
HAL Id: hal-04531414
https://hal.science/hal-04531414v1

Preprint submitted on 3 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

The biharmonic optimal support problem
Antoine Lemenant, Mohammad Reza Pakzad

To cite this version:
Antoine Lemenant, Mohammad Reza Pakzad. The biharmonic optimal support problem. 2024. �hal-
04531414�

https://hal.science/hal-04531414v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr


THE BIHARMONIC OPTIMAL SUPPORT PROBLEM

ANTOINE LEMENANT AND MOHAMMAD REZA PAKZAD

Abstract. We establish a Γ-convergence result for h → 0 of a thin nonlinearly elastic 3D-
plate of thickness h > 0 which is assumed to be glued to a support region in the 2D-plane
x3 = 0 over the h-2D-neighborhood of a given closed set K. In the regime of very small vertical
forces we identify the Γ-limit as being the bi-harmonic energy, with Dirichlet condition on the
gluing region K, following a general strategy by Friesecke, James, and Müller that we have to
adapt in presence of the glued region. Then we introduce a shape optimization problem that
we call “optimal support problem” and which aims to find the best glued plate. In this problem
the bi-harmonic energy is optimized among all possible glued regions K that we assume to be
connected and for which we penalize the length. By relating the dual problem with Griffith
almost-minimizers, we are able to prove that any minimizer is C1,α regular outside a set of
Hausdorff dimension strictly less then one.
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1. Introduction

Let Ω ⊂ R2 a bounded Lipschitz domain, and K ⊂ Ω be a closed set. For any k ≥ 1 we
consider the subspace of W k,2(Ω) defined by

Hk
0,K(Ω) :=

{
u ∈W k,2(Ω) such that ∂αu|K = 0 for all multiindices α such that 0 ≤ α ≤ k − 1

}
,

where by ∂αu|K = 0 we mean that limr→0

(ffl
Br(x0)∩Ω |∂

αu| dx
)

= 0 for (k − |α|, 2)-q.e. x0 on K.

It follows from the literature (see Lemma A.1 in the appendix for a proof), that if Ω ⊂ RN is
a Lipschitz domain then

Hk
0,K(Ω) =

{
u ∈W k,2(Ω) such that E(u) ∈W k,2

0 (RN \K)
}
,

where E is any extension operator E : W k,2(Ω) → W k,2(RN ) and that Hk
0,K(Ω) stands for a

closed subspace of W k,2(Ω).
Letting f ∈ L2(Ω), this provides the existence of uK being the unique solution of ∆2uK = f

u ∈ H2
0,K(Ω).

(1.1)

In particular, uK is the unique critical point to the bi-harmonic energy

(1.2) E(u) :=
1

2

ˆ
Ω
|∇2u|2 dx−

ˆ
Ω
uf dx

over H2
0,K(Ω), and the associated compliance energy is

ˆ
Ω
uKf dx =

ˆ
Ω
|∇2uK |2 dx.(1.3)

In this paper we intend to derive the functional (1.2) as the Γ-limit of a support-gluing problem
for the 3d nonlinear thin elastic body subject to vertical body forces very small with respect to
its thickness, which is the main result of the present paper.

To be more precise, we denote by Ωh := Ω×(0, h), which models a thin elastic plate which is
assumed to be glued to a support in the plane x3 = 0 by applying a surface glue to the support
region

Kh := {(x′, 0) ∈ Ω× {0}; dist(x′,K) < h}.

Then we assume the plate to be subject to a vertical body force fh : Ωh → R3, fh := (0, 0, hαf̃),
where α > 2, f̃(x′, x3) = f(x′) for f ∈ L2(Ω).

In the most simplified framework (see Section 2.1 for a general case), the bulk elastic energy
of a deformation y : Ωh → R3 is given by

Eh(y) =
1

h

ˆ
Ωh

1

2

2
dist(∇y, SO(3)) dx.

The deformation of the plate Ωh subject to body forces and gluing constraint is then variationaly
modeled by minimizing the energy functional

Jh(y) := Eh(y)− 1

h

ˆ
Ωh

fh · y dx,

among all deformations in the class

(1.4) AhK := {y ∈W 1,2(Ωh,R3); y|Kh×{0} = idKh×{0}}.
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The first goal of this paper is to establish the Γ-convergence of Jh towards the bi-harmonic
functional (1.2), in the regime of very small deformations in the sense that there exists β > 4

such that

lim sup
h→0

1

hβ

(
Jh(yh)− inf

AhK
Jh
)

= 0.(1.5)

Here is a shorter version of one of the main statements of our paper, stated, moreover, for
simplicity here in the introduction, for the most simplified functionals Eh and Jh as above. In
order to state this result we introduce the average vertical displacement functions

uh ∈W 1,2(Ω,R), Uh :=
1

h

ˆ h

0
(yh3 (·, x3)− hx3) dx3, uh :=

1

hβ/2−1
Uh,

where yh3 is the vertical component of the deformation yh.

Theorem 1.1 (Γ-convergence). Assume that Ω ⊂ R2 is a Lipschitz domain and K ⊂ Ω is a
closed set satisfying Cap1,2(K) > 0. Assume furthermore that β > 4. Then the functional Jh

Γ-converges to the energy in (1.2) in the following sense.

(1) for any sequence h → 0 such that yh ∈ AhK with energy bound Eh(yh) - hβ, there eone

can find u ∈ H2
0,K(Ω) and a subsequence such that uh

in W 1,2

−−−−−→ u ∈W 2,2(Ω), and

lim inf
h

1

hβ
Jh(yh) ≥

ˆ
Ω

1

24
|∇2u|2 − uf dx.

(2) for every u ∈ H2
0,K(Ω), there exists a sequence yh ∈ AhK such that uh

in W 1,2

−−−−−→ u and

lim sup
h

1

hβ
Jh(yh) ≤

ˆ
Ω

1

24
|∇2u|2 − uf dx.

The first part of Theorem 1.1 follows from Theorem 2.10 which gives a more general compact-
ness result for sequences satisfying Eh(yh) - hβ . In Section 2.5 we explain how to obtain the
liminf inequality in (1) (see Theorem 2.13). The second part is the purpose of Section 3. Notice
that our main results are actually more general and work for a nonlinear energy of of the form´
W (∇y) dx with W satisfying some standard assumptions.
For the bulk of the argument, the proof or our result is inspired by the seminal papers by

Friesecke, James, and Müller [14, 15], specially regarding the so called linearized von Kármán
theory in [15, Theorem 2]. The novelty we need to take care of here is the “gluing” part of the
problem on the support Kh and its passage to the limit. Notice that we only assume y = id on
the 2D bottom part Kh ⊂ Ω×{0} which differs from a standard Dirichlet or clamped boundary
conditions. In particular, a key step to obtain compactness of a sequence with bounded energy
in a thin plate is to be able to approximate it by piecewise constant maps with values in SO(3).
In our context, we have to adapt this approximation by insuring the map to be constant equal
to identity on the support set Kh. As Kh is a very thin 2D set in R3, this part is non trivial
and uses thin properties on Sobolev functions (see Corollary 2.9 for a statement).

Since our goal is to arrive to the bi-harmonic problem, we consider in this paper only the case
of β > 4, even if some other regimes could also be probably investigated. As a result, we can
interpret the solution uK in (1.1) as modeling in the linear regime a vertical displacement of the
2D-plate Ω, attached, or supported, onto the set K, and by (1.3) the energy associated to this
displacement. Then, one can seek for the “best way” of attaching the plate, when the support
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K is penalized by its length. This leads to the following bi-harmonic optimal support problem:

min
K⊂Ω

ˆ
Ω
|∇2uK |2 dx+H1(K),(1.6)

where the minimum is taken over all compact and connected subsets K.

It is worth mentioning that replacing the bi-harmonic operator by the standard Laplace
operator would lead to the so-called “optimal compliance problem” that was studied before in
many papers (see [5, 9, 10, 21, 22, 6, 8, 7]). A variant with a p-Laplacian has been also studied
in [6, 8, 7].

In other words, our paper deals with a bi-laplacian variant of the standard optimal compliance
problem, which turns out to be relevant from the mechanical point of view. One of the motivation
for this paper was indeed to provide a better justification of the so-called “optimal compliance
problem”. In the second part of the paper we prove existence and regularity results for a
minimizer K of problem (1.6), leading to a second result proved within this paper.

Theorem 1.2. For every bounded domain Ω ⊂ R2 there exists a minimizer K for the optimal
support problem in (1.6). Moreover, if K ∪∂Ω is connected, then any minimizer K is an almost
minimizer of the Griffith functional, and therefore is locally C1,α regular inside Ω, except for a
singular set of points with Hausdorff dimension strictly less then 1.

To prove Theorem 1.2 we consider the dual formulation of the problem in (1.6), and prove that
the minmiizers of the dual problem are almost minimizers of the so-called Griffith functional,
already studied in the literature. By use the regularity results contained in [18] and [17], we
obtain the conclusion.

1.1. Acknowledgments. This project was based upon work supported by the National Sci-
ence Foundation. M.R.P. was supported by the NSF award DMS-1813738. This project was
completed while the author was visiting Institut Élie Cartan de Lorraine at Nancy supported by
CNRS funding, and he is grateful for their respective hospitality and support. A. L. is partially
supported by the project ANR-18-CE40-0013 SHAPO financed by the French Agence Nationale
de la Recherche (ANR).

2. Justification of the biharmonic support model from 3d nonlinear elasticity

2.1. The 3d support-gluing model. As before in the introduction, let Ω ⊂ R2 be a bounded
Lipschitz domain, K ⊂ Ω be a closed set and let Ωh := Ω×(0, h) a thin elastic plate. As before
it is assumed that the thin plate is glued to a support in the plane x3 = 0 by applying a surface
glue to the support region

Kh := {(x′, 0) ∈ Ω× {0}; dist(x′,K) < h},

and is subject to a vertical body force fh : Ωh → R3, fh := (0, 0, hαf̃), where α > 2,
f̃(x′, x3) = f(x′) for f ∈ L2(Ω). Here we have opted for a simplified set of assumptions on the
body forces in order to focus on the new contribution.

In what follows
SO(n) := {R ∈ Rn×n; RTR = Id, detR > 0}

is the special orthogonal group of 3d rotation matrices. The elastic density or potential W :

R3×3 → R is assumed to satisfy the following natural conditions for all F ∈ R3×3:
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• Normalization: W (F ) ≥ 0, W (Id) = 0.
• Frame invariance: ∀R ∈ SO(3),W (RF ) = W (F ).
• Non-degeneracy: W (F ) ≥ cdist2(F, SO(3)) for a constant c > 0.

Moreover we will assume that W is of class C2 in a neighborhood of SO(3). The bulk elastic
energy of a deformation y : Ωh → R3 is given by

Eh(y) =
1

h

ˆ
Ωh
W (∇y) dx.

The deformation of the plate Ωh subject to body forces and gluing constraint is then variationally
modeled by minimizing the energy functional

Jh(y) := Eh(y)− 1

h

ˆ
Ωh

fh · y dx,

among all deformations in the class

(2.1) AhK := {y ∈W 1,2(Ωh,R3); y|Kh×{0} = idKh×{0}}.

Notice that we will still denote by Eh and Jh some functionals that was introduced before in
the introduction in the particular case of W (F ) = 1

2 dist2(F, SO(3)).
For β > 0, we say the sequence yh is a β-minimizing sequence for Jh whenever

lim sup
h→0

1

hβ

(
Jh(yh)− inf

AhK
Jh
)

= 0.

2.2. The limiting 2D energy. Following [15] we introduce the linearized energy of second
order

Q3(F ) :=
∂2W

∂F 2
(Id)(F, F ),

and Q2 : R2×2 → R defined by

Q2(G) = min
a∈R3

Q3(G+ a⊗ e3 + e3 ⊗ a).

Under our assumptions, both forms are positive, semidefinite, convex and positive definite on
symmetric matrices.

For the special case of isotropic elasticity, i.e. when W (FR) = W (F ) for all R ∈ SO(3) and
F ∈ R3×3, it can be shown that

Q3(F ) = 2µ

∣∣∣∣F + F T

2

∣∣∣∣2 + λ(TrF )2,

and

Q2(G) = 2µ

∣∣∣∣G+GT

2

∣∣∣∣2 +
2µλ

2µ+ λ
(TrG)2,

where µ > 0 and λ ≥ 0. In particular if W (F ) = 1
2dist2(F, SO(3)), then µ = 1/2 and λ = 0.

2.3. Friesecke-James-Müller rigidity estimate in presence of affine boundary condi-
tions. In this section we present a corollary of the celebrated geometric rigidity estimate of
Friesecke-James-Müller [14] which will be a necessary ingredient of the compactness argument.
We first state this rigidity estimate:

Theorem 2.1. [14, Theorem 3.1] Let n ≥ 2 and Ω ⊂ Rn be a bounded Lipschitz domain. Then
there exists a constant C = C(Ω), such that for all mapping u ∈W 1,2(Ω,Rn), there is a rotation
R ∈ SO(n) with

(2.2) ‖∇y −R‖2L2(Ω) ≤ C‖dist(∇y, SO(n))‖2L2(Ω)
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We would like to identify the “average rotation" R in (2.2) based on the boundary conditions
applied to y on portions of ∂Ω. In particular, we expect that the rotation R can be chosen to be
uniformly the identity matrix Id for all mappings for which y|S = idS for an open set S ⊂ ∂Ω:

Definition 2.2. We say that a matrix F ∈ Rn×n is rank-one connected to SO(n) whenever
there exists R ∈ SO(n) for which rank(F − R) = 1. Note that no element of SO(n) itself does
enjoy this property.

Corollary 2.3. Let n ≥ 2 and Ω ⊂ Rn be a bounded Lipschitz domain. For F ∈ Rn×n, and S
an open connected subset of ∂Ω, we define

AS,F := {y ∈W 1,2(Ω,Rn); y|S(x) = Fx}.

Let RF be any closest element of SO(n) to F .
(i) If F is not rank-one connected to SO(n), there exists C = C(Ω, S, F ) such that for all

y ∈ AS,F ,
‖∇y −RF ‖2L2(Ω) ≤ C‖dist(∇y, SO(n))‖2L2(Ω).

(ii) Assume moreover that S is inside no hyperplane of Rn. Then, there exists C = C(Ω, S)

such that for all y ∈ AS,F ,

‖∇y −RF ‖2L2(Ω) ≤ C‖dist(∇y, SO(n))‖2L2(Ω).

Remark 2.4. The estimate can fail to be true if rank(F − R) = 1 and S is a subset of a
hyperplane. As a counter-example, take such R,F in a manner that R 6= RF , let y = Rx, and
choose S such that Rx = Fx on S.

Proof. The proof follows the same approach as in [12, Proposition 3.4]. We write the full details
for the reader’s convenience. In what follows the constant C might differ from line to line but
it will always depend on Ω. Its dependance on S or F will be clarified on the way.

Consider an arbitrary point p ∈ S ⊂ Rn to be fixed later. Since the domain is Lipschitz, there
is a hyperplane P 3 p such that ∂Ω is locally the graph of a Lipschitz function over an open
subset U ⊂ P containing p. Let V be the intersection of the projection of S on P with U . Fix
a rotation R0 ∈ SO(n) such that ψ(x) := R0x+ p maps Rn−1 ×{0} to P . We let Ω̃ := ψ−1(Ω),
S̃ := ψ−1(S) ⊂ ∂Ω̃ and we fix r > 0 for which ψ(Br(0) × {0}) ⊂ V , where Br(0) is the ball
of radius r in Rn−1. Hence there exists a Lipschitz function g : Br(0) → R such that whose
graph is an open subset of S̃. We define φ : Br(0)→ S̃ to be the graph parameterization of the
portion of S̃ which is over Br(0):

φ(z) :=

 z

g(z)

 =

 z

g̃(z)

+

 0

c

 ,
where

g̃(z) := g(z)−
 
Br(0)

g(z)dz, c :=

 
Br(0)

g(z) dz.

In the context of part (ii) we can choose p and r such that g̃ is not a linear function over
Br(0), for otherwise S, being connected, would become part of a hyperplane.

Now assume that y ∈ AS,F is given and let

E := ‖dist(∇y, SO(n))‖2L2(Ω).
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Applying Theorem 2.1 to y on Ω we obtain that for a uniform constant C > 0, there exists
R ∈ SO(n) for which

(2.3) ‖∇y −R‖2L2(Ω) ≤ CE,

We claim that under assumptions of parts (i) or (ii), y ∈ AS,F implies

(2.4) |F −R|2 ≤ CE,

with C depending on the respective claimed variables. Let us observe that this is sufficient to
conclude the proof of the corollary: Indeed, our claim yields in view of the definition of RF and
the fact that R ∈ SO(n):

|RF −R| ≤ |F −RF |+ |F −R| ≤ 2|F −R| ≤ C
√
E.

This, combined with (2.3) implies

‖∇y −RF ‖2L2(Ω) ≤ 2(‖∇y −R‖2L2(Ω) + |RF −R|2Ln(Ω)) ≤ CE,

which is the desired estimate. Hence what remains is to prove (2.4).
Letting y := y ◦ ψ on Ω̃, and in view of ∇ỹ = (∇y ◦ ψ)R0, we obtain from (2.3)

(2.5) ‖∇ỹ −RR0‖2L2(Ω̃)
≤ CE,

We let b :=

 
Ω

(ỹ(x)−RR0x) dx. Applying the Poincaré inequality on Ω̃, and the trace embed-

ding of W 1,2(Ω̃) into L2(∂Ω̃), we obtain

‖ỹ − (RR0x+ b)‖2
L2(S̃)

≤ C‖ỹ − (RR0x+ b)‖2
W 1,2(Ω̃)

≤ CE.

But ỹ|S̃ = F (R0x+ p) = FR0x+ Fp. This yields

(2.6) ‖(F −R)R0x+ (Fp− b)‖2
L2(S̃)

≤ CE.

In what follows, and for any F ∈ Rn×n, we will denote by F̂ ∈ Rn×(n−1) and F (n) ∈ Rn,
respectively the matrix made by the first n − 1 columns of F , and the last column of F . (2.6)
gives

(2.7) e := ‖(F −R)R0x+ (Fp− b)‖2L2(φ(Br(0)) ≤ ‖(F −R)R0x+ (Fp− b)‖2
L2(S̃)

≤ CE.

We estimate from below the left hand side through change of variable:

e =

ˆ
φ(Br(0))

∣∣∣(F −R)R0x+ (Fp− b)
∣∣∣2 dHn−1

=

ˆ
Br(0)

∣∣∣(F −R)R0φ(z) + (Fp− b)
∣∣∣2√1 + |∇φ|2(z) dz

≥
ˆ
Br(0)

∣∣∣(F −R)R0φ(z) + (Fp− b)
∣∣∣2 dz

=

ˆ
Br(0)

∣∣∣ ̂(F −R)R0z + g(z)((F −R)R0)(n) + (Fp− b)
∣∣∣2 dz

=

ˆ
Br(0)

∣∣∣ ̂(F −R)R0z + g̃(z)((F −R)R0)(n) + c((F −R)R0)(n) + (Fp− b)
∣∣∣2 dz

We let

A := ̂(F −R)R0, b
′ := ((F −R)R0)(n), b̃ := cb′ + (Fp− b).
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Expanding the right hand side yields

e =

ˆ
Br(0)

∣∣∣Az|2 dz + |b′|2
ˆ
Br(0)

|g̃(z)|2 dz + |b̃|2|Br(0)|

+ 2

ˆ
Br(0)

g̃(z)〈Az, b′〉 dz + 2

ˆ
Br(0)

〈Az, b̃〉+ g̃(z)〈b′, b̃〉 dz

≥
ˆ
Br(0)

∣∣∣Az|2 dz + |b′|2
ˆ
Br(0)

|g̃(z)|2 dz + 2
〈 ˆ

Br(0)
g̃(z)Az dz, b′

〉
+ 2
〈 ˆ

Br(0)
z dz,AT b̃

〉
+ 2

ˆ
Br(0)

g̃(z) dz 〈b′, b̃〉.

To proceed we use the facts that
ˆ
Br(0)

z dz = 0 and
ˆ
Br(0)

g̃(z) dz = 0 to obtain

(2.8) e ≥
ˆ
Br(0)

∣∣∣Az|2 dz + |b′|2
ˆ
Br(0)

|g̃(z)|2 dz + 2
〈 ˆ

Br(0)
Az dz, g̃(z)b′

〉
.

Now, we observe that there exists 0 ≤ ρ < 1 such that∣∣∣〈ˆ
Br(0)

Az dz, g̃(z)b′
〉∣∣∣ ≤ ρ|b′|(ˆ

Br(0)
|g̃(z)|2 dz

) 1
2
( ˆ

Br(0)

∣∣∣Az|2 dz) 1
2
.

If either b′ = 0 or A = 0 the claim is obvious. Otherwise if no such ρ exists, by the Cauchy-
Schwartz inequality the two vector valued functions g̃(z)b′ and Az must be co-linear over Br(0)

and for a λ 6= 0 we have

g̃(z)b′ = λAz.

Since b′ 6= 0, this implies that g̃ is linear and hence B(x, r) must be a portion of a hyperplane,
in contradiction to our original choice for part (ii). So in this case as g̃ is not affine, ρ depends
only on the local nonlinearity of g, irrespective of what A is, and thus can be globally measured
by how far S is from being a hyperplane. If otherwise g is affine, under the assumptions of
part (i), it is F which determines a value for ρ independent of g̃. Indeed, we observe that
(F −R)R0ej = Aej = λ−1g̃(ej)b

′ for j = 1, · · · , n− 1, and (F −R)R0en = b′ by definition of b′,
which implies that F −R is of rank 1, contrary to our assumption.

Following the above observation, (2.7) and (2.8) imply
ˆ
Br(0)

|Az|2 dz + |b′|2
ˆ
Br(0)

|g̃(z)|2 dz

≤ 1

1− ρ

( ˆ
Br(0)

|Az|2 dz + |b′|2
ˆ
Br(0)

|g̃(z)|2 dz − 2ρ|b′|
(ˆ

Br(0)
|g̃(z)|2 dz

) 1
2
( ˆ

Br(0)
|Az|2 dz

) 1
2
)

≤ 1

1− ρ
e ≤ C

1− ρ
E.

Defining G := ATA, we first observe that

|A|2 = Tr(G).

On the other hand, since G is symmetric nonnegative, G = RT1 DR1 with respectively diagonal
matrix D = diag{K1, · · · ,Kn−1} and orthogonal matrix R1 ∈ SO(n− 1), and Tr(G) = Tr(D).
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Hence, by symmetry,

Tr(G)

ˆ
Br(0)

z2
1 dz =

n−1∑
j=1

ˆ
Br(0)

Kjz
2
j dz =

ˆ
Br(0)

〈z,Dz〉 dz =

ˆ
Br(0)

〈R1z,DR1z〉 dz

=

ˆ
Br(0)

〈
z,Gz〉 dz =

ˆ
Br(0)

∣∣∣Az|2 dz
Therefore we obtain

|A|2 + |b′|2
ˆ
Br(0)

|g̃(z)|2 dz ≤ C

(1− ρ)rn+2
E.

To see part (i), observe that if S is no entirely flat, we can choose p in such a manner thatˆ
Br(0)

|g̃(z)|2 dz > 0.

Therefore we conclude with (2.4) and finish the proof:

|F −R|2 = |(F −R)R0|2 = |A|2 + |b′|2 ≤ C(Ω, S)E.

If, S is inside a hyperplane, and g̃ is still affine, but non-zero, the same conclusion holds, but
this time with C depending also on F through ρ. Finally, if g̃ ≡ 0, the best we obtain is

| ̂(F −R)R0|2 ≤
C(Ω, F )

rn+2
E.

But in this case F is assumed not to be rank one connected to SO(n), which means that for
all R̃ ∈ SO(n), m := rank((F − R̃)R0) is either 0 or at least 2. If m = 0 for some R̃, then
F = R̃ ∈ SO(n), in which case we note that

|F −R|2 = |(F −R)R0|2 = |(R̃−R)R0|2 ≤ n2| ̂(R̃−R)R0|2 = n2| ̂(F −R)R0|2 ≤
C(Ω, F )

rn+2
E,

establishing (2.4), where we used the fact that for any rotation,

R = [v1, · · · , vn] ∈ SO(n),

the last column is the exterior product

vn = v1 ∧ v2 ∧ · · · ∧ vn−1

of the first n− 1 columns, which yields for any two rotations R1, R2 ∈ SO(n):

|R(n)
1 −R(n)

2 | ≤ (n− 1)|R̂1 − R̂2|,

finally implying

|R1 −R2|2 = |(R1 −R2)(n)|2 + |R̂1 −R2|2 ≤ n2|R̂1 −R2|2.

If on the other hand, m ≥ 2, it is straightforward to see that

CF := inf
R̃∈SO(n)

| ̂(F − R̃)R0|2 > 0.

We therefore obtain

|F −RF |2 =
1

CF
dist2(F, SO(n))CF ≤

C ′F
CF
| ̂(F −R)R0|2 ≤

C(Ω, F )

rn+2
E,

and
|RF −R|2 ≤ 4n ≤ C

CF
| ̂(F −R)R0|2 ≤

C(Ω, F )

rn+2
E,

which once again completes the proof.
�



10 A. LEMENANT AND M. R. PAKZAD

Corollary 2.5. Let Q = (0, 1)3 be the unit cube. For 0 < r0 < 1, let

S(x′, r0) := B(x′, r0) ∩ (0, 1)2,

and
Ar0 := {y ∈W 1,2(Q,R3); ∃x′ ∈ (0, 1)2 y|S(x′,r0)(x) = x}.

Then there exists C = C(r0) such that for all y ∈ Ar0,

‖∇y − Id‖2L2(Q) ≤ C‖dist(∇y, SO(n))‖2L2(Q).

2.4. Compactness for bounded sequences.

Lemma 2.6. Let Ω, Ωh and K be as above. Then there exist constants h0 > 0, C > 0, 0 < c < 1,
depending only on Ω and K, such that for all h < h0 and y ∈ AhK there exists a matrix valued
mapping F̃ ∈ W 1,2(Ω,R3×3), extended trivially to Ωh, for which the following estimates hold
true:

(2.9)
1

h
‖∇y − F̃‖2L2(Ωh) ≤ CE

h(y), ‖∇F̃‖2L2(Ω) ≤
C

h2
Eh(y).

Moreover, if

d̃(x′) :=

 |F̃ (x′)− Id| if x′ ∈ Kch

dist(F̃ (x′), SO(3)) otherwise

then

(2.10) ‖d̃‖2L2(Ω) ≤ CE
h(y), ‖d̃‖2L∞(Ω) ≤

C

h2
Eh(y).

Proof. The proof closely follows [15, Theorem 6]. We will need only to make minor but careful
adjustments using Corollary 2.5.

We cover Ω with open sets {Uj}Nj=0 such that U0 ⊂ Ω and ∂Ω, and for j = 1, · · · , N , Uj ∩ Ω

is such that for an open interval Ij ⊂ R and a Lipschitz function gj : Ij → R we have

Uj ∩ Ω = {x ∈ Uj , x1 ∈ Ij , x2 > gj(x1)} and Uj ∩ ∂Ω = {x ∈ Uj , x1 ∈ Ij , x2 = gj(x1)}

for a suitable orthonormal coordinate system adapted to Uj ∩Ω. We also consider the flattening
bi-Lipschitz change of variable Φj : Uj ∩ Ω→ R2

+ defined by Φ(x1, x2) = (x1, x2 − gj(x1)). Let
also θj ∈ C∞c (R2) be a partition of unity subject to the family Uj , i.e.for all j ∈ {0, 1, · · · , N},

Ej := supp θj ⊂ Uj and
N∑
j=0

θj = 1.

We let for all x′ ∈ Ω

F̄ (x′) :=
1

h

ˆ h

0
∇y(x′, x3) dx3.

Step 1. Interior local estimates: We will first construct a matrix field F̃0 on E0 ⊂ U0 with
useful local estimates.

We choose h0 small enough such that dist(E0, ∂U0) > 3h0. For S0,1 = (0, 1)2 being the open
unit square in R2, we consider a standard mollifier φ ∈ C∞c (Q(0, 1)), with φ ≥ 0 and

´
S0,1

φ = 1,
and we set φh(x) := h−2φ(x/h). and we define for each x′ ∈ E0,

F̃0(x′) := φh ∗ F̄ (x′) =
1

h3

ˆ
Sx′,h×(0,h)

φ
(x′ − z′

h

)
∇y(z) dz′ dz3,
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where z = (z′, z3) ∈ R3, and Sx′,h = (x′, x′ + h)2 is the square of edge size h′ with its lower left
corner at x′.

We now consider the cube Q = Q0(x′, h) = Sx′,h × (0, h) and apply Theorem 2.1 to y|Q.
Therefore there exists Rx′ ∈ SO(n) such that

(2.11) ‖∇y −Rx′‖2L2(Q0(x′,h)) ≤ C
ˆ
Q0(x′,h)

dist2(∇y, SO(3)).

Moreover, fixing a constant 0 < c0 < 1, in view of Corollary 2.5, Rx′ can be chosen to be equal
to the identity matrix Id with a uniform constant C > 0 in (2.11) if Kc0h ∩ Sx′,h 6= ∅. Indeed,
in that case, there exists x̃′ ∈ Kc0h ∩ Sx′,h, such that setting r0 = 1− c0 we have y = id on

B(x̃′, r0h) ∩ Sx′,h ⊂ Kh ∩ Sx′,h ⊂ ∂Q,

and Corollary 2.5 applies after a proper translation and rescaling. Also note that in this case
C is independent of h as the boundary conditions and the cube estimates in both Theorem 2.1
and Corollary 2.5 are invariant under dilations and translations. Now, since

1

h3

ˆ
Q0(x′,h)

φ
(x′ − z′

h

)
dz = 1,

letting dµ = h−3φ((x′ − z′)/h) dz and applying Jensen’s inequality yields

|F̃0(x′)−Rx′ |2 =
∣∣∣ˆ
Q0(x′,h)

(∇y −Rx′) dµ
∣∣∣2 ≤ ˆ

Q0(x′,h)
|∇y −Rx′ |2 dµ,

which implies, using a uniform bound on φ and the rigidity estimate,

(2.12) |F̃0(x′)−Rx′ |2 ≤
C

h3

ˆ
Q0(x′,h)

dist2(∇y, SO(3)).

To obtain a bound on ∇F̃0 we proceed in a similar manner. For all x̃′ ∈ Sx′,h we note thatˆ
Q0(x′,h)

∇φ
( x̃′ − z′

h

)
dz = 0,

and we obtain this time using Cauchy-Schwarz inequality and a uniform bound on ∇φ

|∇F̃0(x̃′)|2 =
∣∣∣h−4

ˆ
Q0(x′,h)

(∇y −Rx̃′,h)∇φ
( x̃′ − z′

h

)
dz
∣∣∣2

≤
(ˆ
Q0(x′,h)

|∇y −Rx̃′,h|2 dz
)ˆ
Q0(x′,h)

∣∣∣h−4∇φ
( x̃′ − z′

h

)∣∣∣2 dz
yielding

(2.13)

∀x̃′ ∈ Sx′,h |∇F̃0(x̃′)|2 ≤ C

h5

ˆ
Q0(x̃′,h)

dist2(∇y, SO(3))

≤ C

h5

ˆ
Sx′,2h×(0,h)

dist2(∇y, SO(3)),

and henceforth, integrating the pointwise estimate in (2.13) yields

∀x̃′ ∈ Sx′,h |F̃0(x̃′)− F̃0(x′)|2 ≤ C

h3

ˆ
Sx′,2h×(0,h)

dist2(∇y, SO(3)),

which combined with (2.12) gives

(2.14) ∀x̃′ ∈ Sx′,h |F̃0(x̃′)−Rx′ |2 ≤
C

h3

ˆ
Sx′,2h×(0,h)

dist2(∇y, SO(3)).
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On the other hand, applying the triangle inequality we have

∀z ∈ Q0(x′, h) |F̃0(z′)−∇y(z)| ≤ |F̃0(z′)−Rx′ |+ |Rx′ −∇y(z)|

which leads, in view of (2.11) and (2.14), toˆ
Q0(x′,h)

|F̃0(z′)−∇y(z)|2 dz ≤ C
ˆ
Sx′,2h×(0,h)

dist2(∇y, SO(3)).

We cover E0 with a lattice of non-overlapping squares Sx′i,h such that Sx′i,2h ⊂ U0 for all i.
Summing the last estimate over i we obtain

(2.15)
1

h

ˆ
E0×(0,h)

|F̃0(z′)−∇y(z)|2 dz ≤ C

h

ˆ
U0×(0,h)

dist2(∇y, SO(3)).

Similarly, intergrating (2.13) over the cubes Q0(x′i, h) and summing up over i yields

(2.16)
ˆ
E0

|∇F̃0(z′)|2 dz′ = 1

h

ˆ
E0×(0,h)

|∇F̃0(z′)|2 dz ≤ C

h3

ˆ
U0×(0,h)

dist2(∇y, SO(3)).

For further use we establish a local version of the L2 estimate in (2.10). For x′ ∈ E0 we define

d̃0(x′) :=

 |F̃0(x′)− Id| if x′ ∈ Kc0h

dist(F̃0(x′), SO(3)) otherwise

We cover E0 as before by the non-overlapping squares Sx′i,h. If Kc0h ∩ Sx′i,h 6= ∅, then Rx′i = Id

and so integrating (2.14) on Sx′i,h gives
ˆ
Sx′
i
,h

d2
0(z′) dx′ ≤

ˆ
Sx′
i
,h

|F̃ (z′)− Id|2 dz′ ≤ C

h

ˆ
Sx′,2h×(0,h)

dist2(∇y, SO(3)).

Otherwise, if Kc0h ∩ Sx′i,h = ∅ we have also by definition of d0 and (2.14)
ˆ
Sx′
i
,h

d2
0(z′) dz′ =

ˆ
Sx′
i
,h

dist2(F̃0(z′), SO(3)) dz′

≤
ˆ
Sx′
i
,h

|F̃ (z′)−Rx′ |2 dz′ ≤
C

h

ˆ
Sx′,2h×(0,h)

dist2(∇y, SO(3)).

Summing up the last two inequalities over i we obtain

(2.17) ‖d̃0‖2L2(E0) ≤
C

h

ˆ
U0×(0,h)

dist2(∇y, SO(3)).

Step 2. Boundary estimates: We will construct a matrix field F̃j on Ej ∩Ω with useful local
estimates. One again, letting ξ′ = Φ(x′), we note that

F̃j(x
′) := φh ∗ (F̄ ◦ Φ−1

j )(ξ′)

is well-defined for all x′ ∈ Ej ∩Ω and h small enough, as the square Sξ′,h lies entirely within the
open set Φj(Uj ∩ Ω) in the upper half-plane.

In this step, we apply Theorem 2.1 (respectively Corollary 2.3(i)) to the Lipschitz domains
Qj(x′, h) := Φ−1

j (Sξ′,h)× (0, h), noting that the constants in Theorem 2.1 and Corollary 2.3(i))
are invariant under bi-Lipschitz transformations of domains and of boundary conditions under
the same transformations. Hence we have

(2.18) ‖∇y −Rx′‖2L2(Qj(x′,h)) ≤ C
ˆ
Qj(x′,h)

dist2(∇y, SO(3)),
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where Rx′ = Id whenever Kcjh ∩ Φ−1
j (Sξ′,h) 6= ∅ for a suitable 0 < cj < 1. Following in the

footsteps of [15, Theorem 6, Step 2] the following estimates similar as in Step 1 are achieved:

(2.19) |F̃j(x′)−Rx′ |2 ≤
C

h3

ˆ
Qj(x′,h)

dist2(∇y, SO(3)),

(2.20)
1

h

ˆ
(Ej∩Ω)×(0,h)

|F̃j(z′)−∇y(z)|2 dz ≤ C

h

ˆ
(Uj∩Ω)×(0,h)

dist2(∇y, SO(3)),

and

(2.21)
ˆ
Ej∩Ω

|∇F̃j(z′)|2 dz′ ≤
C

h3

ˆ
(Uj∩Ω)×(0,h)

dist2(∇y, SO(3)).

Also if for x′ ∈ Ej ∩ Ω

d̃j(x
′) :=

 |F̃j(x
′)− Id| if x′ ∈ Kch

dist(F̃j(x
′), SO(3)) otherwise

we can prove as before for d0 in (2.17):

(2.22) ‖d̃j‖2L2(Ej∩Ω) ≤
C

h

ˆ
(Uj∩Ω)×(0,h)

dist2(∇y, SO(3)).

Step 3. Gluing the interior and boundary estimates together:

We now set F̃ :=

N∑
j=1

θjF̃j , which is well-defined on Ω. We trivially extend θj , F̃ to Ωh. We

note that
∑
∇θj = 0, and hence

∇y − F̃ =
∑
j

θj(∇y − F̃j), ∇F̃ =
∑
j

θj∇F̃j +
∑
j

∇θj(F̃j −∇y).

Both estimates in (2.9) immediately follow from (2.15), (2.16), (2.20) and (2.21), with constant
C depending on the fixed partition of unity {(Uj , θj)}Nj=0, i.e.only on Ω.

To establish (2.10) if c = min{cj , j = 0, . . . , N}, we obtain by the estimates (2.12) and (2.19)

∀x′ ∈ Kch d̃(x′)2 =
∣∣∣∑

j

θj(F̃j − Id)
∣∣∣2 ≤ C∑

j

∣∣∣F̃j − Id
∣∣∣2 ≤ C

h3

ˆ
Ωh

dist2(∇y, SO(3)),

in view of the fact that if x′ ∈ Kcjh, then necessarily Kcjh ∩ Φ−1
j (Sξ′,h) 6= ∅ (Kc0h ∩ Sx′,h 6= ∅

for j = 0) and thus the rotation Rx′ = Id, as previously established.
Otherwise, for any x′ ∈ Ω, let

J(x′) := {j ∈ {0, . . . , N}; θj(x′) 6= 0}.

Note that j ∈ J(x′) implies x′ ∈ Ej . Since the Φj are bi-Lipschitz, there exists a constant
C0 > 0 depending on the domain Ω only such that⋃

j∈J(x′)

Qj(x′, h) ⊂ Q̈ := (B(x′, C0h) ∩ Ω)× (0, h),
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where B(x′, r) is the disk of radius r centered at x′. Applying once again Theorem 2.1 to y on
Q̈, and noting that the constant C still depends only on the Lipschitz constant of ∂Ω, we have
for some rotation R̈x′ ∈ SO(3)

(2.23) ‖∇y − R̈x′‖2L2(Q̈)
≤ C

ˆ
Q̈

dist2(∇y, SO(3)).

We note that, since for all j ∈ J(x′), Qj(x′, h) ⊂ Q̈, we can use R̈x′ instead of the rotations
used in (2.12) and (2.19), this time obtaining the new bounds

∀j ∈ J(x′) |F̃j(x′)− R̈x′ | ≤
C

h3

ˆ
Qj(x′,h)

|∇y −Rx′ |2 ≤
C

h3

ˆ
Q̈

dist2(∇y, SO(3)) ≤ C

h2
Eh(y)

which establishes

dist2(F̃ (x′), SO(3)) ≤ |F̃ (x′)−Rx′ |2 =
∣∣∣ ∑
j∈J(x′)

θj(x
′)(F̃j(x

′)− R̈x′)
∣∣∣2 ≤ C

h2
Eh(y)

as required for completing the L∞ estimate for d̃ in (2.10) when x′ /∈ Kch.

To complete the proof of (2.10), it remain to prove the L2 estimate for d̃. We first define for
all x = (x′, x3) ∈ Ωh

d(x) :=

 |∇y(x)− Id| if x′ ∈ Kch

dist(∇y(x), SO(3)) otherwise

and we note that if x = (x′, x3) ∈ (Ej ∩ Ω)× (0, h), we have

d(x) ≤ |∇y(x)− F̃j(x′)|+ d̃j(x
′).

Hence the above L2 estimates (2.17) and (2.22) on d̃j obtained in Steps 1 and 2, alongside (2.15)
and (2.20) imply

1

h

ˆ
(Ej∩Ω)×(0,h)

∇2d̃j(x) dx ≤ C

h

ˆ
(Uj∩Ω)×(0,h)

dist2(∇y(x), SO(3)) dx.

Summing over j gives
1

h
‖d‖2L2(Ωh) ≤ CE

h(y),

which combined with (2.9) proves the L2 estimate in (2.10) in view of the fact that

∀x ∈ Ω d̃(x′) ≤ |F (x′)−∇y(x)|+ d(x).

�

Lemma 2.7. Let Ω, Ωh, K be as defined above. Assume that h0 > 0, 0 < c < 1 be as in Lemma
2.6 and set c̄ = c/2. Then, given h < h0, y ∈ AhK , there exists a matrix field F̃ ′ which is equal
to the identity matrix Id on Kc̄h such that the estimates (2.9) and (2.10) still hold true (possibly
with a new constant C) for F̃ ′, i.e.

(2.24)
1

h
‖∇y − F̃ ′‖2L2(Ωh) ≤ CE

h(y), ‖∇F̃ ′‖2L2(Ω) ≤
C

h2
Eh(y),

and

(2.25) ‖dist2(F̃ , SO(3))‖2L∞(Ω) ≤
C

h2
Eh(y).
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Proof. We let F̃ : Ω → R3×3 be as in the statement of Lemma 2.6. We introduce a cut-off
function ψ : R2 → R

∀x ∈ R2 ψ(x) =


dist(x,Kc̄h)

c̄h
if dist(x,K) ≤ ch

1 otherwise.

It can be shown that 0 ≤ ψ ≤ 1, suppψ = Kc̄h, supp (1 − ψ) = R2 \ Kch, and that ψ is a
Lipschitz function with

(2.26) ‖∇ψ‖∞ ≤
1

c̄h
.

We now define

F̃ ′ = ψF̃ + (1− ψ)Id.

Note that F̃ ′ = Id on Kc̄h as required. Also F̃ ′ = F̃ on Ω \Kch. We have

|F̃ ′ − F̃ | = |ψF̃ + (1− ψ)Id− (ψF̃ + (1− ψ)F̃ | = |(1− ψ)(F̃ − Id)| ≤ d̃.

Hence

dist(F̃ ′, SO(3)) ≤ |F̃ ′ − F̃ |+ dist(F̃ , SO(3)) ≤ 2d̃ ≤ C

h2
Eh(y)

as required for (2.25). Combining the first estimates in (2.9) and (2.10) with |F̃ ′ − F̃ | ≤ d̃ we
also obtain

1

h
‖∇y − F̃ ′‖L2(Ωh) ≤ CEh(y).

Now we have

∇F̃ ′ = ∇ψ ⊗ (F̃ − Id) + ψ∇F̃ ,

which yields, in view of (2.26) and the fact that ∇ψ = 0 on the complement of Kch,

|∇F̃ ′| ≤ C

h
d̃+ |∇F̃ |.

Once again, the L2 bounds on ∇F̃ and d̃ in (2.9) and (2.10) imply

1

h
‖∇F̃ ′‖L2(Ωh) ≤

C

h2
Eh(y),

completing the proof of (2.24). �

Remark 2.8. In general, by applying a projection on a large ball containing SO(3), we can also
assume that |F̃ ′| ≤ C. By (2.25), this will not be needed under the assumption Eh ≤ Ch2.

In the following statement we now arrange F̃ ′ in such a way that it takes values only into
SO(3).

Corollary 2.9. Let Ω, Ωh, K be as defined above. Then there exist constants h0 > 0, C > 0,
0 < c̄ < 1, δ0 > 0, depending only on Ω and K, such that if for any h < h0, y ∈ AhK we
have Eh(y) ≤ δ0h

2, then there exists a matrix valued mapping R ∈ W 1,2(Ω, SO(3)) such that
R|Kc̄h ≡ Id and the following estimates hold true:

(2.27)
1

h
‖∇y −R‖2L2(Ωh) ≤ CE

h(y), ‖∇R‖2L2(Ω) ≤
C

h2
Eh(y).
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Proof. We let F̃ , h0, c̄ be chosen according to Lemma 2.24. The result follows similarly as in [15,
Remark 5]: Under the assumptions of the Corollary 2.9, (2.25) implies that F̃ ′ is in a (Cδ0)

1
2 -

tubular neighborhood U of SO(3). For δ0 small enough, the orthogonal projection π from U
onto SO(3) is well-defined and Lipschitz. We let R := π ◦ F̃ ′, and note that

|∇y −R| ≤ |∇y − F̃ ′|+ |F̃ ′ −R|

= |∇y − F̃ ′|+ dist(F̃ ′, SO(3))

≤ 2|∇y − F̃ ′|+ dist(∇y, SO(3)),

and that

|∇R| ≤ ‖∇π‖L∞ |∇F̃ ′|,

which combined with (2.24) imply together (2.27). �

Let for x3 ∈ (0, 1), ỹh(x′, x3) := yh(x′, hx3) = ((yh)′(x′, hx3), yh3 (x′, hx3)). We consider the
mappings

idh : Ωh → R3, idh(x′, x3) = (x′, x3); id : Ω1 → R3 id(x′, x3) = (idh)′(x′, x3) = (x′, 0),

and the displacement fields

(2.28) uh ∈W 1,2(Ω,R), Uh :=
1

h

ˆ h

0
(yh3 (·, x3)− hx3) dx3, uh :=

1

hβ/2−1
Uh,

(2.29)

wh ∈W 1,2(Ω,R2), Wh :=
1

h

ˆ h

0
((yh)′− id)(·, x3) dx3, wh :=

1

hδ
Wh for δ := min{β−2, β/2}.

Theorem 2.10. Let Ω, Ωh, K be as above, and assume that Cap1,2(K) > 0 and β > 2. Assume
that for a sequence as h→ 0, yh ∈ AhK , Eh(yh) - hβ. Then, up to a subsequence as h→ 0, we
have

(i)
1

h
‖yh − idh‖2W 1,2(Ωh) −→ 0, (in particular ỹh −→ id in W 1,2(Ω1)).

(ii) uh
strongly in W 1,2

−−−−−−−−−−→ u ∈ H2
0,K(Ω).

(iii) wh
weakly in W 1,2

−−−−−−−−−→ w ∈W 1,2(Ω).

(iv) If 2 < β < 4, then wh
strongly in W 1,2

−−−−−−−−−−→ w ∈ H1
0,K(Ω); and

sym∇w +
1

2
∇u⊗∇u ≡ 0 in Ω.

(v) For β ≥ 4, assume that sym∇wh converges strongly in L2(Ω), and that moreover the
family

Y :=
1

hβ

(1

h

ˆ h

0
dist2(∇yh(·, x3), SO(3)) dx3

)
is equi-integrable over Ω, in the sense that for all ε > 0, there exists δ > 0 such that for
all B ⊂ Ω, |B| < δ, we have

1

hβ

(1

h

ˆ
B×(0,h)

dist2(∇yh, SO(3)) dx
)
< ε.

Then wh
strongly in W 1,2

−−−−−−−−−−→ w ∈ H1
0,K(Ω).
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Proof. Let h0, δ0, c̄, C be as in Corollary 2.9. By the assumption β > 2, and if necessary by
choosing a smaller value for h0, we can assure that h < h0 implies Eh(yh) ≤ δ0h

2 and so
Corollary 2.9 applies: For each yh with h < h0, we denote the associated rotation field by Rh,
and hence (2.27) implies

(2.30)
1

h
‖∇yh −Rh‖2L2(Ωh) ≤ Ch

β, ‖∇(Rh − Id)‖2L2(Ω) ≤ Ch
β−2,

where Rh ≡ Id on Kc̄h. We let

(2.31) Ah :=
1

hβ/2−1
(Rh − Id).

By the second estimate in (2.30), ∇Ah is uniformly bounded in L2(Ω) and that Ah ≡ 0 on Kc̄h.
Moreover, by the Poincaré inequality proved in Corollary A.4 the sequence Ah satisfies

‖Ah‖L2(Ω) ≤ C‖∇Ah‖L2(Ω)

and hence up to a subsequence, Ah converges weakly in W 1,2 to A. Note that by Lemma A.1,
we have

(2.32) A ∈ H1
0,K(Ω).

We have moreover

(2.33) symRh − Id = −1

2
(Rh − Id)T (Rh − Id),

which implies that

symAh = −1

2
hβ/2−1(Ah)TAh,

and as a consequence, passing to the limit, we obtain that symA ≡ 0 in Ω. Now, using (2.33),
this time rescaled with hβ−2, Sobolev embeddings, and the fact that ATA = −A2 for any
skew-symmetric matrix, we obtain that

(2.34) ∀p < 2 Bh :=
1

hβ−2
(symRh − Id) = −1

2
(Ah)TAh ⇀

A2

2
weakly in W 1,p(Ω),

which also implies the strong convergence of Bh in Lq(Ω) for all q <∞.

We first note that the convergence of uh and wh in W 1,2 as we shall prove below in parts (ii)
and (iii) imply (i) in a straightforward manner. Indeed, we first remark that by compactness of
Sobolev embeddings, Ah must converge strongly to A in L2(Ω). Now the first estimate in (2.30)
implies

(2.35)

1

h

∥∥∥ 1

h
β
2
−1

(∇yh − Id)−A
∥∥∥2

L2(Ωh)
≤ C

h

(∥∥∥ 1

h
β
2
−1

(∇yh −Rh)
∥∥∥2

L2(Ωh)
+ ‖Ah −A‖2L2(Ωh)

)
≤ C(h2 + ‖Ah −A‖2L2(Ω))

h→0−−−→ 0,

which in particular yields

(2.36)
1

h
‖∇(yh − idh)‖2L2(Ωh) ≤ Ch

β−2 h→0−−−→ 0.
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To obtain an L2 estimate on yh − idh, for a.e. x′ ∈ Ω we apply the Poincaré inequality on the
interval {x′} × (0, h) and integrate over Ω to obtain

1

h

∥∥∥(yh)′ − (idh)′ −Wh

∥∥∥2

L2(Ωh)
=

1

h

∥∥∥(yh)′ − id−
 h

0
((yh)′ − id)(·, x3) dx3

∥∥∥2

L2(Ωh)

≤ Ch2
(1

h
‖∂3((yh)′ − (idh)′)‖2L2(Ω)

)
≤ Ch2

(1

h
‖∇(yh − idh)‖2L2(Ω)

)
for the first two components of yh − idh, and

1

h

∥∥∥yh3 − idh3 − Uh
∥∥∥2

L2(Ωh)
=

1

h

∥∥∥yh3 − idh3 −
 h

0
(yh3 − idh3)(·, x3) dx3

∥∥∥2

L2(Ωh)

≤ Ch2
(1

h
‖∂3(yh3 − idh3)‖2L2(Ω)

)
≤ Ch2

(1

h
‖∇(yh − idh)‖2L2(Ω)

)
.

Combining the last two estimates with (2.36) we hence obtain

1

h
‖yh − idh‖2L2(Ωh) ≤ C(‖Uh‖2L2(Ω) + ‖Wh‖2L2(Ω) + hβ)

≤ C(hβ−2‖uh‖2L2(Ω) + h2δ‖wh‖2L2(Ω) + hβ)
h→0−−−→ 0,

where we used (ii) and (iii).

To see (ii), first observe that for ∇′ = ∇x′

‖∇uh − (A31, A32)‖L2(Ω) =
∥∥∥ 1

hβ/2−1
∇′

ˆ 1

0
ỹh3 − hx3 dx3 − (A31, A32)

∥∥∥
L2(Ω)

=
∥∥∥ˆ 1

0

1

hβ/2−1
∇′ỹh3 − hx3 dx3 − (A31, A32)

∥∥∥
L2(Ω)

≤ 1√
h

∥∥∥ 1

hβ/2−1
∇(yh − idh)−A

∥∥∥
L2(Ωh)

=
1√
h

∥∥∥ 1

hβ/2−1
(∇yh − Id)−A

∥∥∥
L2(Ωh)

≤ 1√
h

∥∥∥ 1

hβ/2−1
(∇yh −Rh)

∥∥∥
L2(Ωh)

+
∥∥∥ 1

hβ/2−1
(Rh − Id)−A

∥∥∥
L2(Ω)

≤ C
√
h+ ‖Ah −A‖L2(Ω)

h→0−−−→ 0,

up to a subsequence, where we used (2.30) and the convergence of Ah to A in the last line.
Therefore for ah :=

ffl
Ω uh we obtain by the Poincaré-Sobolev inequalities that for some ũ ∈

W 2,2(Ω), with ∇ũ = (A31, A32),

‖uh − ah − ũ‖W 1,2(Ω)
h→0−−−→ 0.

(To see this, we first establish the weak convergence uh−ah and then use the strong convergence
of ∇uh.) Note that by Sobolev embedding theorems ũ ∈ C0(Ω), and hence the value of ũ for all
points on K is well-defined. By Lemma 2.11 proven below, we have for q.e. x ∈ K

lim
h→0

 
B(x,c̄h)∩Ω

|uh − ah − ũ| = 0 =⇒ lim
h→0

 
B(x,c̄h)∩Ω

(uh − ah − ũ) = 0,
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which implies

(2.37) lim
h→0

 
B(x,c̄h)∩Ω

uh − ah = lim
h→0

 
B(x,c̄h)∩Ω

ũ = ũ(x).

On the other hand, since yh = id on Kh:ˆ
B(x,c̄h)∩Ω

|Uh|2 ≤
1

h

ˆ
(B(x,c̄h)∩Ω)×(0,h)

|yh3 − x3|2

≤ Ch2
(1

h

ˆ
(B(x,c̄h)∩Ω)×(0,h)

|∂3(yh3 − x3)|2
)

≤ Ch2
(1

h

ˆ
(B(x,c̄h)∩Ω)×(0,h)

|∇yh − Id|2
)

≤ Ch2
(1

h

ˆ
(B(x,c̄h)∩Ω)×(0,h)

|∇yh −Rh|2
)
≤ Chβ+2,

since Rh = Id on Kc̄h. Therefore, since |B(x, c̄h) ∩ Ω| ≥ C(Ω)h2 we obtain 
B(x,c̄h)∩Ω

|uh|2 ≤ Ch2,

which implies

lim
h→0

 
B(x,c̄h)∩Ω

|uh| = 0,

yielding, combined with (2.37), that a = lim
h→0

ah ∈ R exists, and that for q.e. x ∈ K, ũ(x) = −a.
Therefore for u := ũ+ a:

uh = (uh − ah) + ah
in W 1,2

−−−−−→ ũ+ a = u ∈W 2,2(Ω),

and the continuous representative of u vanishes on K. More precisely, we obtain by Lemma
2.11, since uh − u converges strongly to 0 in W 1,2(Ω): 

B(x,c̄h)∩Ω
|u| ≤

 
B(x,c̄h)∩Ω

|u− uh|+
 
B(x,c̄h)∩Ω

|uh|
h→0−−−→ 0.

Therefore, by definition, u ∈ H1
0,K(Ω), which alongside the fact that by (2.32)∇u = (A31, A32) ∈

H1
0,K(Ω), completes the proof of (ii).

To establish (iii) and (iv) we proceed in the same manner as in (ii), with a caveat. Let
︷︷
B be

the 2× 2 upper-left sub-matrix of B := A2/2. We have

‖sym∇wh − h(β−2)−δ
︷︷
B ‖L2(Ω) =

∥∥∥sym
( 1

hδ
∇′

ˆ 1

0
(ỹh)′ − x′ dx3

)
− h(β−2)−δ

︷︷
B
∥∥∥
L2(Ω)

=
∥∥∥ˆ 1

0

1

hδ
sym

(
∇′((ỹh)′ − x′) dx3

)
− h(β−2)−δ

︷︷
B
∥∥∥
L2(Ω)

≤ 1√
h

∥∥∥ 1

hδ
sym(∇(yh − idh))− h(β−2)−δB

∥∥∥
L2(Ωh)

=
1√
h

∥∥∥ 1

hδ
sym(∇yh − Id)− h(β−2)−δB

∥∥∥
L2(Ωh)

≤ 1√
h

∥∥∥ 1

hδ
sym(∇yh −Rh)

∥∥∥
L2(Ωh)

+
∥∥∥ 1

hδ
sym (Rh − Id)− h(β−2)−δB

∥∥∥
L2(Ω)

≤ Ch(β/2)−δ + h(β−2)−δ‖Bh −B‖L2(Ω).

by (2.30), (2.34). If 2 < β < 4, then δ = β− 2 < β/2 and we deduce that sym∇wh converges in

L2(Ω) to
︷︷
B by (2.34). Otherwise, if β ≥ 4, then δ = β/2 and h(β−2)−δ → 0, and as a consequence
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‖sym∇wh‖L2(Ω) is merely bounded. This implies, through applying Korn’s inequality on Ω, that
if for all x ∈ Ω we set w̃h(x) := wh(x)−Dhx− bh, where

bh :=

 
Ω
wh and Dh =

 0 dh

−dh 0

 :=

 
Ω

skew(∇wh)

there exists w̃ ∈W 1,2(Ω,R2), with sym∇w̃ =
︷︷
B if 2 < β < 4, so that up to a subsequence

if 2 < β < 4 w̃h
in W 1,2

−−−−−→ w̃,

if β ≥ 4 w̃h
weakly in W 1,2

−−−−−−−−−−→ w̃.

If 2 < β < 4 we obtain through Lemma 2.11 that for q.e. x ∈ Ω

lim
h→0

 
B(x,c̄h)∩Ω

w̃h = lim
h→0

 
B(x,c̄h)∩Ω

w̃ = w̃∗(x)

by applying an extension operator of Appendix A and [13, Theorem 4.8.1], where w̃∗(x) is the
precise representative of E(w̃). We now observe that since yh = id on Kh and Rh ≡ Id on Kc̄h:ˆ

B(x,c̄h)∩Ω
|Wh|2 ≤

1

h

ˆ
(B(x,c̄h)∩Ω)×(0,h)

|(yh)′(x)− x′|2

≤ Ch2
(1

h

ˆ
(B(x,c̄h)∩Ω)×(0,h)

|∂3((yh)′ − x′)|2
)

≤ Ch2
(1

h

ˆ
(B(x,c̄h)∩Ω)×(0,h)

|∇yh − Id|2
)

≤ Ch2
(1

h

ˆ
(B(x,c̄h)∩Ω)×(0,h)

|∇yh −Rh|2
)
≤ Chβ+2.

Thus, once again through |B(x, c̄h) ∩ Ω| ≥ C(Ω)h2 we obtain 
B(x,c̄h)∩Ω

|wh|2 ≤ Chβ−2δ,

which implies for 2 < β < 4:

lim
h→0

 
B(x,c̄h)∩Ω

|wh| = 0.

Therefore we obtain for q.e. x ∈ K

lim
h→0

(
dh

 
B(x,c̄h)∩Ω

y⊥ dy + bh

)
= lim

h→0

(
Dh

 
B(x,c̄h)∩Ω

y′ dy + bh

)
= −w̃∗(x).

But by regularity of the mapping y → y⊥, for all x ∈ Ω

lim
h→0

 
B(x,c̄h)∩Ω

y⊥ dy = x⊥,

so we conclude with

for q.e. x ∈ K lim
h→0

(dhx
⊥ + bh) = −w̃∗(x).

Note that the q.e. existence of the above limit implies its existence for at least two distinct values
of x ∈ K, from which immediately follows that d := limh→0 dh and b := limh→0 bh exist and
subsequently that for q.e. x ∈ K,

w̃∗(x) = −(dx⊥ + b).
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Now, wh − w̃h(x) = Dhx+ bh → dx⊥ + b which yields that

wh = (wh − w̃h) + w̃h
in W 1,2

−−−−−→ w := w̃ + dx⊥ + b.

Applying Lemma 2.11 once again in an argument similar to what we presented for u in part (ii),
yields w ∈ H1

0,K(Ω).

Finally, remember that
︷︷
F is the 2 × 2 upper-left sub-matrix of F ∈ R3×3. First we observe

that by (2.35)

‖ hδ

hβ/2−1
∇wh −

︷︷
A ‖2L2(Ω) =

∥∥∥ 1

hβ/2−1

( h

0
∇′((yh)′ − (idh)′)(·, x3) dx3

)
−
︷︷
A
∥∥∥2

L2(Ω)

=
∥∥∥ h

0

( ︷ ︷
1

hβ/2−1
(∇yh − Id)−A

)
dx3

∥∥∥2

L2(Ω)

≤ 1

h

(∥∥∥ 1

hβ/2−1
(∇yh − Id)−A

∥∥∥2

L2(Ωh)

)
h→0−−−→ 0.

But since β > 2, we have δ > β/2 − 1, and hence, in view of the boundedness of ‖∇wh‖L2

and by passing to the limit in h → 0 we obtain
︷︷
A = 0. Remember that AT = −A, and that

∇u = (A31, A32). Hence, overall, straightforward calculation gives

(2.38) A = e3 ⊗∇u−∇u⊗ e3 =


0 0 −∂1u

0 0 −∂2u

∂1u ∂2u 0


which implies

(2.39)
︷︷
B =

︷ ︷
A2

2
= −1

2
∇u⊗∇u.

However, we already know that if 2 < β < 4, then sym∇w =
︷︷
B . Hence the proof of (iv) is

complete.

In order to see (v), it is sufficient to repeat the same argument as in (iv) using the new
assumptions. The weak convergence of sym∇wh being replaced by strong convergence, we
deduce the strong convergence of the adjusted sequence w̃h. Meanwhile, a careful reexamination
of the proof of Corollary 2.9 alongside the observations made in [15, Proposition 4] (see also [11,
Corollary 4.2]) implies that the family

Y =
1

hβ

(1

h

ˆ h

0
|∇yh(·, x3)−Rh|2dx3

)
is equi-integrable over Ω. Now, since β = 2δ for β ≥ 4, the estimateˆ

B(x,c̄h)∩Ω
|Wh|2 ≤ Ch2

(1

h

ˆ
(B(x,c̄h)∩Ω)×(0,h)

|∇yh −Rh|2
)

in combination with the equi-integrability of Y implies once again that 
B(x,c̄h)∩Ω

|wh|2
h→0−−−→ 0.

The conclusion then follows similarly as in (iv). �
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Lemma 2.11. Let Ω ⊂ R2 be a bounded Lipschitz domain, c̄ > 0 and assume that for a
subsequence hj → 0, uh ∈ W 1,2(Ω) converge strongly to 0 in W 1,2. Then, up to a subsequence,
and for q.e. x ∈ Ω

lim
h→0

 
B(x,c̄h)∩Ω

|uh(y)| dy = 0.

Proof. Since |uh| also converge strongly to |u|, without loss of generality we can assume that
uh ≥ 0 a.e. in Ω. We first extend the uh to the whole R2 using the bounded linear extension
operator E introduced in Appendix A, formula (A.6). It directly follows from Proposition A.2
that

lim
h→0

 
B(x,c̄h)

E(uh)(y) dy = 0⇒ lim
h→0

 
B(x,c̄h)∩Ω

uh(y) dy = 0.

Therefore it is sufficient to prove the statement for Ω = R2. In that case, we choose a suitable
subsequence of uhj which satisfies, after relabeling,ˆ

R2

|Duhj |
2 ≤ 1

23j
.

and we define

Bj :=
{
x ∈ R2;

 
B(x,c̄hj)

uhj (y) dy >
1

2j

}
⊂
{
x ∈ R2;

 
B(x,r)

uhj (y) dy >
1

2j
for some r > 0

}
.

Applying [13, Lemma 4.8.1] to uhj , we obtain that

Cap1,2(Bj) ≤ C22j

ˆ
R2

|Duhj |
2 ≤ C

2j
.

Let

Ek :=

∞⋃
j=k

Bj .

Then
Cap1,2(Ek) ≤

C

2k−1

and for all x ∈ R2 \ Ek we have for all j ≥ k 
B(x,c̄hj)

uhj (y) ≤ 1

23j
.

Thus by letting

E :=

∞⋂
k=1

Ek

we have Cap1,2(E) = 0 and

∀x ∈ R2 \ E lim
j→∞

 
B(x,c̄hj)

uhj (y) = 0.

The proof is complete. �

Corollary 2.12. Let Ω, Ωh, K, β be as above. Assume that for a sequence as h→ 0, yh ∈ AhK ,
Eh(yh) - hβ, Rh is chosen as in (2.30), and u, w are as in Theorem 2.10. Let

Gh :=
(Rh)T∇hỹh − Id

hβ/2
.

Then up to a subsequence Gh ⇀ G weakly in L2(Ω1,R3×3) where

(2.40)
︷︷
G = G0(x′) + (x3 −

1

2
)G1(x′),
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with
G1 = −∇2u

and

(i) if β = 4, then symG0 = sym∇w +
1

2
∇u⊗∇u,

(ii) if β > 4, then symG0 = sym∇w

Proof. The proof is as in [15, Lemma 2]. We include it for the convenience of the reader. We
define the difference quotient

Hh(x′, x3, s) :=
Gh(x′, x3 + s)−Gh(x′, x3)

s

Letting

ηh(x′, x3, s) :=
1

hβ/2−1

(1

s

ˆ s

0

1

h
∂3(ỹh)′(x′, x3 + σ)dσ

)
We first observe that for all x3, x3 + s ∈ [0, 1]∥∥∥ηh(x′, x3, s)− (A13, A23)T

∥∥∥
L2(Ω)

=
∥∥∥ 1

hβ/2−1

(1

s

ˆ s

0
∂3(yh)′(x′, h(x3 + σ))dσ

)
− (A13, A23)T

∥∥∥
L2(Ω)

≤
∥∥∥ 1

hβ/2−1

(1

s

ˆ s

0
∂3(yh)′(x′, h(x3 + σ))dσ

)
− (Ah13, A

h
23)T

∥∥∥
L2(Ω)

+ ‖Ah −A‖L2(Ω)

≤
∥∥∥1

s

ˆ s

0

1

hβ/2−1
(∇yh − Id)(x′, h(x3 + σ))−Ah(x′)dσ

∥∥∥
L2(Ω)

+ ‖Ah −A‖L2(Ω)

≤ 1√
hs

∥∥∥ 1

hβ/2−1
(∇yh − Id)−Ah

∥∥∥
L2(Ω×[hx3,h(x3+s)])

+ ‖Ah −A‖L2(Ω)

≤ 1√
hs

∥∥∥ 1

hβ/2−1
(∇yh −Rh)

∥∥∥
L2(Ωh)

+ ‖Ah −A‖L2(Ω)
h→0−−−→ 0,

where we used (2.30) and the definition of Ah in (2.31). As a consequence, and in view of (2.38),

ηh(·, x3, s) −→ −∇u in L2(Ω)

which implies
∇′ηh(·, x3, s) −→ −∇2u in D′(Ω).

On the other hand we have by straightforward calculation of the integral in the definition of ηh

ηh(·, x3, s) = h−β/2
(ỹh)′(·, x3 + s)− (ỹh)′(·, x3)

s
,

which yields

∇′ηh(·, x3, s) =
︷ ︷
RhHh(x′, x3, s) ⇀

︷︷
G(x′, x3 + s)−

︷︷
G(x′, x3)

s
weakly in L2(Ω),

since Rh is uniformly bounded and converges to Id in L2(Ω). Comparing the two expressions of
the limit for ∇′ηh we obtain ︷︷

G(·, x3 + s)−
︷︷
G(·, x3)

s
= −∇2u

Since ∇2u is independent of x3, we obtain that
︷︷
G is affine in x3, and can be written in the form

given in (2.40), and that G1 = −∇2u. In order to determine symG0, we let

Gh0(x′) :=

ˆ 1

0
Gh(x′, x3) dx3
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Note that

Gh =
1

hβ/2
(∇hỹh − Id)− 1

hβ/2
(Rh − Id)︸ ︷︷ ︸

G̃h

+
1

hβ/2
(Rh − Id)T (∇hỹh −Rh)︸ ︷︷ ︸

G
h

.

The last term G
h converges to 0 in L2(Ω1) in view of (2.30). Considering the upper left sub-

matrix of the first two terms we haveˆ 1

0
sym

︷ ︷
G̃h(·, x3) dx3 =

1

hβ/2

ˆ 1

0
sym(∇′(ỹh)′ − Id)(·, x3) dx3 −

1

hβ/2
sym(

︷ ︷
Rh−Id)

=
1

hβ/2
sym∇

(1

h

ˆ h

0
((yh)′ − id)(·, x3) dx3

)
− 1

hβ/2
sym(

︷ ︷
Rh−Id)

=
hmin{β−2,β/2}

hβ/2
sym∇wh −

hβ−2

hβ/2

︷ ︷
Bh

by (2.29) and (2.34). As a consequence, and in view of Theorem 2.10(iii), (2.34) and (2.39)

sym
︷ ︷
Gh0

weakly in L2(Ω)−−−−−−−−−→

 sym∇w +
1

2
∇u⊗∇u if β = 4

sym∇w if β > 4

But on the other hand the weak limit of sym
︷ ︷
Gh0 must be equal to

ˆ 1

0

︷︷
G(·, x3) dx3, which is

equal to G0 in view of (2.40). The proof is complete. �

2.5. Γ-lim inf estimates.

Theorem 2.13. Let Ω, Ωh, K be as above, and assume that Cap1,2(K) > 0 and β > 2. Assume
that for a sequence as h→ 0, yh ∈ AhK ,

(H) uh → u, in W 1,2(Ω), and wh ⇀ w weakly in W 1,2(Ω),

where uh and wh are respectively defined as in (2.28) and (2.29). Then

(i) If 2 < β < 4

lim inf
h

1

hβ
Jh(yh) ≥

ˆ
Ω

1

24
Q2(∇2u)− uf dx.

(ii) If β = 4

lim inf
h

1

hβ
Jh(yh) ≥

ˆ
Ω

1

2
Q2(sym∇w +

1

2
∇u⊗∇u) +

1

24
Q2(∇2u)− uf dx.

(iii) If β > 4

lim inf
h

1

hβ
Jh(yh) ≥

ˆ
Ω

1

2
Q2(sym∇w) +

1

24
Q2(∇2u)− uf dx.

Proof. We first note that under the hypothesis (H) and the scaling the linear term of the energies
converge, i.e.

−1

h

ˆ
Ωh

fh · yh dx h→0−−−→
ˆ

Ω
−uf dx

Therefore, in case lim infh
1
hβ
Eh(yh) = +∞, the results follow trivially. Otherwise, for a suitable

subsequence and a constant C > 0, we obtain Eh(yh) ≤ Chβ , and hence the hypotheses of
Theorem 2.10 are satisfied. Note that the limits u,w obtained in Theorem 2.10 must be the
same given under the convergence hypothesis (H), and so we obtain that u ∈ H2

0,K(Ω). Applying
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Corollary 2.12, the rest of the proof follows exactly as in [15, Corollary 2], and is left to the
reader. �

2.6. Recovery sequence and Γ-lim sup estimate for β > 4. In this section we explain how
to construct a recovery sequence. Namely, we want to prove the following statement.

Theorem 2.14. Let β > 4. For every u ∈ H2
0,K(Ω), w ∈ H1

0,K(Ω), there exists a sequence
yh ∈ AhK such that for the sequences uh, wh defined as in (2.28) and (2.29), (uh, wh) −→ (u,w)

in W 1,2(Ω), and

lim sup
h

1

hβ
Jh(yh) ≤

ˆ
Ω

1

2
Q2(sym∇w) +

1

24
Q2(∇2u)− uf dx.

Proof. The proof starts from the construction given in [15, Section 6.2]. More precisely we take
β = 2α − 2 fix given u ∈ H2

0,K(Ω), w ∈ H1
0,K(Ω), and g ∈ L2 a given vector field. Then we

define

yh(x′, x3) =

 x′

h(x3 − 1
2)

+

 hα−1w

hα−2u

− hα−1(x3 −
1

2
)


∂1u

∂2u

0

+
hα

2
(x3 −

1

2
)2g.

The required convergence of (uh, wh) is established by a straightforward computation. Also,
computations as in [15] imply that

1

hβ
W (∇yh)

h→0−−−→ 1

2
Q3(sym∇w + x3B) =

1

2
Q3(sym∇w) +

1

2
x3(sym∇w : B) +

1

2
Q3(x3B)

where
B := −∇2u+ sym(g ⊗ e3).

As observed in [15], one can choose g in such a way thatˆ
Ω×(− 1

2
, 1
2

)
Q3(x3B) =

1

12

ˆ
Ω
Q2(∇2u).

This choice yields
1

hβ

ˆ
Ω×(− 1

2
, 1
2

)
W (∇yh)

h→0−−−→ 1

2

ˆ
Ω
Q3(sym∇w) +

1

24

ˆ
Ω
Q2(∇2u).

Now we see in the direct expression of yh and the fact that u,w ∈ H1
0,K(Ω) implies that yh = 0

on K. This is not enough to have yh ∈ AhK because we need yh = 0 on Kh, a neighborhood of K.
Therefore we need first to approximate u,w by some uh, wh which are equal to 0 on Kh. This
can easily be done by use of a sort of diagonal argument. Indeed, u ∈ H2

0,K(Ω), w ∈ H1
0,K(Ω),

and thus from Lemma A.1 we know that there exist sequences un, wn ∈ C∞(Ω̄) such that
supp(un) ∪ supp(wn) ∩K = ∅, un → u in W 2,2(Ω), and wn → w in W 1,2(Ω). Since for n fixed,
Kh ⊂ Ω \ (supp(un) ∪ supp(wn)) for h small, we can then define a subsequence nh → +∞ such
that Kh ⊂ Ω \ (supp(unh) ∪ supp(wnh)). By this way if we change yh as above with unh , wnh
instead of u,w, then we have now yh ∈ AhK . Since the convergences of unh to u, and wnh to
w, hold respectively in the strong topologies of W 2,2 and W 1,2, it is easy to verify that we still
have the same limit

1

hβ
W (∇yh)

h→0−−−→ 1

2
Q3(sym∇w + x3B),

which finishes the proof of the proposition. �
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Remark 2.15. Theorems 2.13 and 2.14 mean that for β > 4, the functionals h−βEh, Γ-converge
to the functional

I(u,w) :=

ˆ
Ω

1

2
Q2(sym∇w) +

1

24
Q2(∇2u)− uf dx,

defined over H2
0,K × H1

0,K , under the strong convergence of (uh, wh) to (u,w) in W 2,2 ×W 1,2.
Note that the strong convergence of wh, and hence the inclusion of the weak limit w in H1

0,K in
Theorem 2.10 is not established in its full generality for this regime. To bypass this problem, and
in view of the fact that u and w are decoupled in the expression of I(u,w), one can forgo the
mention of w in the final result. Indeed, notice that both inequalities still work for w = 0, i.e.

lim inf
h

1

hβ
Jh(yh) ≥ 1

24
Q2(∇2u)− uf dx,

and the same recovery sequence written for u ∈ H2
0,K(Ω) and w = 0 satisfies

lim sup
h

1

hβ
Jh(yh) ≤ 1

24
Q2(∇2u)− uf dx.

As stated in Theorem 1.1, this establishes the functional

I(u) :=

ˆ
Ω

1

24
Q2(∇2u)− uf dx,

over H2
0,K as the Γ-limit of h−βEh under the strong convergence of uh to u.

2.7. Energy scalings and β-minimizing sequences. We first prove the following proposition
regarding the fact that the scaling of the infimum energy is determined by the scaling of body
forces in our setting. Remember that vertical body forces fh : Ωh → R3 are assumed to be of
the form fh := (0, 0, hαf̃), for f̃ ∈ L2(Ω).

Proposition 2.16. Assume α > 2, and let β = 2α − 2. There exists h0 > 0 such that for a
constant C := C(Ω,K, f̃ , h0) > 0 and all h < h0

−Chβ ≤ inf
AhK

Jh ≤ Chα � Chβ.

In particular, since infAhK
Jh ∈ R, there exists a β-minimizing sequence.

Proof. First note that letting y = idΩh the identity map we have

Jh(idΩh) = −1

h

ˆ
Ωh

fh(x) · x dx ≤ Chα‖f̃‖L2(Ω)

yielding the upper bound on infAhK
Jh.

Let now y ∈ AhK be an arbitrary deformation, and consider the matrix field F̃ obtained from

Lemma 2.6. Letting F̃0 :=

 
Ω
F̃ dx. We have by the Poincaré inequality

‖F̃ − F̃0‖2L2(Ω) ≤ C‖∇F̃‖
2
L2(Ω) ≤

C

h2
Eh(y),

which implies

1

h
‖∇y − F̃0‖2L2(Ωh) ≤ 2(

1

h
‖∇y − F̃‖2L2(Ωh) +

1

h
‖F − F̃0‖2L2(Ωh)) ≤

C

h2
Eh(y).

Note that

|F̃0|2 ≤
 

Ω
|F̃ |2 dx ≤ C(

 
Ω

dist2(F̃ , SO(3)) dx+ 1) ≤ C(‖d̃‖L2(Ω) + 1) ≤ C(Eh(y) + 1).
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Combining the last two estimates we obtain
1

h
‖∇y‖2L2(Ωh) ≤ C

( 1

h2
Eh(y) + 1

)
.

Now, since y ∈ AhK , we have y3 = 0 on Kh, i.e y3 ∈ Ah
K and we can apply Theorem A.5 to

obtain
‖y3‖2L2(Ωh) ≤ C‖∇y3‖2L2(Ωh).

Therefore
1

h
‖y3‖2L2(Ωh) ≤

C

h
‖∇y3‖2L2(Ωh) ≤ C(

1

h2
Eh(y) + 1),

and hence

Jh(y) = Eh(y)− 1

h

ˆ
Ωh

fh · y dx ≥ Eh(y)− Chα‖f̃‖L2(Ω)

( 1√
h
‖y3‖L2(Ωh)

)
≥ Eh(y)− Chα‖f̃‖L2(Ω)(

1

h
(Eh(y))

1
2 + 1)

= Eh(y)− Chα−1‖f̃‖L2(Ω)E
h(y)

1
2 − Chα‖f̃‖L2(Ω).

Hence

(2.41) Jh(y) ≥ (Eh(y)
1
2 − Chα−1‖f̃‖L2(Ω))

2 − C2h2α−2‖f̃‖2L2(Ω) − Ch
α‖f̃‖L2(Ω).

A standard argument now yields for an adjusted constant C

Jh(y) ≥ −Ch2α−2‖f̃‖L2(Ω) ≥ −Chβ,

implying the required lower bound on infAhK
Jh. �

Corollary 2.17. Let α > 2 and β = 2α− 2. For any sequence yh ∈ AhK ,

Jh(yh) - hβ =⇒ Eh(yh) - hβ.

In particular any β-minimizing sequence yh satisfies Eh(yh) ≤ Chβ.

Proof. Assuming Jh(yh) - hβ , from (2.41) we obtain

(Eh(yh)
1
2 − Chβ/2)2 ≤ Jh(yh) + Chβ + Chα ≤ Chβ

which impliesEh(yh) - hβ . Consider now a β-minimizing sequence yh,

lim sup
h→0

1

hβ

(
Jh(yh)− inf

AhK
Jh
)

= 0.

We have therefore for h small enough

Jh(yh) ≤ (inf
AhK

Jh + 1)hβ ≤ Chβ,

which implies the required estimate on Eh(yh). �

Theorem 2.18. Let α > 3, β = 2α − 2 > 4, and let yh ∈ AhK be a β-minimizing sequence for
Jh, and let (uh, wh) be defined as in (2.28), (2.29). Then up to a subsequence, (uh, wh) −→ (u, 0)

in W 1,2(Ω), u ∈ H2
0,K(Ω), and u minimizes the functional

I(u) :=

ˆ
Ω

1

24
Q2(∇2u)− uf dx,

over H2
0,K(Ω). Conversely, if u minimizes I(u) over H2

0,K(Ω), then there exists a β-minimizing
sequence yh ∈ AhK for Jh such that (uh, wh) −→ (u, 0) in W 1,2(Ω).
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Proof. Combining Corollary 2.17 and Theorem 2.10, we obtain that up to a subsequence uh −→ u

in W 1,2(Ω), u ∈ H2
0,K(Ω), and that wh ⇀ w weakly in W 1,2(Ω,R2). A standard argument using

the Γ-convergence results Theorem 2.13 and Theorem 2.14 (see also Remark 2.15) shows that u
minimize the functional I(u) over H2

0,K(Ω), and that

I(u) = min
u∈H2

0,K(Ω)
I = lim

h→0

1

hβ
Jh(yh) = lim

h→0

1

hβ
inf
AhK

Jh.

On the other hand, Theorem 2.13 implies that the recovery sequence yh of Theorem 2.14 for
w = 0, which satisfies the required convergence criteria, satisfies

lim
h→0

1

hβ
Jh(yh) = I(u) = lim

h→0

1

hβ
inf
AhK

Jh,

which implies that yh is β-minimizing.

In fact, more can be shown with a finer reasoning. Following the same arguments as in [15,
Section 7.2], the equi-integrability of the family Y and the strong convergence of sym∇wh in
L2 can be established. As a consequence the strong convergence of wh to w ∈ H1

0,K follows
immediately from Theorem 2.10-(v). Using this stronger convergence, and the full force of
Theorems 2.13 and 2.14, it can be shown that the pair (u,w) must minimize the functional

ˆ
Ω

1

2
Q2(sym∇w) + I(u)

over H2
0,K × H1

0,K . Since u and w are decoupled in the energy, we must have sym∇w = 0 for
the minimizer (u,w), and hence the infinitesimal rigidity of displacements in R2 implies that
w(x) = Dx + b is an affine map with D ∈ so(2), skew-symmetric, and therefore detD 6= 0 or
D = 0. Since w ∈ H1

0,K and Cap1,2(K) > 0, we deduce that w = 0, since otherwise w can vanish
at only one single point. We conclude that wh → 0 in W 1,2(Ω).

�

3. The optimal biharmonic support problem

In this section we know focus on shape optimisation Problem in (1.6) and we assume for
simplicity that ∂Ω ⊂ K. By this way the space Hk

0,K(Ω) reduces to the more classical Hk
0 (Ω\K).

Our aim is to prove existence and regularity of minimizers K for that problem.

3.1. Dual formulation. Let Ω ⊂ R2 be any open and simply connected domain. We denote by
K(Ω) the collection of all compact connected subsets K ⊂ Ω such that ∂Ω ⊂ K. In particular,
for all K ∈ K(Ω), any connected component of Ω \K is necessarily simply connected.

Notice that for u ∈ C∞c (Ω) it is very classical that
ˆ

Ω
|∇2u|2 dx =

ˆ
Ω
|∆u|2 dx.

Indeed, a simple computation yields
ˆ

Ω
|∆2u|2 dx =

ˆ
Ω
|∆u|2 dx+ 2

ˆ
Ω
u2

12 − u11u22 dx,

=

ˆ
Ω
|∆u|2 dx+ 2

ˆ
Ω

divF dx,(3.1)
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where

F :=

 u12u2 − u22u1

u12u1 − u11u2

 .

Now ˆ
Ω

divF dx = 0

because F ∈ C∞c (Ω). Therefore, the biharmonic equation can be equivalently solved either by
minimizing

´
Ω\K |∇

2u|2 dx or
´

Ω\K |∆u|
2 dx in H2

0 (Ω \K). We denote by L2
sym(Ω) the space of

symmetric matrix valued L2 functions that we endow with the scalar product

〈A,M〉 =

ˆ
Ω
A : M dx.

We denote by divM the divergence of the Matrix valued function M , which consists in taking
the divergence of each raw of M . A simple computation reveals that for u ∈ C∞c (Ω) and
M ∈ C∞sym(Ω) it holds ˆ

Ω
∇2u : M dx =

ˆ
Ω
u divdivM dx,

which naturally extends to u ∈ H2
0 (Ω) and M ∈ H2

sym(Ω).
We begin with an elementary Lemma.

Lemma 3.1. Let f : E × F → R be a real valued function defined on two given sets E,F .
Assume that (u0, v0) is a saddle point, i.e. satisfies

f(u0, v0) = max
v
f(u0, v) = min

u
f(u, v0).

Then
inf
u

sup
v
f(u, v) = sup

v
inf
u
f(u, v) = f(u0, v0).

Proof. For any (u,w) fixed it is clear that f(u,w) ≤ supv f(u, v) thus taking first the inf in u
and then sup in w yields

sup
w

inf
u
f(u,w) ≤ inf

u
sup
v
f(u, v).

For the reverse inequality we use that (u0, v0) is a saddle point. Indeed,

inf
u

sup
v
f(u, v) ≤ max

v
f(u0, v) = min

u
f(u, v0) ≤ sup

v
inf
u
f(u, v),

which concludes the proof. �

Proposition 3.2. Let F : H2
0 (Ω \K)× L2

sym(Ω)→ R be defined by

F (u,M) := 2

ˆ
Ω
∇2u : M dx−

ˆ
Ω
|M |2 dx− 2

ˆ
Ω
uf dx.

Then (uK ,∇2uK) is a sadle point for F . In particular,

−
ˆ

Ω
|∇2uK |2 dx = sup

M∈L2
sym(Ω)

inf
u∈H2

0 (Ω\K)
F (u,M).

Proof. From the elementary equality |A+B|2 = |A|2 + |B|2 + 2A : B valid for any matrix A,B
we infer that

|A|2 ≥ 2A : B − |B|2,
and in particular for any M ∈ L2

sym(Ω), we always have

F (uK ,∇2uK) ≥ F (uK ,M),
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and since the equality occurs for M = ∇2uK we can affirm

F (uK ,∇2uK) = max
M

F (uK ,M).(3.2)

On the other hand, by Lax-Milgram theory we know that uK is the unique minimizer in
H2

0 (Ω \K) for the functional J defined by

J(u) :=

ˆ
Ω
|∇2u|dx− 2

ˆ
Ω
uf dx,

and the weak formulation for this problem says thatˆ
Ω
∇2u : ∇2uK dx =

ˆ
Ω
uf dx ∀u ∈ H2

0 (Ω \K).

In turn, for ∇2uK fixed and an arbitrary u ∈ H2
0 (Ω \K), we observe that the expression of

F (u,∇2uK) reduces to

F (u,∇2uK) = −
ˆ

Ω
|∇2uK |2 dx,

which is constant in the u variable. We deduce a fortiori that

F (uK ,∇2uK) = min
u
F (u,∇2uK),

which together with (3.2), proves that (uK ,∇2uK) is a saddle point for F (u,M). We conclude
by applying Lemma 3.1. �

In the following proposition we will use the notation LD(A) for a function v ∈ L2(A,R2)

satisfying e(v) ∈ L2(A), where e(v) = (∇v +∇vT )/2 is the symmetrized gradient of v.

Proposition 3.3. Let ϕ ∈ H1
0 (Ω) be the unique solution of −∆ϕ = f in Ω

ϕ ∈ H1
0 (Ω)

and let

G = ϕId =

 ϕ 0

0 ϕ

 .

Let K be a minimizer for Problem (1.6). Then there exists vK ∈ LD(B(x, r) \K) such that
(vK ,K) is a minimizer for the problem

(3.3) min
(v,K)∈A

ˆ
Ω\K
|e(v)−G|2dx+H1(K)

where

A := {(v,K) : K ∈ K(Ω) and v ∈ LD(B(x, r) \K)}.

Proof. For a given K ⊂ Ω, we can apply Proposition 3.2 to write

−
ˆ

Ω
|∇2uK |2 dx = sup

M∈L2
sym

inf
u∈H2

0 (Ω\K)
2

ˆ
Ω
∇2u : M dx−

ˆ
Ω
|M |2 dx− 2

ˆ
Ω
uf dx

= sup
M∈L2

sym

inf
u∈H2

0 (Ω\K)
2 H2

0
〈u, div divM〉(H2

0 )′ −
ˆ

Ω
|M |2 dx− 2

ˆ
Ω
uf dx.

= sup
M∈L2

sym

inf
u∈H2

0 (Ω\K)
2 H2

0
〈u, div divM − f〉(H2

0 )′ −
ˆ

Ω
|M |2 dx.
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The infimum in the u variable in the above is equal to −∞, excepted when div divM = f in
D′(Ω \K). This leads to the following dual equalityˆ

Ω
|∇2uK |2 dx = min

{ ˆ
Ω
|M |2 dx s.t. M ∈ L2

sym(Ω) and div divM = f in D′(Ω \K)
}
.

Moreover, the minimium is achieved for M = ∇2uK . In other words

min
K

ˆ
Ω
|∇2uK |2 dx+H1(K) = min

K
min
M

ˆ
Ω
|M |2 dx+H1(K),

where the minimum in M is over all M ∈ L2
sym(Ω) satisfying div divM = f in D′(Ω \K).

Now let v ∈ H1
0 (Ω) be the unique solution of −∆v = f in Ω

v ∈ H1
0 (Ω)

and let

G = vId =

 v 0

0 v

 .

Then G is symetric and div divG = ∆v = −f in D′(Ω). It follows that for all M satisfying
div divM = f in D′(Ω \K),

div div (M +G) = 0 in D′(Ω \K).

In particular, since Ω \K is simply connected, there exists u such that

div (M +G) = ∇⊥u.

We deduce that

curl(div(M + G)⊥) = 0

or differently

curlcurl(Com(M +G)) = 0.

The classical Saint-Venant compatibility condition yields the existence of u such that Com(M+

G) = e(u) in the simply connected domain Ω \K and we infer that

M = Com(e(u))−G,

and finally since Com(G) = G,ˆ
Ω\K
|M |2 dx =

ˆ
Ω\K
|e(u)−G|2 dx.

We conclude that

min
M

ˆ
Ω\K
|M |2 dx = min

u

ˆ
Ω\K
|e(u)−G|2 dx

which ends the proof of the proposition. �

Remark 3.4. Notice that G is bounded and we actually have

‖G‖L∞(Ω) ≤ C‖f‖p.

Indeed, by elliptic regularity G ∈W 2,p(Ω) and then since p > 2 we know that u ∈ C1,α(Ω).



32 A. LEMENANT AND M. R. PAKZAD

3.2. Existence. We start by proving the existence of a minimizer, as a simple consequence of
Sverak’s [23] result.

Proposition 3.5. Let Ω be an open and bounded set in R2 and let f ∈ L∞(Ω). Let (Kn)n be
a sequence of closed connected subset of Ω, converging to a closed connected set K ⊂ Ω with
respect to the Hausdorff distance. Then

uKn
n→+∞−−−−−→ uK strongly in H2(Ω).

Proof. We proceed as a standard Γ-convergence argument. We start by noticing that for all n,
using that uKn is the solution of ∆2uKn = f in H2

0 (Ω \Kn),ˆ
Ω
|∇2uKn |2 dx =

ˆ
Ω
fuKn ≤ ‖f‖22‖uKn‖L2 ≤ C‖∇2u‖2,

where we have used the Poincaré inequality in H2
0 (Ω). This leads toˆ

Ω
|∇2uKn |2 dx ≤ ‖f‖2,

so that uKn is uniformly bounded in H2
0 (Ω). We can therefore extract a subsequence (not

relabeled) that converges weakly in H2(Ω), strongly in H1
0 (Ω), and uniformly in Ω to some

function v ∈ H0(Ω). By uniform convergence we also know that v = 0 on the set K, the
Hausdorff limit of Kn.

Since ∇uKn ∈ H1
0 (Ω \ Kn) and converges weakly in H1

0 (Ω) to ∇v, and since the sets Kn

are all compact and connected in Ω, it follows from [23] that ∇v ∈ H1
0 (Ω). In other words

v ∈ H2
0 (Ω \K).

Now let ϕ ∈ C∞c (Ω \K). By Hausdorff convergence of Kn we deduce that the support of ϕ
is contained in Ω \Kn for all n large enough. Therefore, we can apply the weak formulation of
the problem satisfied by uKn which yieldsˆ

Ω
∇2uKn : ∇2ϕ dx =

ˆ
Ω
fϕ dx.

Passing to the limit we obtain that uKn is the unique solution of ∆2u = f in H2
0 (Ω \ K). In

other words u = uK .
By the week convergence of the Hessians we already haveˆ

Ω
|∇2u| dx ≤ lim inf

ˆ
Ω
|∇2uKn |2 dx.

Conversely, by definition of H2
0 there exists a sequence of vn ∈ C∞c (Ω \K) such that vn → u

strongly in H2(Ω). Let us first fix a k0 ≥ 0. Using the Hausdorff convergence of Kn to K we
know that vk0 ∈ H2

0 (Ω \Kn) for n large. Since uKn is a minimizer in this class we obtainˆ
Ω
|∇2uKn |2 dx− 2

ˆ
Ω
uKnf dx ≤

ˆ
Ω
|∇2vk0 |2 dx− 2

ˆ
Ω
vk0f dx.

passing to the limsup in n we arrive at

lim sup
n→+∞

ˆ
Ω
|∇2uKn |2 dx ≤

ˆ
Ω
|∇2vk0 |2 dx− 2

ˆ
Ω
vk0f dx+ 2

ˆ
Ω
uf dx.

Letting now k0 → +∞ yields

lim sup
n→+∞

ˆ
Ω
|∇2uKn |2 dx ≤

ˆ
Ω
|∇2u|2 dx,

which together with the liminf inequality proves the strong convergence of uKn in H2(Ω) to
u = uK (the convergence of the full sequence follows from the uniqueness of the limit). �
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Proposition 3.6. Problem (1.6) admits a minimizer in the class K(Ω).

Proof. Let (Kn)n be a minimizing sequence for Problem 1.6 in K(Ω). Using Blaschke’s theorem
(see [3, Theorem 6.1]), we can find a compact connected proper subset K of Ω such that up to a
subsequence, still denoted by the same index, Kn converges to K with respect to the Hausdorff
distance. Then, of course ∂Ω ⊂ K and by Proposition 3.5, uKn converges to uK strongly
in H2

0 (Ω). Finally, thanks to the lower semicontinuity of H1 with respect to the Hausdorff
convergence of connected sets, we deduce that K is a minimizer of Problem (1.6). �

3.3. Ahlfors regularity. We recall that a set K ⊂ R2 is said to be Ahlfors regular of dimension
1, if there exist some constants c > 0, r0 > 0 and C > 0 such that for every r ∈ (0, r0) and for
every x ∈ K the following holds

(3.4) cr ≤ H1(K ∩Br(x)) ≤ Cr.

Note that for a closed connected nonempty set K the lower bound in (3.4) is trivial: indeed,
for all x ∈ K and for all r ∈ (0, diam(K)/2) we have K ∩ ∂Br(x) 6= ∅, and then

(3.5) H1(K ∩Br(x)) ≥ r.

Theorem 3.7. Let Ω ⊂ R2 be a bounded Lipschitz domain. Let (v,K) be a solution of Prob-
lem 3.3 with diam(K) > 0. Then K is Ahlfors regular. More precisely, there exists C > 0 and
r0 > 0 such that for all x ∈ K and 0 ≤ r ≤ r0 we have

ˆ
Br(x)∩Ω

|e(u)−G|2 dx+H1(K ∩Br(x)) ≤ 2πr + C‖f‖pr2.

Proof. It easily follows from the fact that Ω is a Lipschitz domain, that there exists r0 > 0 such
that ∂B(x, r) ∩ Ω is connected for all x ∈ Ω and r ≤ r0. Then to prove the Theorem, it suffice
to compare (u,K) with the admissible competitor (w,Kr) defined by

(3.6) Kr = (K\Br(x)) ∪ (∂Br(x) ∩ Ω),

and w = u1Ω\Br(x). By this way we obtain
ˆ
Br(x)∩Ω

|e(u)−G|2 dx+H1(K ∩Br(x)) ≤
ˆ
Br(x)∩Ω

|G|2 dx+ 2πr,

and finally using also Remark 3.4 we deduce that
ˆ
Br(x)∩Ω

|e(u)−G|2 dx+H1(K ∩Br(x)) ≤ C‖f‖pr2 + 2πr,

which ends the proof. �

3.4. C1 regularity. The C1 regularity of minimizers will follow from the following observation.

Proposition 3.8. If (u,K) is a minimizer of Problem (3.3), then it is an almost-minimizer of
the Grifith Energy. In other words there exists C > 0 and r0 > 0 such that for every competitor
(v,K ′) in the ball Br(x) and for all r ≤ r0 we have

ˆ
Br

|e(u)|2 dx+H1(K ∩Br(x)) ≤
ˆ
Br

|e(v)|2 dx+H1(K ′ ∩Br(x)) + Cr1+ 1
2
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Proof. Let (v,K ′) be a competitor for (u,K) in the ball Br(x). Then since u is a minimizer for
Problem (3.3) and (v,K ′) coincides with (u,K) outside Br we haveˆ

Br

|e(u)−G|2 dx+H1(K ∩Br) ≤
ˆ
Br

|e(v)−G|2 dx+H1(K ′ ∩Br)

which impliesˆ
Br

|e(u)|2 dx+H1(K ∩Br) ≤
ˆ
Br

|e(v)|2 − 2

ˆ
Br

e(v) : Gdx+ 2

ˆ
Br

e(u) : Gdx+H1(K ′ ∩Br).

Now by elliptic regularity (see Remark 3.4) we haveˆ
Br

|G|2 dx ≤ Cr2,

thus after Cauchy-Schwarz we arrive at
ˆ
Br

|e(u)|2 dx+H1(K ∩Br) ≤
ˆ
Br

|e(v)|2 + Cr

(ˆ
Br

|e(v)|2
) 1

2

+ Cr

(ˆ
Br

|e(u)|2
) 1

2

+H1(K ′ ∩Br).

Now by the proof of Ahlfors-Regularity we know thatˆ
Br

|e(u)−G|2 dx+H1(K ∩Br) ≤ CAr,

which implies in particular thatˆ
Br

|e(u)|2 dx ≤ 2

ˆ
Br

|e(u)−G|2 dx+ 2

ˆ
Br

|G|2 dx ≤ 2CAr + Cr2 ≤ C ′r,

provided that r0 ≤ 1 (that we can assume). Returning to the inequality obtained before, we
infer that

ˆ
Br

|e(u)|2 dx+H1(K ∩Br) ≤
ˆ
Br

|e(v)|2 + Cr

(ˆ
Br

|e(v)|2
) 1

2

+ Cr1+ 1
2 +H1(K ′ ∩Br).

We now divide the argument in two alternatives. Eitherˆ
Br

|e(v)|2 ≥ (C ′ + CA)r

and then ˆ
Br

|e(u)|2 dx+H1(K ∩Br) ≤ (C ′ + CA)r ≤
ˆ
Br

|e(v)|2

Or
´
Br
|e(v)|2 ≤ (C ′ + CA)r but then

ˆ
Br

|e(u)|2 dx+H1(K ∩Br) ≤
ˆ
Br

|e(v)|2 + Cr1+ 1
2 +H1(K ′ ∩Br).

In both cases we always haveˆ
Br

|e(u)|2 dx+H1(K ∩Br) ≤
ˆ
Br

|e(v)|2 +H1(K ′ ∩Br) + Cr1+ 1
2 .

which achieves the proof of the Proposition. �

Therefore, by the results contained in [17] and [18], (see also [4]), we get the following theorem.

Theorem 3.9. Let K ∈ K(Ω) be a solution for Problem (3.3). Then K ∩ Ω is C1,α outside a
set of Hausdorff dimension strictly less than one.
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Appendix A. Quasi-everywhere traces of W k,2 functions

In the following statement we say that a property holds (m, p)-q.e. if it holds true outside a
set of zero capacity of order m ≥ 1 and integrability exponent p. We refer to [1] for the definition
of capacity Capm,p.

Let K ⊂ RN be a closed set and u ∈ W k,p(RN ). For 1 < p < +∞ there exists a nice
characterization of the space W k,p

0 (RN \ K) in terms of traces of u on K as follows. If α is a
multiindex such that |α| ≤ k we say that ∂αu|K = 0 if

lim
r→0

( 
Br(x0)

|∂αu| dx

)
= 0 for (k − |α|, p)-q.e. x0 on K.

Then [1, Theorem 9.1.3.] says that

W k,p
0 (RN \K) =

{
u ∈W k,p(RN ) s.t. ∂αu|K = 0 for all 0 ≤ α ≤ k − 1

}
,(A.1)

where here W k,p
0 (RN \ K) denotes the closure of C∞c (RN \ K) with respect to the W k,p(RN )

norm. The following lemma is a generalization of the above fact, adapted to a domain Ω

instead of RN . The proof uses an extension operator for Ω ⊂ RN , i.e. a linear mapping
E : W k,p(Ω)→W k,p(RN ) such that E(u) = u in Ω and

‖E(u)‖Wk,p(R2) ≤ C‖u‖Wk,p(Ω).

The construction of such operator for a Lipschitz domain Ω, is classical (see for instance [2,
Chapter 5]). By Lipschitz domain we mean a bounded open set whose boundary is locally the
graph of a Lipschitz function at every point of the boundary.

The strategy for a domain Ω is then to apply the characterization in (A.1) to the extended
function E(u) defined on RN , but it is not straightforward that the trace of u, which is a function
defined only on Ω, coincides with the trace of E(u) on the boundary ∂Ω. For a Lipschitz domain
this happens to be true thanks to a result in the book [16]. Here is then a general statement that
we can prove with this strategy, that for simplicity we write only in the particular case p = 2.

Lemma A.1. Let Ω ⊂ RN be a bounded Lipschitz domain and K ⊂ Ω be a closed set. We
consider the subspace of W k,2(Ω) defined by

Hk
0,K(Ω) :=

{
u ∈W k,2(Ω) such that ∂αu|K = 0 for all multiindices α such that 0 ≤ α ≤ k − 1

}
,

where by ∂αu|K = 0 we mean that

lim
r→0

( 
Br(x0)∩Ω

|∂αu| dx

)
= 0 for (k − |α|, 2)-q.e. x0 on K.

Then

(1) Hk
0,K(Ω) =

{
u ∈W k,2(Ω) such that E(u) ∈W k,2

0 (RN \K)
}
.

(2) Hk
0,K(Ω) ⊂W k,2(Ω) is closed for the strong topology of W k,2(Ω).

(3) Hk
0,K(Ω) ⊂W k,2(Ω) is closed for the weak topology of W k,2(Ω).

(4) If u ∈ Hk
0,K(Ω) then there exists a sequence ϕn ∈ C∞c (R2) such that supp(ϕn) ∩K = ∅

for all n and ϕn → u strongly in W k,2(Ω).

Proof. • Proof of (1). We begin with the proof of (1) that will actually be the key ingredient for
all the other points. We already know by [1, Theorem 9.1.3.] that

W k,2
0 (RN \K) =

{
u ∈W k,2(RN ) s.t. ∂αu|K = 0 for all 0 ≤ α ≤ k − 1

}
.(A.2)
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Thus to conclude, we only need to prove that for (k − |α|, 2)-q.e. x0 ∈ ∂Ω,

lim
r→0

( 
Br(x0)∩Ω

|∂αu| dx

)
= lim

r→0

( 
Br(x0)

|∂αE(u)| dx

)
.

This fact actually follows from [16, Proposition 2 page 207]. To say just a few words, the proof
in [16] uses that ∂α(E(u)), as a global Sobolev function on the full space RN , can be written
as a convolution with a potential, namely v := ∂α(E(u)) = Gα ∗ f where f ∈ L2. Then by the
continuity behavior of Bessel potentials proved by Meyers in [20, Theorem 3.2.] we know that
this type of function has a sort of pointwise continuity property, in the sense that

v(x0) = lim
x→x0
x 6∈E

v(x)

where E has a controlled capacity of the form Capm,p(E ∩ B(x0, r)) = o(rN−1). From this we
deduce that the limit of averages intersected with Ω or without intersection with Ω must coincide
(k−|α|, 2)-q.e. We refer to [16, Proposition 2 page 207] for more details. This achieves the proof
of (1), and we can notice that it does not depend on the choice of the extension operator. Notice
also that the argument used in Proposition A.2 could give an independent proof for the special
case k = 1.

• Proof of (2). Let un be a sequence in Hk
0,K(Ω) such that un → u in W k,2(Ω). Since the

extension operator E is continuous on W k,2 it follows that E(un) → E(u) in W k,2(R2) and by
use of (1) we know that E(un) ∈W k,2

0 (R2 \K), for all n. But now by definition, W k,2
0 (RN \K)

is a closed subspace of W k,2(RN \K) and since E(un)→ E(u) we obtain E(u) ∈W k,2
0 (R2 \K).

By applying (1) again we deduce that u ∈ Hk
0,K(Ω).

• Proof of (3). Let un ∈ Hk
0,K(Ω) be a sequence that converges weakly in W k,2(Ω) to some

limit u, in other words 〈un, ϕ〉 → 〈u, ϕ〉 for all ϕ ∈W k,2(Ω), where the brackets means the scalar
product in W k,2(Ω). Since Hk

0,K(Ω) is a closed subset of W k,2(Ω) (for the strong topology), it
follows that Hk

0,K(Ω) is itself a Hilbert space endowed with the same norm and scalar product
of W k,2(Ω). We can therefore extract a subsequence that converges for the weak topology in
Hk

0,K(Ω) to some limit function h that must still belong to Hk
0,K(Ω). This says in particular

that 〈un, ϕ〉 → 〈h, ϕ〉 for all ϕ ∈ Hk
0,K(Ω). By uniqueness of the limit in the weak topology of

Hk
0,K(Ω), we must have h = u, concluding that finally u ∈ Hk

0,K(Ω) as desired.

• Proof of (4). This item is a direct consequence of (1). �

As seen in the proof of Lemma A.1, if Ω is a Lipschitz domain and E is an extension operator
for W 1,2(Ω), then it holds true that for every Sobolev function u ∈W 1,2(Ω),

(A.3) lim
r→0

( 
Br(x0)∩Ω

|u| dx

)
= lim

r→0

( 
Br(x0)

|u| dx

)
for (1, 2)− q.e. x0 ∈ ∂Ω.

In the paper we would need a more uniform result of the same kind, but where u is not fixed but
could also depend on r and converges strongly in W 1,2. Since we could not find in the literature
a short proof for this property, we write in this appendix a complete argument. For that purpose
we use an explicit extension operator, i.e. a linear mapping E : W 1,2(Ω)→ W 1,2(R2) such that
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E(u) = u in Ω and

‖E(u)‖W 1,2(R2) ≤ C‖u‖W 1,2(Ω).(A.4)

There are several ways of constructing such an operator. Here we follow the approach in [13]
as follows. If ∂Ω locally coincides around x0 ∈ ∂Ω with the graph of the Lipschitz mapping
γ : RN−1 → R, and if u is compactly supported in a cylinder of size h > 0 centered at x0, one
can use the direct formula

E(u)(x′, xN ) =

 u(x′, xN ) if xN > γ(x′)

u(x′, 2γ(x′)− xN ) if xN < γ(x′).
(A.5)

For the general case one can cover the boundary ∂Ω with a finite union of cylinders of same size
h and use a partition of unity, leading to an extension operator of the form

E(u) =
∑
i

θiEi(u),(A.6)

where Ei is of the form (A.5) in a suitable local coordinate system. We refer to Theorem 1 in
section 4.4. of [13] for further detail, where in particular the estimate (A.4) is established.

Now we focus on the following proposition, and its immediate corollary which is used only in
the proof of Lemma 2.11.

Proposition A.2. Let Ω be a bounded Lipschitz domain and E be the extension operator defined
in (A.6). Let r → 0 and (ur) be a sequence in W 1,2(Ω) such that ur → u ∈ W 1,2(Ω). Let

x0 ∈ ∂Ω. Then lim
r→0

 
B(x,r)

E(ur)(y) dy = 0 implies lim
r→0

 
B(x,r)∩Ω

ur(y) dy = 0.

Remark A.3. As an immediate corollary, and under the same assumptions of Proposition A.2,
we have

lim
r→0

 
B(x,r)

|E(ur)(y)| dy = 0 =⇒ lim
r→0

 
B(x,r)∩Ω

|ur(y)| dy = 0.

Compare with (A.3).

Proof. We first assume that ∂Ω ∩B(x0, r0) coincides with a portion of the graph of a Lipschitz
function γ : RN → R, that Ω∩B(x0, r) = B(x0, r)∩ {(x′, xN ) : xN > γ(x′)} for all r < r0 and
that E(u) = u(x′, 2γ(x′)− xN ) in {xN < γ(x′)}. Then we define, for r < r0,

B+
r = B(x0, r) ∩ {xN > γ(x′)} and B−r = B(x0, r) ∩ {xN < γ(x′)},

and write ˆ
Br(x0)

E(u) dx =

ˆ
B+
r

u dx+

ˆ
B−r

u(x′, 2γ(x′)− xN ) dx′dxN .

On the other hand by a simple change of variable wich is linear in the xN variable, together
with Fubini’s Theorem, we see thatˆ

B−r

|u(x′, 2γ(x′)− xN )| dx′dxN =

ˆ
Ar

|u(x)| dx,

where Ar is the “reflected” domain Φ(B−r ), with Φ(x′, xN ) := (x′, 2γ(x′) − xN ). Since γ is
Lipschitz with a constant depending only on Ω, we infer that there exists Λ, λ > 0 such that
B+
λr ⊂ Ar ⊂ B

+
Λr for all r ≤ r0. We can therefore estimate the difference between the average in
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Ar and the one in B+
R in the following way, denoting by R = Λr, (the constant C below depends

only on Ω and can change from line to line)∣∣∣∣∣
 
Ar

u dx−
 
B+
R

u dx

∣∣∣∣∣ =

∣∣∣∣∣
 
Ar

(
u−

 
B+
R

u

)
dx

∣∣∣∣∣ ≤
 
Ar

∣∣∣∣∣u−
 
B+
R

u

∣∣∣∣∣ dx
≤ Cr−2

ˆ
B+
R

∣∣∣∣∣u−
 
B+
R

u

∣∣∣∣∣ dx ≤ Cr−1

ˆ
B+
R

(
u−

 
B+
R

u

)2

dx

 1
2

≤ C

(ˆ
B+
R

|∇u|2 dx

) 1
2

.(A.7)

For the last inequality we have used the fact that the domains B+
R are uniformly Lipschitz as

r is going to 0, in order to apply a Poincaré inequality with uniform constant in all of the B+
R .

Now we apply the above to ur ∈W 1,2(Ω), instead of u and we know thatˆ
B+
R

|∇ur|2 dx
R→0−−−→ 0,

because ur → u strongly in W 1,2(Ω), and this proves that

∣∣∣∣∣
 
Ar

ur dx−
 
B+
R

ur dx

∣∣∣∣∣ r→0−−−→ 0.(A.8)

Now assume that
 
B(x0,r)

E(ur) dx
r→0−−−→ 0. Notice that |Ar| = |B−r | because the jacobian of

Φ is equal to 1. Then

2

 
B+
r

ur dx =
1

|B+
r |

(ˆ
B+
r

ur dx+

ˆ
Ar

ur dx+

ˆ
B+
r

ur dx−
ˆ
Ar

ur dx

)
=
|B(x0, r)|
|B+

r |

 
B(x0,r)

E(ur) dx+
|B−r |
|B+

r |
(

 
B+
r

ur dx−
 
Ar

ur dx) + (1− |B
−
r |

|B+
r |

)

 
B+
r

ur dx

So finally

(1 +
|B−r |
|B+

r |
)

 
B+
r

ur dx =
|B(x0, r)|
|B+

r |

 
B(x0,r)

E(ur) dx+
|B−r |
|B+

r |
(

 
B+
r

ur dx−
 
Ar

ur dx)
r→0−−−→ 0

because of (A.8). This proves that
ffl
B(x0,r)∩Ω ur dx =

ffl
B+
r
ur dx → 0 and finishes the proof of

the proposition in the particular case when E(u) coincides with the formula u(x′, 2γ(x′) − xN )

under the graph of the Lipschtiz function γ.

In the general case ∂Ω is covered by a finite number of Lipschitz graphs γi and E(u) is of the
form

∑
i θiEi(u) where θi ∈ C∞c (R2) is a partition of unity and Ei is the extension of u relatively

to the graph γi. Applying the above argument to each of the Ei(u) we conclude as follows.
We assume that

lim
r→0

( 
Br(x0)

E(ur) dx

)
= 0,

which in other words says

lim
r→0

( 
Br(x0)

∑
i

θiEi(ur) dx

)
= 0,
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or again after change of variable,

lim
r→0

 
B+
r

ur dx+
∑
i

( 
Air

θi ◦ Φ−1
i ur dx

)
= 0,

where Air is the reflexion of B−r relatively to the graph of γi, i.e. Air = Φi(B
−
r ) with Φi(x

′, xN ) :=

(x′, 2γi(x
′) − xN ) (here the coordinate system (x′, xN ) should be taken relatively to the one

associated with γi). Now we denote by I the set of indices i for which θi is not identically zero
around x0, and we let N be the cardinal of I (which should actually be at most two).

Now by construction Φi(x0) = x0 for all i and Φi is Lipschitz with constant depending only
on Ω. Since θi is a smooth function we deduce that

|θi ◦ Φ−1
i (x)− θi(x0)| ≤ C|x− x0|.(A.9)

Let Λ > 0 be such that Air ⊂ B+
Λr for all small r. Then since ur ∈ L2(Ω) we can use (A.9) to

obtain ( 
Air

|θi ◦ Φ−1
i (x)− θi(x0)||ur| dx

)
≤ C

(ˆ
B(x0,Λr)

|ur|2 dx

) 1
2
r→0−−−→ 0,(A.10)

because ur converges in L2 to u. Next, following an argument similar to the one of (A.7),
denoting by R := Λr, using (A.10) and the fact that

∑
i θi(x0) = 1 we obtain some function

e(r)→ 0 for which

∣∣∣∣∣
 
B−r

E(ur) dx−
 
B+
R

ur dx

∣∣∣∣∣ =

∣∣∣∣∣
(∑
i∈I

 
Air

θi ◦ Φ−1
i ur dx

)
−
 
B+
R

ur dx

∣∣∣∣∣
≤

∣∣∣∣∣∑
i

θi(x0)

 
Air

(
ur −

 
B+
R

ur

)
dx

∣∣∣∣∣+ e(r)

≤ Cr−2

ˆ
B+
R

∣∣∣∣∣ur −
 
B+
R

ur

∣∣∣∣∣ dx+ e(r)

≤ C

(ˆ
B+
R

|∇ur|2 dx

) 1
2

+ e(r)

r→0−−−→ 0.(A.11)

Then as before we can write

(1 +
|B−r |
|B+

r |
)

 
B+
r

ur dx =
|B(x0, r)|
|B+

r |

 
B(x0,r)

E(ur) dx+
|B−r |
|B+

r |
(

 
B+
r

ur dx−
 
B−r

E(ur) dx)
r→0−−−→ 0

which finishes the proof in the general case, and thus the proposition is now proved. �

We end this section with variants of the Poincaré inequality related to the traces of functions
on positive capacity subsets. The first result can be compared to [1, Corollary 8.2.2].

Corollary A.4. Let Ω ⊂ R2 be a bounded Lipschitz domain and let the closed set K ⊂ Ω be
such that Cap1,2(K) > 0. Then there exists a constant C > 0 such that for all u ∈ H1

0,K(Ω),

‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω),

where Hk
0,K(Ω) is the space defined in Lemma A.1.
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Proof. We prove the result by contradiction. Assume that there exists a sequence uk ∈ H1
0,K(Ω)

such that

‖uk‖L2(Ω) ≥ k‖∇uk‖L2(Ω).

By renormalizing the sequence, we can assume that ‖∇uk‖L2(Ω) → 0, as k → ∞, while
‖uk‖L2(Ω) = 1. It follows that, passing to a subsequence, uk converges strongly to a constant
a0 6= 0. But it immediately follows from Lemma A.1 that a0 ≡ 0 on K quasi-everywhere, which
contradicts a0 6= 0 as a constant. �

The second result concerns uniform constants for the Poincaé inequality on thin domains Ωh,
where the trace of the functions vanish on subsets of the form Kh × {0} ⊂ Ω × {0}. It should
be compared with [19, Theorem D.1].

Theorem A.5. Let Ω be a bounded Lipschitz domain, Ωh := Ω× (0, 1), and let

Ah
K := {u ∈W 1,2(Ωh); u|Kh×{0} = 0}.

Then there exists h0 > 0 such that for a constant C > 0 uniform in h < h0 we have

∀u ∈ Ah
K ‖u‖L2(Ωh) ≤ C‖∇u‖L2(Ωh).

We will provide a sketch of the proof, based on [19, Theorem D.1], adapted to our situation.
We will follow the steps leading to Lemma 2.6, replacing the rigidity estimate in Corollary 2.3
by the Poincaré inequality applied to the Lipschitz domains:

‖u− ax′‖L2(Qj(x′,h)) ≤ Ch2‖∇u‖L2(Qj(x′,h))

with ax′ = 0 whenever Kch ∩ Φ−1
j (Sξ′,h) 6= ∅. We can then conclude with the following lemma

parallel to Lemma 2.7:

Lemma A.6. Let Ω, Ωh, K be as defined above. Then there exist constants h0 > 0, C > 0,
0 < c̄ < 1, depending only on Ω and K, such that given h < h0, u ∈ Ah

K , there exists a scalar
function a : Ω→ R which vanishes on Kc̄h such that the estimates

(A.12) ‖u− a‖2L2(Ωh) ≤ Ch
2‖∇u‖2L2(Ωh), ‖∇a‖2L2(Ω) ≤

C

h
‖∇u‖2L2(Ωh),

and

(A.13) ‖a‖2L∞(Ω) ≤
C

h
‖∇u‖2L2(Ωh),

hold true.

Proof of Theorem A.5. Let u ∈ Ah
K and let a ∈W 1,2(Ω) be chosen according to Lemma A.6.

Note that a ∈ H1
0,K(Ω), and hence by Corollary A.4 we obtain for a uniform constant C

‖a‖2L2(Ω) ≤ C‖∇a‖
2
L2(Ω),

which yields, through the second inequality in (A.12)

‖a‖2L2(Ωh) = h‖a‖2L2(Ω) ≤ Ch‖∇a‖
2
L2(Ω) ≤ C‖∇u‖

2
L2(Ωh).

The conclusion follows from the first inequality in (A.12).
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