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ABSTRACT 36 
Conflicting results remain on the impacts of climate change on marine organisms, hindering our capacity 37 
to predict the future state of marine ecosystems. To account for species-specific responses and for the 38 
ambiguous relation of most metrics to fitness, we developed a meta-analytical approach based on the 39 
deviation of responses from reference values (absolute change) to complement meta-analyses of 40 
directional (relative) changes in responses. Using this approach, we evaluate responses of fish and 41 
invertebrates to warming and acidification. We find that climate drivers induce directional changes in 42 
calcification, survival, and metabolism, and significant deviations in twice as many biological responses, 43 
including physiology, reproduction, behavior, and development. Widespread deviations of responses are 44 
detected even under moderate intensity levels of warming and acidification, while directional changes 45 
are mostly limited to more severe intensity levels. Because such deviations may result in ecological shifts 46 
impacting ecosystem structures and processes, our results suggest that climate change will likely have 47 
stronger impacts than those previously predicted based on directional changes alone. 48 
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 51 
INTRODUCTION 52 
The rapid increase in atmospheric carbon dioxide is changing our climate at a pace never observed before, 53 
with consequences on global biodiversity and ultimately human well-being1. Ocean warming (OW), ocean 54 
acidification (OA), caused by the increased partial pressure of carbon dioxide (pCO2) in seawater, and 55 
deoxygenation represent the three greatest climatic threats to marine life2. Dramatic effects of these 56 
three drivers have already been observed not only at the organism level but also at the scale of entire 57 
ecosystems3. Examining the impacts of climate change on marine life has been one of the most rapidly 58 
growing fields of research4. Research shows that OW increases energetic costs and decreases the survival 59 
of marine organisms and that OA impacts invertebrates more than fish through adverse effects on 60 
survival, calcification, growth and development5-11. Additional factors such as life-stage, taxa and 61 
acclimation time have been demonstrated to significantly alter the sensitivity of marine organisms to 62 
climate change drivers5,7-8,12-14. Recently, experimental designs have increased in complexity and realism 63 
to account for the interaction of simultaneous climate change drivers although the combined effect of 64 
deoxygenation with OW or OA remains understudied11,15. 65 
An inherent challenge to the richness of the published literature documenting effects of climate drivers is 66 
to design quantitative syntheses that summarize results while accounting for the diversity of systems 67 
tested. Previous meta-analyses testing effects on similar taxa and biological responses have found varying 68 
magnitudes of climate driver effects  and even different directions of changes (Fig. 1). While publication 69 
biases and decline effects (i.e., decreasing effect of a driver over time) may contribute to this 70 
heterogeneity16-22, conflicting results also arise from differences in methods used to pool data since meta-71 
analyses have either been performed on metrics individually (e.g., “growth rate”, “size”, “weight”20), 72 
grouped by category (e.g., “growth”11,14) or all pooled together (e.g., “overall sensitivity”13). While testing 73 
effects on categories of biological responses rather than on individual metrics increases the statistical 74 
power of meta-analyses, this approach requires to attribute a direction to each metric, i.e., whether an 75 
increase of the metric is beneficial or detrimental to fitness, so that metrics of opposite directions (e.g., 76 
mortality and survival) do not cancel out when aggregated. However, in most cases, the effect of a metric’s 77 
increase on fitness remains uncertain or is context-dependent. For example, an increase in boldness is 78 
linked to longer exploration periods which might result in more success in foraging for food but also may 79 
increase mortality due to increased exposure to predators23-25. Similarly, although increases in respiration 80 
rates are generally considered to be positively linked to fitness in meta-analyses, such increases can also 81 
indicate higher metabolic needs that come at the expense of growth and reproduction26-27. Hence, 82 
changes in metrics may result in trade-offs rather than in unequivocal benefits or costs to fitness and, for 83 
most metrics, it remains challenging to confidently determine their relation to fitness.  84 
Many meta-analyses have dealt with the ambiguous relation of metrics to fitness by assuming a positive 85 
effect in all cases except when a negative effect on fitness is clearly established (e.g., mortality, shell 86 
damage)5,7,11. However, this assumption may result in mislabeling the direction of more ambiguous 87 
metrics, ultimately leading to meaningful but opposite changes in metrics canceling out when averaged 88 
and underestimating climate impacts28. This risk is amplified when results are pooled across species, 89 
ecosystems, and climates because of the importance of species-specific traits in mediating responses to 90 
climate change drivers13,29 and because benefits provided by traits are context-dependent. Some analyses 91 
have taken these specificities into account by summarizing results at the taxa level7, for given species 92 
traits14, life-stages11, or by presenting individual effect sizes in addition to means8. However, 93 
disaggregating data comes with the trade-off of lower statistical robustness and generates multiple 94 
heterogeneous results that obscure overall trends.  95 
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A different approach is therefore needed to overcome our limited understanding of the effect of metrics’ 96 
changes on fitness and to mitigate the risks of underestimating effects when pooling data. We propose 97 
that testing for deviations of biological responses, i.e., absolute distance to reference value, can be used 98 
to complement the traditional directional change approach, i.e., relative distance to reference value, to 99 
detect impacts of climate drivers on marine life (Fig. 2). We argue that testing for deviations of biological 100 
response to climate drivers is meaningful because any significant deviation from the reference state of a 101 
metric value, whether “positive” or “negative”, can cause cascading changes up to community and 102 
ecosystem levels30-32. Testing for deviation of metrics rather than for directional changes is a widespread 103 
approach in medical fields such as human physiology and cognition33-34 and has recently been applied to 104 
test the effects of environmental drivers on the abundance of fish species35.  105 
Here, we conduct a meta-analysis testing for deviations in biological responses under climate change 106 
drivers to complement the directional meta-analytical approach that has so far dominated this field. We 107 
first review metrics measured in the literature and evaluate which ones can confidently be linked to either 108 
adverse or positive effects on fitness, which is necessary to interpret results from directional meta-109 
analyses. Then, we test the effects of OW, OA, and their combination on marine organisms by evaluating 110 
both directional changes and deviations in ten categories of biological responses. We analyze impacts of 111 
climate drivers for invertebrates and fish separately and for three intensity levels of OW and OA: levels 112 
predicted for 2100 under IPCC Representative Concentration Pathways 6.0 and 8.5 (RCP 6 and RCP 8.5), 113 
and levels exceeding RCP 8.5 (hereafter “extreme level”). Finally, we compare significant effects detected 114 
when testing for directional changes with those detected when testing for deviations. We found 115 
significant deviational effects of climate drivers in twice as many biological responses of fish and 116 
invertebrates than when testing for directional effects. Widespread deviations of responses were 117 
detected even under moderate intensity levels (IPCC RCP 6) of OW and OA for 2100 while directional 118 
changes were mostly limited to higher intensity levels (RCP 8.5 and extreme). Our results highlight the 119 
risks of underestimating the impacts of climate change on biological response and reveal impacts of 120 
climate change that were until now hidden by counterbalancing effects. 121 
 122 
RESULTS AND DISCUSSION 123 
Relation of metrics to fitness 124 
We identified 217 studies that investigated the combined effect of OA and OW on marine organisms, 125 
yielding 3,162 control-treatment comparisons testing different species, climate driver levels, or metrics. 126 
We grouped metrics into ten categories of biological responses, and restricted data extraction to two 127 
metrics per biological response per study, selecting the metrics most frequently measured in the literature 128 
(see Methods and Supplementary Data 2 for details on metric selection). This resulted in the extraction 129 
of data documenting 110 metrics, which were evaluated by experts’ judgment for their effect on fitness 130 
(Supplementary Data 4). Five out of the ten biological response categories included over ten metrics (Fig. 131 
3), with physiology and behavior being measured through the broadest range of metrics (n = 34 and n = 132 
20 respectively). Only four biological responses (biodiversity, biomechanics, reproduction, and survival) 133 
were entirely measured by metrics for which an increase is associated with a non-ambiguous (i.e., positive 134 
or negative) effect on fitness (Fig. 3). By contrast, 50 to 80% of metrics used to measure the six other 135 
biological responses (behavior, calcification, development, growth, metabolism, physiology) have an 136 
ambiguous relation to fitness either because of lack of knowledge or because of context-dependent 137 
effects. 138 
 139 
Directional effects of climate drivers 140 
Following the approach used in previous meta-analyses5-11,14, we first tested for directional effects of 141 
climate drivers on biological responses using logarithm response ratios (lnRR). Due to recent research 142 
efforts focusing on previously understudied biological responses, we also synthesized the effect of OA and 143 



 

 

OW on a community-level response, i.e., invertebrate biodiversity, and increased the number of 144 
organism-level responses evaluated for fish and invertebrates in comparison to previous meta-analyses 145 
(Fig. 1). However, we did not find any study investigating the effects of combined OA and OW on fish 146 
biomechanics or biodiversity. We found that most biological responses (seven out of ten for invertebrates 147 
and five out of eight for fish) were significantly affected by OW or OA (Fig. 4). OA negatively impacted 148 
most biological responses of invertebrates (behavior, biomechanics, calcification, development, growth, 149 
reproduction, survival) but only affected one of eight biological responses of fish (decrease in growth). 150 
These results are consistent with previous meta-analyses6-7,10,16 and reflect the reliance of invertebrates 151 
on the availability of carbonate ions, which decreases under OA37-38, to build their shells and skeletons7,36. 152 
By contrast, fish can tolerate higher OA levels than invertebrates39 due to their elaborate acid-base 153 
regulation system40 and to their bony skeleton composed of calcium phosphate rather than calcium 154 
carbonate41. We did not find any directional effect of OA on fish behavior, although this could be due to 155 
the diversity of fish species pooled or to the diversity of behavioral metrics considered jointly and should 156 
be interpreted with caution. The effect of OA on fish behavior is presently a matter of debate19,21,28,42-44. 157 
OW had more effects on the biological responses of fish than invertebrates (Fig. 4). Stimulation of 158 
metabolism and inhibition of survival were observed for both fish and invertebrates, but decrease in 159 
development and reproduction were only observed for fish. Larger impacts of OW on fish compared to 160 
invertebrates have been hypothesized to derive from greater increases in metabolic costs for this taxa45. 161 
In comparison to previous meta-analyses, we found similar directional effects of responses to OW on 162 
invertebrates but fewer effects of OA on fish (Fig. 1). The combination of OW and OA (OW + OA) resulted 163 
in fewer and smaller effects than OA alone on invertebrates, or OW alone on fish (Fig. 4). These results 164 
suggest antagonistic effects of OW and OA, which support findings from previous studies7,11, although 165 
context-dependent synergistic and additive effects have also been reported6. When significant, responses 166 
of invertebrates to OW + OA mostly mirrored responses to OA while for fish they mostly mirrored 167 
responses to OW (Fig. 4), reflecting the climate driver most impactful to these respective taxa. 168 
 169 
Impact of climate driver level 170 
The number of biological responses affected by OW and OA, as well as the magnitude of these responses, 171 
increased with the intensity level of climate drivers (Fig. 5, Supplementary Table 1). For invertebrates, 172 
exposure to RCP 6 levels of climate drivers did not induce any directional response. Yet, under RCP 8.5 173 
levels, OW increased metabolism, OA decreased survival, reproduction, growth, development, 174 
calcification and biomechanics, and their combination increased metabolism and decreased calcification. 175 
Similarly, we found only two significant effects of RCP 6 level drivers on fish directional responses: 176 
inhibition of growth under OW and increases of behavioral responses under OW + OA. Effects on fish were 177 
more pronounced under RCP 8.5 levels: OW decreased survival and development and enhanced 178 
metabolism while OA reduced growth and their combination inhibited development. More directional 179 
responses were affected under extreme levels of drivers (exceeding RCP 8.5) for both invertebrates and 180 
fish (Fig. 5). These trends are consistent with previous results on OW or OA individually13-14,46 and 181 
document, for the first time, this pattern for the combination of these drivers. Currently, RCP 8.5 levels of 182 
climate drivers have been tested six-fold more often than RCP 6 levels. The underrepresentation of less 183 
severe levels of climate drivers hinders our ability to evaluate the ecological outcomes associated with 184 
achieving different RCP trajectories and limits our capacity to predict and manage for near-term impacts 185 
of OW and OA. The smaller sample size associated with RCP 6 levels might also contribute to the limited 186 
effects detected in this study and calls for further research effort.  187 
The intensity level of an experiment depends on the choice of its control value, which should account for 188 
the mean local environmental conditions but also for the variability and extreme conditions that 189 
organisms experienced during their development. However, pCO2 control values used in studies are 190 
sometimes based on pCO2 values for the open ocean, which can strongly differ from local coastal pCO2 191 
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conditions47-48. For this reason, it has been suggested to measure intensity levels of experimental OA using 192 
a ∆pCO2 exposure index based on local pCO2 upper conditions rather than on control values provided by 193 
studies46. Applying this approach, we found a significant correlation between the ∆pCO2 exposure index 194 
and the magnitude of both directional and deviational responses, yet the data fit was similar to that based 195 
on ∆pCO2 as provided in studies (Supplementary Fig. 2). Similarly, responses of invertebrates to RCP 6, 196 
RCP 8.5, and extreme levels of OA were stable using either study-based or exposure index ∆pCO2, i.e., 75% 197 
and 79% of significant responses were shared using both approaches for directional and deviational effect 198 
sizes, respectively (Supplementary Fig. 3-4). While the exposure index approach is currently restricted to 199 
sessile organisms and pCO2 treatments, adapting this methodology to accommodate the study of 200 
additional climate drivers and their combination, as well as mobile organisms, could provide further 201 
insights to elucidate drivers of organisms’ response to climate change. 202 
 203 
Deviations of biological responses 204 
Because of the diversity of species, experimental designs, and metrics tested in the literature, and because 205 
of the predominance of metrics with ambiguous relation to fitness, we posit that restricting analyses of 206 
climate impacts to mean directional changes across studies can be misleading. When pooling different 207 
species and metrics, changes of opposite direction can cancel out, masking individually significant changes 208 
(Fig. 2). This is problematic as the deviation of any response from its reference state holds biological 209 
significance by altering the balance at the cellular, organism, or ecosystem scale. Deviation of responses 210 
requires thorough consideration and testing when evaluating climate change impacts and cannot be 211 
captured by meta-analyses based on relative effect size. For this reason, we converted relative effect size 212 
into absolute effect size (|lnRR|) to calculate the average deviation in biological responses across studies. 213 
By mathematical construction, all significant directional changes translate into significant deviations, but 214 
significant deviations can be found in the absence of significant directional change, because unlike relative 215 
effect sizes, absolute effect sizes do not cancel out when averaged (Fig. 2).  216 
We found that OW, OA, and their combination caused significant deviations in all biological responses of 217 
invertebrates and fish, except for fish calcification and fish reproduction under OA (Fig. 6). For a given 218 
climate driver, significant effects were detected in up to eight times more responses when testing for 219 
absolute deviations than for directional changes (Fig. 7). This was especially true for biological responses 220 
described through numerous metrics with ambiguous effects on fitness, such as behavior and physiology 221 
(Fig. 3), which supports our hypothesis that antagonistic effects might be hidden when testing for 222 
directional changes in such responses. We also found significant deviations of most biological responses 223 
of invertebrates under OW and of fish under OA, for which we had detected limited directional changes 224 
(Fig. 7). Similarly, we found significant deviations in the behavior and physiology of fish and invertebrates 225 
under OW + OA whereas no directional change was detected. This is in line with the finding that a number 226 
of behavioral effects in fishes can be mediated by neurophysiological or sensory mechanisms22, the effects 227 
of which may be revealed only when deviations rather than directional changes are taken into account. 228 
Moreover, we observed significant deviations in the responses of invertebrates to RCP 6 levels, whereas 229 
no directional changes were detected. In contrast, we found no additional effect of RCP 6 level drivers on 230 
fish responses when testing for absolute deviations compared to testing for directional changes. The 231 
deviation of responses under OW + OA closely mirrored that of responses under OW or OA alone, 232 
depending on taxa and response, and globally followed a trend of antagonistic effect of OW + OA. 233 
Although the challenge of including ambiguous metrics in meta-analyses has been previously 234 
recognized16, the most common approach has been to exclude them from analyses or to assign them a 235 
positive direction as a default before pooling them5-7. Our results suggest that these approaches 236 
underestimate the effects of climate change because ambiguous metrics that are pooled can be 237 
antagonistic and cancel out in the overall average effect size. The only alternative approach has been to 238 



 

 

report metrics separately20 or to analyze metrics that have opposite directionalities in independent 239 
categories (e.g., boldness being assessed separately from other behavioral metrics14).  240 
 241 
Effect of life stage and acclimation time 242 
Organisms’ life stage (embryo, larvae, juvenile, or adult) had a significant effect on responses to climate 243 
drivers. In both fish and invertebrates, early life stages (embryo, larvae, juveniles) displayed more 244 
significant directional responses than adults (Supplementary Fig. 5-6, Supplementary Table 2). Early life 245 
stage invertebrates predominantly displayed significant decreases in responses (Supplementary Fig. 5) 246 
while early life stage fish displayed both significant increases and decreases. Under OW and OA + OW but 247 
not OA alone, biological responses of fish embryos were decreased and those of juveniles were increased. 248 
Biological responses of fish larvae were decreased under OA and increased under OW. For both 249 
invertebrates and fish, deviations of responses were significant and similar in magnitude across life stages 250 
and climate drivers, with the exception of embryos’ responses that were lower in magnitude. Lower 251 
magnitude of deviations, but higher magnitude of directional response of embryos compared to more 252 
advanced life stages, could be due to the less ambiguous and less diverse metrics measured on embryos, 253 
typically related to survival and “normality” of developmental processes, leading to fewer 254 
counterbalancing effects when computing overall relative effect size. The higher sensitivity of early life 255 
stages to climate drivers has been found in some, but not all, previous meta-analyses and has been 256 
attributed to their lack of regulation and protection mechanisms to cope with environmental changes 257 
(Sampaio et al.11 vs. Cattano et al.14). Conversely, acclimation time had limited to no effect on directional 258 
and deviational responses of organisms (Supplementary Fig. 7-8). This is consistent with previous meta-259 
analyses that did not find a clear effect of acclimation time on organisms’ response7, and suggest that the 260 
influence of acclimation time is likely overshadowed by stronger drivers of responses at the meta-261 
analytical scale, such as life stage, metric category, or intensity of climate driver level.  262 
 263 
From deviations in the responses of organisms to ecological shifts 264 
The relevance of examining deviational effects of climate drivers is linked to characteristics of biological 265 
processes from the cellular to the ecosystem level. Over evolutionary time scales, organisms have 266 
adjusted their metabolic machinery to achieve physiological homeostasis at the lowest metabolic cost 267 
possible within the range of conditions of their local environment49. Any deviation from an optimal 268 
setpoint of homeostasis, whether originating from a metric increase or decrease, is energetically costly as 269 
it induces metabolic regulation and, in some cases, compensatory responses50. If abiotic conditions vary 270 
within the evolutionarily experienced maxima and minima, physiological regulation will ensure 271 
homeostasis, yet regulatory metabolic costs will usually rise with increasing deviation from the setpoint51. 272 
As such, deviation in physiological responses might provide a valuable indicator of the level of stress that 273 
organisms are experiencing.  274 
At the population and ecosystem scales, antagonistic responses of different species to climate drivers are 275 
unlikely to result in a net absence of change as reflected by directional effect sizes, but rather in a shift of 276 
community composition and ecosystem structure52-53. Indeed, an increase in the growth rate of a given 277 
species will induce  cascading effects to predators and prey though trophic interactions, and to 278 
competitors because of finite resource availability, resulting in significant shifts  in the ecosystem 279 
structure . For example, OA has been observed to decrease the relative feeding performance of bivalves 280 
and sea urchins in comparison to gastropods20,54, and to increase the relative growth of turf algae in 281 
comparison to kelp54. Taken together, these changes induced a shift in the habitat-forming species of this 282 
ecosystem from kelp to turf algae54. Similarly, studies investigating the effects of climate change on marine 283 
biodiversity have reported reshuffling of species rather than a net loss53,55. None of these shifts can be 284 
detected at the meta-analytical level by averaging relative distances to reference states but can be 285 
detected by averaging absolute distances, i.e., deviations in responses. However, we acknowledge that 286 



 

 

testing for deviation is less conservative than testing for directional effects because the former decreases 287 
the variability of results thereby increasing the magnitude or significance of climate effects. Therefore, we 288 
suggest that deviation and directional analyses should be performed jointly.   289 
 290 
Perspective and future directions 291 
Although experimental designs have increased in complexity to better reflect real-life systems, several 292 
knowledge gaps and limitations remain and hinder our understanding of current and future impacts of 293 
climate change on marine life. Most studies we reviewed relied on short exposure times to test impacts 294 
of climate drivers (51 ± 7 days; mean ± SE), which cannot account for long-term adaptive responses 295 
through phenotypic plasticity or adaptation across generations. Conversely, the effects of short, acute 296 
climate drivers, such as heat waves or extreme OA events, remain paradoxically understudied in 297 
comparison to the gradual effects of OA and OW11. This limits our capacity to predict near-term impacts 298 
of climate change, characterized by increased frequency and intensity of extreme events and milder 299 
average increases in OW, OA, and other climate drivers56. This represents a problematic mismatch with 300 
the timescale of information needed to inform present-day adaptive management interventions 301 
attempting to limit impacts and enhance the resilience of socio-ecological systems within the upcoming 302 
decade rather than at the end-of-the century. Another important consideration is the role played by 303 
environmental variability in the adaptive capacity of organisms. Most studies investigating biological 304 
effects of climate drivers have been conducted by exposing organisms to stable experimental conditions 305 
even though environmental variability is the norm in nature46. While evidence remains scarce, recent 306 
studies have shown that organisms tend to be more tolerant to climate change drivers when exposed to 307 
fluctuating conditions47,57.  308 
Finally, more knowledge on the mechanisms that link biological changes to ecosystem structure is needed 309 
to predict how deviations or directional changes of responses at the organism level translate into 310 
ecosystem-level shifts. This involves conducting experiments investigating multi-species systems and 311 
biotic interactions, measuring community-level indicators such as species richness, evenness, functional 312 
redundancy or trophic structure, as well as conducting in-situ experiments. While designing empirical 313 
studies that test for community-level shifts is challenging, models can provide valuable insight on this 314 
matter (e.g., ecosystem-level impacts from changes in fish boldness58). 315 
 316 
Our study constitutes an important step forward in documenting the impacts of ocean warming, ocean 317 
acidification, and their combination on marine life by assessing the broadest range of biological responses 318 
to date and by testing both directional changes and deviations of these responses. We argue that metrics 319 
commonly pooled in meta-analyses have predominantly ambiguous or context-dependent effects on 320 
fitness, which results in mean effect sizes that are difficult to interpret and that likely underestimate 321 
climate impacts. We found that many biological responses that appear unaffected when testing for 322 
directional effects are, in fact, significantly deviated from their reference state, suggesting more pervasive 323 
effects of climate change than previously thought. While more work is needed to ascertain the impact of 324 
deviations in organism level responses at the ecosystem level, accounting for counterbalancing effects 325 
when averaging responses across metrics and species is a fundamental step towards precautionary 326 
assessments of climate change impacts on organisms. 327 
 328 
METHODS 329 
Literature search and data collection 330 
Systematic literature search strategy. We performed our systematic literature search on Google Scholar 331 
and ISI Web of Science following the PRISMA methodology59 (Supplementary Fig. 1). The following search 332 
string was used for ISI Web of Science: (ocean acidification OR carbon dioxide OR CO2) AND (warming OR 333 
temperature) AND (fish OR invertebrate* OR mollusk* OR echinoderm* OR crustacean* OR cnidaria OR 334 



 

 

bryozoan* OR marine organism*). For Google Scholar we searched the following combination of words: 335 
ocean acidification, carbon dioxide, CO2, warming, temperature, ocean warming, fish, invertebrate for 336 
each year between 2008 and 2022 and limited the search results to 100 per year. All papers published 337 
before January 2022 were included in our systematic review. In addition, the reference lists from the 338 
retrieved publications, as well as those from previously published meta-analyses on effects of OA or OW 339 
on marine life11,19, were cross-checked to find publications containing relevant data. 340 
 341 
Screening criteria. We retained studies that tested the combined effects of OA and OW on marine 342 
ectotherms, i.e. fish (teleosts, elasmobranchs) or invertebrates (annelida, arthropoda, bryozoa, cnidaria, 343 
echinodermata, mollusca, nematoda, platyhelminthes, porifera). To be considered in the analysis, 344 
publications had to include at least two pCO2 and two temperatures in a full factorial design and include 345 
information on control and treatment values of pCO2 and temperature. This was done so that 346 
antagonistic, synergistic or additive effects of OA and OW could be evaluated. Only studies that used CO2 347 
or CO2-enriched gas to manipulate pCO2 were kept, those using acid addition were excluded. We counted 348 
studies as testing for OA or OW effects if this was the explicit goal of the experiment. For example, we 349 
excluded a study that registered an increase of pCO2 of 86 µatm because this was only an undesired 350 
parameter change that occurred during a temperature experiment60. We excluded all studies that did not 351 
report mean values, sample size or one of the following error types: variance, standard error, standard 352 
deviation or 95% confidence interval.  353 
 354 
Data extraction. We extracted quantitative data from the text, tables, and graphs of publications using 355 
the software GetData, Graph Digitizer and WebPlotDigitizer. For each study, we extracted information on 356 
the biology and ecology of the studied organism (phylum, family, species, life-stage, climatic zone, habitat) 357 
as well as information on the experimental design of the study (climate driver tested, climate driver level 358 
and biological metric measured). For each tested driver in a study, we recorded control and treatment 359 
values (temperature in °C, pCO2 in µatm), and the associated biological response variables (mean, error 360 
and sample size). Control conditions for pCO2 and temperature were chosen based on the conditions at 361 
which the organism was sampled in the wild and acclimated, or in the case of laboratory-raised organisms, 362 
the conditions stated in the paper as representing the common biotic range for that organism. 363 
Experiments that tested temperature or pCO2 conditions that were lower than the control conditions 364 
were not extracted. In the case of studies testing for more factors than OA and OW (e.g., oxygen, salinity, 365 
food level), we only extracted data from experiments in which those factors had control values. Data from 366 
trans-generational studies were kept only for the parent generation, i.e., the generation that was exposed 367 
to control levels of the climate change driver before experiencing OW and OA.  368 
 369 
Classification of metrics. We grouped metrics among ten biological responses: behavior, biodiversity, 370 
biomechanics, calcification, development, growth, physiology, reproduction, metabolism and survival 371 
(Supplementary Data 3). Then, we attributed a direction (positive, negative or ambiguous) to each metric 372 
according to whether an increase in that metrics’ value was considered beneficial, detrimental or 373 
ambiguous (and/or unknown) to the organism, species or community. The scores were given based on 374 
the expertise of five of the co-authors (KA, PD, MM, CC, FCM), who reviewed metrics and assigned them 375 
a direction independently (Supplementary Data 4). We adopted the most conservative approach, i.e., we 376 
only assigned a positive or negative direction to a metric if all five co-authors unanimously agreed on that 377 
direction. We classified all other metrics as having an ambiguous direction (Supplementary Data 4). When 378 
two metrics measuring the same phenomenon were measured in opposite ways across studies (e.g., 379 
mortality rate and survival rate, morphological normality (%) and abnormality (%)), we converted all 380 



 

 

metrics to their positive measurement (e.g., survival rate and morphological normality) to increase the 381 
statistical power of our analysis. 382 
 383 
Climate scenarios. We attributed one of three climate scenarios (RCP 6, RCP 8.5 or extreme) to 384 
experiments based on the difference of pCO2 and temperature (T) between control and treatment values. 385 
The attribution of climate scenarios followed projections from IPCC 20221: RCP 6 scenario for experiments 386 
with ΔpCO2 < 350 µatm or ΔT < 2 °C; RCP 8.5 scenario for experiments with 350 < ΔpCO2 < 750 µatm or 2 387 
°C < ΔT < 4 °C, and extreme climate scenario when ΔpCO2 > 750 µatm or ΔT > 4 °C. For experiments 388 
combining pCO2 and temperature treatments, an RCP scenario was only attributed if ΔpCO2 and ΔT 389 
corresponded to the same scenario. The ΔpCO2 treatments in the selected studies ranged from 78 µatm61 390 
to 7894 µatm62 and the ΔT ranged from 0.9 °C63 to 12.8 °C64.  391 
 392 
Number of data points extracted per study. Multiple data points were extracted from the same study 393 
when they corresponded to different drivers, RCP scenarios, species, life-stages, geographic locations, 394 
habitats, or biological responses (e.g., a survival metric and a reproduction metric). For biodiversity 395 
metrics, the least taxa-aggregated values were extracted because we considered biodiversity at the 396 
community level. When a study reported results on different ontogeny (e.g., number of days since 397 
hatching) within one life-stage (e.g., juvenile), data corresponding to the most advanced time point within 398 
that life-stage was extracted. When experiments were repeated in summer and winter, we kept the data 399 
from the summer experiment as this was the season most commonly investigated.  When data were 400 
collected from several spawning periods, we kept data from the main spawning event. In all other cases 401 
(e.g., several clones measured, different time of the day investigated, several body sizes used), values 402 
provided in the article were averaged. The variance of the averaged values saggregated

2  was calculated 403 

using equation 1: 404 

𝑠aggregated
2  =  

1

𝑘2
 . ∑   i  𝑠i

2  (1) 405 

where si is the variance associated with the averaged value i and k is the total number of values being 406 
averaged. 407 
 408 
Number of metrics extracted per study. When several metrics from the same category were reported in 409 
one paper (e.g., the activity of three different enzymes, that all fall within the physiology category), we 410 
selected a maximum of two metrics to avoid the over-representation of any given study in our dataset. 411 
The selected metrics were chosen based on a priority ranking. First, we assigned priority to metrics 412 
classified as positive or negative over those classified as ambiguous. Then we inspected if metrics were 413 
correlated and only kept the most inclusive one. For example, if condition index, shell length and shell 414 
weight were measured, we kept only condition index to avoid codependency of metrics within the data 415 
set. When metrics were correlated and equally inclusive, we kept the metric most commonly measured 416 
across studies. For example, activities of the two enzymes superoxide dismutase (SOD) and glutathione S-417 
transferase were considered to be correlated because they are both proxies for antioxidant capacity, but 418 
SOD was kept because it was measured in more studies. If metrics from the same category were as 419 
commonly measured across studies, we chose one randomly. Our choices of selected metrics from studies 420 
that reported several metrics from the same category are listed in Supplementary Data 2. 421 
 422 
Data analysis 423 
For each treatment i, a relative effect size was calculated as the natural logarithm response ratio of the 424 
mean response in treatment i over the mean response in control i  (equation 2):  425 

ln RR𝑖  =  ln (
𝑥̄ treatment,𝑖

𝑥̄ control,𝑖
)   (2) 426 



 

 

In the case of metrics for which an increase is detrimental to fitness (i.e., negative direction, 427 
Supplementary Data 3), the log of the inverse (i.e., control/treatment) was calculated, so that an increase 428 
would result in a negative effect size. This formula was also applied in the case of metrics of positive 429 
direction but with negative values, because an increase of a negative value corresponds to a negative 430 
outcome. If an experiment reported a mean value of zero for its treatment or control, or if an experiment 431 
reported values of opposite sign (one positive and one negative) for its control and treatment, the 432 
experiment was not included in the analysis because they do not allow to calculate log ratios.  433 
 434 
Additionally, for each experiment i, an absolute effect size |ln RRi| was calculated as follow (equation 3):  435 

ln RR𝑖  = | 𝑙𝑛 (
𝑥̄ treatment,𝑖

𝑥̄ control,𝑖
) |  (3) 436 

Variance, standard deviations and confidence intervals associated with control and treatment mean 437 
values were converted into standard errors (SEtreatment,𝑖

  and SEcontrol,𝑖
  respectively). The within-438 

experiment variance vi associated the experiment i was then calculated for both relative and absolute 439 
effect size as (equation 4): 440 

𝑣𝑖 = 
SEtreatment,𝑖

2

𝑥̄ treatment,𝑖
2 + 

SEcontrol,𝑖
2

 𝑥̄ control,𝑖
2   (4) 441 

Experiments measuring survival, morphological abnormalities or fertilization success sometimes had null 442 
or extremely low within-study variance, e.g., as a result of all individuals surviving. Because the rma() 443 
function of the {metafor} package has a within-study variance threshold of 0.0001, we attributed the fixed 444 
value of 0.0001 to n=24 experiments (from a total of 3,162 experiments) for which variance fell under that 445 
threshold. We verified that this did not result in a disproportionate weight given to these data points by 446 
checking the weights attributed by models to these studies, as detailed in Supplementary Data 1.    447 
 448 
Random-effect model. We performed all the parametric data analyses using the {metafor} package65-66. 449 
We used a weighted random-effects model to quantify the effect of treatments on variables. Effect sizes 450 
were weighted accounting for both the within- and among-study variance components. We conducted a 451 
meta-analysis for each combination of taxa (2 levels: invertebrate or fish), climate driver (3 levels: OW, 452 
OA and their combination); climate driver level (RCP 6, RCP 8.5 and extreme); and category of biological 453 
response (ten levels, see above), which led to 54 models. Model heterogeneity, residual heterogeneity, 454 
degrees of freedom and p-values associated with the 54 models tested are detailed in Supplementary 455 
Data 5 and 6 (deviation and directional meta-analyses, respectively). We also carried out meta-analyses 456 
across these same categories but grouping climate scenarios together (Supplementary Table 3-4). A 457 
treatment was considered to have a significant effect on a variable when the 95% confidence interval 458 
calculated by the model did not overlap zero. 459 
 460 
Covariates. The influence of the driver intensity (RCP 6, RCP 8.5 and extreme) on both relative and 461 
absolute effect sizes was investigated at the taxa x biological response x driver level when the dataset had 462 
n ≥ ten data points and featured at least two different scenarios populated by at least two data points. 463 
The model heterogeneity and residual heterogeneity associated with these models are shown in 464 
Supplementary Table 1 and 5 (directional and deviation meta-analyses, respectively).  465 
The influence of life stage (embryo, larvae, juveniles or adults) and acclimation time (number of days of 466 
acclimation, square-root transformed) on both relative and absolute effect sizes was investigated at the 467 
taxa x driver level. Model heterogeneity, residual heterogeneity, and associated p-values are provided in 468 
Supplementary Table 2.  469 
 470 
Sensitivity analyses. To test the robustness of our meta-analysis results, we carried out several sensitivity 471 
analyses18 to detect: (1) the presence of a publication bias and of outliers using visual observation of 472 



 

 

funnel plots (Supplementary Data 1); (2) the sensitivity of our results to publication bias using the 473 
Rosenthal’s fail-safe number (Nfs); (3) whether a different outcome could be obtained when correcting for 474 
publication bias using Duval and Tweedie’s Trim and Fill test67-68. The Rosenthal’s fail-safe number is an 475 
estimation of the number of additional non-significant effect sizes required for a significant meta-analysis 476 
result to become non-significant. This allowed us to check the sensitivity of results to uncaptured studies. 477 
This risk is estimated to be high if Nfs is below 5n+10, with n the number of data points in the meta-478 
analysis. This was not the case for any of our results (Supplementary Table 6). Duval and Tweedie’s Trim 479 
and Fill test could only be applied to our relative meta-analyses, which were all found to be robust to 480 
potential publication bias under this test (Supplementary Table 6).  481 
Outlying effect sizes were identified through the visual observation of funnel plots (Supplementary Data 482 
1). Additionally, their associated weight was checked using forest plots (Supplementary Data 1) to make 483 
sure that no unique value was overwhelmingly influencing the overall effect size18. The studies 484 
corresponding to outlying points were scrutinized for factors that could explain the extreme values found. 485 
Because no flaws or marked differences in experimental design of these studies were found, no points 486 
were excluded from our meta-analyses.  487 
 488 
Effect of upper environmental conditions. We tested the effect of local upper environmental conditions, 489 
as a proxy for local variability, on the biological responses of organisms. We limited this analysis to OA 490 
following a detailed methodology developed to test the effects of local pCO2 extremes on organisms’ 491 
responses to OA46. This methodology can only be applied under a certain number of conditions, i.e., when 492 
studied organisms are sessile or have low-vagility and when pCO2 data from sampling sites are available. 493 
Furthermore, it has not yet been extended to evaluate the effects of local temperature extremes. This 494 
would require a novel approach that takes into account other bioclimatic metrics such as diurnal 495 
temperature ranges, isothermality, temperature seasonality and range, microclimate as well as thermal 496 
acclimation capacity. In addition, many studies do not report the date of animal collection, the start date 497 
of experiments, and thermal conditions in the laboratory before commencement of experiments, which 498 
would be crucial information for such an approach. This adds to the difficulties associated with developing 499 
this approach, which is outside the scope of this study. We checked studies included in our meta-analysis 500 
against the selection criteria given in Vargas et al.46. We retained species selected in Vargas et al.46 and 501 
included 24 additional sessile and gregarious or low-vagility benthic species (Supplementary Table 7). Out 502 
of the 217 studies used in our meta-analyses, 62 met all selection criteria, including 25 studies that were 503 
already included in Vargas et al.46 and 37 additional studies (Supplementary Fig. 9).  504 
Upper environmental conditions at the sampling sites of these 62 studies originated from global database 505 
and local buoys deployments, and were extracted from the supplementary information in Vargas et al.46. 506 
We then calculated (1) a study-based ΔpCO2 and (2) a ΔpCO2 exposure index by calculating the difference 507 
between the pCO2 treatment value and (1) the pCO2 control value as given in studies, or (2) upper local 508 
environmental conditions, respectively. 509 
We tested the relation between study-based ΔpCO2 and ΔpCO2 exposure index and the response of 510 
organisms using linear regression models. We attributed climate scenarios to each data point following 511 
the same procedure as described in the “Climate scenario” section but using the ΔpCO2 exposure index 512 
instead of the study-based ΔpCO2. Because studies that met the criteria necessary to calculate a ΔpCO2 513 
exposure index were much fewer than our initial study pool, we performed tests at the biological response 514 
x intensity level regardless of sample sizes. Results from linear regressions are shown in Supplementary 515 
Figure 2 and directional and deviational responses by biological response and by intensity level using both 516 
ΔpCO2 approaches in Supplementary Figure 3 and 4, respectively. The model heterogeneity and residual 517 
heterogeneity associated with these models are shown in Supplementary Table 8.  518 
 519 
DATA AVAILABILITY 520 



 

 

The data used and generated in this study have been deposited in the Zenodo database under accession 521 
code 10223034 [Hidden impacts of climate change on biological responses of marine life 522 
(zenodo.org)]69. Source data are provided with this paper.  523 
 524 
CODE AVAILABILITY 525 
The codes used to perform this study are publicly available in the Zenodo database under accession code 526 
10223034 [Hidden impacts of climate change on biological responses of marine life 527 
(zenodo.org)]69.  528 
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FIGURE  784 

 785 
Figure 1: Results of previous meta-analyses on the effects of climate drivers on biological responses of 786 
marine animals. Different colored tiles indicate that a given meta-analysis reported increases (blue), 787 
decreases (magenta), conflicting results (i.e., different effects depending on variables tested that were 788 
not pooled in the study; orange), no effect (gray) or did not evaluate (white) a given biological response 789 
of invertebrates and fish to ocean acidification, ocean warming and their combination. Data was assessed 790 
at the 95% confidence interval level. Fish and mollusc icons are available at on the noun project website: 791 
https://thenounproject.com/icon/fish-1464319/ and https://thenounproject.com/icon/mollusk-792 
5552214, respectively. 793 
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 796 
Figure 2: Diagram showcasing differences between directional changes and deviations. Antagonistic 797 
responses at the experiment level can cancel out when computing a mean directional change (lnRR). By 798 
contrast, significant responses are revealed when computing mean deviation (abs(lnRR)). CI = Confidence 799 
interval, n = sample size 800 
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 803 
Figure 3: Effect of metric’s increase on fitness and number of metrics per biological response category. 804 
Magenta, blue and gray fillings indicate metrics for which an increase leads to a negative, positive, or 805 
ambiguous effect on fitness, respectively. The number of metrics per biological response category 806 
included in our analysis is indicated next to each bar. Source data are provided as a Source Data file 807 
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 810 
Figure 4: Directional effects of climate drivers on biological responses of marine animals. Directional effect 811 
(lnRR) of ocean warming (OW, circles), ocean acidification (OA, pCO2, squares) and their combination (OW 812 
+ OA, diamonds) on the biological responses of invertebrates (orange) and fish (green). Significant 813 
deviations are denoted by filled symbols (resp., open symbols for non-significant symbols). Error bars 814 
represent 95% confidence intervals associated with the mean effect size and numbers indicate sample 815 
sizes. Source data are provided as a Source Data file. Fish and mollusc icons are available at on the noun 816 
project website: https://thenounproject.com/icon/fish-1464319/ and 817 
https://thenounproject.com/icon/mollusk-5552214, respectively. 818 
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 821 
Figure 5: Directional effects of climate drivers by intensity level. (a) Directional effects (lnRR) of ocean 822 
warming (OW), ocean acidification (OA) and their combination (OW + OA) on biological responses of 823 
invertebrates (left) and fish (right) according to the intensity level considered (representative 824 
concentration pathway (RCP) 6 (R6), RCP 8.5 (R8), and extreme (ex)). The magnitude of effects is 825 
represented by a blue (increase) to magenta (decrease) color scale. Light gray tiles indicate an absence of 826 
data. Asterisks indicate significant effects. (b) Proportion of biological responses for which a significant 827 
increase (blue) or decrease (magenta) was found for each climate driver and intensity level. Source data 828 
are provided as a Source Data file. Fish and mollusc icons are available at on the noun project website: 829 
https://thenounproject.com/icon/fish-1464319/ and https://thenounproject.com/icon/mollusk-830 
5552214, respectively. 831 
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 834 
Figure 6: Deviation effects of climate drivers on biological responses of marine animals. Deviation 835 
(abs(lnRR)) of biological responses of invertebrates (orange) and fish (green) to ocean warming (OW, 836 
circles), ocean acidification (OA, squares) and their combination (OW + OA, diamonds). Significant 837 
deviations are denoted by filled symbols (resp., open symbols for non-significant symbols). Error bars 838 
represent 95% confidence intervals associated with the mean effect size and numbers indicate sample 839 
sizes. Source data are provided as a Source Data file. Fish and mollusc icons are available at on the noun 840 
project website: https://thenounproject.com/icon/fish-1464319/ and 841 
https://thenounproject.com/icon/mollusk-5552214, respectively. 842 



 

 

 843 

 844 
Figure 7: Directional and deviational effects of climate drivers. (a) Effects of ocean warming (OW), ocean 845 
acidification (OA), and their combination (OW + OA), on biological responses of invertebrates (left, orange) 846 
and fish (right, green) according to the intensity level considered (representative concentration pathway 847 
(RCP) 6 (R6), RCP 8.5 (R8) or extreme (ex)). Colors indicate significant directional and deviational effects 848 
(darkest colored tiles), significant deviational effects only (light colored tiles), or no significant effects 849 
(white tiles). Absence of data is indicated by gray tiles. (b) Proportion of biological responses (%) for which 850 
significant directional and deviational effects (darkest colored tiles), significant deviational effects only 851 
(light colored tiles), or no significant effects (white tiles) were found under each intensity level for 852 
invertebrates (left, orange) and fish (right, green). Note that all significant directional effects imply 853 
significant deviations. Source data are provided as a Source Data file. Fish and mollusc icons are available 854 
at on the noun project website: https://thenounproject.com/icon/fish-1464319/ and 855 
https://thenounproject.com/icon/mollusk-5552214, respectively. 856 
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