McCrink et al., 2007; McCrink & Wynn,
2009). Yet, it is unclear how these effect-specific accounts might explain that (a) the OME
would be driven by subtraction rather than addition and (b) arithmetic cueing would be
stronger for addition than subtraction. A specific concern with the compression account is
also that it does not provide an explanation for the resemblance of parietal activation patterns
associated with attentional shifts and arithmetic operations (Knops et al., 2009).

Second, it is possible that the dissociation between the OME and the arithmetic cueing
effect might be more apparent than real. That is, both effects could still stem from attentional
shifts along the MNL, but confounding experimental factors might allow for different biases
to intervene and obscure the effects. One factor that is — albeit not perfectly — confounded
with this distinction is the format of the problems. Specifically, studies that measure the OME
have mostly used non-symbolic stimuli while arithmetic cueing studies mostly utilized
symbolic stimuli. Critically, the choice of stimulus format (as well as type of arithmetic

problem) can favor different factors to influence the arithmetic processing.

For example, the use of non-symbolic numerosities in most studies examining the
OME provides an opportunity for visual-perceptual biases (which are not involved in
processing symbolic stimuli) to interfere with arithmetic processing (Santens, Roggeman,

Fias, & Verguts, 2010). Candidate biases include recently described attractive serial
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dependency effects (Fornaciai & Park, 2020). The core idea is that the numerosities presented
as operands leave a memory trace that influences the processing of subsequently presented
items. The first operand may leave activation traces which serves as an attractor for
subsequently presented numerosities (operand attractor hypothesis). In subtraction problems
where the first operand is always larger than the second operand this would lead to an
overestimation of the second operand, which in turn would lead to an underestimation of the
outcome. In addition problems, the situation is less clear since the first operand is not
necessarily larger than the second operand and hence sequential attraction may go either way
— diminishing potential biases. Therefore, operand attractor may be a factor enhancing the
underestimation of subtraction. Note that serial attraction effects may also be observed in the
context of symbolic arithmetic, where they are sometimes referred to as ‘anchoring’ effects.
Although such effects may also affect the perceived numerical magnitude of symbolic
numbers (Charras, Brod, & Lupiafiez, 2012; Pinhas & Fischer, 2008), due to the exact nature

of the verbal labels, we would argue that these effects are smaller for symbolic stimuli.

In addition to serial attraction between operands, there might also be an overall
tendency to underestimate sets of items in non-symbolic numerosities. This would offset all
final estimates in non-symbolic tasks to the left of the MNL and enhance even further the
OME observed with subtraction. While we see that this theoretical stance is not
unproblematic since the underestimation mostly affects transcoding to verbal formats, which
is not required systematically, we propose that participants routinely apply verbal labels to
the non-symbolic quantities. Nonetheless, an open question is how much this applies to

paradigms that do not require any transcoding at all.

Finally, strategy choice is also a factor that may affect symbolic arithmetic to a greater
extent than non-symbolic arithmetic. Two prominent strategies that may impact the
manifestation of attentional biases are direct retrieval of solutions from long-term memory for
multiplication problems and the solution of subtraction problems via addition (e.g. 8 + ? = 12
for 12 — 8 = ?; Campbell, 2008; Torbeyns, Peters, De Smedt, Ghesquiére & Verschaffel,
2018; ). Direct retrieval from long-term memory would leave little room for any attentional
bias compared to an estimation procedure for non-symbolic multiplication problems, which is
consistent with the findings from Katz & Knops (2014). Solving subtraction problems via an

addition strategy, in turn, would explain smaller biases in symbolic subtraction problems.
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In sum, our meta-analysis showed that arithmetic cueing effects are mainly driven by
addition problems while the OME is mainly driven by subtraction problems. This may
coincide with the idea that arithmetic cueing paradigms are particularly strategy-sensitive
(e.g., subtraction-by-addition might reduce spatial associations for subtraction problems)
while OME paradigms are more sensitive to biases induced by serial dependency effects that
may be more prominent in the non-symbolic notation. Note that we do not mean to imply
here that no other factors may influence the size or presence of arithmetic cueing and OM
effects. For instance, the effects may be affected by the range of numbers (e.g., single- vs.
multi-digit), the difficulty of the problems (e.g., small versus large, problems involving
carrying or borrowing versus problems that do not involve these), or even some
characteristics of the problems that may influence spatial associations independently of the
operation (e.g., whether subtraction and addition are matched for operands or results)?, as

suggested by several studies (e.g., Salvaggio et al., 2022; Masson & Pesenti, 2023).

The adaptive pathways in mental arithmetic (APiMA) framework

Though a number of factors may influence arithmetic cueing and OM effects (see
above), one prominent factor may be a difference in notation format (non-symbolic vs.
symbolic) between most studies investigating the OME and most studies investigating
arithmetic cueing. This might potentially explain why the effects are driven by different
operations (subtraction for the OME and addition for arithmetic cueing). To illustrate this
point, we introduce the adaptive pathways in mental arithmetic framework (APiMA; Figures
8 and 9), which summarizes processing instances during mental arithmetic as well as the
underlying codes with their most prominent characteristics. The APiMA model incorporates
basic notions of the Triple Code Model (Dehaene & Cohen, 1995), the separated input
pathways stipulated by Santens et al. (2010), and a parallel pathway assumption of mental
arithmetic, hypothesizing that approximate estimation and verbally mediated calculation
strategies are carried out in parallel (Ashcraft & Stazyk, 1981). The APiMA focuses on

2 Because results of addition problems are larger than results of subtraction problems when problems are
matched for operands, it is difficult to disentangle spatial associations that would be due to the type of
operation from associations that would be driven by the size of the result. A potential way to disentangle these
factors is to match addition and subtraction problems in terms of results rather than operands (e.g., Knops,
Viarouge & Dehaene, 2009; Masson & Pesenti, 2014).
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perceptual and semantic elaboration processes as opposed to retrieval of arithmetic facts from
long-term memory, although these processes need to operate in synchrony (Klein & Knops,
2023).

The APIMA model provides a detailed overview of instances where notation-specific
biases may operate. This is because the processing pathways for symbolic and non-symbolic
information differ and these differences run through all processing steps from perception over
semantic elaboration until response-related instances. When numbers are presented
symbolically (either through visual or auditory stimulation, see Figure 8), quantity may be
represented using both a verbal and a magnitude code (Dehaene & Cohen, 1995). As
hypothesized by Dehaene & Cohen (1995), these codes provide the basis for giving an exact
answer to the arithmetic problems using either verbal retrieval or algorithmic computing.
However, the APiMA model also assumes that the magnitude code may also provide an
estimation of the result, through spatial shifts along the MNL?. These may be useful to
narrow down the range of possible answers (Salvaggio, Masson, et al., 2022). Critically,
because symbolic multiplication problems are learned by rote in school, it is largely assumed
that these are directly retrieved from memory in adults (or solved through backup strategies if
retrieval is not possible). As such, studies have failed to find arithmetic cueing and OM
effects with symbolic multiplication problems (Katz & Knops, 2014, Mathieu et al., 2016).
But an estimation of the result might be relatively frequent when adding numbers (leading to
a rightward shift attention along the MNL), at least more so than when multiplying numbers®.
Much like addition, the APiMA model also assumes that estimation is present in subtraction
as well. However, because subtraction problems can be solved either by backward counting
or subtraction-by-addition (Campbell, 2008), shifts along the MNL may occur either leftward
or rightward depending on the strategy. Overall, the APiMA model explains why arithmetic
cueing effects are observed more reliably in symbolic addition than in symbolic subtraction

or multiplication.

3 Note that it has been proposed that shifts along the MNL may also provide the exact answer to symbolic
arithmetic problems in some situations, as these shifts could correspond to counting procedures that have
been automatized (Poletti, Diaz-Barriga Yafez, Prado, & Thevenot, 2023; Uittenhove, Thevenot, & Barrouillet,
2016). This process, however, is believed to be restricted to operands that are smaller than 4 and therefore
cannot account for the range of associations between symbolic arithmetic and space (though it might account
for some associations in small problems; (Mathieu, Gourjon, Couderc, Thevenot, & Prado, 2016).
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Figure 8. APiMA framework for symbolic numbers (see text for details). The figure shows
how the model considers the manipulation of the numbers 13’ and ‘8’ within multiplication,
addition, and subtraction.

Though number coding pathways differ between symbolic and non-symbolic
quantities, non-symbolic numerosities may also be represented using a verbal and a
magnitude code (see Figure 9). These may also provide the basis for giving an exact answer
to the arithmetic problems using algorithmic computing (verbal retrieval being much less
prevalent with non-symbolic stimuli). As for symbolic numbers, the APIMA model also
assumes that the magnitude code may provide an estimation of the result through spatial
shifts along the MNL. However, as detailed above, there might be serial dependency between
magnitude representations of two sequential numerosities, which would lead to either an
overestimation of the second operand when the first operand is the largest numerosity or an
underestimation of the second operand when the first operand is the smallest numerosity (see
red dots on sample numerosities in Figure 9). In subtraction, the first operand is always the
largest as non-symbolic subtraction cannot typically be associated with negative results. This
would lead to an overestimation of the second operand and an enhancement of the leftward
shift along the MNL. In addition, because the first operand may be the largest or the smallest,
the second operand may be either overestimated or underestimated. Rightward shifts along

the MNL may therefore be either enhanced or diminished, and on average weaker in addition
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than in subtraction. The model predicts that multiplication should be similar to addition in
that respect. Nonetheless, the APiIMA framework accounts for the observation that OME has
been observed with non-symbolic but not with symbolic multiplication and division because
the latter predominantly calls on the recall of arithmetic facts from long-term memory who
have a weak association with the semantic code only (Didino, Knops, Vespignani, &
Kornpetpanee, 2015; Katz & Knops, 2014).
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Figure 9. APiMA framework for non-symbolic numerosities (see text for details). The figure
shows how the model considers the manipulation of seven dots and three dots within
multiplication, addition, and subtraction. Full and dotted red dots on the upper panel
represents hypothetical changes in numerosity representations due to attractive serial

dependence. For addition and multiplication, attractive serial dependence tends to increase
the number of dots of the second operand when the largest numerosity is the first operand
(leading to overestimation) while it tends to decrease the number of dots of the second
operand when the smallest numerosity is the first operand (leading to underestimation). For
subtraction, attractive serial dependence systematically tends to increase the number of dots
of the second operand because the largest numerosity is always the first operand (leading to
underestimation).
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The APIMA model is based on the assumption that attentional shifts underlie both the
OME and the arithmetic cueing effects. It further assumes that the consistency of attentional
shifts with the overall displacement along the spatial numerical representation leads to a
stronger bias. As a second mechanism, APiMA includes the notion of serial attraction effects
that affect the perceived magnitude of the operands (and potentially the response
alternatives). Interestingly, serial attraction effects may modulate attentional biases in
predictable ways.

For addition, we can differentiate between problems where (a) the first operand (O1)
is smaller than the second (O2) and the result (R), or (b) problems where the O2 is smaller
than O1. According to the consistency hypothesis, both problem types lead to an OME. If we
additionally assume serial attraction effects, O1 influences (‘attracts’) the subjectively
perceived numerical magnitude of O2. In problems of type (a), this leads to a smaller
subjective magnitude of O2 compared to problems of type (b), all else being equal.
Consequently, this would lead to a larger OME for problems of type (b) where the O2 is
smaller than O1. Interestingly, this is what Charras and colleagues observed in a series of
experiments (Charras et al., 2012, 2014) where the order of operands in addition problems
was systematically varied. They observed a larger overestimation for problems with operands
in descending order (e.g. 26 + 22) compared to problems with the inverse operand order (i.e.
22 + 26).

For subtraction problems, too, we can differentiate two types of problems. In
problems of type (a), O2 is smaller than O1 but larger than the result (e.g. 24 — 15=9). In
problems of type (b), O2 is smaller than both O1 and the result (e.g. 24 — 9 = 15). According
to the consistency hypothesis, problems of type (a) should produce a larger OME due to the
consistent displacement to the left compared to problems of type (b). At the same time,
problems of type (a) are more prone to the application of a subtraction-via-addition strategy,
which should diminish the OME. Hence, the analysis of the adopted strategy appears a
necessary factor in the future exploration of attentional biases in the context of mental
arithmetic. Sequential attraction effects, however, would lead to a larger OME in problems of
type (b) compared to problems of type (a).
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We believe that the above hypotheses, which can be inferred from the APIMA
framework, represent exciting starting points for a further refinement of the theoretical
mechanisms underlying OME and arithmetic cueing effects in the context of mental
arithmetic.

Conclusion

More than 15 years has passed since Hubbard et al. (2005) hypothesized that mental
arithmetic involves attentional movements along the MNL. As reviewed here, there is now
convergent evidence that arithmetic calculation is indeed associated with response biases that
appear to be spatial in nature. Although there is still a debate about whether these biases
reflect movements along a MNL per se, studies indicate that such spatial associations are not
simply a byproduct of calculation (Dormal et al., 2014; Masson & Pesenti, 2016; Masson,
Pesenti, & Dormal, 2017). Rather, they might reflect mechanisms that are at the heart of
arithmetic processing and even pertain to the arithmetic combination of non-numerical (i.e.
temporal) quantities (Bonato, D’Ovidio, Fias, & Zorzi, 2021). That being said, the literature
also raises a number of challenges for future theories and paradigms. First, although the OME
and the arithmetic cueing effect are often seen as two manifestations of the same
phenomenon, some may doubt that they stem from the same mechanism. Second, the
framework emerged from analyzing studies that examined arithmetic-space associations in a
horizontal plane (i.e. left-right). Future frameworks might embrace number-space interactions
in down-up or near-far planes (Holmes & Lourenco, 2012; Hartmann, Gashaj, Stahnke, &
Mast, 2014; Aleotti et al., 2020). The literature on associations of arithmetic with these
alternative dimensions, however, is still scarce at the moment (e.g. Wiemers, Bekkering, and
Lindemann, 2014), mostly exploiting eye movement recordings (Blini, Pitteri, & Zorzi, 2018;
Hartmann, 2022). Finally, the studies analyzed here are characterized by some degree of
heterogeneity in terms of tasks and materials, which makes it difficult to evaluate to what
extent spatial biases in mental arithmetic depend on specific task features (e.g., non-symbolic
vs. symbolic quantities, problem size, response output). The proposed framework may guide
future work that seeks to elucidate the cognitive characteristics of the described spatial-
numerical associations. For example, the model we propose assumes that the dissociation
observed between OME and arithmetic cueing studies has more to do with a difference in the
nature of stimuli (non-symbolic vs. symbolic) than in underlying mechanisms. Specifically, a

greater variety in strategies used to solve symbolic subtractions may explain why arithmetic
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cueing effects are stronger in addition than subtraction. Critically, the model predicts that
problems solved by subtraction-by-addition should be associated with a rightward shift while
other problems should be associated with a leftward shift. We also predict that attractive
serial dependence between non-symbolic numerosities and a tendency to underestimate may
explain why the OME is stronger in subtraction than addition. Here, the model notably
predicts that the OME observed in addition problems should be stronger when the first
operand is larger than the second (compared to the other way around). These are testable
predictions that future studies may investigate.

On a final note, the current review exclusively focuses on adult participants. Only a
small number of studies have investigated the development of spatial biases during mental
arithmetic in children (Diaz-Barriga Yafez et al., 2020; Pinheiro-Chagas et al., 2018). Yet,
we believe that this research is crucial as it might inform on the mechanisms through which
these biases emerge and how they are modulated by instructional context, thereby shedding
light on the sources of both the OME and arithmetic cueing effects in expert adults. On a
more general note, our findings reverberate with recent efforts to characterize the relation
between internal and external attention that have been theorized to operate via shared neural
and cognitive mechanisms (Kiyonaga & Egner, 2013). The current results support this idea
by demonstrating that attentionally mediated arithmetic operations on an internal
representational space affect the perceptual performance of external visual stimuli and vice
versa. Whether or not the reciprocal influence is entirely symmetric or not remains to be seen
in future studies (Lim & Pratt, 2023).
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