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Oscillatory-driven amorphous materials forget their initial configuration and converge to limit cycles. Here we
investigate this memory loss under a nonquasistatic drive in a minimal model system, with quenched disorder
and memory encoded in a spatial pattern, where oscillating protocols are formally replaced by a positive-velocity
drive. We consider an elastic line driven athermally in a quenched disorder with biperiodic boundary conditions
and tunable system size, thus controlling the area swept by the line per cycle as would the oscillation amplitude.
The convergence to disorder-dependent limit cycle is strongly coupled to the nature of its velocity dynamics
depending on system size. Based on the corresponding phase diagram, we propose a generic scenario for memory
formation in disordered systems under finite driving rate.
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Introduction. Theoretical descriptions of driven amorphous
materials remain challenging, both for the rheology of yield
stress fluids [1] or the mechanics of structural glasses [2].
Part of their complexity stems from their structural disorder—
self-generated by the relative position of their individual
constituents—which plays a key role in their response to an
external drive. There has been recently a collective endeavor
to revisit the prominent features of these materials from the
prism of memory formation [3,4]. Characterizing transient
regimes, toward steady-state or hysteretic behaviors, amounts
to study how materials forget an initial configuration and
eventually “learn” a new driving-dependent state. The encod-
ing and retrieval of such memories in amorphous materials is
a promising avenue for metamaterials development [5,6].

In that respect, oscillatory protocols play a special role. By
tuning their amplitude, period, and spatial pattern, they allow
us to systematically probe the explored disordered landscape.
Thermal activation is ill controlled in comparison, probing
energy barriers in a random and statistically isotropic way.
On the numerical side, the oscillatory-athermal-quasistatic-
shear (OAQS) protocols provide bare characterizations of
the landscape features with no characteristic timescale [7].
They have been the focus of several recent studies, either
in particle-based [8–12] or coarse-grained models [13–16].
Microscopically, an amorphous material experiences plastic
events, which locally update the structural disorder and gen-
erate a mechanical noise. Upon this iterative restructuring,
and depending on the driving amplitude, the material re-
sponse departs from an initial elastic regime, and after one
or several oscillatory cycles converges into a hysteretic be-
havior. Remarkably, the complex structure of these transient
and limit-cycle responses upon OAQS can further be revealed
via random transition graphs between mechanically stable
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configurations [17–20]. On the experimental side, however,
oscillatory protocols are often performed at a finite driving
rate, typically with a sinusoidal shear strain (or stress), whose
frequency dependence is central in rheological measurements
of storage and loss moduli [1,21–24]. The additional timescale
introduced by the drive compels us to clarify the interplay be-
tween elastic relaxation and disorder dynamics. In particular,
it questions the generalizability of the memory picture built
on quasistatic protocols to actual rheological experiments,
already at a formal level.

In this Letter, we investigate numerically a minimal model
system, devised to disentangle these memory effects from
the structural disorder dynamics, focusing on displacement-
controlled protocols at finite velocity. It aims to bypass three
main difficulties: first, in amorphous materials, configurations
and disorder are parametrized by the same degrees of free-
dom, namely the positions of individual particles; second,
we are better equipped theoretically to address overdamped
steady states at positive driving, rather than hysteretic behav-
iors under oscillating protocols; third, a bidimensional system
permits direct visualization of what happens, especially for the
memory process, and faster simulations. Our model system
consists of an elastic line driven athermally in a biperiodic 2D
random landscape by adjusting the center-of-mass velocity.
The disorder is quenched with ad hoc features that we fully
control. Memory is encoded in the geometrical and velocity
profiles of the line, and oscillating protocols are formally
replaced by a positive velocity drive: instead of driving the
line back and forth swiping repeatedly the same landscape, the
line is continuously driven over a repeated landscape. Hence,
tuning the system size controls the area swept by the line per
cycle, as would an oscillatory amplitude.

Our findings put forward the key role of velocity dynamics
regarding memory formation. In the absence of thermal fluctu-
ations, the line converges to disorder-dependent limit cycles.
In quasistatic, the limit cycle is then fully characterized by
the sole shape of the line, optimized in the successive minima
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FIG. 1. Settings: (a) Quenched disorder η(x, z) embedded in a
biperiodic 2D space of coordinates (x, z) ∈ [0, �] × [0, N]; driven
elastic line parametrized by the univalued profile h(z, t ). (b) Stro-
boscopic view of its geometrical profile when h̄(t j ) = 0. (c) Profile
difference, in absolute value, between successive cycles. (d) Expo-
nential decay of the integrated profile difference �hj , plateauing
after n cycles. Parameters: c = 10−3, k = 10−2, σ = 1, N = 1024,
l = 10.

of the disordered landscape. For a finite driving rate, on the
contrary, part of the memory is encoded in the velocity profile.
Therefore, the way the system forgets its initial conditions will
also strongly depend on the nature of the velocity dynamics,
self-consistently fixed by the disorder/size/driving settings.

Model. We consider an elastic line evolving in a 2D space
of coordinates (x, z) ∈ [0, �] × [0, N] with biperiodic bound-
ary conditions, as shown in Fig. 1(a). In the absence of
overhangs, this front shape is parametrized by an univalued
profile h(z, t ). It evolves in a quenched random field η(x, z),
with the overdamped dynamics

∂t h(z, t ) = ct − k〈h(z, t )〉z︸ ︷︷ ︸
speed loading, Fload

+ Fst[h(z, t )]︸ ︷︷ ︸
stiffness

+ σ η(h(z, t ), z)︸ ︷︷ ︸
disorder

with Fst[h(z, t )] = 1

π

∫ N

0
dz′ h(z′, t ) − h(z, t )

|z′ − z|γ (1)

with the loading rate c, unloading factor k, and disorder am-
plitude σ . 〈•〉z denotes the spatial average in the z direction,
hence 〈h(z, t )〉z ≡ h̄(t ) is the center of mass. We assume a
Gaussian disorder of zero means, denoting • the average
over disorder realisations, η(x, z) = 0 and η(x, z)η(x′, z′) =
2 δ(x − x′)δ(z − z′), i.e., spatially uncorrelated above the nu-
merical discretization scale. The “stiffness” elasticity range
can be tuned by changing the exponent γ , and to focus for
now on a single model here we set γ = 2. The remaining
parameters are tuned to probe the different amnesia regimes :
c ∈ [10−5, 5 × 10−2], k ∈ [10−3, 5 × 10−1], σ ∈ [0.1, 5], and
in pixel-size units N ∈ [128, 16384] and l ∈ [2, 400].

This is one representative example of the theoretical frame-
work of disordered elastic systems, successfully applied to
a broad range of physical interfaces (ferroic domain walls,
imbibition, proliferating cells fronts, etc.) to address the role
of disorder in their properties [25–29]. We focus on the
long-range elastic line (γ = 2) with “random-field” disor-
der, extensively investigated as a paradigm of brittle cracks
in fracture mechanics [30–37]. It is also relevant for driven
amorphous materials, as it retains the long-range nature of the
Eshelby stress propagator (recognized as key to amorphous
plasticity), albeit without its nonconvex features [38,39].
Moreover, our driving is formally closer to a genuine me-
chanical loading. Our model’s critical features in the steady
state are well benchmarked within the depinning formalism
[34,40–43], allowing us to focus directly on memory issues.
In a nutshell, (i) The speed loading Fload(t ) is a competition
between an external loading rate c and a restoring stiffness
k acting on the center of mass. This displacement-controlled
driving guarantees that the line will always reach a finite
steady velocity and F steady

load (t ) � Fc, where Fc is a critical
force set by the disorder configuration [44]. (ii) Conversely,
in an athermal constant force driving, Fc is the minimal force
needed to reach such a self-sustained steady state. (iii) The na-
ture of the velocity dynamics changes radically depending on
the proximity to Fc: in the “fast-flow” or continuous regime,
the average velocity displays small fluctuations around the
mean c/k, i.e., F steady

load (t ) ≈ c/k � Fc; closer to Fc, the line ad-
vances intermittently via critical avalanches, in the so-called
“crackling” regime [34]. These features are generic for many
driven disordered systems, and reminiscent of the yielding
transition of amorphous materials [38,39,45].

Regarding the present study, we could have considered
alternative choices for the elasticity and disorder, similarly
benchmarked. Yet, with our choice we anticipate reintroduc-
ing disorder dynamics in our model system: [43] provides an
additional benchmark on how artificial disorder updates trig-
ger avalanches and modify their distributions in a controlled
way.

Memory characterization. The transverse size � is usually
considered as a necessary nuisance in numerical simula-
tions [46], whereas here it is precisely our control parameter
of interest. We start with a flat and still initial condition
(h(z, 0) = ∂t h(z, 0) = 0 ∀z), and drive deterministically the
line at finite rate with its overdamped dynamics over j cycles
in the x direction. We take a stroboscopic snapshot of its shape
each time t j its center of mass crosses x = 0. We then quantify
the convergence to a limit cycle, for a given disorder real-
ization, by comparing consecutive profiles h j (z) ≡ h(z, t j ).
These are typically quite close [see Fig. 1(b)], thus we focus
instead on their front shape difference

�h(z, t j+1, t j ) ≡ |h(z, t j+1) − h(z, t j )|,

�h j ≡ 〈�h(z, t j+1, t j )〉z = 1

N

∫ N

0
dz �h(z, t j+1, t j ),

(2)

as shown in Figs. 1(c) and 1(d). By plotting the average dif-
ference as a function of the cycles, we can follow the memory
loss and convergence to a limit cycle. See the Supplemen-
tal Material (SM) [47] for alternative criteria, including the
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FIG. 2. Quantifying amnesia: (a) Inverse amnesia rate 1/s ∼ n
as a function of transverse size �, for different system size N .
(b) Proxy for the distance to amnesia, 1/κ , as a function of N , for
different disorder amplitude σ . For small σ , two distinct regimes sep-
arated by N∗(σ ) are highlighted with gray shading (A-right, B-left).
(c) Inverse amnesia rates as a function of the loading rate c for dif-
ferent system size N . Collapse in A is obtained upon rescaling with
Neff(N > N∗) = N and Neff ≈ N∗ otherwise; this reveals a crossover
at loading c∗(N ) highlighted in gray shading. (d) Partial collapse in A
of (b) upon rescaling with σeff(σ > σ ∗) = σ and σeff ≈ σ ∗ otherwise.
Error bars are for disorder fluctuations.

velocity profiles v j (z) ≡ ∂t h(z, t j ), supporting that we can
safely focus on the most straightforward indicator, �h j .

As shown in Fig. 1(d), the qualitative trend is an exponen-
tial decrease of �h j until it plateaus. We aim to understand
what controls the number of cycles n needed to reach the
plateau �h∞. The latter would be strictly zero if the line
was reaching a unique limit cycle, as expected in an athermal
quasistatic driving by Middleton’s theorem [48], assuming
a perfect numerical resolution. In practice, the key quan-
tity to extract is the average slope of �h j in semilog scale,
i.e., the amnesia rate s ≈ −∂ j log �h j . For an exponential
decrease �h( j�n) = Ae−s j and a negligible plateau, we have
n = − log(�h∞/A)/s ≈ log(A)/s where A depends on the
initial condition. The inverse amnesia rate is a good proxy for
the number of cycles (n ∼ s−1), much less sensitive to initial
conditions and independent of the plateau value (see the SM).
The figures reported here are based on this quantity.

Number of cycles for amnesia. For the considered param-
eter range, the plateau value �h∞ ≈ 10−13 is fixed by the
numerical resolution and thus negligible. Keeping the param-
eters {c, k, σ } fixed, we find that n decreases linearly in the
transverse size � [see Fig. 2(a)]. This suggests to consider
instead dn = n�, i.e., the distance covered by the center of
mass to reach amnesia, and we focus on the rescaled amnesia
rate defined as κ = s/� ∼ d−1

n . By plotting this proxy for dn

with respect to N [see Fig. 2(b)], two distinct regimes arise

FIG. 3. Center-of-mass dynamics: (a), (b) Evolution of the
center-of-mass speed v̄(t ) for fast (A) and slow (B) loading, matching
the two regimes in Fig. 2(a). Times {t j} when the system begins a
new cycle are given on the horizontal axis. (c) Center-of-mass speed
v̄(x) along a cycle in the converged regime for increasing speed rate,
for the same disorder and initial condition. Data are shifted by the
average speed c/k, and mapped on the spatial interval x(t ) ∈ [0, �].

for the small σ : linear above a given N∗(σ ) (A, pale region)
and constant below (B, dark region). Above N∗, the number
of cycles for amnesia is proportional to the aspect ratio of the
system size: κ−1 ∼ dn ∼ N, thus n ∼ N/�. In A, memory is
extensive. Below N∗, the distance dn saturates at dn ∼ N∗(σ ).
In B, there is a minimal distance required to forget, which can
only depend on the remaining parameters. Under a quasistatic
drive, dn must be fixed by the landscape features (σ ), whereas
at finite driving it may also depend on how fast the line is
driven (c, k).

Amnesia rate vs loading and disorder. To further understand
how the memory extensivity is broken, we thus vary indepen-
dently {c, σ }, while imposing k = 0.01 without any loss of
generality. In Fig. 2(b), regimes A and B were clearly distinct
for small σ on which the gry shading is based, whereas upon
increasing disorder, the data spread and render the saturation
toward B, less apparent in log scale. We thus focus on compar-
ing curves where memory is extensive and rescale them such
as to collapse their A regime. Figures 2(c) and 2(d) suggest the
existence of characteristic c∗ and 1/σ ∗, respectively, below
which the amnesia regime departs from κ−1 ∼ c/σ .

These linear scalings and crossovers are not to be taken
as robust characterizations, they merely highlight the general
trend: memory is extensive as long as the disorder is weak (be-
low σ ∗), the system is large (above N∗), or the driving is fast
(above c∗). In A the number of cycles n ≈ s−1 ∼ (N/�)(c/σ )
implies in particular that it takes fewer cycles to converge to
the limit cycle at lower loading. We eventually depart from
this regime at c < c∗(N, �, σ ), which includes the quasistatic
limit. This strongly suggests examining the velocity dynamics
associated with these different behaviors.

Relevance of the velocity dynamics. The velocity profiles
also converge to limit cycles (see the SM), yet the center-of-
mass speed v̄(t ) is more informative on what happens within
each cycle. The left of Fig. 3 illustrates two very distinct
behaviors, as expected from previous studies [34]: A con-
verges to a continuous regime in the limit cycle, and B to an
intermittent behavior. The only difference between these two
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FIG. 4. Phase diagram of memory formation vs nature of the
velocity dynamics: continuous (A) above the isosurface and inter-
mittent (B) below. The isosurface κ = 1/3 is an arbitrary threshold,
below which κ mainly saturates. See the SM for an animated plot.

cases is the loading rate, with A at c > c∗(N ) and B other-
wise. In Fig. 3(c) we further show how varying the loading
rate modifies the limit cycle for v̄(t ), for a given disordered
landscape.

These findings support the following scenario: For a given
landscape of parameters {N, �, σ }, the finite speed loading
{c, k} determines if the dynamics in the limit cycle are either
continuous (v̄ ≈ c/k with small fluctuations) or intermittent
(but always strictly positive). The associated transient regime
from flat initial conditions will share similar qualitative fea-
tures. In the continuous case (A) the line is driven so fast that
it flies over the landscape, without fully relaxing in its minima;
it consequently needs more cycles to learn its features, its
amnesia rate is smaller, and memory is extensive (dn ∼ N).
In the intermittent case (B), the line is driven so slowly that it
follows closely the landscape; disorder features are encoded
more efficiently, i.e., in less cycles, amnesia rate is larger, and
extensivity is broken.

Unifying phase diagram. For such disordered elastic sys-
tems, the crossover between these two types of behaviors is
highly nontrivial for steady states [26,34,37], and a fortiori
for transient regimes. To support our scenario, we plot in
Fig. 4 the rescaled amnesia rates κ ∼ 1/(n�) through the 3D
phase space of our minimal model. The three axes control
the aspect ratio N/�, the inverse amplitude of disorder, and
the forcing c/k. For each point, we can discriminate between
continuous (A) or intermittent (B) transient behaviors, albeit
with a quantitative dependence on the thresholding (see the
SM). It is consistent with the saturation of κ highlighted
by the isosurface κ = 1/3, confirming our physical picture.
This phase diagram thus rationalizes the memory formation at
finite driving rate, in a tunable disordered landscape.

Insights for driven amorphous materials. A genuine os-
cillatory protocol at finite velocity amounts to replace in
Eq. (1) the loading by a sinusoidal force, of amplitude γmax

and frequency ω [28,49–52]. In our model, γmax translates
formally into the aspect ratio �/N , and ω into the loading
v = c/k. According to our phase diagram, increasing γmax

or decreasing ω is expected to radically change the memory
formation, making it more efficient (fewer cycles), with a
crossover from continuous to intermittent dynamics [53]. The

precise location in this diagram will further depend on the
disorder strength σ . For amorphous materials, the latter is
self-consistently determined for a given driving protocol, and
a priori not constant in transient regimes. This implies that,
in order to rationalize memory formation under nonquasistatic
oscillating protocols, one would crucially need to characterize
jointly the driving-dependent disorder strength and the result-
ing nature of the velocity dynamics at fixed {ω, γmax}.

The well-studied OAQS regime corresponds to a plane of
our putative phase diagram, as sketched in Fig. 4. Adding a
finite driving rate is bound to unveil a more complex behavior,
as already displayed by our minimal model with frozen disor-
der dynamics. Here we showed that driven disordered systems
can display very different memory behavior, and traced this
back to how the velocity dynamics is self-consistently fixed by
the disorder/size/driving settings. This is the core of the de-
pinninglike phenomenology, hence this scenario should hold
more broadly for disordered elastic systems. By construction,
our specific model system is not expected to reproduce the full
phenomenology of oscillatory-driven amorphous materials,
first and foremost because it does not include the nonconvex
features of the Eshelby kernel. Yet, the analogy between the
depinning and yielding transitions in coarse-grained models
[38,39,45], which generically display such a transition from
continuous versus intermittent velocity dynamics, strongly
suggests challenging our generic scenario already at this
level.

Concluding remarks. We started from a flat configuration
and examined how the line converges, at finite driving rate, to
its limit cycle jointly for its geometric and velocity profiles.
Focusing on the rescaled amnesia rate κ , we find that there
is a regime where the memory is extensive, i.e., κ−1 is pro-
portional to the system size N , the loading, and the inverse
of the disorder amplitude. It requires more cycles to “learn”
the quenched landscape when the latter is small or the line is
driven faster. If we start from a configuration closer to the limit
cycle, this number of cycles will be reduced accordingly. On
the contrary, the amnesia rate will not be affected, promoting
it to the key physical quantity to follow in further studies, and
in particular to investigate the intermittent regime where κ

saturates.
The scenario we put forward is generic for an extended

object driven repeatedly over a given patch of disordered
landscape, until the geometry of this object fully encodes
the finite amount of information associated with the disorder.
The specific scalings will of course vary on the microscopic
model, for instance, we expect the memory extensivity to
generalize to n ∼ N/� f (γ ) when tuning the elasticity range.
In this regime, the limit cycles correspond to the so-called
fast-flow regime in “random-periodic” disorder settings [46],
thus paving the way for an analytical study of transient
regimes [54].

Finally, our minimal model system provides a controlled
framework to systematically investigate the joint role of initial
conditions and disorder features in memory formation. In ad-
dition to allowing for a finite spatial correlation length [55,56]
and/or a more complex hierarchical structure of the landscape
[57], two key ingredients to address in the future are tunable
disorder dynamics as in [43] and different initial conditions.
Both could be tailored to mimic the self-consistent disorder
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dynamics in driven amorphous materials, in order to probe its
relevance for memory in finite driving protocols [58,59].
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