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MALLIAVIN STRUCTURE FOR CONDITIONALLY

INDEPENDENT RANDOM VARIABLES

L. DECREUSEFOND AND C. VUONG

Abstract. On any denumerable product of probability spaces, we extend
the discrete Malliavin structure for conditionally independent random vari-
ables. As a consequence, we obtain the chaos decomposition for functionals
of conditionally independent random variables. We also show how to derive
some concentration results in that framework. The Malliavin-Stein method
yields Berry-Esseen bounds for U-Statistics of such random variables. It leads
to quantitative statements of conditional limit theorems: Lyapunov’s central
limit theorem, De Jong’s limit theorem for multilinear forms. The latter is
related to the fourth moment phenomenon. The final application consists of
obtaining the rates of normal approximation for subhypergraph counts in ran-
dom exchangeable hypergraphs including the Erdös-Rényi hypergraph model.
The estimator of subhypergraph counts is an example of homogeneous sums
for which we derive a new decomposition that extends the Hoeffding decom-
position.
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1. Introduction

Malliavin calculus is also known as the stochastic calculus of variations. At the
very core of it, it considers a gradient on a measured space. The link between these
the differential geometry and the measure is made through the so-called integration
by parts formula. When the measured space is the Wiener space, i.e. the set of
continuous functions with the Brownian measure, the gradient generalizes the usual
gradient on RN and the integration by parts yields an extension of the Itô integral.
When the measured space is the set of point processes on the real half-line, equipped
with the law of a Poisson process, the gradient becomes a difference operator and
the integration by parts is nothing but an avatar of the Mecke formula. It is
only very recently that, concomitantly, the situation where the measured space
is a product space, i.e. if we deal with independent random variables, has been
addressed (see [14, 9, 13]). By order of complexity, the next situation which can
be analyzed is that of conditionally independent random variables. This is a very
common structure as de Finetti’s theorem says that an infinite sequence of random
variables is exchangeable if and only if these random variables are conditionally
independent. This is the key theorem to develop a theory on random hypergraphs
as in [1].

The first definitions of gradient (denoted by D) and divergence we introduce be-
low for conditionally independent random variables, bear strong formal similarities
with those of [9]. The difference lies into the computations which rely heavily on
conditional distributions given the latent variable, which is here called Z. We can
then follow the classical development of the Malliavin calculus apparatus: gradient,
divergence, chaos, number operator and Ornstein-Uhlenbeck semi-group (denoted
by Pt). We can even describe the dynamics of the Markov process whose infini-
tesimal generator is the number operator. At a formal level, the computations are
almost identical to those of [9] with expectations replaced by expectations given Z.

Nevertheless, for more advanced applications, namely functional identities like
the covariance representation formula, we need to introduce a difference operator
(see Definition 2.10) which appears more often than the gradient itself. It is in some
sense a finer tool that the original gradient which is useful to define the Dirichlet
structure (the Glauber process, the infinitesimal generator denoted by L, etc.) but
no more. This is due to the fact that DaDa = Da, which entails that L commutes
with D, and thus we have DPt = PtD in place of the usual formula DPt = e−tPtD
which is the core formula to derive all functional inequalities in the Gaussian and
Poisson cases. The difference operator ∆ allows to recover the crucial e−t factor
(see Proposition 3.1).

The prevailing application of Malliavin calculus is nowadays, the evaluations
of convergence rates via the Stein’s method ([28, 8] and references therein). The
question is to assess a bound of the distance between a target distribution (more
often the Gaussian distribution) and the law of a deterministic transformation of a
probability measure, called the initial distribution.

The Dirichlet structure is useful to construct the characterization of the target
distribution and to obtain the so-called Malliavin-Stein representation formula [7].
The Malliavin gradient or the carré du champ operator on the space on which lives
the initial distribution are of paramount importance to make the computations
which yield the distance. In the historical version of the Stein’s method, this step
was achieved via exchangeable pairs or biased coupling. One of the key difference
between the Gaussian case and so-called discrete situations (Poisson, Rademacher,
independent random variables) is the chain rule formula: it is only in the former
framework that Dψ(F ) = ψ′(F )DF . For the other contexts, we need to resort to
an approximate chain rule [33]. This is the role here of Lemma 4.4 and Lemma 4.7.
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Motivated by the applications to random graphs statistics, we focus here on normal
approximations of U -statistics as in [3, 23, 30, 35]. In passing, we extend the notion
of U -statistics by allowing the coefficients to depend on the latent variable instead
of being only deterministic. Following the strategy of [2], we establish a fourth
moment theorem with remainder for such functionals. As an application, we apply
our theorems to deduce results of asymptotic normality of subhypergraph counts
in random hypergraphs.

The rest of the paper is organized as follows. The section 2 lays the foundations
of the Malliavin framework. We derive some functional identities in section 3, specif-
ically conditional versions of Poincaré inequality and McDiarmid’s inequality. The
section 4 presents results of normal approximation. In particular, the subsection
4.3 states a partial fourth moment theorem for U-statistics under mild assumptions.
The aforementioned applications to hypergraph statistics are in Section 5.

2. Discrete Malliavin-Dirichlet structure

2.1. Preliminaries. Let A be an at most denumerable set equipped with the count-
ing measure, and define:

ℓ2(A) :=

{

u : A→ R,
∑

a∈A

|ua|2 <∞
}

and 〈u, v〉ℓ2(A) :=
∑

a∈A

uava.

Let (Ω, T ,P) be a probability space, E0 be a Polish space and ((Ea,Υa), a ∈ A) be
a family of Polish spaces such that

EA =
∏

a∈A

Ea

Ω = E0 × EA.

(1)

The product probability space EA is endowed with its Borel σ-algebra denoted Υ ⊂
T . Let Z an E0-valued random variable. By Theorem 10.2.2 [12], all the subsequent
conditional distributions in the paper admit regular versions. For any subset B of
A, we denote the set EB :=

∏

b∈B Eb and for x ∈ EA, xB := (xa, a ∈ B) ∈ EB so

that for a ∈ B, xa ∈ Ea. We denote xB = (xa, a ∈ A \B). Let X := (Xa)a∈A be a
sequence defined on (Ω, T ,P) of conditionally independent random variables given
Z such that for all a ∈ A, Xa is an Ea-valued random variable, i.e.:

Xa⊥⊥
Z
(Xb, b ∈ A \ {a}),

or, equivalently:

P(Xa ∈ · |σ((Xb, b 6= a), Z)) = P(Xa ∈ · |σ(Z)).
We denote by P the law of X and P

Z the law L(X |Z). See chapter 5 of [21] for a
thorough review of conditional independence, and [32] for some limit theorems for
conditionally independent random variables. We use the notation E for the expecta-
tion of a random variable. By the disintegration theorem, for a ∈ A, the conditional
probability distribution of Xa given σ(X{a}) ∨ σ(Z) admits a regular version Pa.
For p ≥ 1, let us denote Lp(EA → R,P) the set of p-th-integrable functions on
EA with respect to the measure P. It is equipped with the norm ‖ · ‖Lp(EA→R,P)

defined for f a measurable function on EA by ‖f‖Lp(EA→R,P) :=
∫

|f(x)|pP( dx).
For the sake of notations, Lp(EA) stands for the space of p-integrable functionals

Lp(EA) :=
{

ω 7→ F (X(ω)) : ω ∈ Ω, F ∈ Lp(EA → R,P)
}

.

In this respect, L∞(EA) is the space of bounded functionals. We shall write F in
place of F (X) for the sake of conciseness. We closely follow the usual construction
of Malliavin calculus on that space.
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Definition 2.1. A functional F is said to be cylindrical if there exists a finite subset
I ⊂ A and a functional FI in L2(EI) such that E[|FI |2] < +∞ and F = FI ◦ rI ,
where rI is the restriction operator:

rI : EA −→ EI

(xa, a ∈ A) 7−→ (xa, a ∈ I).

It is clear that the set of those functionals S is dense in L2(EA). We set L2(A ×
EA) the Hilbert space of processes which are square-integrable with respect to the
measure

∑

a∈A δa ⊗P, i.e.

L2(A× EA) = {U :
∑

a∈A

E
[

Ua(X)2
]

< +∞},

equipped with the norm and inner product:

‖U‖L2(A×EA) :=
∑

a∈A

E
[

U2
a

]

and 〈U, V 〉L2(A×EA) :=
∑

a∈A

E [UaVa] .

Definition 2.2. The set of simple processes, denoted S0(l
2(A)) is the set of random

variables defined on A× Ea of the form

U =
∑

a∈A

Ua1a,

for Ua ∈ S.

2.2. Malliavin operators.

Definition 2.3 (Discrete gradient). For F ∈ S, DF is the simple process of L2(A×
EA) defined for all a ∈ A by:

DaF := F − E

[

F | X{a}, Z
]

.

In particular, S ⊂ DomD. Define the σ-field σ(X{a}) ∨ σ(Z) by Ga, so that

DaF = F − E [F | Ga] . (2)

Recall that for K ⊂ A, XK = (Xa, a ∈ K) and XK = (Xa, a ∈ A \K). We shall
write GK = σ(XK) ∨ σ(Z) and GK = σ(XK) ∨ σ(Z) for K a subset of A.

Lemma 2.1. Let (a, b) ∈ A2, a 6= b, for F ∈ DomD,

(1) DaDaF = DaF ;
(2) DaDbF = DbDaF ;
(3) DaE

[

F | Gb
]

= DbE [F | Ga].
Proof of lemma 2.1. For (a, b) ∈ A2, with b 6= a,

DaDbF = DbF − E [DbF | Ga]
= F − E

[

F | Gb
]

− E [F | Ga] + E
[

E
[

F | Gb
] ∣

∣ Ga
]

DbDaF = DaF − E
[

DaF | Gb
]

+ E
[

E [F | Ga] | Gb
]

= F − E [F | Ga]− E
[

F | Gb
]

+ E
[

E [F | Ga] | Gb
]

.
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We note that:

E
[

E [F (X) | Ga] | Gb
]

=

∫ ∫

F (XA\{a,b}, xa, xb)Pa((XA\{a,b}, Z), xb, dxa)Pb((XA\{a,b}, Z), dxb)

=

∫ ∫

F (XA\{a,b}, xa, xb)P
Xb|Z(Z, dxb)P

Xa|Z(Z, dxa)

= E
[

E
[

F (X) | Gb
] ∣

∣ Ga
]

.

Hence, the equality follows. �

The key to the definition of the Malliavin framework is the so-called integration
by parts.

Theorem 2.2 (Integration by parts I). Let F ∈ S, for every simple process U ,

〈DF,U〉L2(EA×A) = E

[

F
∑

a∈A

DaUa

]

. (3)

Proof of theorem 2.2. We get:

〈DF,U〉L2(EA×A) = E

[

∑

a∈A

DaFUa

]

= E

[

∑

a∈A

(F − E [F | Ga])Ua
]

=
∑

a∈A

E [F (Ua − E [Ua | Ga])]

=
∑

a∈A

E [FDaUa] ,

by self-adjointness of the conditional expectation. �

Corollary 2.3 (Closability of the discrete gradient). The operator D is closable
from L2(EA) into L2(A× EA).

Proof of corollary 2.3. The proof is analogous to the proof of closability of the
gradient in [9, corollary 2.5] �

The domain of D in L2(EA) is the closure of cylindrical functionals with respect
to the norm:

‖F‖1,2 :=
√

‖F‖2L2(EA) + ‖DF‖2A×L2(EA).

The following lemma gives a way to define square-integrable functionals in DomD
that are not in S.

Lemma 2.4. If there exists a sequence (Fn)n∈N of elements of DomD such that

(1) the sequence converges to F in L2(EA),
(2) supn∈N ‖DFn‖L2(EA×A) < +∞,

then F belongs to DomD and DF = limn→+∞DFn.

Proof of lemma 2.4. Let (Fn)n∈N a sequence in L2(EA) with P-a.s. limit F , then
for a ∈ A,

E[|DaF −DaFn|2] ≤ E[|F − Fn|2] + E
[

|E [Fn | Ga]− E [F | Ga] |2
]

≤ E[|F − Fn|2] + E
[

E
[

|F − Fn|2
∣

∣ Ga
]]

by Jensen’s inequality

= 2E[|F − Fn|2] n→+∞−−−−−→ 0.
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Let (Am)m∈N a family of subsets of A such that
⋃

m≥0Am = A and |Am| = m, then

for all m ∈ N, (
∑

a∈Am
DaFn)n∈N converges in L2(EA) to

∑

a∈Am
DaF . We denote

by Dm the operator on L2(EA×A) such that for a ∈ Am, Dm
a = Da and otherwise

Dm
a is the null operator. For m ∈ N, (DmFn)n∈N converges to DmF in L2(EA×A).

Because of (2), by the uniform boundedness principle, DF is in L2(EA × A), and
the result follows. �

Definition 2.4 (Divergence operator). The domain of the divergence operator
Dom δ in L2(EA) is the set of processes U in L2(EA×A) such that there exists δU
satisfying the duality relation

〈DF,U〉L2(EA×A) = E[FδU ], for all F ∈ DomD. (4)

Moreover, for any process U belonging to Dom δ, δU is the unique element of
L2(EA) characterized by that identity. The integration by parts formula entails
that for every process U ∈ Dom δ,

δ =
∑

a∈A

DaUa. (5)

Definition 2.5 (Ornstein-Uhlenbeck operator). The Ornstein-Uhlenbeck operator,
denoted by L is defined on its domain

Dom L =







F ∈ L2(EA) : E





∣

∣

∣

∣

∣

∑

a∈A

DaF

∣

∣

∣

∣

∣

2


 < +∞







⊇ S

by

LF := −δDF = −
∑

a∈A

DaF. (6)

2.3. Chaos decomposition. The lemma 2.1 entails a chaos decomposition of
L2(EA) similar to the one in [13].

Theorem 2.5 (Chaos decomposition). For any F ∈ L2(EA),

F = E [F | Z] +
+∞
∑

n=1

πn(F ), (7)

where (πn)n∈N is a sequence of orthogonal projectors on L2(EA).

Proof. One can notice that:

E[DaF (X)|Ga] = Da(E[F |Ga])F (X) = 0, for all a ∈ A. (8)

Let (Am)m∈N a family of finite subsets of A such that |Am| = m and
⋃

m∈N
Am = A.

Let m ∈ N, IdL2(EAm ) =
∏

a∈Am
(Da + E[·|Ga]). Indeed, for all a ∈ Am, IdDomD =

Da + E[·|Ga]. Hence, by distributivity and by using lemma 2.1, the identity also
reads off: IdL2(EAm ) =

∑m
n=0 π

m
n , where

πmn :=
∑

J⊂Am, |J|=n

(

∏

b∈J

Db

)





∏

c∈Am\J

E[·|Gc]



 ∀n ≤ m. (9)
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Let n ≤ m,

πmn π
m
n =

∑

I⊂Am

|I|=n

∑

J⊂Am

|J|=n

(

∏

b∈I

Db

)





∏

c∈Am\I

E[·|Gc]





(

∏

d∈J

Dd

)





∏

e∈Am\J

E[·|Ge]





=
∑

I⊂Am, |I|=n

∑

J⊂Am, |J|=n





∏

b∈I

Db

∏

e∈Am\J

E[·|Ge]









∏

c∈Am\I

E[·|Gc]
∏

d∈J

Dd





=
∑

I⊂Am

|I|=n





∏

b∈I

Db

∏

e∈A\I

E[·|Gc]









∏

c∈Am\I

E[·|Gc]
∏

d∈I

Dd



 by lemma 2.1

=
∑

I⊂Am, |I|=n

(

∏

b∈I

∏

b∈I

DbDb

)





∏

c∈Am\I

E[·|Gc]E[·|Gc]



 = πmn .

(10)
By convention πmn (F ) = 0 for n > m. Analogously, for n′ 6= n, πmn π

m
n′ = 0. The

operator πmn is continuous on L2(EA). Hence, (πmn )m∈N is a well-defined family
of projectors on L2(EA). Moreover, for all n ∈ N and F ∈ L2(EA), we have
supm∈N ‖πmn (F )‖L2(EA) ≤ ‖F‖L2(EA). Then, by the uniform boundedness principle,

sup
m∈N

‖F‖L2(EA)

‖πmn (F )‖L2(EA) < +∞.

The pointwise limits of (πmn (F ))m∈N for F ∈ L2(EA) define a bounded linear oper-
ator πn on L2(EA) for n ∈ N. Thus:

L2(EA) =

+∞
⊕

n=0

Im πn. (11)

Given (9), for a functional F ∈ Dom L, we have π0(F ) = E [F | Z]. �

Lemma 2.6 (Spectral decomposition). Let F ∈ L2(EA) of chaos decomposition

F = E [F | Z] +
+∞
∑

n=1

πn(F ).

(1) We say that F belongs to Dom L whenever

+∞
∑

n=1

n2‖πn(F )‖L2(EA) < +∞.

(2) The operator has a unit spectral gap, i.e. the spectrum of L coincides with
N0.

L2(EA) =
+∞
⊕

k=0

ker(L+ kId). (12)

(3) It is invertible from L2
0(EA) = {F ∈ L2(EA), E [F | Z] = 0} into itself.
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Proof of lemma 2.6. Let us show that πn is in the domain of L for all n ∈ N. By
summability,

|
∑

a∈A

Daπn|2 =

∣

∣

∣

∣

∣

∣

∑

a∈A

Da

∑

I⊂A, |I|=n

(

∏

b∈I

Db

)





∏

c∈A\I

E[·|Gc]





∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

∑

a∈A

1I(a)
∑

I⊂A, |I|=n

(

∏

b∈I

Db

)





∏

c∈A\I

E[·|Gc]





∣

∣

∣

∣

∣

∣

2

= n2

∣

∣

∣

∣

∣

∣

∑

I⊂A, |I|=n

(

∏

b∈I

Db

)





∏

c∈A\I

E[·|Gc]





∣

∣

∣

∣

∣

∣

2

since |I| = n

= n2|πn|2,

(13)

so for F ∈ L2(EA), πn(F ) ∈ Dom L. Hence, because of the orthogonality of

(Im πn)n∈N, F ∈ DomL ⇐⇒ ∑+∞
n=1 n

2‖πn(F )‖L2(EA) < +∞. With the same
calculations, we get Lπn = −nπn. The spectrum of −L coincides with N. Then, we
deduce that:

L =

+∞
∑

n=0

−nπn, (14)

and Imπn ⊂ ker(L+ nId). Because of the orthogonality of the kernels, we get
Imπn = ker(L+ nId). Now let us prove the third item. The pseudoinverse L

−1 is

defined on its domain {F ∈ L2(EA) : E [F | Z] = 0} and reads
∑+∞

n=1 −πn

n . Then

for F ∈ {G ∈ Dom L : E [G | Z] = 0}, L−1(LF ) = F . �

Corollary 2.7. For k > 0 and J a subset of A of cardinal k, let us denote by Ck

the space of functionals φ =
∑

J⊂A,|J|=k ψJ such that:

• for every J ⊂ A, ψJ is FJ -measurable;
• for every K ⊂ A, E [ψJ | GK ] = 0 unless K ⊂ J ;

then Ck = ker(L+ kId).

Proof of corollary 2.7. From (9), for J = (a1, . . . , an) ⊂ A, the component ψJ is
FJ -measurable. Let us compute the expression of the iterated gradient for F a
FJ -measurable function:

∏

a∈J

DaF =

|J|
∑

k=0

(−1)k
∑

K⊆J
|K|=k

E
[

F | GK
]

=
∑

L⊆J

(−1)|J|−|L|
E [F | GL] ,

where GK = σ(XK) ∨ σ(Z) and GL = σ(XL) ∨ σ(Z). In this view, we have the
inclusion ker(L+ nId) = Imπn ⊂ Cn for n ∈ N.
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Conversely, let φ for which the properties above hold.

Lφ = −
∑

a∈A

Da

∑

J⊂A,|J|=n

ψJ

= −
∑

a∈A

∑

J⊂A,|J|=n

(ψJ − E [ψJ | Ga])

= −
∑

k∈A

∑

J⊂A,|J|=n
a∈J

ψJ because E
[

ψJ | FA\{a}

]

= 0 for J 6⊂ A \ {a}

= −n
∑

J∈A,|J|=n

ψJ = −nφ.

Therefore, Cn = ker(L+ nId) for n ≥ 1. �

2.4. Dirichlet structure. The map L can be viewed as the generator of a Glauber
dynamics where the index set is a finite set of random variables indexed by Am for
m > 1. For practical term, we introduce a new index ∂ and X∂ = Z P-a.s..

Definition 2.6 (Modified Glauber process). Consider (N(t))t≥0 a Poisson process
on the half-line [0,+∞) of rate |Am|+ 1. Let (X◦Am(t))t≥0 = (X◦Am

a (t), t ≥ 0, a ∈
A) the process valued in EA starting with X◦Am(0) = X which evolves according
to the following rule. At jump time τ of the process,

• Choose randomly an index a in Am ⊔ {∂} with equal probability.
• If a 6= ∂, replace X◦Am

a (τ) with a conditionally independent random vari-

able X 8

a distributed according to Pa((X
◦Am

A\{a}(τ), Z), ·), otherwise do noth-

ing.

That Markov process has for infinitesimal generator LAm :

L
AmF = −

∑

a∈Am

DaF.

Our aim is to show that the operator L is an infinitesimal generator, letting m →
+∞. We recall the Hille-Yosida theorem [37].

Proposition 2.8 (Hille-Yosida). A linear operator L on L2(EA) is the generator
of a strongly continuous contraction semigroup on L2(EA) if and only if

(1) DomL is dense in L2(EA);
(2) L is dissipative, i.e. for any λ > 0, F ∈ DomL,

‖λF − LF‖L2(EA) ≥ λ‖F‖L2(EA);

(3) Im(λId− L) is dense in L2(EA).

Theorem 2.9. L is an infinitesimal generator on EA of a strongly continuous
contraction semigroup on L2(EA).

Proof of theorem 2.9. We know that S is dense in L2(EA). As Dom L ⊃ S, it is
also dense in L2(EA). Let Am an increasing sequence (with respect to ⊂) of subsets
of A such that

⋃

n≥1Am = A ∪ ∂ and |Am| = m. Then (FAm
)m∈N is a filtration.

For F ∈ L2(EA), let Fm = E [F | FAm
]. Since (Fm)m∈N is a square-integrable FA-

martingale, (Fm)m∈N converges both almost surely and in L2(EA) to F . For any
m ∈ N, Fm depends only on XAm

. Because of the conditional independence of the
random variables Xa given X∂ , for all a ∈ A, we get that DaFm = E [DaF | FAm

].
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Using that LAm
is dissipative for all m ∈ N, we have:

λ2‖Fm‖2L2(EA) ≤ ‖λFm − L
AmFm‖2L2(EA) = E





(

λFm +
∑

a∈An

DaFm

)2




= E





(

λFm +
∑

a∈A

DaFm

)2


 because DaFm = 0, if a /∈ Am.

= E



E

[

λF +
∑

a∈A

DaF

∣

∣

∣

∣

FAm

]2


 .

It means that the operator L is dissipative. Thus, by the Hille-Yosida theorem,
L is the infinitesimal generator of a strongly continuous contraction semigroup on
L2(EA) denoted P . �

Lemma 2.10. Let F ∈ L2(EA), then

E
[

F (X◦Am)
∣

∣ X,Z
]

= PAm

t F
P−a.s.−−−−→ PtF

and

X◦Am
d−→ X◦.

Proof of lemma 2.10. The theorem 17.25 of [21, Trotter, Sova, Kurtz, Mackevičius]
gives the convergence in distribution of X◦Am towards X◦ the Markov process
associated to L, and the almost sure convergence of the semigroup. �

These are pieces of the Dirichlet structure with invariant measure P that we
complete with the carré du champ operator. Here, we note that S is an algebra
which is a core of Dom L.

Definition 2.7 (Carré du champ operator). Let F,G ∈ S. The bilinear map

Γ(F,G) :=
1

2
{L(FG) − FLG−GLF}

is well-defined, and called carré du champ operator of the Markov generator L.

By an argument of density, there exists an algebra A ⊃ S maximal in the sense of
inclusion such that the carré du champ operator acts on it.

Definition 2.8 (Dirichlet structure). The associated Dirichlet structure defined
on (EA,Υ,P) is given by the quadruple (X◦, L, (Pt)t≥0, E) where X◦ is a Markov
process with values in EA whose infinitesimal generator is L and its semigroup is
P , i.e. for any F ∈ L∞(EA):

d

dt
PtF = (LPt)F.

Furthermore, PZ is the invariant (or stationary) distribution of X◦ given Z and
the Dirichlet form is defined by

E(F,G) = E[Γ(F,G)].

It comes with the classical properties entailed by the spectral decomposition of
L, including the Mehler’s formula.

Lemma 2.11 (Mehler’s formula). For any F ∈ L2(EA),



MALLIAVIN STRUCTURE FOR CONDITIONALLY INDEPENDENT RANDOM VARIABLES11

(1)

PtF = E [F | Z] +
∞
∑

n=1

e−ntπn(F )

= E [F (X◦(t)) | X ] ,

(15)

In particular PtF ∈ Dom L ∩Dom L
−1.

(2)
lim
t→∞

PtF (X) = E [F (X) | Z] .
(3) The pseudoinverse of L can be written:

L
−1F := −

∫ +∞

0

PtF dt.

Proof of lemma 2.11. Since formally Pt = e−tL, we get the first line of (15) from
the spectral decomposition of L. The second line is deduced from the definition of
the Glauber dynamics and by passing to the limit. Then,

E [F | Z]− F = lim
t→+∞

PtF − P0F

=

∫ +∞

0

d

dt
PtF dt

= L

(
∫ +∞

0

PtF dt

)

.

Taking E [F | Z] = 0, we get the expression of the pseudoinverse. �

Remark 2.9. By the chaos expansion, PtF can be defined as the limit in L2(EA)
of elements (PtFn)n∈N for Fn in S. Hence, it is sufficient to define the semigroup
acting on a functional of some finite vector of random variables XB, using the
definition of the Glauber dynamics entailed by it.

The infinitesimal generator satisfies another integration by parts formula due to
the Dirichlet structure which is the key to investigating the so-called fourth moment
phenomenon.

Lemma 2.12 (Integration by parts II). For (F,G) ∈ A2,

E(F,G) = −E[FLG]. (16)

We introduce to the difference operator which is associated to the Malliavin-
Dirichlet structure at hand. That difference operator serves the same purpose as
in [24] and [15] for computations in the proofs of the limit theorems.

Definition 2.10 (Difference operator). Let F : EA → R, for a ∈ A, we introduce
the operator

∆{a}F : EA × Ea −→ R

(x, x′a) 7−→ f(x)− f(x{a}, x′a).

For the sake of conciseness, we shall write F {a}′

= F (X{a}, X ′
a).

Lemma 2.13. For F a functional in DomD, the gradient also reads as:

DaF = E

[

∆{a}F (X,X ′
a)|X,Z

]

, (17)

where X ′
a has the law of Xa given Z and is conditionally independent of X{a} given

Z. Similarly,

Γ(F,G) =
1

2

∑

a∈A

E

[(

∆{a}F (X,X ′
a)
)(

∆{a}G(X,X ′
a)
)

|X,Z
]

. (18)
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Proof of lemma 2.13. We have

E [F | Ga] =
∫

F (X{a}, xa)Pa( dxa).

Since σ(Xa) is independent of σ(X{a}) given σ(Z), we obtain

E [F | Ga] =
∫

F (X{a}, xa)P
Xa|Z( dxa).

Eqn.(18) is proved similarly. �

3. Functional identities

This section is devoted to classical functional identities obtained in the Malliavin
framework. We follow the approach of [18] using a covariance identity based on
difference operators to deduce concentration inequalities.

Proposition 3.1. For F ∈ L2(EA) and a ∈ A, then:

Da(PtF ) = e−tE
[

∆{a}F (X◦(t), X ′
a)
∣

∣

∣ X,Z
]

(19)

where X ′ has the law of X given Z.

Proof of proposition 3.1. We consider the Glauber dynamics with index set a finite
subset Am of A, as the construction of process (X◦Am(t))t∈R+ is explicit in that case.
Let a ∈ Am, we denote by Na the Poisson process of intensity 1 which represents
the life duration of the a-th component in the dynamics of X◦Am(t), so:

X◦Am
a (t) = 1{τa≥t}Xa + 1{τa<t}X

8

a,

where τa = inf{t ≥ 0, Na(t) 6= Na(0)} is the life duration of the a-the component
of the original sequence, exponentially distributed with parameter 1 (independent
of everything else) and X 8

a is conditionally independent of X given Z. Then:

DaP
Am

t F = PAm

t F − E

[

PAm

t F
∣

∣

∣
Ga
]

= PAm

t F − E
[

E
[

F (X◦Am(t))|X,Z
]

1{t≤τa}

∣

∣ Ga
]

− E
[

F (X◦Am(t))1{t>τa}|X,Z
]

= E
[

F (X◦Am(t))1{t≤τa}|X,Z
]

− E
[

E
[

F (X◦Am(t))|X,Z
]

1{t≤τa}

∣

∣ Ga
]

= e−tE
[

∆{a}F (X◦Am(t), X ′
a)
∣

∣

∣ X,Z
]

because the law of X 8

a given X is the same as the one of X ′
a given X .

On one hand,

DaP
Am

t F
P−a.s.−−−−→ DaPtF.

On the other hand, by the Skorohod’s representation theorem, there exist copies
of X◦Am and X◦ on a common probability space (Ω̃, T̃ , P̃) such that the sequence

(X◦Am)m∈N converges to X◦ P̃-a.s. As the whole structure is invariant by copy, we
can suppose the almost sure convergence on (Ω, T ,P), and the relation passes to
the limit. �

Remark 3.1. In the case, we have only one random variable (or one particle), then
the commutation relation simplifies to Da(PtF ) = Da.

Corollary 3.2 (Conditional covariance identity). For any F,G ∈ L2(EA), then:

cov(F,G|Z) =
∫ ∞

0

e−t
∑

a∈A

E

[

(DaF )(∆
{a}G(X◦(t), X ′

a))
∣

∣

∣ Z
]

dt. (20)
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Proof of corollary 3.2. We use the following conditional covariance formula analo-
gous to the covariance formula:

cov(F,G|Z) = E [FG | Z] = E
[

FLL−1G
∣

∣ Z
]

. (21)

By the integration by parts I (3) which also holds with conditional expectation
given Z, we get:

E
[

FLL−1G
∣

∣ Z
]

= −
∑

a∈A

E
[

(DaF )(DaL
−1G)

∣

∣ Z
]

= −
∑

a∈A

E

[

(DaF )(Da

∫ ∞

0

PtG dt)

∣

∣

∣

∣

Z

]

= −
∑

a∈A

E

[

(DaF )

(∫ ∞

0

DaPtG dt

) ∣

∣

∣

∣

Z

]

= −
∫ ∞

0

e−t
∑

a∈A

E

[

(DaF )E
[

∆{a}G(X◦(t), X ′
a)|X,Z

] ∣

∣

∣ Z
]

dt,

using (19). �

As an immediate consequence of the spectral gap, we find another proof of the
Efron-Stein inequality which is of independent interest.

Proposition 3.3. If F ∈ Cp then

var[F ] =
1

p
E(F ) = 1

p
‖DF‖L2(EA).

Moreover, if there exist F1, . . . , Fm ∈ L2(EA) such that F =
∑m

p=1 Fp with Fp ∈ Cp

for p ∈ J1,mK, then:
var[F ] ≤ ‖DF‖L2(EA). (22)

Proof of proposition 3.3. Let us use the previous covariance identity, we have:

var[F ] = cov(F, F ) = E[Γ(F,−L
−1F )]

= E

[

Γ

(

m
∑

p=1

Fp,

m
∑

q=1

1

q
Fq

)]

=

m
∑

p=1

m
∑

q=1

1

q
E [Γ (Fp, Fq)]

=

m
∑

p=1

1

p
E [Γ (Fp, Fp)] because E[Γ(Fp, Fq)] = 0 for q 6= p.

It yields the inequality (22) noting that Γ(Fp, Fp) ≥ 0 for all p > 0. �

We now deduce the conditional first-order Poincaré inequality for functionals
of conditionally independent random variables. The equivalent for functionals of
independent random variables is rather known as the Efron-Stein inequality in the
literature [16].

Theorem 3.4 (Conditional Efron-Stein inequality). For F ∈ L2(EA) such that
E [F | Z] = 0,

var[F |Z] ≤ E [Γ(F, F ) | Z] . (23)
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Proof of theorem 3.4. The conditional covariance formula yields

var[F |Z] =
∫ ∞

0

e−u
∑

a∈A

E

[

(DaF )(∆
{a}F )(X◦

u, X
′
a)
∣

∣

∣ Z
]

du

≤
∫ ∞

0

e−u
√

∑

a∈A

E[(DaF )2|Z]
√

∑

a∈A

E[E
[

(∆{a}F )(X◦
u, X

′
a)|X,Z

]2 |Z] du.

The invariance of PZ under the Glauber dynamics entails that
∑

a∈A

E

[

E

[

(∆{a}F )(X◦
u, X

′
a)|X,Z

]2

|Z
]

=
∑

a∈A

E[(DaF )
2|Z].

Hence,
var[F |Z] ≤ E[Γ(F, F )|Z],

proving the theorem. �

We find a version of the McDiarmid’s inequality for conditionally independent
random variables.

Theorem 3.5 (Conditional McDiarmid’s inequality). Let F be a square-integrable
functional such that for all a ∈ A:

sup
x{a}∈EA\{a}

x′
a∈Ea

|F (x{a}, x′a)− F (x)| ≤ da.

For any x > 0, we have the inequality:

P(F (X)− E [F (X) | Z] ≥ x|Z) ≤ exp

(

− x2

2
∑

a∈A d
2
a

)

. (24)

Our strategy of proof is different from the original McDiarmid’s original proof
in [27].

Proof of theorem 3.5. We assume that F = F (X) is a bounded random variable
verifying E [F |Z] = 0. Using the inequality:

|etx − ety| ≤ t

2
|x− y|(etx + ety) ∀ x, y ∈ R. (25)

We have:

|∆{a}etF (X,X ′
a)| = |etF − etF

{a}′ |

≤ t

2
|∆{a}F (X,X ′

a)|
(

etF + etF
{a}′
)

.
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Applying the covariance identity, it yields:

E[FetF |Z] =
∫ ∞

0

e−u
∑

a∈A

E[Dae
tF∆{a}F (X◦

u, X
′
a)|Z] du

≤
∫ ∞

0

e−u
∑

a∈A

E

[

E

[

|∆{a}etF (X,X ′
a)||X,Z

]

∆{a}F (X◦
u, X

′
a)|Z

]

du

≤ t

2

∫ ∞

0

e−u
∑

a∈A

E

[

|∆{a}F (X,X ′
a)|etF |∆{a}F (X◦

u, X
′
a)|Z

]

du

+
t

2

∫ ∞

0

e−u
∑

a∈A

E

[

|∆{a}F (X,X ′
a)|etF

{a}′ |∆{a}(X◦
u, X

′
a)|
∣

∣

∣
Z
]

du

by using the Jensen’s inequality for conditional expectation in the second inequal-
ity. Since |∆{a}F (X,X ′

a)|2 ≤ da, |∆{a}F (X◦
u, X

′
a)| ≤ da for all u ∈ R+ and

E[etF
{a}′ |Z] = E[etF |Z], this shows that:

E[FetF |Z] ≤
(

∑

a∈A

d2a

)

tE[etF |Z] = tK2
E[etF |Z],

where K2 :=
∑

a∈A d
2
a. Thus, in all generality for F bounded:

logE[et(F−E[F ])|Z] =
∫ t

0

E[(F − E[F |Z])es(F−E[F |Z])|Z]
E[es(F−E[F ])]

ds

≤ K2

∫ t

0

s ds =
t2

2
K2,

hence:

etxP(F − E[F |Z] > x|Z) ≤ E[et(F−E[F |Z])|Z]
= et

2K2/2, t ≥ 0,

and:

P(F − E[F |Z] ≥ x|Z) ≤ e
t2

2 K
2−tx, t ≥ 0.

The minimum of the right-hand side is obtained for t = x/K2. If F is not bounded,
the conclusion holds for Fn = max(−n,min(F, n)), n ≥ 0, and (Fn)n∈N converges
P-a.s. to F . Hence:

P(F − E[F |Z] ≥ x|Z) ≤ exp

(

− x2

2K2

)

= exp

(

− x2

2
∑

a∈A d
2
a

)

.

The proof is thus complete. �

4. Applications to normal approximation

The goal is to bound for instance the 1-Wasserstein distance

dW (L(F (X)),L(Y ))| := sup
h∈H

|E[h(F (X))]− E[h(Y )]|

for H the set of 1-Lipschitz functions and Y the random variable following the
target distribution. We recall the lemma 4.2 of [4] which provides with a standard
implementation of the Stein’s method for this probabilistic distance with respect
to the normal distribution N (0, 1).
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Lemma 4.1 (Normal approximation). Let L†h(x) := h′(x) − xh(x). Then,

dW (L(F (X)),N (0, 1)) ≤ sup
ϕ∈H∗

∣

∣E[L†ϕ(F (X))]
∣

∣ , (26)

where H∗ := {h ∈ C2(R,R) : ‖h′‖∞ ≤
√

2
π , ‖h′′‖∞ ≤ 2}.

In the following, we denote dW (L(F (X)),N (0, 1)) by dW (F,N (0, 1)). For sake

of conciseness, we denote by ∆{a}′

F the quantity ∆{a}F (X,X ′
a).

4.1. Rates in Lyapunov’s conditional central limit.

Lemma 4.2. For any F ∈ S such that E [F | Z] = 0. Then,

dW (F,N (0, 1)) ≤ sup
ψ∈H∗

∣

∣

∣

∣

∣

E

[

∑

a∈A

ψ(F (X{a}, X ′
a))∆

{a}′

FDa(−L
−1F )− ψ(F )

]∣

∣

∣

∣

∣

+
∑

a∈A

E[(∆{a}′

F )2|DaL
−1F |]. (27)

Proof of lemma 4.2. We compute:

sup
f†∈H∗

|E[F (f †)(F )− (f †)′(F )]|.

Since F is centered,

E[F (f †)(F )] = E[L(L−1F )f †(F )]

= −
∑

a∈A

E[DaL
−1FDaf

†(F )] by integration by parts

= −
∑

a∈A

E

[

DaL
−1FE

[

(f †)′(F )− f †(F {a}′

)
∣

∣

∣ X,Z
]]

= −
∑

a∈A

E[DaL
−1F∆{a}′

f †(F )].

Then, we use the Taylor expansion taking the reference point to be F {a}′

instead
of F , for all a ∈ A yielding:

∆{a}′

f †(F ) = f †(F )− f †(F {a}′

)

= (f †)′(F {a}′

)∆{a}′

F +Ra,

with |Ra| ≤ ‖(f†)′′‖∞

2 (∆{a}′

F )2 = (∆{a}′

F )2. Then,

|E[Ff †(F )− (f †)′(F )]|

≤
∣

∣

∣

∣

∣

E

[

∑

a∈A

∆{a}′

F (Da(−L
−1F ))

(

(f †)′(F {a}′

)− (f †)′(F )
)

]∣

∣

∣

∣

∣

+
∑

a∈A

E[(∆{a}′

F )2|DaL
−1F |].

Because (f †)′′ has Lipschitz-constant equal to 2, we get the result. �

We prove a quantitative Lyapunov’s conditional central limit theorem for random
variables with moments of order 3.
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Corollary 4.3 (Lyapunov’s conditional central limit theorem). Let (Xn)n∈N be a
sequence of thrice integrable, conditionally independent random variables given a
latent random variable Z. Let us observe that

σ2
j,Z = var(Xj |Z), s2n,Z =

n
∑

j=1

σ2
j,Z and X̄n =

1

sn,Z

n
∑

j=1

(Xj − E [Xj | Z]) .

Then,

dW (X̄n,N (0, 1)) ≤ 2(
√
2 + 1)E

[

1

s3n,Z

n
∑

i=1

|Xi − E [Xi | Z]|3
]

. (28)

The proof of the corollary follows the same steps as the one of [9, Corollary 5.11],
using lemma 4.2.

Example 4.1 (Conditional Bernoulli random variables). Let (Ui)i∈N independent
uniform random variables, and Xi = 1{Ui≤Z}, with Z an arbitrary random variable
lying in [0, 1], then (Xi)i∈N forms a sequence of conditionally independent random
variables given Z. The law of L(Xi|X{i}, Z) is a Bernoulli law of parameter Z. We
compute the right-hand side of the Lyapunov theorem in this case.

s2n,Z = nZ(1− Z)

E
[

|Xi − E [Xi | Z] |3
∣

∣ Z
]

= Z(1− Z)(1 − 2Z).

Hence,

dW (X̄n,N (0, 1)) ≤ 2(
√
2 + 1)E

[

1− 2Z + 2Z2

√

Z(1− Z)

]

n−1/2.

4.2. Abstract bounds for U-statistics. The chaos decomposition has a natural
interpretation as a decomposition in terms of degenerate U-statistics.

Definition 4.2 (U-statistic [17]). Let a family of measurable functions hI : EI →
R. A U-statistic of degree (or order) p is defined for any n ≥ p by:

U =
∑

I∈(A,p)

hI(XI) =
∑

I∈(A,p)

WI .

Definition 4.3 (Degenerate U-statistic). A degenerate U-statistic of order p > 1

is a U-statistic of order p such that E

[

hI(X
{a}
I , xa)

∣

∣

∣ Z
]

= 0, for all a ∈ A and

xa ∈ Ea.

The space of degenerate U-statistics is exactly Cp. Since we consider functionals
given Z hereafter, hI may be σ(Z)-measurable as well.

A convenient assumption in the proofs of quantitative limit theorems is the
diffusiveness of the Markov generator at hand L, i.e. the associated carré du champ
ΓL satisfies for (F,G) in a dense algebra of DomL:

ΓL(φ(F ), G) = φ′(F )ΓL(F,G).

Due to the discreteness of the Malliavin structure, the operator L is not diffusive,
but it is close to. We devise the following pseudo chain rule.

Lemma 4.4 (First pseudo chain rule). Let ψ ∈ C1(R,R). Let G ∈ A and F ∈
L2(EA) such that ψ(F ) ∈ A, then:

Γ(ψ(F ), G) =
1

2

∑

a∈A

ψ′(F )E
[

(∆{a}′

F )(∆{a}′

G)
∣

∣

∣ X,Z
]

+Rψ(F,G), (29)

where:

|Rψ(F,G)| ≤
‖ψ′′‖∞

4

∑

a∈A

E

[

|∆{a}′

G|(∆{a}′

F )2
∣

∣

∣ X,Z
]

.
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Proof of lemma 4.4. We write the Taylor expansion of ψ, and:

E

[

(ψ(F {a}′

)− ψ(F ))(G{a}′ −G)
∣

∣

∣
X,Z

]

= E

[

ψ′(F )(∆{a}′

F )(∆{a}′

G)
∣

∣

∣
X,Z

]

+ E

[

(G{a}′ −G)rψ(F, F
{a}′ − F )

∣

∣

∣ X,Z
]

.

Then,

2Γ(ψ(F ), G) = ψ′(F )
∑

a∈A

E

[

(∆{a}′

F )(∆{a}′

G)
∣

∣

∣ X,Z
]

+
∑

a∈A

E

[

(G{a}′ −G)rψ(F, F
{a}′ − F )

∣

∣

∣ X,Z
]

where:

rψ(x, y) = ψ(x+ y)− ψ(x) − ψ′(x)y =

∫ y

0

(y − s)ψ′′(x+ s) ds.

We note that rψ satisfies:

|rψ(x, y)| ≤
‖ψ′′‖∞

2
y2,

and we obtain the bound on the remainder. �

Theorem 4.5 (Bounds in 1-Wasserstein distance). Assume that F ∈ L3(EA), such
that E [F | Z] = 0 and E[F 2] = 1, then we get the bound:

dW (F,N (0, 1)) ≤
√

2

π
E|Γ(F,−L

−1F )− 1|

+
1

2

∑

a∈A

E[|∆{a}′

L
−1F |(∆{a}′

F )2]. (30)

Moreover, if F ∈ L4(EA), then one has the further bound:

dW (F,N (0, 1)) ≤
√

2

π

√

var(Γ(F, L−1F ))

+

√
2

2

√

−E[FLF ]

√

∑

a∈A

E[|∆{a}′F |4]. (31)

Proof of theorem 4.5. We have:

E[L†f †(F )] = E[F (f †)′(F )− (f †)′′(F )]

= E[LL−1F (f †)′(F )]− E[(f †)′′(F )]

= E[L−1FL((f †)′(F ))] − E[(f †)′′(F )]

= E[Γ(L−1((f †)′(F )),−L
−1F )]− E[(f †)′′(F )]

(32)

by integration by parts. We use lemma 4.4 and obtain that:

E[Γ(L((f †)′(F )),−L
−1F )] ≤ E[(f †)′′(F )Γ(F,−L

−1F )] + E[R(f†)(3)(F,−L
−1F )].

Thus,

E[L†f †(F )] ≤
√

2

π
E|Γ(F,−L

−1F )− 1|+ 1

2

∑

a∈A

E[|∆{a}′

L
−1F |(∆{a}′

F )2].
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By Jensen’s inequality for the first term and Cauchy-Schwarz inequality (for expec-
tation of sum of random variables) for the second one, then by integration by parts,
it yields:

E[L†f †(F )] ≤
√

2

π

√

var(Γ(F, L−1F ))

+
1

2

√

∑

a∈A

E[|∆{a}′
L−1F |2]

√

∑

a∈A

E[(∆{a}′F )4],

and the proof is complete. �

Corollary 4.6. If F =
∑m

p=1 Fp is four times integrable functional where Fp ∈
ker(L+ pId), then:

dW (F,N (0, 1)) ≤
√

2

π

m
∑

p,q=1

1

q

√

var [Γ(Fp, Fq)]

+
√
2

m
∑

p=1

1

p

√

E[F 2
p ]







m
∑

p=1

p1/4

(

∑

a∈A

E

∣

∣

∣∆{a}′

F
∣

∣

∣

4
)1/4







2

. (33)

Proof of corollary 4.6. We use the decomposition of L−1 as to develop the first and
second terms in (31). The final result is obtained after using Cauchy-Schwarz
inequality. �

That is the starting point towards a partial fourth moment limit theorem.

4.3. Fourth moment phenomenon. We adapt the proof of [2], requiring a second
pseudo chain rule that expresses the carré du champ operator as an approximation
of a derivation operator in its two arguments.

Lemma 4.7 (Second pseudo chain rule). Let ϕ, ψ be twice differentiable functions
such that their second derivative is bounded Lipschitz-continuous. Assume that F
a four times integrable functional such that ϕ(F ) ∈ A, F ∈ A and E [F | Z] = 0,
then one has:

Γ(ϕ(F ), ψ(F )) = (ϕ′ψ′)(F )Γ(F, F )

− 1

4
(ϕ′′ψ′ + ϕ′ψ′′)(F )

∑

a∈A

E

[

(∆{a}′

F )3
∣

∣

∣ X,Z
]

+
∑

a∈A

Ra, (34)

with:

Ra =
1

2

(

E

[

R
(4)
a,ϕψ(F )

∣

∣

∣ X,Z
]

− ϕ(F )E
[

R
(4)
a,ψ(F )

∣

∣

∣ X,Z
]

− ψ(F )E
[

R(4)
a,ϕ(F )

∣

∣

∣ X,Z
])

and:

R
(4)
a,ψ ≤ ‖ψ(4)‖∞

24
E

[

(∆{a}′

F )4
∣

∣

∣ X,Z
]

for any ψ fourth times differentiable.

Proof of lemma 4.7. We have:

2Γ(ϕ(F ), ψ(F ))

= 2ϕ′(F )ψ′(F )Γ(F, F ) − 3

6
(ϕ′′ψ′ + ϕ′ψ′′)(F )

∑

a∈A

E

[

(∆{a}′

F )3
∣

∣

∣ X,Z
]

+
∑

a∈A

E

[

R
(4)
a,ϕψ(F )− ϕ(F )R

(4)
a,ψ(F )− ψ(F )R(4)

a,ϕ(F )
∣

∣

∣ X,Z
]

,
(35)
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with:

R
(4)
a,φ =

1

6
E

[

∫ F{a}′

F

φ(4)(x)(x − F )4 dx

∣

∣

∣

∣

∣

X,Z

]

,

for φ a four times differentiable function. �

We focus on functionals in the p-th chaos for p > 0, as to obtain such kind of
bound:

var[Γ(F, F )] ≤ C(E[F 4]− 3E[F 2]2) + remainder.

Lemma 4.8. Let G ∈ ⊕qk=0Ck. Then for any η ≥ q,

E[G(L + ηId)2G] ≤ ηE[G(L+ ηId)G] ≤ cE[G(L + ηId)2G], (36)

where

c =
1

η − q
∧ 1.

Proof of lemma 4.8. Since G ∈ ⊕qk=0Ck, we write

G =

q
∑

k=0

πk(G) and LG = −
q
∑

k=0

kπk(G). (37)

It follows that

E[G(L+ ηId)2G] = E[GL(L + ηId)G] + ηE[G(L + ηId)G]

= E[G

q
∑

k=0

k(k − η)πk(G)] + ηE[G(L + ηId)G].

By orthogonality of the chaos,

E[G

q
∑

k=0

k(k − η)πk(G)] = −E[

q
∑

k=0

k(η − k)πk(G)
2] ≤ 0,

and the inequality holds in view on the assumption on η. In the same vein,

E[G(L+ ηId)G] =

q
∑

k=0

(η − k)E[πk(G)
2]

≤ c

q
∑

k=0

(η − k)2E[πk(G)
2]

= cE[G(L+ ηId)2].

Thus, it yields the result. �

Lemma 4.9. For F ∈ Cp ∩ L4(EA) and Q a polynomial of degree two and a > 0,

E[Q(F )(L + apId)Q(F )] = pE

[

aQ2(F )− Q′(F )F

3Q′′(F )

]

− E[RQ(F )], (38)

where RQ is a remainder term that depends on Q. For Q = H2 = X2−1 the second
Hermite polynomial, the remainder reads off:

E[RQ] = E[RH2 ] =
1

6
E

[

∑

a∈A

|∆{a}′

F |4
]

. (39)
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Proof of lemma 4.9. We first integrate by parts, then use the pseudo chain rule of
lemma 4.7:

E[Q(F )LQ(F )] = −E[Γ(Q(F ), Q(F ))]

= −E[Q′(F )2Γ(F, F )]

+
1

6
(Q2)(3)(F )

∑

a∈A

E

[

(∆{a}′

F )3
∣

∣

∣ X,Z
]

− 1

2

∑

a∈A

E

[

E

[

R
(4)
a,Q2(F )

∣

∣

∣
X,Z

]

− 2Q(F )E
[

R
(4)
a,Q(F )

∣

∣

∣
X,Z

]]

.

(40)
Since Q(3) = 0, we have:

E[Q(F )LQ(F )] = −E
[

[Q′(F )2Γ(F, F )
]

+
1

6
E

[

(Q2)(3)(F )
∑

a∈A

E

[

(∆{a}′

F )3
∣

∣

∣ X,Z
]

]

− 1

2

∑

a∈A

E

[

E

[

R
(4)
a,Q2(F )

∣

∣

∣ X,Z
]]

.

(41)

Moreover,
(

Q′(F )3

3Q′′(F )

)′

=
3Q′(F )Q′′(F )2

3Q′′(F )2
= Q′(F )2. (42)

Subsequently, we use the pseudo chain rule of lemma 4.7 taking ψ = Id and ϕ =
Q′(·)3

3Q′′(·) :

E[Q′(F )2Γ(F, F )] = E

[

Γ

(

Q′(F )3

3Q′′(F )
, F

)]

+
1

4
E

[

(ϕ′′ψ′ + ϕ′ψ′′)(F )
∑

a∈A

E

[

(∆{a}′

F )3
∣

∣

∣ X,Z
]

]

−
∑

a∈A

E

[

E

[

R
(4)
a,ϕψ(F )

∣

∣

∣ X,Z
]

− ϕ(F )E
[

R
(4)
a,ψ(F )

∣

∣

∣ X,Z
]]

− E

[

FE
[

R(4)
a,ϕ(F )

∣

∣

∣ X,Z
]]

= E

[

Γ

(

Q′(F )3

3Q′′(F )
, F

)]

+
1

4
E

[

(Q′(·)2)′(F )
∑

a∈A

(∆{a}′

F )3

]

−
∑

a∈A

1

2
E

[

R
(4)
a,ϕψ(F )− FR(4)

a,ϕ(F )
]

.

(43)
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Finally,

E[Q(F )LQ(F )] = −E

[

Γ

(

Q′(F )3

3Q′′(F )
, F

)]

+ E

[

(

1

4
(Q′(·)2)′(F )− 1

12
(Q2)(3)(F )

)

∑

a∈A

(∆{a}′

F )3

]

+
1

2

∑

a∈A

E

[

R
(4)
a,ϕψ(F )−R

(4)
a,Q2(F )− FR(4)

a,ϕ(F )
]

= −E

[

Γ

(

Q′(F )3

3Q′′(F )
, F

)]

+ E

[

(

1

4
(Q′(·)2)′(F )− 1

12
(Q2)(3)(F )

)

∑

a∈A

(∆{a}′

F )3

]

+
1

2

∑

a∈A

E

[

R
(4)
a,ϕψ(F )−R

(4)
a,Q2(F )

]

.

(44)

Because F ∈ Cp, we have: −E

[

Γ
(

Q′(F )3

3Q′′(F ) , F
)]

= E[ Q
′(F )3

3Q′′(F )LF ] = −pE
[

Q′(F )3

3Q′′(F )F
]

.

For Q = H2 = X2 − 1 the second Hermite polynomial,

Q′(F )3

3Q′′(F )
=

4

3
X3,

so
(

Q′(·)3

3Q′′(·) ·
)(4)

= 32 and (Q2)(4) = 24. Thus,

∑

a∈A

E

[

R
(4)
a,ϕψ(F )−R

(4)
a,Q2(F )

]

=
(32− 24)

24

∑

a∈A

E

[

|∆{a}′

F |4
]

. (45)

Since (Q′(·)2)′(F ) = 8F , and (Q2)(3)(F ) = 24F , the result follows. �

The assumption under which a fourth moment theorem holds, is that F ∈ Cp is
a chaos eigenfunction with respect to the Markov generator L i.e.:

F 2 ∈ ⊕2p
k=0Ck. (EGF)

It is analog to the one in [25, 2]. We show that it holds for an important class of
U-statistics, homogeneous sums. We shall use the notation (A, p) that stands for
the set of p-tuples of distinct elements of A.

Example 4.4 (Conditionally independent homogeneous sums). Let p > 0.
If there exists (aI)I⊂A ∈ RP(A) such that

W =

p
∑

k=1

∑

I∈(A,k)

aI
∏

i∈I

Xi, (46)

then

(1) W is square-integrable homogeneous sum of order p if Xi are 2p-integrable.
In that case, W ∈ S.

(2)

E [W | Z] =
p
∑

k=1

∑

I∈(A,k)

aI
∏

i∈I

E [Xi | Z]

is a homogeneous sum of random variables X̂i = E [Xi | Z] for i ∈ I with
I ∈ (A, k) for k ≤ p.

Remark that (aI)I⊂A may be a sequence of random variables, in which case there
exists a family of functions (gI)I⊂A such that aI = gI(Z).
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Lemma 4.10. Let W a homogeneous sums of conditionally independent random
variables given Z. Then (EGF) holds.

Proof of lemma 4.10. Let us denote byWI the component of F in (46) proportional
to
∏

α∈I Xα. We want to prove that there exist G1, . . . , G2p with Gi ∈ Ci ∪ {0}
such that WIWJ =

∑2p
i=1Gi. Note that if I ∩ J = ∅, and a ∈ I, then a is not in J

and vice versa. Therefore, WIWJ ∈ C|I|+|J|. In general,

WIWJ ∝
∏

α∈I

Yα
∏

β∈J

Yβ

=
∏

γ∈(I\J)∪(J\I)

Yγ
∏

δ∈I∩J

Y 2
δ

=
∏

γ∈(I\J)∪(J\I)

Yγ
∏

δ∈I∩J

(Y 2
δ − E

[

Y 2
δ

∣

∣ Z
]

+ E
[

Y 2
δ

∣

∣ Z
]

)

=
∑

K⊂I∩J

∏

γ∈(I\J)∪(J\I)

Yγ
∏

δ∈K

(Y 2
δ − E

[

Y 2
δ

∣

∣ Z
]

)
∏

δ∈(I∩J)\K

E
[

Y 2
δ

∣

∣ Z
]

.

For a ∈ A:

E





∏

γ∈(I\J)∪(J\I)

Yγ
∏

δ∈K

(Y 2
δ − E

[

Y 2
δ

∣

∣ Z
]

)
∏

δ∈(I∩J)\K

E
[

Y 2
δ

∣

∣ Z
]

∣

∣

∣

∣

∣

∣

GZa





=











0 if a ∈ K ∪ ((I \ J) ∪ (J \ I))
∏

γ∈(I\J)∪(J\I)

Yγ
∏

δ∈K

(Y 2
δ − E

[

Y 2
δ

∣

∣ Z
]

)
∏

δ∈(I∩J)\K

E
[

Y 2
δ

∣

∣ Z
]

otherwise.

Hence, we get
∏

γ∈(I\J)∪(J\I)

Yγ
∏

δ∈K

(Y 2
δ − E

[

Y 2
δ

∣

∣ Z
]

)
∏

δ∈(I∩J)\K

E
[

Y 2
δ

∣

∣ Z
]

∈ C|K∪(I\J)∪(J\I)|

with |K ∪ ((I \ J) ∩ (J \ I))| ≤ |I ∪ J | ≤ 2p. Thus, (EGF) holds. �

Proposition 4.11. For F ∈ Cp ∩ L2(EA) such that E[F 2] = 1 and (EGF) holds,
one has:

E[(Γ(F, F ) − p)2] ≤ p2

3
|E[F 4]− 3|+ p

12
E

[

∑

a∈A

|∆{a}′

F |4
]

. (47)

Proof of proposition 4.11. By the very definition of Γ, one has:

Γ(F, F )− p =
1

2
L(F 2)− FLF − p =

1

2
L(F 2) + pF 2 − p for F ∈ Cp

=
1

2
(L+ 2pId)(F 2 − 1).

It follows that:

E[(Γ(F, F ) − p)2] =
1

4
E[
(

(L+ 2pId)(F 2 − 1)
)2
].

Since L is a self-adjoint operator, this yields:

E[(Γ(F, F ) − p)2] =
1

4
E[H2(F )(L + 2pId)2H2(F )].

As (EGF) holds, we are in position to apply lemma 4.8 with q = 2p and η = 2p:

E[(Γ(F, F ) − p)2] ≤ p

2
E[H2(F )(L+ 2pId)H2(F )]. (48)
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According to lemma 4.9, with a = 2,

p

2
E[H2(F )(L+ 2pId)H2(F )] =

p2

2
E

[

2(F 2 − 1)2 − 4

3
F 4

]

+
p

2
E[RH2(F )]

=
p2

6
E
[

6(F 2 − 1)2 − 4F 4
]

+
p

2
E[RH2 ]

=
p2

3
E[F 4 − 6F 2 + 3] +

p

2
E[RH2 ].

Thus, it yields

E[(Γ(F, F ) − p)2] ≤ p2

3
|E[F 4 − 6F 2 + 3]|+ p

2
|E[RH2 ]|, (49)

and the proof is complete, using again lemma 4.9. �

4.4. Quantitative De Jong’s theorems. Many papers are devoted to find the
optimal conditions for the asymptotic normality of U-statistics. The criterion es-
tablished in [5] is related to the fourth moment phenomenon. The extra assumption
is a negligibility condition also known as the Lindeberg-Feller condition. Fix Am a
finite subset of cardinal m such that F = F (XAm

) and E[F 2] = 1, that means:

ρ2Am
= max

i∈Am

∑

I∋i, I⊆Am, |I|=p

E[W 2
I ]

m→+∞−−−−−→ 0. (50)

In some papers [10], the term ρAm
is called maximal influence of the random vari-

ables on the total variance of the degenerate U-statistics F . In the following, we
shall denote it by ρ. The condition (50) is not necessary for asymptotic normality
to hold, but there exist counterexamples for which the sequence of fourth cumulants
of functionals of independent Rademacher random variables converges to 0 while
(50) does not hold (see [11]). We show that the quantity is related to the remainder
above.

Definition 4.5 (Connectedness of subsets). The r-tuple (I1, . . . , Ir) subsets of A
is connected if the intersection graph of {I1, . . . , Ir} is connected, i.e. the graph
G with vertex set {I1, . . . , Ir} and edge set E(G) = {{Ii, Ij}| i 6= j, Ii ∩ Ij 6= ∅} is
connected.

Lemma 4.12. If F ∈ Cp ∩ L4(EA), then:
∑

a∈A

E[|∆{a}′

F |4] ≤ 16p
∑

(I,J,K,L) connected

|E[WIWJWKWL]|. (51)

Moreover, assuming the hypercontractivity condition, i.e.

sup
J∈(A,p)

E[W 4
J ]

E[W 2
J ]

2
< +∞, (HC)

there exists a constant cp that depends only on p such that:
∑

a∈A

E[|∆{a}′

F |4] ≤ cpρ
2. (52)
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Proof of lemma 4.12. Because (a+ b)4 ≤ 8(a4 + b4), one has:

∑

a∈A

E

∣

∣

∣∆{a}′

F
∣

∣

∣

4

≤ 8
∑

a∈A

E











∑

I∋a,|I|≤p

W
{a}′

I





4

+





∑

I∋a,|I|≤p

WI





4






= 16
∑

a∈A

E











∑

I∋a,|I|≤p

WI





4






≤ 16
∑

I∩J∩K∩L 6=∅

|I ∩ J ∩K ∩ L|E[WIWJWKWL]

≤ 16p
∑

I∩J∩K∩L 6=∅

|E[WIWJWKWL]|

≤ 16p
∑

I,J,K,L connected

|E[WIWJWKWL]|.

Then, we bound it by the maximal influence, using the generalized Hölder inequal-
ity:

|E[WIWJWKWL]| ≤
(

E[W 4
I ]E[W

4
J ]E[W

4
K ]E[W 4

L]
)1/4

≤ max
J∈A,|J|=p

E[W 4
J ]

E[W 2
J ]

2

(

E[W 2
I ]

2
E[W 2

J ]
2
E[W 2

K ]2E[W 2
L]

2
)1/4

with σ2
I = E[W 2

I ]. Then the proposition 2.9 of [10] can be extended for functionals
of conditionally independent random variables and implies that:

∑

I∩J∩K∩L 6=∅

σIσJσKσL ≤ Cpρ
2,

where the finite constant Cp only depends on p. It yields the existence of cp > 0
such that the inequality (52) holds true. �

We are now in position to state a partial fourth moment limit theorem.

Theorem 4.13 (Quantitative De Jong’s limit theorem I). Let F ∈ L4(EA) a de-
generate U-statistics of order p of conditionally independent random variables such
that E [F | Z] = 0 and E[F 2] = 1. If we suppose the hypercontractivity condition
(HC) and the assumption (EGF), then one has the bound:

dW (F,N (0, 1)) ≤
√

2

3π

√

|E [F 4]− 3|+ C̃pρ, (53)

with C̃p a positive constant that only depends on p.

Proof. By corollary 4.6,

dW (F,N (0, 1)) ≤
√

2

π

1

p

√

var [Γ(F, F )] +
√
2
√

E[F 2]

(

∑

a∈A

E

[

∣

∣

∣∆{a}′

F
∣

∣

∣

4
]

)1/2

.

The combination of (47) and lemma 4.12 yields the final upper bound. �

The upper bound of the remainder expressed in terms of maximal influence is
not used in the subsequent applications, so we drop the (HC) condition.

A related result to the fourth moment phenomenon appears in [6]. We prove
the associated quantitative statement for functionals of conditionally independent
random variables. We prepare the proof with the following proposition.
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Proposition 4.14. If F =
∑m

p=1 Fp where Fp =
∑

|I|=pWI ∈ Cp, assuming there

exists C ∈ R
+ such that for all I, J ⊂ A, and a ∈ A, that

E [WIWJ | Ga]
WI\{a}WJ\{a}

< C P-a.s., (H1)

then for p 6= q:
√

var [Γ(Fp, Fq)] .

√

∑

(I,J,K,L) connected

|E[WIWJWKWL]|, (54)

for I, J,K, L sets of size less than max(p, q).

Proof of proposition 4.14. The carré du champ reads for p 6= q:

Γ(Fp, Fq) = Γ(
∑

|I|=p

WI ,
∑

|J|=q

WJ )

=
∑

|I|,|J|=p,q

Γ(WI ,WJ ).

Hence,

2Γ(Fp, Fq) =
∑

|I|,|J|=p,q

(L(WIWJ ) + (p+ q)WIWJ )

=
∑

|I|,|J|=p,q

(

(p+ q)WIWJ −
∑

a∈A

Da(WIWJ)

)

=
∑

|I|,|J|=p,q

(

(p+ q)WIWJ −
∑

a∈I∪J

Da(WIWJ )

)

= (p+ q)
∑

|I|,|J|=p,q
I∩J=∅

WIWJ +
∑

|I|,|J|=p,q
I∩J 6=∅

(|I|+ |J | − |I ∪ J |)WIWJ

+
∑

a∈I∪J

E [WIWJ | Ga] .

Because of the spectral decomposition, E [WI | Ga] = 0 for a ∈ I. Let J such that
a /∈ J , then E [WIWJ | Ga] =WJE [WI | Ga] = 0.

2Γ(Fp, Fq) = (p+ q)
∑

|I|,|J|=p,q
I∩J=∅

WIWJ +
∑

|I|,|J|=p,q
I∩J 6=∅

∑

a∈I∩J

(WIWJ + E [WIWJ | Ga]) .

Then for p 6= q, using the convexity of x 7−→ x2,

var(Γ(Fp, Fq)) ≤
1

2
var









(p+ q)
∑

|I|,|J|=p,q
I∩J=∅

WIWJ









+
1

2
var









∑

|I|,|J|=p,q
I∩J 6=∅

∑

a∈I∩J

(WIWJ + E [WIWJ | Ga])
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var(Γ(Fp, Fq)) ≤
1

2
E

















(p+ q)
∑

|I|,|J|=p,q
I∩J=∅

WIWJ









2







+
1

2
var









∑

|I|,|J|=p,q
I∩J 6=∅

∑

a∈I∩J

(WIWJ + E [WIWJ | Ga])









2 var(Γ(Fp, Fq)) ≤
∑

|I|,|J|=p,q
I∩J=∅

∑

|K|,|L|=p,q
K∩L=∅

E[WIWJWKWL]

+ E









∑

|I|,|J|=p,q
I∩J 6=∅

∑

|K|,|L|=p,q
K∩L 6=∅

∑

a∈I∩J

∑

b∈K∩L

WIWJWKWL









+ E









∑

|I|,|J|=p,q
I∩J 6=∅

∑

|K|,|L|=p,q
K∩L 6=∅

∑

a∈I∩J

∑

b∈K∩L

WIWJE [WKWL | Gb]









+ E









∑

|I|,|J|=p,q
I∩J 6=∅

∑

|K|,|L|=p,q
K∩L 6=∅

∑

a∈I∩J

∑

b∈K∩L

E [WIWJ | Ga]WKWL









+ E









∑

|I|,|J|=p,q
I∩J 6=∅

∑

|K|,|L|=p,q
K∩L 6=∅

∑

a∈I∩J

∑

b∈K∩L

E [WIWJ | Ga]E [WKWL | Gb]









.

We shall write

|CI,J,a| =
∣

∣

∣

∣

E [WIWJ | Ga]
WI\{a}WJ\{a}

∣

∣

∣

∣

for all I, J, a

with the convention W∅ = 1.
Let us deal with each term one by one:

• If I ∩ J = ∅, K ∩ L = ∅, and if there is more than 2 other pairs with
null intersection, the contribution of the term is 0, hence the first term is
non-zero if (I, J,K, L) is connected, then:
∑

|I|,|J|=p,q
I∩J=∅

∑

|K|,|L|=p,q
K∩L=∅

E[WIWJWKWL] ≤
∑

I,J,K,L connected

|E[WIWJWKWL]|.

• The second term consists of the sums of product of factors indexed by con-
nected sets since there are at least two pairs that have non-null intersection.
Since p 6= q, E [WIWJ | Z] = 0 for |I| = p and |J | = q, so if the terms are
non-zero, WIWJ and WKWL are not conditionally independent.

• For the third term, using self-adjointness, the terms are non-zero if b ∈ I∩J ,
hence it is equivalent to:

|CI,J,aE[WI\{b}WJ\{a}WKWL]| = |CI,J,a||E[WI\{b}WJ\{a}WKWL]|.
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If b is the unique element that lies in the intersection, the contribution is 0,
otherwise I, J,K, L are connected or the contribution is

E [WIWJ | Z]E [WKWL | Z] = 0

because |I| 6= |J |.
• For the last term, it is the same argument.

Then, there exists a constant C independent of others such that

var(Γ(Fp, Fq)) ≤ (1 +m2 + 2Cm2 + C2m2)
∑

I,J,K,L connected

|E[WIWJWKWL]|.

�

In [31], Privault and Serafin proves a partial fourth moment theorem for F a
functional of independent random variables sum of element in the first and second
chaos of their own Malliavin structure. To that end, we devise another strategy
which is to reexpress the remainder in the partial fourth moment theorem as a
fourth order term.

Theorem 4.15 (Quantitative De Jong’s theorem II). If F =
∑m
p=1 Fp where Fp ∈

Cp and let us assume:

• Fp are chaos eigenfunctions (EGF);
• the condition (H1);
•

κ = sup
I,J⊂A

E[W 2
I ]E[W

2
J ]

E[W 2
IW

2
J ]

<∞ (H2)

is independent of A.

Then:

dW (F,N (0, 1)) ≤ Cm

√

∑

(I,J,K,L) connected

|E[WIWJWKWL]|, (55)

where the constant Cm grows quadratically with m, independent of all others.

Proof of theorem 4.15. Let us prove the upper bound of var [Γ(Fp, Fp)] by bounding
the fourth cumulant:

E[F 4
p ] = 3

∑

I,J,K,L∈(A,p)
(I∪J)∩(K∪L)=∅

E[WIWJ ]E[WKWL] +
∑

I,J,K,L∈(A,p)
I,J,K,L connected

E[WIWJWKWL]

= 3
∑

I,J∈(A,p)

E[W 2
I ]E[W

2
J ]− 3

∑

I∩J 6=∅6=

E[W 2
I ]E[W

2
J ]

+
∑

I,J,K,L∈(A,p)
I,J,K,L connected

E[WIWJWKWL]

= 3E[F 2
p ]

2 +
∑

I,J,K,L∈(A,p)
I,J,K,L connected

E[WIWJWKWL]− 3
∑

I∩J 6=∅
I 6=J

E[W 2
I ]E[W

2
J ].

Then, one has:

|E[F 4
p ]− 3|E[F 2

p ]
2| ≤ (1 + 3κ)

∑

I,J,K,L connected

|E[WIWJWKWL]|. (56)

�

The assumptions may seem cumbersome, but as shown in lemma 4.10 concerning
(EGF), they are valid for homogeneous sums.
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5. Application to motif estimation

We interest in the applications of the bounds of probability distances to asymp-
totic normality of subhypergraph counts in exchangeable random hypergraphs.

5.1. Basic hypergraph definitions. The hypergraph model is a generalization
of graph notion that aims at model more complex model in network analysis.

Definition 5.1. A hypergraph denoted by G = (V,E = (ei)i∈P(V )) on a finite set
V = V (G) is a family of subsets of V called hyperedges. Vertices in a hypergraph
are adjacent if there is a hyperedge which contains them. The vertices not in any
edge are the isolated vertices of G. A hypergraph is connected if it contains no
isolated vertices and if the intersection graph of E is connected.

We denote by [e] the set of vertices of the hyperedge e.

Definition 5.2. A k-uniform hypergraph G = (V,E) is a hypergraph where each
hyperedge has cardinality k. In particular, such hypergraph has hyperedge set in
(

V
k

)

, the collection of k-tuples of the set of vertices V .

Definition 5.3. For k > 3, a subhypergraph (or simply subgraph) of a hypergraph

G = (V,E) is a hypergraph H = (V ′, E′) such that V ′ ⊂ V and E′ ⊂ E ∩
(

V
k

)

.

We denote by vH and eH the number of vertices and number of hyperedges of a
hypergraph H respectively.

A 2-uniform hypergraph is a graph. A 3-uniform hypergraph is a hypergraph
whose hyperedges are triangles only. We also denote byG(j) the hypergraph induced
by the hypedges of cardinality j ≤ k included in the hyperedges of the k-uniform
hypergraph G.

5.2. Exchangeable random hypergraphs. The random hypergraphs are natu-
ral extensions of random graphs. A vast majority of the literature deals with the
Erdös-Rényi model and its generalization. It is an example of exchangeable random
hypergraphs.

Definition 5.4. A k-uniform exchangeable random hypergraph G of vertex set

V = [n] is defined by the set of {0, 1}-valued random variables (Xα, α ⊂
(

[n]
k

)

) such
that:

• one associates each realization of the random variables a hypergraph ([n], E)
with α ∈ E if and only if Xα = 1;

• (Xα) form an exchangeable array, i.e. X(σ(u))u∈α

d
= Xα.

One can formulate a recipe for exchangeable random hypergraphs as done in [1,
definition 2.8]. Fix a sequence of ingredients which consist of a sequence of sample
spaces and probability kernels that determine the presence of k-hyperedges in the
hypergraph based on the indicators Xβ for (k − 1)-hyperedges β:

({∗}), (V, P1), ({0, 1}, P2), ({0, 1}, P3), . . . , ({0, 1}, Pk−1), ({0, 1}, Pk)
where we write {∗} for a one-point space, (Pk)k∈N is a family of probability kernels

such that for all k ∈ N, Pk is a probability kernel from
∏k−1
j=0{0, 1}(

V
j ) to {0, 1}(Vk).

• Color each vertex s ∈ V by some xs ∈ {0, 1} chosen independently accord-
ing to P1(∗, ·);

• Color each edge a = {s, t} ∈
(

V
2

)

by some xa ∈ {0, 1} chosen independently
according to P2(∗, xs, xt, ·);

...
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• Color each (k − 1)-hyperedge u ∈
(

V
k−1

)

by some xu ∈ {0, 1} chosen inde-

pendently according to Pk−1(∗, (xs)s∈([u]
1 )
, ∗, . . . , ∗, (xv)v∈( [u]

k−2)
, ·);

• Color each k-hyperedge e ∈
(

V
k

)

by some color xe ∈ {0, 1} chosen indepen-
dently according to Pk(∗, (xs)s∈([e]2 ), ∗, . . . , ∗, (xu)u∈( [e]

k−1)
, ·).

Example 5.5 (Erdös-Rényi random model). The randomness intervenes at the
level of edges. P1(∗, ·) is the uniform distribution on V . We color each edge a =

{s, t} ∈
(

V
2

)

by some za ∈ {0, 1} chosen independently according to P2(∗, xs, xt, ·) d
=

B(p) the Bernoulli distribution with parameter p for some p ∈ [0, 1] which is called
the edge density.

Example 5.6 (Stochastic block model). A stochastic block model corresponds to a
model where there are communities, and each edge has a probability of belonging to
the model according to the community of the vertices that the edge links. Likewise,
the randomness intervenes at the level of the edges. Let a partition V = C1⊔. . .⊔Cq .
Let (pi,j)i,j∈J1,qK2 a sequence of reals in [0, 1]. We can assign a community to each
vertex s, let call it c(s). Then:

• P1(∗, ·) is the uniform distribution;

• P2(∗, zs, zt, ·) d
= B(pc(s),c(t)).

The natural extension of the Erdös-Rényi model denoted G(3)(n, pn) consists of
having

P3(∗, xst, xtu, xus) d
= B(pn),

i.e. we draw every triangle of the hypergraph with probability pn. We also consider
another random model based on the recipe. Let (T(3)(n, qn, pn))n∈N the sequence
of 3-uniform hypergraphs such that for (s, t, u) ∈ V 3:

•
P2(∗, xs, xt) d

= B(qn);
•

P3(∗, xst, xtu, xus) d
= B(pn).

It differs from G(3)(n, pn) in many ways as pointed out by [26, Example 23.11], but
we note that G(3)(n, pn) and T(3)(n, 1, pn) have the same law. The case qn < 1
has not been much studied in the literature. The functional identities in Section 3
can be applied to random hypergraphs in the same way as for random graphs [19,
corollary 2.27]. In that section, we consider once for all A to be the set of hyperedges.
We use the notation A for other purposes.

5.3. Motif estimation in random hypergraphs. One of the oldest problem of
motif estimation is subgraph counting in random graphs. Small subgraph counts
can be used as summary statistics for large random graphs. The asymptotic nor-
mality of subgraph count in Erdös-Rényi model is well-known, as well as the conver-
gence rate [20]. There are many extensions that revolve around the definition of a
random graph as a sequence of independent random variables, for example a clique
complex of Bernoulli random graphs. In this work, we study subgraph counting
in 3-uniform random hypergraphs. To the best of our knowledge, this is the first
paper about asymptotic normality of subgraph counting of such models.

The number of subhypergraphs of G(3)(n, pn) isomorphic to G is

MG =
∑

H∈([n]
3 )

H≃G

∏

α∈H

X̂α. (57)
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For σ ∈ Aut(G), (x, y, z) ∈ E(G) if and only if (σ(x), σ(y), σ(z)) ∈ E(G). The
random variable MG has a finite Hoeffding decomposition [6, p.11(115)]. Since

X̂α = pn + (X̂α − pn), MG admits the decomposition:

MG =
∑

H∈([n]
3 )

H≃G

∑

J⊆H

p|H|−|J|
n

∏

α∈J

(X̂α − pn), (58)

where the summation extends over all subsets J of I, in virtue of the inclusion-
exclusion principle. By interchanging the sums, we find the chaotic decomposition
of MG − E[MG] that is:

MG − E[MG] =
∑

H∈([n]
3 )

H≃G

∑

J⊆H
J 6=∅

p|I|−|J|
n

∏

α∈J

(X̂α − pn),

=
∑

H∈([n]
3 )

H≃G

eG
∑

j=1

peG−j
n

∑

J⊂H
|J|=j

∏

α∈J

(X̂α − pn)

=

eG
∑

j=1

peG−j
n

∑

|J|=j

∏

α∈J

(X̂α − pn)











∑

H∈([n]
3 )

H≃G,H⊇J

1











=

eG
∑

j=1

πj(MG),

where

πk(MG) = peG−j
n

∑

|J|=j











∑

H∈([n]
3 )

H≃G,H⊇J

1











∏

α∈J

Ŷα (59)

with Ŷα is the centered version of X̂α for all α hyperedges of Kn. We note that the
decomposition above corresponds to the Hoeffding decomposition of the U-statistics
with

WJ ∝











∑

H∈([n]
3 )

H≃G,H⊇J

1











∏

α∈J

Ŷα. (60)

We proceed in the same manner in T(3)(n, qn, pn). Define NG the number of sub-
hypergraphs isomorphic to G

NG =
∑

H∈([n]
3 )

H≃G

∏

α∈H

Xα. (61)

Here, (Xα)α∈([n]
3 )

is a sequence of conditionally independent Bernoulli random vari-

ables given Z = G(n, qn). The chaos decomposition yields:

NG =
∑

H∈([n]
3 )

H≃G

∑

J⊆H

∏

β∈H\J

E [Xβ | G(n, qn)]
∏

α∈J

(Xα − E [Xα | G(n, qn)])

=
∑

H∈([n]
3 )

H≃G

∑

J⊆H

p|H|−|J|
n 1{(H\J)(2)⊂G(n,qn)}

∏

α∈J

(Xα − E [Xα | G(n, qn)]).
(62)
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Hence, NG − E [NG | G(n, qn)] reads off:
∑

H∈([n]
3 )

H≃G

∑

∅6=J⊆I

p|H|−|J|
n 1{(H\J)(2)⊂G(n,qn)}

∏

α∈J

(Xα − E [Xα | G(n, qn)]). (63)

The corresponding degenerate U-statistics in the decomposition are given for J ⊂
(

[n]
3

)

by

WJ ∝











∑

I∈([n]
3 )

I≃G,I⊇J

1











∏

α∈J

Yα, (64)

where Yα is the centered version of Xα given G(n, qn) and: and:

wJ =











∑

I∈([n]
3 )

H≃G,I⊇J

p|H|−|J|
n 1{(H\J)(2)⊂G(n,qn)}











.

Historically, normal approximation for subgraph counting had been dealt with the
method of moments [34] which requires tedious computations, but is quite adapted
to this application. In particular, thresholds of asymptotic normality for the den-
sity of edges are obtained in function of n the number of vertices. In [3], the
authors used Stein’s method to derive convergence rates of the number of subgraph
counting in random graphs in the 1-Wasserstein distance. The combination with
Malliavin calculus has brought another feature to the usual coupling constructions
in Stein’s method, leveraging chaos representation property for independent iden-
tically distributed (see [29]). MG is a Rademacher functional, so it has its Walsh
chaotic decomposition. It has led to applications to subgraph counting in random
graphs [30] and percolation problems [23]. By applying theorem 4.15 to (60), we
obtain a quantitative version of the main theorem in [6] as well as its counterpart
for T(3)(n, qn, pn). To the best of our knowledge, there is no study of normal ap-
proximation of motif estimation in T(3)(n, qn, pn). Let us denote M̄G and N̄G the
respective rescaled statistic of the number of isomorphic copies of G with respect to
their expectation, and let ÑG the rescaled statistic with respect to its conditional
mean.

Theorem 5.1. Let G a hypergraph without isolated vertices. Then,

dW (ÑG,N (0, 1)) ≤ CeG

√

∑

(I,J,K,L) connected

|E[WIWJWKWL]|/ var[ÑG]. (65)

Proof of Theorem 5.1. We check whether the conditions of theorem 4.15 hold. For
both statistics, the (EGF) assumption holds. By conditional independence of
(Xα)α∈([n]

3 )
, we have:

E[W 2
I ]E[W

2
J ]

E[W 2
IW

2
J ]

∝ E
[
∏

α∈I E[Y
2
α |Z]

∏

α∈J E[Y
2
α |Z]

]

∏

I\J E[Y
2
α ]
∏

J\I E[Y
2
α ]
∏

I∩J E[Y
2
α ]

= (pn(1− pn))
|I|+|J|−|I∪J| q|I

(2)|+|J(2)|−|I(2)∪J(2)|
n ≤ 1.



MALLIAVIN STRUCTURE FOR CONDITIONALLY INDEPENDENT RANDOM VARIABLES33

Let us note that for all a, WI\{a} is non-zero with the definition of NG−E [NG | Z].
Let WI = wI

∏

i∈I Xi, then for a ∈ I ∩ J :

E [WIWJ | Ga] = wIwJ
∏

i∈I\{a}

Yi
∏

j∈J\{a}

YjE
[

Y 2
a

∣

∣ Z
]

=
wIwJ

wI\{a}wJ\{a}
E
[

Y 2
a

∣

∣ Z
]

WI\{a}WJ\{a}

= CI,J,aWI\{a}WJ\{a},

with
CI,J,a =

wIwJ
wI\{a}wJ\{a}

E
[

Y 2
a

∣

∣ Z
]

< +∞ P-almost surely.

�

We deduce those convergence rates for pn < c < 1 for some c.

Theorem 5.2. Let G a hypergraph without isolated vertices. Then, we have

dW (ÑG,N (0, 1)) .



min
H⊂G
eH>1

{nvHpeHn }





−1/2

(66)

and

dW (ÑG,N (0, 1)) .



min
H⊂G
eH>1

{nvHpeHn q
e
(2)
H
n }





−1/2

, (67)

where e
(2)
H is the number of edges included in the hyperedges of H.

Proof of theorem 5.2. We are left to upper bound the quantity:
∑

(I,J,K,L) connected

|E[WIWJWKWL]|

∝Z
∑

(I,J,K,L) connected

∣

∣

∣

∣

∣

E

[

E

[

∏

α∈I

Yα
∏

α∈J

Yα
∏

α∈K

Yα
∏

α∈L

Yα

∣

∣

∣

∣

∣

Z

]]∣

∣

∣

∣

∣

where the notation ∝Z accounts for an equality up to a factor depending only on Z.
The terms are non-zero if and only if α lies in at least two elements of the quadruple,
i.e. if α does not lie in I \ (J ∪K ∪L), etc. Then, the number of non-zero terms is
I ∪ J ∪K ∪ L. We recall that:

E[Yα|Z] = 0

E[Y 2
α |Z] = pn(1− pn)1{α(1)∈Z}

3
∏

i=1

1{α(i)∈Z}

E[Y 3
α |Z] = pn(1− pn)(1 − 2pn)

3
∏

i=1

1{α(i)∈Z} . pn(1− pn)

3
∏

i=1

1{α(i)∈Z}

E[Y 4
α |Z] = pn(1− pn)(1 − 3pn(1− pn))

3
∏

i=1

1{α(i)∈Z} . pn(1− pn)

3
∏

i=1

1{α(i)∈Z}.

Now, we remark I, J,K, L are respectively isomorphic to A,B,C,D subhypergraphs
of G. Hence, we can sum first over (A,B,C,D), and then over all the quadruples
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(I, J,K, L) whose components are respectively isomorphic to the ones of the fixed
quadruple (A,B,C,D). We shall write:

∑

I,J,K,L

· =
∑

A,B,C,D⊂G

∑

I≃A,J,≃B
K≃C,L≃D

· :=
∑

A,B,C,D

∗A,B,C,D
∑

I,J,K,L

·

v(A) denotes the number of vertices in A. We have that |{I, J,K, L ∈
(

[n]
r

)

: I ≃
A, J ≃ B,K ≃ C,L ≃ D}| is bounded by the number of collection of vertices
of cardinal v(A ∪ B ∪ C ∪ D). By a counting argument, we see that is of order
nv(A∪B∪C∪D). Because (I, J,K, L) is connected and copies of subhypergraphs of G,
we also have that |I ∪J ∪K ∪L| = |A∪B ∪C ∪D| and |I(2) ∪J (2) ∪K(2) ∪L(2)| =
|A(2) ∪ B(2) ∪ C(2) ∪ D(2)|. Hence, for a fixed connected quadruple (I, J,K, L)
associated to (A,B,C,D),

|E[WIWJWKWL]|
. wIwJwKwL n

v(A∪B∪C∪D)p|A∪B∪C∪D|
n q|A

(2)∪B(2)∪C(2)∪D(2)|
n .

Let us bound the variance of NG − E [NG | G(n, qn)]:

var2[NG − E [NG | G(n, qn)]] =





∑

I∩J 6=∅

E[WIWJ ]





2

=
∑

I∩J 6=∅

(

E[W 2
I ] + E[W 2

J ]
)2

=
1

22

∑

A,B⊂G
A∩B 6=∅

(

∗A
∑

I

E[W 2
I ] +

∗B
∑

J

E[W 2
J ]

)2

.

For a fixed connected quadruple (A,B,C,D), by applying repeatedly the inequality
a2 + b2 ≥ 2ab, we get:

var2[NG − E [NG | G(n, qn)]]

≥ 1

16

(

∗A
∑

I

E[W 2
I ] +

∗B
∑

J

E[W 2
J ] +

∗C
∑

K

E[W 2
K ] +

∗D
∑

L

E[W 2
L]

)2

≥ 1

16

(

∗A
∑

I

E[W 2
I ]×

∗B
∑

J

E[W 2
J ]×

∗C
∑

K

E[W 2
K ]×

∗D
∑

L

E[W 2
L]

)1/2

.

Then using that E[W 2
I ] = w2

Iq
|I(2)|
n (1− pn)

|I|p
|I|
n = q

|A(2)|
n (1− pn)

|A|p
|A|
n , so

∗A
∑

I

E[W 2
I ] =

∗A
∑

I

w2
I (1− pn)

|A|p|A|
n q|A

(2)|
n = nv(A)(1− pn)

|A|p|A|
n q|A

(2)|
n .

In particular, one has for a fixed quadruple (I, J,K, L) and associated (A,B,C,D):

var2[NG − E [NG | G(n, qn)]] ≥
1

16
wIwJwKwL

(

nv
∗(A,B,C,D)(pn(1− pn))

e∗(A,B,C,D)qe
(2)∗(A,B,C,D)
n

)1/2

(68)

where v∗(A,B,C,D) = v(A) + v(B) + v(C) + v(D) and e∗(A,B,C,D) = |A| +
|B| + |C| + |D| and e(2)∗(A,B,C,D) = |A(2)| + |B(2)| + |C(2)| + |D(2)|. It yields
the result. Using the Lemma 9 of [6], for any quadruple (I, J,K, L) of collections
I, J,K, L isomorphic to (sub)collections of H , there exists two (not both empty)
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subcollections of G, sayM andM ′, which may contain a nonzero number of isolated
vertices, say iM and iM ′ , such that

v(M) + v(M ′) + iM + iM ′ = v(I) + v(J) + v(K) + v(L)− 2v(I ∪ J ∪K ∪L), (69)

|M (2)|+ |M ′(2)| = |I(2)|+ |J (2)|+ |K(2)|+ |L(2)| − 2|I(2) ∪ J (2) ∪K(2) ∪L(2)| (70)

and by extension:

|M |+ |M ′| = |I|+ |J |+ |K|+ |L| − 2|I ∪ J ∪K ∪ L|. (71)

As G does not have isolated vertices, so do M and M ′. As M and M ′ are subcol-
lections of G, their average degree does not exceed m(G). Hence, by theorem 5.1,

dW (ÑG,N (0, 1)) . (nv(M)+v(M ′)p|M|+|M ′|
n q|M

(2)|+|M ′(2)|
n )1/2.

Thus, (67) follows. The first result for MG is obtained with qn = 1. �

Remark 5.7. This bound is relevant only for the regime pn
n→∞−−−−→ 0.

The Malliavin structure for conditionally independent random variables yields a
chaos decomposition and rates of normal convergence of the conditionally centered
statistic given Z.

5.4. A modified Hoeffding decomposition. In that section, we readopt the no-
tations of the previous chapter by denoting A the index set of the random variables.
Let another set Â that index auxiliary random variables in addition to (X̂β)β∈Â.
We shall write the sequence of conditionally independent random variables given
Z, X = (Xα, . . . , X̂β , . . .)α∈A,β∈Â where the subsequence (X̂β)β∈Â is a sequence

of independent random variables, and σ(Z) = σ(X̂a, a ∈ A). This setting is new
to the best of our knowledge, and is specifically tailored for the application in
T(3)(n, qn, pn). We assume that A is the set of 3-hyperedges, Â is the set of edges
included in the hyperedges of A and

Xα = g(Uα)
∏

b⊂α

X̂b (72)

where (Uα)α∈A forms a sequence of conditionally independent random variables

given X̂, following the uniform distribution.

Lemma 5.3. The sequence X is a sequence of conditionally independent random
variables.

Proof. Since, by assumption, for f bounded and (α, β) ∈ Â2 such that α 6= β:

E

[

f(X̂β)
∣

∣

∣
X̂α, Z

]

= E

[

f(X̂β)
∣

∣

∣
Z
]

,

the subsequence (X̂β)β∈Â is a sequence of conditionally independent random vari-

ables given Z. Let α ∈ A and β ∈ Â, by definition

E

[

f(Xα) | X̂β, Z
]

= E [f(Xα) | Z] ,
and:

E

[

f(X̂β)
∣

∣

∣ Xα, Z
]

= E

[

f(X̂β)
∣

∣

∣ Z
]

because X̂β is a function of Z. �

Remark 5.8. That type of sequence is a degenerate case of sequence of condition-

ally independent random variables since the X̂α are constant given Z.

For our purpose, the following lemma shows the commutation relation.
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Lemma 5.4. For F ∈ L2(EA) a homogeneous sum of conditionally independent

random variables X and α ∈ A and β ∈ Â such that

E

[

E

[

F | X̂{β}, X
] ∣

∣

∣ X{α}, X̂
]

= E

[

E

[

F | X{α}, X̂
] ∣

∣

∣ X, X̂{β}
]

. (73)

Proof of lemma 5.4. It suffices to consider functionals of the type:

XαXα1 . . .Xαn

for n ≥ 1. If β is not included in the edges of α, we have the property by indepen-
dence of the associated random variables.

Let consider the case where β is one of the edge of α.

E

[

F | X{α}, X̂
]

= E[g(Uα)]
∏

b⊂α

X̂b

n
∏

i=1

Xαi

and

E

[

F | X̂{β}, X
]

= g(Uα)E
[

X̂
1+

∑n
i=1 1{β∈αi}

β

]

n
∏

i=1

∏

b⊂αi

X̂b.

Then,

E

[

E

[

F | X̂{β}, X
] ∣

∣

∣
X{α}, X̂

]

= E[g(Uα)]E
[

X̂
1+

∑n
i=1 1{β∈αi}

β

]

n
∏

i=1

∏

b⊂αi

X̂b.

= E

[

E

[

F | X{α}, X̂
] ∣

∣

∣ X, X̂{β}
]

.

�

Those commutation relations of lemma 5.4 entail a modified Hoeffding decom-
position of functionals of Bernoulli random variables.

Lemma 5.5. Given X, the modified chaos decomposition is given by:

F = E[F ] +
+∞
∑

n=1

πn(F )

with

πn(F ) =
∑

I⊂A∪Â
|I|=n

(

∏

b∈I

Db

)





∏

c∈(A∪Â)\I

E[·|Gc]



 (74)

with Gc = σ(X{c}).

Proof of lemma 5.5. We redefine a gradient D and Ornstein-Uhlenbeck operator L

in the same fashion as in subsection 2.2 such that for a ∈ A ∪ Â:

DaF = F − E

[

F | X{a}
]

.

Then, we follow the same scheme of proof as lemma 2.6 with that modified gradient.
Thus, we obtain that kerL = {F ∈ Dom L : E[F ] = 0} and (74).

�

The resulting Malliavin framework is analogous to the Malliavin-Dirichlet struc-
ture in [9], whose underlying Markov process is the usual Glauber dynamics starting
from X. It extends the scope to a particular type of sequences of conditionally inde-
pendent random variables. That applies to NG. We recall that in the application
to motif estimation, Z is the underlying Erdös-Rényi random graph G(n, qn). The
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decomposition is similar to (62) except that this time the decomposition involves

the random variables (X̂b)b∈Â. Using the inclusion-exclusion principle,

E [NG | G(n, qn)] =
∑

H∈([n]
3 )

H≃G

∏

α∈H

E [Xα | G(n, qn)] =
∑

H∈([n]
3 )

H≃G

∏

α∈H

∏

β⊂α

X̂β

=
∑

H∈([n]
3 )

H≃G

p|H|
n

∏

β∈H(2)

((X̂β − E[X̂β ]) + E[X̂β ])

Hence,

E [NG | G(n, qn)]− E[NG] =
∑

H∈([n]
3 )

H≃G

p|H|
n

∑

∅6=J⊆H

q|H
(2)|−|J(2)|

n

∏

β∈J(2)

(X̂α − qn).

It entails that:

NG − E[NG] = (NG − E [NG | G(n, qn)]) + (E [NG | G(n, qn)]− E[NG])

=
∑

H∈([n]
3 )

H≃G

∑

∅6=J⊆I

p|H|−|J|
n 1{(H\J)(2)⊂G(n,qn)}

∏

α∈J

(Xα − E [Xα | G(n, qn)])

+
∑

H∈([n]
3 )

H≃G

p|H|
n

∑

∅6=J⊆H

q|H
(2)|−|J(2)|

n

∏

β∈J(2)

(X̂α − qn)

=
∑

H∈([n]
3 )

H≃G

∑

∅6=J⊆I

p|H|−|J|
n

∏

β∈(H\J)(2)

X̂β

∏

α∈J

(Xα − E [Xα | G(n, qn)])

+
∑

H∈([n]
3 )

H≃G

p|H|
n

∑

∅6=J⊆H

q|H
(2)|−|J(2)|

n

∏

β∈J(2)

(X̂α − qn)

=
∑

H∈([n]
3 )

H≃G

∑

∅6=J⊆H

p|H|−|J|
n

∏

β∈(H\J)(2)

Ŷβ
∏

α∈J

Yα

+
∑

H∈([n]
3 )

H≃G

∑

∅6=J⊆H

p|H|−|J|
n q(H\J)(2)

n

∏

α∈J

Yα

+
∑

H∈([n]
3 )

H≃G

∑

∅6=J⊆H

p|H|
n q|H

(2)|−|J(2)|
n

∏

β∈J(2)

Ŷβ
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where Yα = Xα − E [Xα | G(n, qn)] and Ŷβ = X̂β − E[X̂β ]. It can be rewritten as

NG − E[NG] =
∑

JW
(1)
J +W

(2)
J +W

(3)
J where

W
[1]
J = peG−|J|

n q
e
(2)
G

−|J(2)|
n











∑

H∈([n]
3 )

H≃G,H⊇J

1











∏

α∈J

Yα; W
[2]
J = peG−|J|

n q
e
(2)
G

−|J(2)|
n p|J|n

∏

β∈J(2)

Ŷβ ;

W
[3]
J = peG−|J|

n











∑

H∈([n]
3 )

H≃G

∏

β∈(H\J)(2)

Ŷβ











∏

α∈J

Yα.

(75)

We consider the Malliavin structure associated to Y = (Yα, . . . , Ŷβ, . . .)α∈([n]
3 ),β∈(

[n]
3 )

.

Then, for each J , there exists m ∈ N such that W
(i)
J ∈ Cm for i ∈ {1, 2, 3}.

Theorem 5.6. Let G a hypergraph without isolated vertices. Then, let pn
n→+∞−−−−−→ 0

and qn
n→+∞−−−−−→ 0:

dW (N̄G,N (0, 1)) .



min
H⊂G
eH>1

{nvHpeHn q
e
(2)
H
n }





−1/2

. (76)

Proof of theorem 5.6. We follow the same lines as the proof of theorem 5.2, with
the difference that π0(NG) = E[F ]. The (EGF) assumption holds. We recall the
bound in our context

dW (N̄G,N (0, 1)) ≤ CeG

√

√

√

√

∑

(I,J,K,L) connected

3
∑

ii,ij ,ik,il=1

|E[W [ii]
I W

[ij ]
J W

[ik]
K W

[il]
L ]|/ var[NG].

(77)
As each connected quadruple (I, J,K, L) is associated to (H1, H2, H3, H4) subhy-
pergraphs of G such that I ≃ H1, J ≃ H2, K ≃ H3 and L ≃ H4, from theorem 5.2,
we have:

|E[W [1]
I W

[ij ]
J W

[iK ]
K W

[il]
L ]|

≤ wIwJwKwL n
v(H1∪H2∪H3∪H4)p|H1∪H2∪H3∪H4|

n q
|H

(2)
1 ∪H

(2)
2 ∪H

(2)
3 ∪H

(2)
4 |

n (78)

for ij, ik, il ∈ {1, 2} as
∏

α∈J E [Yα | Z] ∝Z
∏

β∈J(2) Ŷβ and E[Ŷ kβ ] ∝ pn for k ≥ 2.

As X̂β ≤ 1 a.s., we also have (78) for all ii, ij, ik, il ∈ {1, 2, 3, 4}. Likewise, the
variance reads off in function of the quadruples:

var[NG] =
1

4

∑

H1,H2⊂G
H1∩H2 6=∅

(

∗H1
∑

I

E[W 2
I ] +

∗H2
∑

J

E[W 2
J ]

)

where
∑∗H1

I · · · stands for a sum over I such that I is isomorphic to H1.
We follow the same lines of computations as those leading to (68). Then, for

fixed quadruples (H1, H2, H3, H4),

var[NG] ≥
1

16

(

∗H1
∑

I

E[W 2
I ]×

∗H2
∑

J

E[W 2
J ]×

∗H3
∑

K

E[W 2
K ]×

∗H4
∑

L

E[W 2
L]

)1/2

. (79)

As E[W 2
I ] = p

|H|−|H1|
n q

|H(2)|−|H
(2)
1 |

n q
|H

(2)
1 |

n (1− qn)
|H

(2)
1 |(1− pn)

|H1|p
|H1|
n , we have:
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∑

(I,J,K,L) connected

3
∑

ii,ij ,ik,il=1

|E[W [ii]
I W

[ij ]
J W

[ik]
K W

[il]
L ]|/ var[NG]

≤ nv(H1∪H2∪H3∪H4)p
|H1∪H2∪H3∪H4|
n q

|H
(2)
1 ∪H

(2)
2 ∪H

(2)
3 ∪H

(2)
4 |

n
(

nv(H1)+v(H2)+v(H3)+v(H4)p
|H1|+|H2|+|H3|+|H4|
n q

|H
(2)
1 |+|H

(2)
2 |+|H

(2)
3 |+|H

(2)
4 |

n

)1/2
.

At that point, we arrive at the same upper bound as in the proof of theorem 5.2. �

While in [22, 36], the probability of keeping a hyperedge does not depend on the
number of vertices, we let pn tend to 0. As a consequence, we can state thresholds
for subhypergraph containment that complement the ones in [19, p.61]. As done
in [22, 38] for random graphs, it should be possible to derive with our method
the convergence rates considering an arbitrary exchangeable random hypergraph
generated by a hypergraphon, the analog of graphon in graph limit theory.
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