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The effects of climate change and natural disasters on fungal pathogens and the risks for fungal diseases remain
incompletely understood. In this literature review, we examined how fungi are adapting to an increase in the Earth’s
temperature and are becoming more thermotolerant, which is enhancing fungal fitness and virulence. Climate change
is creating conditions conducive to the emergence of new fungal pathogens and is priming fungi to adapt to previously
inhospitable environments, such as polluted habitats and urban areas, leading to the geographical spread of some
fungi to traditionally non-endemic areas. Climate change is also contributing to increases in the frequency and
severity of natural disasters, which can trigger outbreaks of fungal diseases and increase the spread of fungal
pathogens. The populations mostly affected are the socially vulnerable. More awareness, research, funding, and
policies on the part of key stakeholders are needed to mitigate the effects of climate change and disaster-related fungal
diseases.
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Introduction
The impact of climate changeon emerging and re-emerging
infectious diseases is becoming increasingly recognised.1

Climate change refers to long-term shifts in temperatures
andweather patterns,which aredisruptingecologic systems
worldwide, leading to shifts in the global distributions of
pathogens, hosts, and disease reservoirs. Because climate
change exacerbates inequities, populations most suscep-
tible to infectious diseases, including the global poor and
those with little access to quality health care, will bear the
brunt of the adverse health effects of the changing climate.1,2

Climate change is also having a profound impact on
invasive fungal diseases. Unlike humans, many pathogenic
fungi are thriving as the Earth’s temperature increases,
quickly adapting to higher temperatures and becoming
more virulent and potent.3 These differences have been
associated with substantial changes in fungal disease epi-
demiology and the emergence of new pathogens, such as
Candida auris, which shows heat tolerance and has adapted
to human body temperatures.3–5 Climate change has also
influenced the spread of endemic fungal diseases such
as coccidioidomycoses and histoplasmosis6,7 and the
geographical ranges of other fungi, including those that
affect non-human animals and plants. In addition, fungal
plant pathogens are evolving with climate change and
represent an increasing threat to global food security.
A comprehensive understanding of the changing epidemi-
ology of fungal pathogens requires a shift in the clinical
index of suspicion. Without this adjustment, a persistent
risk of underdiagnosis or misdiagnosis of fungal infections
will remain.
In addition, as a detrimental byproduct of climate change,

the world is facing increased risks for natural disasters
that have in turn been associated with global fungal
outbreaks.8–10 To inform relevant worldwide initiatives and
help to tackle some of those devastating consequences, we
performed a detailed review of the literature examining
how climate change and natural disasters are impacting the
www.thelancet.com/microbe Vol ▪ ▪ 2024
risks for fungal diseases and discuss intervention and
remediation strategies.

Climate change: impact on fungal diseases
Although climate change exerts a substantial negative
impact on human health,11 some pathogenic fungi are
benefiting from climate change, gradually adapting to
higher temperatures and becoming more prevalent and
possibly more virulent. In this section, we review fungal
adaptation to heat stress, describe how climate change could
influence underlying anthropogenic factors that affect
fungal ecosystems and host susceptibility, and discuss the
observed and expected impact of climate change on the
epidemiology of fungal diseases.

Adaptation of pathogenic fungi to heat stress and climate
change
Most fungal taxa are adapted to environmental conditions
that are vastly different from the human body, and low
thermal tolerance prevents the fungi from withstanding
mammalianbody temperatures.12 Thermal adaptation isnot
the sole factor but represents a major prerequisite for
rendering fungi capable of infecting humans or mammals.
Rising environmental temperatures might provide an
important avenue for the fungal stress adaptation machin-
ery to adapt to high-temperature environments, potentially
promoting their pathogenicity inhumans.Details regarding
the temperature-sensing mechanisms, heat stress and
adaptation responses, and metabolic changes that occur in
fungi in response to climate change are provided in figure 1
and the appendix (pp 7–10).

Impact of climate change and underlying anthropogenic
factors on fungal ecosystems, resistance, and host
susceptibility
Global warming and fungal heat adaptation are inter-related
with many other determinants of climate change and its
underlying anthropogenic factors that have pleiotropic
1
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effects on fungal ecosystems and host susceptibility
(figure 2). Modelling data predicted that fungal communi-
ties will change on a broad spatial scale with a changing
climate, favouring the expansion of saprotrophic fungi
(appendix pp 11–12).13

The adaptation of pathogenic fungi to one environmental
stressor also primes them to withstand other adverse envi-
ronments. This observation extends to several anthropo-
genic factors associated with climate change. For instance,
fungal melanin confers cross-protection against heat stress,
pH stress, heavy metals, and radioactive isotopes, thereby
contributing to the ability of some fungal taxa to proliferate in
metal-polluted areas, acidic environments, and radioactively
polluted wastelands after nuclear catastrophes.14

Contamination of rivers, lakes, and tap water with
agricultural and industrial pollutants profoundly impacts
the risks for acquiring fungal diseases. Pollution of water
bodies and water supply systems has been associated with
increased growth and diversity of fungi, including patho-
genic species, as many pollutants (eg, nitrate or iron) can
provide a favourable pH and nutritional environment for
fungal growth.15 Once contaminated, freshwater then
presents a source of superficial and systemic fungal infec-
tions and poses a threat to health-care systems, even in
industrialised countries.2,16–18 At least 11 classes of fungi are
known to degrade plastic, including fungi that can be
pathogenic to humans, such as Acremonium spp, Alternaria
spp, Aspergillus spp, Cladosporium spp, Fusarium spp, and
several mucormycetes species.19 Although the ability of
some fungi to degrade plastics might offer a solution for
mitigating the accumulation of plastics in landfills and
microplastics in water, the ubiquitous nature of micro-
plastics in global water supplies could also promote fungal
growth and subsequent antifungal resistance.20

Rapid urbanisation affects both climate change and
microbial ecosystems in various ways. A high urban
population density and associated industrial and ecological
factors, such as a reduced canopy cover, contribute to
notably increased local air and soil temperatures and
surrounding streamwarming.21 This urban heat-island effect
exerts evolutionary pressure on microorganisms and has
been associated with greater fungal stress adaptation than
that observed with rural isolates from neighbouring
geographical areas.22

Climate change affects not only fungal adaptation and
exposure but also host susceptibility to pathogenic fungi.
For example, increased ultraviolet light exposure has been
linked to numerous adverse effects on human immunity
and immune responses, including unfavourable T-cell
polarisation, increased production of inhibitory cytokines,
and altered complement activation.23 As environmental
temperatures have been rising, the average human body
temperatures in theUSAhavedecreasedby0⋅03◦Cperbirth
decade since the industrial revolution. This trend is most
likely associated with economic development, improved
standards of living, and lower resting metabolic rates due
to reduced inflammation and chronic infections.24
Continuation of the trend of decreasing human body tem-
peratures and narrowing of the thermal exclusion gradient
between fungi and humans could further lead to alignment
between host and fungal temperature preferences and
increase human susceptibility to environmental fungi.25

Seasonal influences on meteorological conditions and
changes in warming patterns, along with alterations in
light–dark cycles, melatonin secretion, and potential dis-
ruptions in circadian rhythms can also affect host suscep-
tibility,26,27 including changes in the immune response,
alterations in the expression of epithelial receptors, and
changes in mucosal surface characteristics.28

Increased susceptibility to fungal infection and shifts in
fungal epidemiology related to climate change are not
limited to pathogenic fungi affecting humans, as fungal
plant pathogens such as Puccinia striiformis3 or Fusarium
graminearum are evolving with climate change and threat-
ening food security (appendix pp 11–12). Notably, food
insecurity and nutrient deficiency are inter-related with
various hallmarks of human immune impairment, espe-
cially in young children, and are considered key mediators
of malnutrition-related immunosuppression induced by
climate change, which increases the susceptibility of these
individuals to fungal diseases.29

The threat of climate change to food security has
contributed to adaptive agricultural practices (including
increased land use, chemical treatments, and fungicides for
farming) and cultivation of a small number of highly pro-
ductive crops to optimise agricultural output.30,31 Acquired
azole resistance in Aspergillus fumigatus that is partly driven
by the use of environmental fungicides is becoming
increasingly problematic during treatment of aspergillosis in
humans.32 Fusariosis is an emergingmould infection caused
by Fusarium spp that are frequently resistant to azoles and
other antifungals,33 and two outbreaks ofmultidrug-resistant
CNS fusariosis were recently reported in Mexico.34 Concur-
rently, some newer fungicides show mechanisms of action
that are similar to those of novel antifungal candidates cur-
rently in late-stage development. Notable examples for such
fungicides include ipflufenoquin, which shares its mode of
action with olorofim,35 and aminopyrifen, which shares its
mode of action with fosmanogepix.36 These findings suggest
that these newer fungicides, with shared mechanisms of
action, could inadvertently contribute to the spread of fungal
resistance in the environment and disable urgently needed
novel antifungal treatments even before they become
available for clinical use.35,37 Together, these changes could
have detrimental effects on biodiversity and promote the
development of antifungal resistance.
Impact of climate change on the epidemiology of fungal
infections
Changes in the epidemiology of fungal infections due
to climate change are multifactorial and mainly driven by
a combination of new emerging species, a broader
geographical dissemination of existing fungal species to
www.thelancet.com/microbe Vol ▪ ▪ 2024
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Figure 1: Proposed mechanisms of fungal thermo-adaptation
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larger endemic areas, and an increased dispersion of
infectious fungal propagules.
As theworldwarms, fungi adapt to higher temperatures,38

resulting in the emergence of new fungal species as human
www.thelancet.com/microbe Vol ▪ ▪ 2024
pathogens.3,4 For instance, a link has been established
between the frequent thermotolerance of ascomycetous
yeasts and their prevalence among pathogenic fungi
affecting humans, and basidiomycetous yeasts and some
3
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previously less thermotolerant ascomycetous yeast taxa are
rapidly adapting to a warming planet.39 For example, the
yeast Candida orthopsilosis is a human-associated oppor-
tunistic pathogen belonging to the Candida parapsilosis
complex that originates from warm marine ecosystems,
outlining the effect of warming ecosystems on the emer-
gence of new fungal pathogens.40 Fusarium oxysporum has
historically been a banana pathogen but is now recognised
as a human pathogen.41,42 Therefore, many fungal species
not yet associated with human disease could become
emerging human pathogens.
The most prominent example of an emerging yeast

pathogen isCauris, which is hypothesised to have evolved
from a plant saprophyte to become a human pathogen
after adapting to higher temperatures.5 This hypothesis
is strengthened by the finding that an environmental
C auris isolate grew slower at mammalian temperatures
than did clinical C auris strains, suggestive of a more
www.thelancet.com/microbe Vol ▪ ▪ 2024
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recent adaptation of the ancestors of the clinical strains
to mammalian temperatures.43 Other factors that could
contribute to C auris becoming a human pathogen
include expanded farming practices, deforestation, and
disruption of coastal ecosystems.44 Details regarding
C auris, which was recognised as one of the four fungal
pathogens of crucial importance in WHO’s recently
published fungal pathogens priority list45, and other
human pathogens that appear to have emerged owing to
climate change, namely, Cryptococcus deuterogattii,
F oxysporum, and several Bipolaris and Cladosporium spp,
are provided in the appendix (pp 12–14).
Climate change is also contributing to the geographical

spread of so-called endemic mycoses such as coccidioido-
mycosis and histoplasmosis, necessitating continued
redrawing of maps of endemic fungal infections.6,7,46

Indeed, the term endemic mycoses is increasingly being
recognised as a misnomer, given the frequency at which
these dimorphic fungi are now being recognised outside
of traditional endemic areas.47,48 For instance, histoplasmo-
sis was historically endemic to theOhio andMichiganRiver
Valleys in theUSA and parts of Central and SouthAmerica,49

although autochthonous cases have been observed in sev-
eral non-endemic states in the USA and non-endemic
provinces in Canada.6 Furthermore, modelling estimates
have indicated thatHistoplasma capsulatum ismost likely to
be now present throughout the uppermidwest and eastern
Atlantic coastal regions of the USA,50 andHistoplasma spp
are now recognised as endemic inmuch of Africa and Asia
as well as in parts of Europe and Australia.6 Coccidioido-
mycosis caused by Coccidioides immitis has historically
been endemic to the Central Valley, CA, and Arizona,
California, Texas, Utah, and New Mexico in the USA and
that caused by Coccidioides posadasii has been historically
endemic to central and South America. Nonetheless,
autochthonous cases of coccidioidomycosis caused by
C immitis have also been documented in Washington,
USA.51 Modelling suggests that the endemic range of
coccidioidomycosis in the USA will more than double,
expanding north into dry regions in Idaho, Wyoming,
Nebraska,Montana, SouthDakota, andNorthDakota, with
the current estimate of 34 460 cases projected to increase
by 50% by the year 2100.52 Globally, this modelling sug-
gests that coccidioidomycosis might eventually spread to
Canada, throughout Mexico, and parts of Central and
South America, where the numbers of reported cases are
progressively increasing.52,53 Blastomyces spp, which cause
blastomycosis, have historically been endemic to the
southcentral, southeastern, andmidwestern regions of the
USA and a few provinces inCanada. Cases are increasingly
being seen outside of these traditionally endemic areas,54,55

and blastomycosis is now recognised to occur in parts of
Africa and the Middle East.56,57 Paracoccidioidomycosis,
caused by Paracoccidioides lutzii, has historically been
endemic to large parts of South America, central America,
and Mexico but is expanding to new areas of Brazil,
Ecuador, and Venezuela. The understanding of the
www.thelancet.com/microbe Vol ▪ ▪ 2024
epidemiology of Emergomyces spp is incomplete, with its
climate sensitivity remaining scarcely studied.6 Finally,
although not directly shown, feline and zoonotic outbreaks
of the dimorphic fungus Sporothrix brasiliensis in South
America (especially Brazil) have been hypothesised to be
related to gradual temperature increases that have enabled
its adaptation to invasive yeast growth.58

The warming planet and other negative aspects of climate
change can affect the airborne dispersal and, thus, the
environmental burden of infectious propagules of patho-
genicmoulds. Experimental work has shown that fungi, not
exclusively triggered by mechanical stressors, autono-
mously synchronise the ejection of thousands of spores in a
single puff and create a flow of air that propagate these
spores to atmospheric currents and new infection sites.59

Climate change, weather patterns, and atmospheric con-
ditions can influence the dispersal of fungal spores in the
air. For instance, warmer temperatures can lead to
increased turbulence in the atmosphere, affecting the ver-
tical and horizontal movement of airborne spores. This
altereddispersal can affect the geographical distribution and
range expansion of fungal pathogens. Furthermore, tem-
perature changes can lead toadaptations, potentially altering
the species-specific synchronisation patterns and thus
affecting the prevalence and spread of spores. The behav-
iour of fungal spores in manipulating a local fluid envir-
onment to reduce air resistance and enhance spore
dispersal or regulate their own temperature through
evapotranspiration is a fascinating and understudied aspect
of fungal biology.60

In addition, under low-humidity conditions, fungal
spores are naturally folded, which can improve their
transportation through the air and enable them to travel
longer distances, increasing their dispersal. Conidial
counts of the common opportunistic mould genus Asper-
gillus increase with high temperature and low precipitation,
with environmental spore counts being positively asso-
ciated with incidence rates of invasive aspergillosis in
humans.61 Reduced spore size due to natural folding can
also lead to deeper deposition within the alveoli in the
lungs.62

Several fungal infections with predominantly cutaneous
or ocular manifestations are also considered to be affected
by climate change.46 For instance, dermatophyte infections
due to Epidermophyton,Microsporum, or Trichophyton spp as
well as chromoblastomycosis and fungal eumycetoma have
a predilection for moist and warm conditions, show con-
siderable seasonality, and have been associatedwith climate
changes (appendix pp 12–14).
Natural disasters and fungal outbreaks
Climate change is triggering profound long-term effects on
fungal ecosystems, as discussed, and has been associated
with an increasing frequency and intensity of devastating
natural disasters, which in turn often trigger outbreaks of
fungal diseases.10,63
5
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Mechanisms through which natural disasters trigger
fungal outbreaks
Natural disasters can cause extensive damage to natural
habitats and urban areas, which can create conditions con-
ducive to fungal growthor opportunities for fungal exposure
that would not exist otherwise (figure 3). Natural disasters
present a high risk for traumatic injuries, such as lacer-
ations, abrasions, or contusions with disruption of the skin
barrier, which provide entry routes for fungal pathogens.
Wound contamination with organicmatter can lead to post-
disaster mould infections in the skin and soft tissues.
Traumatic injuries and psychological stress also have com-
plex and profound adverse effects on the immune system,
making natural disaster victims highly susceptible to
opportunistic fungal infections.
Wildfires and volcanic eruptions leave ash that affects

ecosystems through altered soil pH values and increased
nutrient contents, potentially altering microbial communi-
ties and creating new niches for the colonisation of fungi
with functional traits that enable them to survive such
extremes and cause harm to humans.64,65 Wildfires leave
deeper soil horizons at temperatures that are higher than
normal and are suitable for breaking thedormancy of fungal
spores, which poses a substantial threat for high fungal
burden exposures in the context of skin injuries and inhal-
ation. Notably, fungal spores can travel in a fire plume over
longdistances, impacting distant unexposed populations.8,66

Widespread contamination with mycotoxin-producing
moulds has also been reported after flooding events,67 as
high levels of humidity and moisture can cause fungal
spores and biological fragments (such as mycotoxins) to
become airborne and disperse across large areas, further
facilitated by strong winds.68,69 Fungal spores can be carried
over long distances through extreme storms or volcanic
eruptions where particles carrying fungal spores are
released into the atmosphere.70

Eventually, the dispersal of fungal pathogens following
building damage, storms, or wildfires can cause chronic
inflammation, asthma, or respiratory fungal infections
through inhalation of fungal spores small enough to reach
the alveolar surface of the lungs.10 Tsunamis, floods, and
heavy rainfalls can also lead tomarked increases inhumidity
and housing damage in affected areas, providing conditions
favourable for fungal germination and growth.71

Finally, tsunamis might present a condition in which the
land is seeded with pathogenic waterborne microbes. This
fascinating hypothesismight link the tsunami that followed
the Great Alaskan Earthquake in 1964 to the subsequent
introduction of the subtropical fungus Cryptococcus gattii in
the Pacific Northwest 35 years later.72
Epidemiology of fungal outbreaks following natural
disasters
The first fungal outbreaks associated with natural disasters
were described nearly 40 years ago,73 when in 1985 eight
victims injured during a volcano eruption in Colombia
developed soft-tissue infections due to Rhizopus arrhizus,
www.thelancet.com/microbe Vol ▪ ▪ 2024
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Figure 4: Global distribution of fungal outbreaks related to natural disasters
(A) World map. (B) North and middle America. (C) Southeast Asia. AE=Apophysomyces elegans. AF=Aspergillus fumigatus. AG=Aspergillus glaucus. AT=Apophysomyces trapeziformis. AV=Aspergillus flavus.
BD=Blastomyces dermatitidis. CA=Candida albicans. CB=Cladophialophora bantiana. CH=unknown (chromoblastomycosis). CL=Cladosporium spp. CT=Candida tropicalis. CO=Coccidioides immitis. DR=Drechslera
spp. Mo=moulds. NS=not specified. RH=Rhizopus arrhizus. PV=Paecilomyces variotii. SA=Scedosporium apiospermum. SU=Scedosporium aurantiacum. SY=Syncephalastrum spp. TM=Trichosporon mucoides.

Review
and since then, their frequency has been increasing
globally74 (figure 4 and appendix pp 39–45).
Specifically, multiple fungal outbreaks were associated

with traumatic injuries and wound contamination. After
the catastrophic Indian Ocean tsunami in 2004, several
cases of trauma-related invasive mould infections due to
Apophysomyces elegans, other species within Mucorales,
Cladophialophora bantiana,Scedosporium spp, andAspergillus
spp were reported for victims in the affected regions.75,76

Following the Great Sichuan Earthquake of 2008 in
China, affected individuals showed Candida tropicalis and
other fungal pathogens in blood and wound cultures.77
www.thelancet.com/microbe Vol ▪ ▪ 2024
During the few days that followed the EF-5 tornado that
struck Joplin, MO, USA, 13 patients were diagnosed
with necrotising soft-tissue infections attributed to Apophy-
somyces trapeziformis, all of which were consequences of the
traumatic injuries sustained during the tornado.9 Of interest,
tornadic shear–stress challenge transiently induced a hyper-
virulent phenotype with various pathogenic species within
Mucorales.78

Near-drowning victims swept away by tsunamis and
floods show a high risk for developing severe fungal infec-
tions due to aspiration of contaminated mud and water.
After the tsunami following the Great Japan Earthquake in
7
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2011, cases of severe infections with Scedosporium and
Aspergillus spp were reported.79 Traumatic injuries and
wound contamination with muddy water in flooded areas
can further add to the risk of developing fungal infections in
these individuals.
Overwhelmed health-care systems following natural

disasters contribute to fungal outbreaks, as evident from an
outbreak of five A fumigatus-related meningitis cases that
was linked to contaminated medical equipment in a
tsunami-affected hospital in Sri Lanka.80 Cumulative
breaches of host defence due to traumatic injuries, weak-
ened immunity following traumatic injuries, displacement
and homelessness, insufficient hygiene, malnutrition,
contaminated food and water supplies, and suboptimal
health care in post-disaster settings can increase the
susceptibility of populations to fungal infections and
promote outbreaks.
Evenmonths after natural disasters that include flooding,

individualsmight be at risk for developing a life-threatening
fungal disease, as observed after the Chagrin River flooding
in Cleveland, OH, USA (related to the tropical storm
Alberto) in 1994, as high spore counts and inhalation of
Stachybotrys chartarum in water-damaged houses led to
pulmonary haemorrhages in infants.81 In addition, out-
breaks of severe fungal infections were linked to hurricane
flooding, as seen following Hurricane Harvey in Texas,
USA, in 2017. The category 4 hurricane affected Houston,
TX, and the incidence of invasive mould infections was
significantly higher within 1 year after the hurricane (3⋅69
cases per 10 000 health-care encounters) than within 1 year
before the hurricane (2⋅50 cases per 10000 health-care
encounters).82 Of note, the results of another study involv-
ing more stringent culture-based definitions showed
no significant increase in proven or probable invasive
mould infections after Hurricane Harvey, but trends were
observed in terms of worse post-hurricane invasive mould
infection outcomes and higher instances of mould-positive
respiratory specimens and systemic antifungal use.83

Although acute and life-threatening fungal outbreaks
have rarely been reported following flooding disasters, the
risk of developing respiratory symptoms, eye irritation,
allergies, asthma, and other chronic diseases fromexposure
to mould in water-damaged environments is high, as
observed after Hurricane Katrina in 2005 and Hurricane
Sandy in 2012 (appendix pp 14–16).
Immediate and long-term remediation efforts under con-

sideration as protective measures and professional assist-
ance are therefore crucial for avoiding persistent exposure to
mould spores and mycotoxins (appendix pp 16–20). These
efforts should include intensive cleaning, ensuring adequate
ventilation, and educating individuals to obtain andmaintain
healthy indoor environments.
Reports on fungal outbreaks following wildfires are

increasing. In 2017, a coccidioidomycosis outbreak
occurred among state-prison inmates who were employed
to fight wildfires in California, USA, leaving some with
severe complications, includingmeningitis.84 Between 2014
and 2018, hospital admissions for coccidioidomycosis
within a 200-mile radius of wildfires in California, USA
increased by 20% in the month following wildfire-smoke
exposure. An association between smoke exposure and
the rate of invasive aspergillosis was not seen.66 Dispersion
ofmoulds and allergens can also occur following tornadoes,
hurricanes, and dust storms due to turbulent winds, and
during the clean-up and renovation activities following a
disaster due to movement of building materials and the
disturbance of soil, thereby increasing the risk for develop-
ing respiratory symptoms, asthma, eye irritation, and inva-
sive fungal diseases.85,86 Within 2 months after the
Northridge Earthquake in 1994 that caused huge landslides
leading to immense dust clouds in central California, USA,
an outbreak of 203 cases of acute coccidioidomycosis due to
C immitis was reported.87

A substantialmismatch in thegeographical distributionof
reports of natural disaster-associated fungal outbreaks
(figure 4) versus the geographical distribution of natural
disasters indicates that fungal outbreaks following natural
disasters are likely to be under-reported. Such under-
reporting could be attributed to several factors, including
challenges in conducting research in disaster-affected
regions (where health-care facilities operate at reduced
capacity), when the primary focus is on immediate health
concerns. In this chaotic environment, a diagnosis of inva-
sive fungal disease might be compromised by a scarcity of
appropriate diagnostic tools88 and professionals trained in
mycology as well as little awareness and knowledge
regarding the epidemiology of invasive fungal diseases
following natural disasters. Misdiagnosis, the absence of
diagnosis, and the absence of validated invasive mould
infection case definitions could result in their exclusion
from systematic reporting. Low research funding can
further hamper systemic documentation of fungal diseases
in the setting of natural disasters. In the future, efforts to
identify cohorts or populations at high risk of fungal infec-
tions followingnaturaldisastersmightbenefit fromartificial
intelligence, which has already been used to predict the risk
of mucormycosis in individuals with COVID-19 in India.89

To reduce the devastating impact of natural disaster-
associated fungal outbreaks, monitoring fungal exposure
following natural disasters, including risk assessment as
well as short-term and long-term remediation efforts, is of
utmost importance (appendix pp 16–20, 46).

Conclusions and recommendations
The changing climate has substantially affected the spread
and acquisition of fungal diseases, promoted the emergence
of new fungal pathogens, and resulted in increased disper-
sion of fungi. Fungi are becoming more thermotolerant,
resulting in the emergence of new species that are patho-
genic to humans, such asC auris and C deuterogattii. As the
planet continues to warm, pathogens, including fungi, also
adapt and expand their virulence and reach. Several fungi,
once confined to specific regions, have emerged as major
health threats in areas unaccustomed to such infections.
www.thelancet.com/microbe Vol ▪ ▪ 2024
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Panel: Open questions—future research topics

• Does global warming increase the propensity of dimorphic
fungi to acquire their most invasive form?

• How do interactions between environmental fungi and
plants, bacteria, or amoebae shape virulence and fungal
resistance in the warming planet?

• What constitutes the eco-evolutionary framework and which
factors (eg, precipitation, alterations of cool and warm
episodes, dark–light cycles, urbanisation, and pollution)
influence fungal thermal adaptation?

• Does the emergence of thermally adapted human fungal
pathogens require an intermediate host first (eg, a species
jump), and is such a species jump fungus-specific?

• Is fungal adaptation to thermal and other environmental
stress caused by genetic adaptation, by evolution and genetic
selection, or by epigenetic priming changes?

• Are some fungi climate-insensitive? If so, which are the
mechanisms underlying their adaptability to different
climates?

• What is the effect of pyroaerobiology on fungal spore
dispersal and how does this effect influence the ecologic
dynamics of fungal populations?

• What is the effect of global warming on the migratory
patterns of birds acting as potential carriers of fungal spores
and the transmission of fungal diseases?

• What are the late effects of the environmental ecosystems
following natural disasters?

Search strategy and selection criteria

We searched PubMed, Google Scholar, and Web of Science
with the keywords “natural disaster”, “cyclone”, “earth-
quake”, “flooding”, “hurricane”, “tornado”, “tsunami”,
“wildfire”, “resistance”, “outbreak”, “climate change“,
“fungal”, “mold“, “Aspergillus“, “Mucorales“, “Candida”,
“epidemiology“, “thermotolerance”, “adaption”,
“emergence”, “global warming”, “virulence”, “Histoplasma”,
“Coccidioides”, “ecosystem(s)”, and “remediation“ to select
relevant clinical and animal studies published between Jan 1,
1970, and Sept 1, 2023. We also searched the reference lists
of all relevant publications for additional references.

Review
Climate change has also been associated with water supply
and food scarcities owing to its adverse effects on crop yields
and agricultural productivity. In response to these scarcities,
the reliance on fungicides to protect crops continues to
increase and might contribute to the development of anti-
fungal resistance in fungal pathogens, representing a cru-
cial One Health problem and posing a major threat to both
agriculture and human public health.
Following natural disasters, fungal pathogens can spread

through the air or in contaminated water or residential
buildings, affecting the ecosystems in these environments
and resulting in fungal exposure. Factors such as traumatic
injuries during disasters, along with the weakened
immunity and health of displaced people owing to home-
lessness and malnutrition, provide favourable conditions
for fungal pathogens and substantially increase the sus-
ceptibility of populations to fungal infections. Fungal out-
breaks can then occur, which could be detrimental in a
setting with a compromisedmedical infrastructure and low
capabilities in terms of diagnosing or treating fungal
infections. The implications, therefore, are profound, and
the response should be robust and multifaceted.
Mitigating the impact of climate change on fungal eco-

systems and the prevalence of invasive fungal diseases is an
increasingly complex global challenge. Therefore, the
actions needed to address this challenge transcend borders
and require attention and coordination from decision
www.thelancet.com/microbe Vol ▪ ▪ 2024
makers and policy makers, including those in the public
health and health-care sectors and those in the various One
Health domains. Climate change mitigation strategies
should be a shared responsibility, with global efforts to
reduce greenhouse gas emissions and limit temperature
increases. High-income countries, with greater resources
and advancedhealth-care infrastructures, have anobligation
to substantially invest in collective efforts to address global
challenges.What was once seen as an issue confined to low-
resource settings is now becoming increasingly relevant
globally.Afternaturaldisasters, prompt andproper cleaning
of affected areas can prevent large outbreaks of fungal
infections. Finally, social vulnerability, climate change, and
risks posed by natural disasters are strongly inter-related,
and populations vulnerable to both climate change and
natural disasters will continue to be at an increased risk
from fungal diseases in the future.
Funding is an essential component of the response.

Allocating resources for research, innovation, surveillance,
andpublic awareness campaigns is essential. In low-income
and middle-income countries, where health-care systems
are under strain, investing in health-care infrastructure,
access to antifungal medications and health care, and
training for health-care professionals is essential. Invest-
ment in disaster resilience is also paramount across the
board. Finally, collaboration is key. Countries and regions
can learn from the experiences of one another and share
best practices in managing fungal diseases in a changing
climate. Working together, resources to address this global
health challenge effectively can be shared, as could be
the resultant pool of knowledge. Furthermore, collective
efforts can address several questions regarding the patho-
genesis, associated risk factors, and epidemiology of
fungal infections in the context of climate change. Oppor-
tunities for future research on this important topic are
covered in the panel. Potential limitations of this Review
include the underdiagnosis or under-reporting of natural
disaster-related fungal outbreaks from some regions of the
world as well as the lack of standardized reporting practices
of such events.
In conclusion, the impact of climate change on fungal

pathogens and diseases, exacerbated by natural disasters
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and population displacement due to climate change, is an
urgent global issue that affects both high-income countries
as well as low-income and middle-income countries. Sys-
tematic and collaborative global efforts to mitigate the
deleterious effects of climate change and increased
understanding of the inter-relatedness between climate
change, natural disasters, and fungal infections could help
to improve efforts in terms of prevention, detection, and
treatment.
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