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RESULTS: SEGMENTATION
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INTRODUCTION
The lack of interpretability of deep learning reduces
understanding of what happens when a network does
not work as expected and hinders its use in critical fields
like medicine, which require transparency of decisions.

CONCLUSION
We propose to use a constrained non-negative network and the generation of
counterfactual examples for:

1) A more pathology-driven classification
2) A weakly-supervised segmentation method outperforming state-of-the-art.

To do so, we propose :

1) A methodology for transforming any network into a non-negative network

2) A theoretical analysis to identify the failure causes of the state-of-the-art
random weights initializations for certain layers

3) An efficient weights initialization which maintains a unit variance in all the
layers of the network

4) Well chosen constraints for interpretable features

RESULTS: TRAINING

METHOD
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AIM
A healthy vs pathological images classification model should rely on radiological signs and not on some training dataset biases. We
propose to build, train and constrain a monotonic classifier, which has some intrinsic explicability properties, such that its decision
is based on relevant radiological structures in an unsupervised way. The trained network can be used for interpretable classification
consistent with high-level clinical knowledge but also as weakly-supervised pathology segmentation network.
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• Variance preservation after initialization

The proposed initialization allows a unit variance in the whole network
whereas, with Kaiming [1] initialization, the variance increases with the layers
(Figure 4). For non-negative network, using our initialization is mandatory as
the variance tends towards infinity with Kaiming.
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• Classification

With obtain similar classification performances on various tasks with both initialization for
standard networks (Table 1). For monotonic networks, only small architectures can be
trained with Kaiming initialization due to the variance issue. Replacing a network by its
monotonic counterpart does not degrade the classification performances.

• More readable counterfactual examples

We use the counterfactual difference α of Figure 2 to interpret our network
(Figure 5). The experiments shows that the difference is focused on the tumor
even if it is not the case for the features. With the non-negative network, this
difference is more readable as it is positive, compared to a standard network
(Baseline in Figure 6) or standard constrained network (BaselineC).

• Building

For the M network, weights are parameterized to be positive, we remove biases, use convex activations
(r(x)) on half of the features and concave (-r(-x)) on the other half and remove normalization layers.

Figure 4: Features standard deviation
as a function of the depth in a
ResNet152.

Figure 6: State-of-the-art comparison: segmentation maps and metrics. Tumor is in green. Blue
represents negative attributions/counterfactual difference and red positive ones. For
reconstruction methods, reconstruction error scale is from black to yellow.

Table 1: Classification accuracy.

• Training

We show that using positive weights strongly
increases the correlation between random
features channels and so state-of-the-art
random initializations are not adapted to non-
negative networks (Figure 3). We propose a
initialization rescaling each linear layer, one
after another, by its standard deviation.

• Interpretable classification and anomaly detection

Our proposition outperforms both interpretable classification (Ross [2], Wargnier-
Dauchelle [3]) and anomaly detection (Silva-Rodríguez [4], AE [5]) state-of-the-art methods
in terms of Dice and AUPRC for tumors segmentation. It reaches perfect classification
performances (Figure 6) .
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• Constraining
The network is trained with four losses to constrain the interpretable features f:

- Classification healthy (0) / pathological (1)

- Negative heathy features 𝑓0 ≤ 0

- Similar distribution of the negative characteristics of the two classes D(𝑓0_neg) ≈ D(𝑓1_neg)

- Gradient regularization for healthy class :
𝜕y0

𝜕𝑓0
~ 0

We design the architecture described in Figure 1. The interpretable features space benefits from several
intrinsic explicability properties: they are ordered, with a known bound between healthy/pathological
and the counterfactual examples are more readable as we can find a positive α (see Figure 2).

Figure 5: Interpretable features (top) and corresponding counterfactual difference α (bottom) for 
the proposed method. Tumor is in green. 

Figure 1: Overall architecture
Figure 2: Counterfactual difference generation

Figure 3: Features correlation as a function 
of weights standard deviation and mean.


