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Abstract
In a directed graph D on vertex set v1, . . . , vn, a forward arc is an arc vivj where i < j. A pair
vi, vj is forward connected if there is a directed path from vi to vj consisting of forward arcs. In the
Forward Connected Pairs Problem (FCPP), the input is a strongly connected digraph D, and the
output is the maximum number of forward connected pairs in some vertex enumeration of D. We
show that FCPP is in APX, as one can efficiently enumerate the vertices of D in order to achieve a
quadratic number of forward connected pairs. For this, we construct a linear size balanced bi-tree T

(an out-branching and an in-branching with same size and same root which are vertex disjoint in
the sense that they share no vertex apart from their common root). The existence of such a T was
left as an open problem (Brunelli, Crescenzi, Viennot, Networks 2023) motivated by the study of
temporal paths in temporal networks. More precisely, T can be constructed in quadratic time (in
the number of vertices) and has size at least n/3. The algorithm involves a particular depth-first
search tree (Left-DFS) of independent interest, and shows that every strongly connected directed
graph has a balanced separator which is a circuit. Remarkably, in the request version RFCPP of FCPP,
where the input is a strong digraph D and a set of requests R consisting of pairs {xi, yi}, there is no
constant c > 0 such that one can always find an enumeration realizing c.|R| forward connected pairs
{xi, yi} (in either direction).
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1 Introduction

Motivated by network design applications, the following problem of scheduling the arcs of a
multi-digraph was mentioned as an open problem in [8] and formally introduced in [2]. The
Maximum Reachability Edge Temporalisation (MRET) consists in assigning a time label
txy ∈ N to each arc xy of a digraph D = (V, A) so as to maximize the number of pairs x, z of
vertices connected by a temporal path, that is a path from x to z where time labels strictly
increase along the path. In the acyclic case, all existing paths can be made temporal using a
topological ordering of the vertices, and transferring the index of a node x to every arc leaving
x. The problem becomes particularly intriguing in the strongly connected case in which
every pair of vertices are connected by a path. It was shown in [2] that MRET is NP-hard
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even restricted to strongly connected digraphs. In the same paper, the authors suggest that
MRET is in APX by conjecturing, in any strongly connected digraph, the existence of some
arc-disjoint in-branching T − and out-branching T + (allowing arbitrary overlapping in terms
of vertices), both with linear size and rooted at the same vertex r.

We show that this conjecture holds, and since the branchings can be constructed in
polynomial time, that MRET is indeed in APX in the strongly connected case. The reason is
that given such branchings T − and T +, it is then straightforward to schedule the arcs of
T − from leaves to r, and then the arcs of T + from r to leaves, to obtain an arc scheduling
temporally connecting |T −| · |T +| pairs of vertices. If both branchings span a fraction c of
vertices, for some c > 0, then this scheduling temporally connects at least a fraction c2 of all
pairs which guarantees approximation ratio at most 1/c2.

Related work

The undirected version of the MRET problem is studied in [10] where it is proven that it is
NP-complete to decide whether an undirected graph has an edge scheduling connecting all
pairs. However, one can easily produce an edge scheduling connecting a constant fraction
of pairs by decomposing a spanning tree at a centroid c so as to produce two disjoint trees
T, T ′ with the same root c and each of them covering one third of the vertices. It is then
straightforward to schedule edges so as to connect a constant fraction of pairs. A similar
(undirected) problem where an edge can be scheduled several times is considered in a series
of papers [1, 11, 12]. The goal is then to minimize the total number of time labels used while
respecting some constraints with respect to connnectivity or the maximum time label used
in particular. Note that scheduling each edge twice is sufficient for temporally connecting
every pair of nodes of a connected undirected graph (a first set of labels can allow each
vertex to reach the root of a spanning tree, while a second set of labels can allow the root
to reach every node). The MRET problem can be seen as a simplified version of the problem
of scheduling buses in a public transit network [8]. Related problems [9, 13] target the
minimization of temporally connected pairs and are driven by applications to mitigation of
epidemic propagation.

It is shown in [3] that it is NP-complete to decide whether a strongly connected digraph
contains an in-branching and an out-branching with same root, which are edge disjoint, and
that both span all vertices. The same paper also relates the conjecture that such branchings
exist if the digraph is c-edge-connected for sufficiently large c. The conjecture holds for
c = 2 in digraphs with independence number at most 2 [4]. It is also shown in [5] that it is
NP-complete to decide whether a strongly connected digraph has a partition of its vertices
into two parts of size at least 2, such that the first part is spanned by an in-branching and
the second part is spanned by an out-branching.

Main results

Our approach is to address these problems from a vertex point of view, which is enough
to obtain an approximation algorithm for MRET. Specifically, we consider two maximization
problems: In the Forward Connected Pairs Problem (FCPP) the goal is to find an enumer-
ation (or ordering) v1, . . . , vn of a strongly connected digraph D = (V, A) such that the
number of pairs vi, vj joined by a directed path with increasing indices (called forward pairs)
is maximized. In the Balanced Bi-Tree Problem (BBTP) the goal is to find an in-tree and
an out-tree only intersecting at their root (thus making a bi-tree) with equal size (to be
maximized). (We use in-tree and out-tree instead of in-branching and out-branching to stress
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the requirement that they share no vertex apart from their common root, and hence do
not span the digraph.) Notice that the former problem, FCPP, is NP-hard, as finding an
enumeration joining n(n − 1)/2 pairs of vertices with forward paths is equivalent to finding a
Hamilton path in the instance (and Hamilton path in general digraphs can easily be reduced
to Hamilton path in strong digraphs).

The main result of this paper is that one can find a solution T of BBTP in time O(n2)
with size at least n/3 − 1. Therefore each in-tree and out-tree has size at least n/6, and by
considering any enumeration of V extending a topological ordering of T , we obtain a solution
of FCPP of size at least n2/36. Since the maximum possible solution of FCPP is n2/2, this
gives a 1/18 approximation for the Forward Connected Pairs Problem. Our construction
can be extended to a weighted digraph where each vertex u is associated to a weight wu. It
then produces a bi-tree where the in-tree and the out-tree both have total weight at least
W/6, where W =

∑
u∈V wu is the total weight of the digraph.

We also consider a covering version CFCPP of FCPP where we look for a minimal set of
orderings of the vertex set such that for every pair x, y, one of xy or yx is a forward pair in
one of the orderings. Since we can cover a positive fraction of pairs, it is natural to wonder if
CFCPP always admits a solution with a constant number of orderings (or at most log n). To
this end, we consider a request variant of the problem, called RFCPP, where we ask to connect
by forward paths a maximum number of pairs among a given set R ⊆

(
V
2
)

of requested pairs.
We provide a family of instances of RFCPP where the number of needed ordering to satisfy
all the requests of R is more than a constant fraction of |R|. We do not know if CFCPP and
RFCPP can be efficiently approximated. This still leaves open the existence of an O(log n)
solution for CFCPP. Note that both CFCPP and RFCPP are NP-hard for the same reason as
FCPP. The approximation of the variant of FCPP extended to general digraphs is also left
open. We think that solving the strong case is a key step towards this more ambitious goal
since the acyclic case can easily be solved exactly as mentioned previously.

Main techniques: left-maximal DFS and balanced circuit separators

From an algorithmic perspective, our solution relies on finding a cyclic balanced separator
C of D. Specifically, the vertex set of D is partitioned into three parts I, C, O such that C

spans a circuit, no arc links a node from I to a node in O, and which is balanced in the sense
that both I ∪ C and C ∪ O have size at least n/3. Note that I and O can be empty, as this
is the case when D is a circuit.

Such a partition can be computed in linear time from a left-maximal depth-first-search
(DFS) tree, that is a DFS tree such that the children of any node are ordered from left-to-right
by non-increasing sub-tree size. Both of these structures could be of independent interest in
the field of digraph algorithms. The computation of a left-maximal DFS is the (quadratic)
complexity bottleneck of our algorithm. We feel that a linear-time algorithm for finding a
cyclic balanced separator should be achievable either by other means, or by relaxing the
requirement on left-maximal DFS (we just need it to be “not too much unbalanced to the
right”). However, actually computing in linear time a left-maximal DFS tree could prove
more challenging. Could decremental SCC help [7]?

2 Definitions

In this paper we consider directed graphs D = (V, A) (digraphs) in which cycles of length
two are allowed. The set V is the set of vertices (usually n of them) and A is the set of arcs.
We say that x, y are connected in D if there exists a directed path from x to y. A digraph
is strongly connected, or simply strong, if all x, y are connected. In particular, if D has n
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13:4 Temporalizing Digraphs via Linear-Size Balanced Bi-Trees

vertices, the number of connected couples x, y is n2. The out-section generated by a vertex x

of D is the set of vertices y for which x, y are connected. We say that x out-generates D if
the out-section of x is V .

A schedule is an injective mapping f of A into the positive integers. In a scheduled
digraph (D, f) we say that a couple of vertices x, y is connected if there is a directed path
x = x1, x2, . . . , xk = y such that f(xixi+1) < f(xi+1xi+2) for all i = 1, . . . , k − 2. We denote
by c(D, f) the number of connected couples and by s(D) the maximum over all choices of
f of c(D, f). We now define our scheduled ratio rs which is the infimum of s(D)/n2 over
strongly connected digraphs D on n vertices, when n goes to infinity.

This ratio rs is based on scheduling arcs, and a similar ratio rt can be defined via a total
order on vertices. We consider for this a digraph D and a total ordering < on its vertices. An
arc xy of D is forward if x < y. We say that a couple (x, y) is connected in (D, <) if there
is a directed path from x to y consisting of forward arcs, and we then call (x, y) a forward
couple. We denote by c(D, <) the number of forward couples and by t(D) the maximum over
all choices of < of c(D, <). The ordered ratio rt is the infimum of t(D)/n2 over strongly
connected digraphs D on n vertices, when n goes to infinity.

The main problem we address in this paper is to show that both rs and rt are positive.
Let us first prove that these questions are related.

▶ Theorem 1. rt ≤ rs

Proof. Given (D, <), we can consider that < is a bijective mapping g from V to 0, . . . , n − 1
respecting the order (that is x < y whenever g(x) < g(y)). Now observe that if one define
f(xy) = n.g(x) + g(y) for every arc, then every forward couple in (D, <) is a connected pair
in (D, f). ◀

Thus we can focus on the following problem.

▶ Problem 2. What is the value of rt?

The fact that rt > 0 is not obvious and is indeed our central result. Observe that we
can assume that D is minimally strongly connected, i.e. every arc xy of D is the unique
directed x, y-path in D. A classical result using ear-decompositions asserts that the number
of arcs of a minimally strongly connected digraph is at most 2n − 2 (see [6] for instance).
Unfortunately we were unable to use these decompositions to prove the positivity of rt. Our
strategy instead is to find inside D a particular type of oriented tree.

An out-tree T + is an orientation of a tree in which one root vertex out-generates T +.
Reversing all arcs, we obtain an in-tree. When identifying the root r of an in-tree T − and
the root of an out-tree T +, we obtain a tree orientation called a bi-tree T where r is the
center. Note that x, y are connected for every x ∈ T − and y ∈ T +. We say that a bi-tree is
balanced if |T +| = |T −|. In particular, if every strongly connected D contains a balanced
bi-tree of linear size, one directly obtains that rt > 0 for Problem 2.

▶ Problem 3. What is the maximum cb for which every strongly connected directed graph on
n vertices has a balanced bi-tree of size at least cb.n?

We show in Theorem 11 that cb ≥ 1/3, where both |T +| and |T −| have size at least 1/6.
One can naturally ask if the enumeration problem directly implies the bi-tree problem. But
the following example shows that this is not true in general.
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▶ Proposition 4. For every integer k, there exists a minimally strongly connected digraph D

on n = 3k2 + 2k + 2 vertices admitting an enumeration E = v1, . . . , vn such that:
the number of forward couples in E is quadratic in n (at least k4), and
the maximal size of a balanced bi-tree only using forward arcs in E is 2k + 5 = O(

√
n).

Proof. Let D be the digraph with vertex set {x} ∪ A ∪ A′ ∪ X ∪ B′ ∪ B ∪ {y} where A′,
B′ have size k and A, B and X all have size k2. Consider (Ai)1≤i≤k a partition of A into
k sets of size k and (Bi)1≤i≤k a partition of B into k sets of size k. Moreover, we denote
by a1, . . . ak the vertices of A′, b1, . . . bk the vertices of B′, and (xi,j)1≤i,j≤k the vertices
of X. Now, add to D the following sets of arcs: {xa : a ∈ A}, {aai : a ∈ Ai} for all
1 ≤ i ≤ k, {aixi,j : j = 1, . . . , k} for all 1 ≤ i ≤ k, {xi,jbj : i = 1, . . . , k} for all 1 ≤ j ≤ k,
{bjb : b ∈ Bj} for all 1 ≤ j ≤ k, {by : b ∈ B} and {yx}. The construction is depicted in
Figure 1.

A X B

x1,2
x1,k

x1,1

x2,1

xk,1
xk,2

xk,k

b2

bk

x y

A′ B′

A1

A2

Ak

ak

a2

a1
B1

b1
B2

Bk

Figure 1 The digraph D in the proof of Proposition 4. An arc between a block and a particular
vertex stands for all the arcs between each vertex of the block and the particular vertex. The arc yx

is not drawn.

The digraph D is strongly connected and has n = 3k2 + 2k + 2 vertices. Furthermore, D

is minimally strongly connected, as for every arc uv we have either d+(u) = 1 (if uv = yx or
u ∈ A ∪ X ∪ B) or d−(v) = 1 (if v ∈ A ∪ X ∪ B).

Consider now any enumeration of D where x is the first vertex, then A is before A′, then
A′ is before X, then X is before B′, then B′ is before B, and finally y is the last vertex. For
such an enumeration all the arcs of D are forward except yx. For every 1 ≤ i, j ≤ k, any
vertex of Ai has a path to any vertex of Bj using the vertex xij . So the number of forward
couples is at least |A|.|B| = k4, which is quadratic in n. However, the largest balanced bi-tree
only using forward arcs has its center in X and has size 2k + 5 = O(

√
n). Indeed, any node

xi,j ∈ X has only one in-neighbor which has itself k in-neighbors, and only one out-neighbor
which has itself k out-neighbors, resulting in 2k + 3 nodes which can further connect to x

and y only. ◀

3 Computing a left-maximal depth first search tree

Given an out-tree T and a node x of T , we denote by Tx the subtree rooted at x consisting
of all vertices in the out-section of x in T . A child of x is an out-neighbor of x in T . Let
D = (V, A) be a directed graph. A depth first search tree T of D (dfs-tree for short) is an
out-tree which is a spanning subgraph of D with the following properties:

STACS 2024
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For every node x, there is a total order ≤x on the children of x, which is called a left-right
order.
If y, z are two children of x and there exists an arc of D from Tz to Ty, then y ≤x z (i.e.
arcs between disjoint subtrees goes from right to left).

We are interested in a particular type of dfs-tree called left-maximal in which we have
|Ty| ≥ |Tz| for every node x and children y, z such that y ≤x z. In other words the size of
the child subtrees of any vertex is non-increasing from left to right.

▶ Theorem 5. If x out-generates D, then there exists a left-maximal dfs-tree T rooted at x.
Moreover T can be computed in quadratic time in minimally strongly connected digraphs.

Proof. We construct a left-maximal dfs-tree rooted at x as follows. Compute the strongly
connected components of D \ {x} and their sizes. Consider the acyclic digraph D′ between
components where an arc (C, C ′) indicates that there is an arc from C to C ′ in D. By
traversing D′ according to a reverse topological order, we obtain the size of the out-section
of each node in D \ {x}. Let y be a node with out-section Sy having maximum size. Note
that y belongs to some strongly connected component C which is a source in D′. Since D is
strongly connected, C contains an out-neighbor of x. Free to choose y in C, we assume for
simplicity that xy is indeed an arc. Construct recursively a left-maximal dfs-tree T ′ rooted
at x in D \ Sy, and a left-maximal dfs-tree T ′′ rooted at y in the digraph induced by Sy.
The final out-tree T is obtained by inserting T ′′ as the leftmost child of x in T ′. It is indeed
a dfs-tree as there exists no arc from Sy to any node in D \ T ′ by the definition of outsection.
To realize that it is also left-maximal, consider the leftmost child z of x in T ′. The outsection
Sz of z in D \ {x} has size at most |Sy|, and we thus have |Tz| ≤ |Sz| ≤ |Sy| = |Ty|.

As the computation of strongly connected components, digraph D′, and outsection sizes
can be done in linear time, the whole computation can be done in O(n2) time in minimally
strongly connected graphs (where the number of arcs is linear in the number of vertices). ◀

▶ Problem 6. Can we compute a left-maximal dfs-tree in o(n2) time in minimally strongly
connected digraphs? What about the complexity in the general case?

Let us now introduce our key-definition which is a particular type of partition of a strongly
connected digraph D. To get beforehand a bit of intuition, one can picture a connected
(undirected) graph G with a depth first search tree T drawn on the plane. The key-feature
here is that any path P from the root to a leaf partitions the rest of the graph into two
subsets L and R which are respectively the vertices of V \ P to the left and to the right of P .
In other words, G has a cutset V (P ) (i.e. its removal splits the graph into several connected
components) with a remarkable property since it is spanned by a path. Observe also that
any root-leaf path can be used, so by a classical left-right sweeping argument, one can find
P such that both L and R have size at most 2n/3 (so that the cut is balanced). We now
generalize this argument to strongly connected digraphs, where a directed cycle takes over
the role of P .

An (I, C, O)-decomposition of a strongly connected digraph is defined as:
a partition of V into three subsets I, C, O,
C is spanned by a directed cycle,
there is no arc from I to O.
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Figure 2 Left: a strong digraph (all arcs) with a left-maximal dfs-tree T (plain arcs) and the
(I, C, O) decomposition associated to Tx,y. Nodes are numbered according to the corresponding
dfs traversal. Right: the cycle spanning C (plain arcs), two in-trees spanning I and one out-tree
spanning O.

Observe that, by strong connectivity and the fact that there is no arc from I to O, for
every vertex x in I, there exists a directed path from x to C with internal vertices inside
I. Similarly, for every vertex x in O, there exists a directed path from C to x with internal
vertices inside O. We now show how to get a (I, C, O)-decomposition which is additionally
balanced, that is such that both I ∪ C and O ∪ C have size greater than n/3.

Given a dfs-tree T , we call left path LT the path starting at the root of T and which
iteratively selects the leftmost child of the current vertex as the next vertex of the path. In
particular, in a planar drawing respecting the left-right order of children, LT is the path
from the root to the leftmost leaf. Let x be a vertex of the left path of LT . Given a child y

of x, we define the subtree Tx,y of T as the subtree of Tx containing x and all Tz for z ≤x y.
We call Tx,y a left subtree of T . Note that Tx is the left subtree Tx,y obtained by selecting y

as its rightmost child. Also, if y is the leftmost child, x has only one child in Tx,y.

▶ Proposition 7. For every left subtree Tx,y, there exists an (I, C, O)-decomposition such
that Tx,y is included in I ∪ C and V \ Tx,y is included in O ∪ C.

Proof. As T is a dfs-tree, any arc outgoing from Tx,y \ {x} reaches a vertex in Tx,y or in LT .
By strong connectivity, some arc uv with u ∈ Tx,y \ {x} reaches some vertex in LT between
the root and x (possibly the root or x), and we select uv such that v has minimum distance
from the root in T (see Figure 2 (Left) for an example). Note that v can be equal to x (some
arc u′v′ with u′ ∈ Tx \ Tx,y must then lead to a vertex v′ ∈ LT closer to the root by strong
connectivity). We define C as the cycle formed the path Pvu from v to u in T and the arc
uv. We now set I := V (Tx,y) \ C and O = V \ (C ∪ I). Every arc leaving Tx,y \ {x} reaches
a vertex w of the left-path between v and x by the choice of v. Thus w is in C, and hence
there is no arc from I to O. ◀

▶ Proposition 8. Every strongly connected directed graph with n ≥ 4 vertices has a dfs-tree
T which has a left subtree Tx,y such that n/3 < |Tx,y| < 2n/3.
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Proof. We consider a left-maximal dfs-tree T of D. Scanning the left-path of T from
the root, we consider the first node z such that |Tz| ≤ n/3. Let x be the parent of z. If
|Tz| = n/3, the left subtree Tx,z with size n/3 + 1 is the solution we are looking for. Let y be
the rightmost child of x such that |Tx,y| < 2n/3. Assume for contradiction that |Tx,y| ≤ n/3.
By the definition of z, we have |Tx| > n/3, hence y is not the rightmost child of x. In
particular, y has a (next) right sibling y′. As |Ty′ | ≤ |Tz| < n/3 by left-maximality, we reach
a contradiction to the choice of y since |Tx,y′ | < 2n/3. Thus Tx,y is our solution. ◀

▶ Corollary 9. Every strongly connected directed graph has a balanced (I, C, O)-decomposition.
(i.e. both I ∪ C and O ∪ C have size strictly greater than n/3).

Proof. If n ≥ 4, then this is a direct consequence of Proposition 7 and Proposition 8. The
case n ≤ 3 follows by enumerating the cases. ◀

We now compute a linear size bi-tree from it.

4 Bi-labels

We now consider a directed graph D equipped with a bi-label, that is every vertex x receives
a couple (i(x), o(x)) of positive integers. The weight of D is (i(V ), o(V )), the sum of all i and
o values respectively. Assume that D is a bi-labelled digraph which is the union of a digraph
D′ and an out-tree T + rooted at r ∈ V (D′) such that D′ ∩ T + = {r}. We can transfer the
weight o(T +) to D′ by adding o(T + \ r) to o(r) and removing all the vertices of T + \ r. We
define similarly the transfer operation of i for an in-tree.

Given a bi-tree B of D, the value of B is the pair (a, b) where a is the sum of all i(x) for
x in B− and b is the sum of all o(x) for x in B+. In other words, the value of B is the label
of the center after the transfers of B+ and B−. Observe that if D′ is obtained from D by
some transfer and D′ has a bi-tree with value (a, b), then D also has a bi-tree with value
(a, b).

▶ Theorem 10. If C is a cycle equipped with a bilabel (i, o) of weight (w, w), it contains a
bi-tree with value at least (w/2, w/2).

Proof. Consider a shortest path P in C = x1, . . . , xn such that i(P ) ≥ w/2 or o(P ) ≥ w/2.
Assume without loss of generality that P = C[x1, . . . , xk]. First consider the case where we
have i(P ) ≥ w/2. By minimality of P , we have o(C[xk, . . . , xn]) ≥ w/2, and therefore the
bi-tree B centered at xk such that B+ = C[xk, . . . , xn] and B− = C[x1, . . . , xk] satisfies the
hypothesis. In the case o(P ) ≥ w/2, we proceed similarly with x1 as center. ◀

The bound in Theorem 10 is sharp. Consider for this a directed 4-cycle in which all labels
are (w/4, w/4): any bi-tree has value (a, b) with min{a, b} = w/2.

▶ Theorem 11. Every strong digraph D = (V, A) on n vertices contains a bi-tree B such
that both B+ and B− have size at least n/6.

Proof. By Corollary 9, D has an (I, C, O)-decomposition such that both I ∪ C and O ∪ C

have size at least n/3. Observe that D is spanned by a subgraph S consisting of the directed
cycle spanning C, together with a disjoint collection of in-trees rooted at some vertices
of C and with other vertices in I, and a collection of out-trees rooted at some vertices of
C and with other vertices in O (see Figure 2 (Right) for an example). This comes from
strong connectivity which implies that any node u in I has at least one out-neighbor v and v

must be either in I or in C by the definition of the (I, C, O)-decomposition which forbids
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any arc from I to O. Selecting arbitrarily one out-neighbor for each node in I results in a
collection of in-trees rooted at vertices in C and spanning I. Similarly, selecting arbitrarily
one in-neighbor for each node in O results in a collection of out-trees rooted at vertices in C

and spanning O. We consider that S is a bi-labelled digraph by setting the value (1, 1) to
every vertex. We can then transfer the weight of all in-trees and out-trees to their respective
roots to obtain a bi-label on C with weight at least (n/3, n/3). We now invoke Theorem 10
to obtain a bi-tree with value at least (n/6, n/6) for the cycle, and unfold it by reversing
appropriate transfers to get a bi-tree of S with same value. ◀

As mentioned in the introduction, from the previous results we obtain the following.

▶ Corollary 12. FCCP admits a 1/18-approximation in quadratic time.

Note that the above constructions of left-maximal DFS and bi-tree can be extended to
a weighted digraph D where each vertex u has a non-negative weight wu. Given a subset
U ⊆ V of n′ vertices, we can set wu = 1 for u ∈ U and wu = 0 for u /∈ U to compute similarly
a bi-tree B such that B− and B+ both span n′/6 vertices of U . One can then easily obtain
an ordering of V such that a constant fraction of pairs in U × U are forward-connected.

We now consider the more general version of the problem where we want to connect pairs
in a given set R ⊆

(
V
2
)

of requests.

5 Forward connecting a set of requested pairs

In the Request Forward Connected Pairs Problem (RFCPP), the input is a strongly con-
nected digraph D = (V, A) and a set R ⊆

(
V
2
)

of requests, and the output is a vertex ordering
of D maximizing the number of forward pairs {x, y} ∈ R, that is unordered pairs {x, y}
such that either x, y or y, x is forward. Note that FCPP is the particular instance of RFCPP
satisfying R =

(
V
2
)
. Since FCPP is in APX, it is natural to raise the following problem:

▶ Problem 13. Is there a polytime constant approximation algorithm for RFCPP?

In particular, is it always possible to satisfy a linear fraction of R? In the more restricted
variant where R is a set of couples (x, y) instead of pairs (where one wants to maximize
the number of forward couples x, y), one cannot expect to satisfy a large proportion of R.
Indeed, if D is the circuit (v1, . . . , vn) and R consists of all couples (vi+1, vi), any vertex
ordering can only satisfy at most one request of R, hence only a ratio of 1/n can be realized
as forward couples.

Surprisingly, when requests are pairs, we could not find any set of request R which is not
satisfied within a ratio of 1/ log n. However, contrary to the case of FCPP where a positive
ratio is achievable, the following result shows that there are instances of RFCPP for which
only a logarithmic ratio can be realized as forward pairs.

▶ Proposition 14. For all n, there exists an instance of RFCPP where D has 2n+1 −1 vertices,
R has size n2n−1, and no more than 2n requested pairs can be realized as forward paths.

Proof. The graph D is the complete binary tree of height n seen as a directed graph by
letting each edge to be a circuit of length two. The set of requests is recursively defined in
the following way. We consider the set Ll of all leaves which are descendants of the left child
of the root r and the set Lr of leaves descendants of its right child. Now we pick an arbitrary
perfect matching M between Ll and Lr and set as requests all the |M | pairs formed by the
edges of M . We call this set R1, and recursively define in the same way a set of requests

STACS 2024
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for each of the two children of r. We stop when reaching leaves. With the right choice of
matchings, the set of requests can correspond for instance to a hypercube of dimension n on
the leaves. We shall not need it, but it gives a good intuition of the possible structure of
requests.

To sum up, D has 2n+1 − 1 nodes, 2n of them being leaves. Each internal node creates a
matching of requests in its set of descendant leaves, hence the total number of requests is
n.2n−1.

Any ordering < of V (D) can be considered as the sub-digraph D′ of D where we keep
only arcs xy satisfying x < y. Note that this corresponds to an orientation of the edges of
the tree. Our goal is to show that the number of requests x, y which are connected by a
forward path is at most 2n. To show this, for a given node x we denote by rf (x) the number
of requests between descendants of x (in the tree D) which are realized by a forward path.
We also denote by in(x) the number of leaves y descendant of x such that there is a forward
path from y to x. Finally out(x) is the number of leaves z descendant of x such that there is
a forward path from x to z.

We now show by induction that both rf (x) + in(x) and rf (x) + out(x) are upper bounded
by ℓ(x), the number of leaves descendant of x. This is true if x has two leaves as children
since either x is a source (resp. a sink) in D′ and rf (x) + max(in(x), out(x)) = 0 + 2, or x

has both in and out-degree 1 and rf (x) + in(x) = rf (x) + out(x) = 1 + 1. For the induction
step, we assume that x has two children y, z.

if we have both arcs xy, xz in D′, we have rf (x)+ in(x) ≤ rf (x)+out(x) = rf (y)+ rf (z)+
out(y) + out(z), which by induction is at most ℓ(y) + ℓ(z) = ℓ(x).
if we have both arcs yx, zx, we conclude similarly.
if we have both arcs yx, xz, note that rf (x) ≤ rf (y) + rf (z) + min(in(y), out(z)). Also
in(x) = in(y) and out(x) = out(z). Thus, if in(y) ≤ out(z) we have rf (x) + in(x) ≤
rf (x)+out(x) ≤ rf (y)+rf (z)+min(in(y), out(z))+out(z) = rf (y)+in(y)+rf (z)+out(z) ≤
ℓ(y) + ℓ(z) = ℓ(x). And the same conclusion holds when in(y) > out(z).
if we have both arcs xy, zx, we conclude as previously.

Thus the maximum number of forward requests is 2n. ◀

Noteworthily, for the instance in Proposition 14, there is a set of 2n orderings such that
every pair x, y of leaves is forward connected in one of the orderings. Let us call a forward
cover of D a set of vertex orderings ≤1, . . . , ≤k such that for every pair {x, y}, there is some
i such that x, y or y, x is a forward pair in ≤i. This suggests the following conjecture:

▶ Conjecture 15. Every strong digraph D on n vertices has a O(log n) size forward cover.

Conjecture 15 holds when D is a bi-oriented graph, that is an undirected graph considered
as a digraph by replacing each edge {u, v} by two arcs uv and vu. Here is a sketch: it suffices
to consider a spanning tree T of D and to fix a centroid c. We then let T = T1 ∪ T2 where
T1 ∩ T2 = {c} and both T1, T2 have size at least n/3. We consider any vertex enumeration
T1 ≤ c ≤ T2. Now we find recursively in T1 and T2 two families F1 and F2 of vertex
enumerations of size logarithmic in 2n/3. We conclude by gluing (on c) the orderings in F1
and F2 by pairs. We get in total 1 + max(|F1|, |F2|) orders, hence a logarithmic size family.

Another intriguing question is the “forward orientation” of a pair x, y. We have seen that
in some cases, like the circuit, pairs vi, vi+1 are (obviously!) much more likely to be forward
than pairs vi+1, vi. If indeed a forward cover of logarithmic size exists, it could be that some
couples x, y are more involved in a small cover than their reverse y, x. This suggests a kind
of “forwardness” of a pair of vertices which might be interesting to characterize.
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6 Questions

Our main open question concerns Conjecture 15. A possible way to solve it would be to
find O(log n) bi-trees such that for any pair {x, y}, there exists a bi-tree T such that either
x ∈ T − and y ∈ T +, or y ∈ T − and x ∈ T +. The reason is that each bi-tree can easily be
converted to an ordering where each couple (x, y) with x ∈ T − and y ∈ T + is a forward couple.
Note that Conjecture 15 would imply that any instance of RFCPP always have a solution
realizing a 1/O(log n) fraction of requested pairs, opening the possibility for polynomial time
O(log n)-approximation.

Another question concerns the maximum size of a balanced bi-tree that can be found
in any strongly connected digraph with n vertices. Our construction shows that any such
digraph contains a balanced bi-tree where both trees have size n/6. The construction given
in [2] implies that there exists strongly connected digraphs such that in any bi-tree T , either
T − or T + has size at most n/3 + O(1). This leaves a factor 2 gap.

If we relax the bi-tree definition by requiring that the in-branching and the out-branching
are edge disjoint (an in-out-branching) and may overlap over more than one vertex (and
still share the same root). What is the maximum size of a balanced in-out-branching in any
strongly connected digraph? The upper-bound of n/3 + O(1) given in [2] indeed holds for
in-out-branchings. Is there a gap between the maximum size of a balanced in-out-branching
and that of a balanced bi-tree?

More generally, what are the exact values of rs and rt? In other words, what is the
maximum ratio of couples that can be connected through an ordering of the arcs, or an
ordering of the vertices respectively? Is it possible to obtain an interesting lower-bound of rt

as a function of rs?
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