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ABSTRACT Communication security of an Internet-of-Things (IoT) product depends on the variety of
protocols employed throughout its lifetime. The underlying low-power radio communication technologies
impose constraints on maximum transmission units and data rates. Surpassing maximum transmission unit
thresholds has an important effect on the efficiency of the solution: transmitting multiple fragments over low-
power IoT radio technologies is often prohibitively expensive. Furthermore, IoT communication paradigms
such as one-to-many require novel solutions to support the applications executing on constrained devices.
Over the last decade, the Internet Engineering Task Force (IETF) has been working through its various
Working Groups on defining lightweight protocols for Internet-of-Things use cases. ‘‘Lightweight’’ refers to
the minimal processing overhead, memory footprint and number of bytes in the air, compared to the protocol
counterparts used for non-constrained devices in the Internet. This article overviews the standardization
efforts in the IETF on lightweight communication security protocols. It introduces EDHOC, a key exchange
protocol, OSCORE and Group OSCORE, application data protection protocols adapted for securing IoT
applications. The article additionally highlights the design considerations taken into account during the
design of these protocols, an aspect not present in the standards documents. Finally, we present an evaluation
of these protocols in terms of the message sizes and compare with the non-constrained counterpart, the
(D)TLS protocol. We demonstrate that the novel key exchange protocol EDHOC achieves ×5 reduction
over DTLS 1.3 authenticated with pre-shared keys in terms of total number of bytes transmitted over the air,
while keeping the benefits of authentication with asymmetric credentials.

INDEX TERMS IETF, Standardization, Security, Internet of Things, CoAP, EDHOC, OSCORE.

I. INTRODUCTION

Internet of Things (IoT) wireless networking technologies
enable battery-operated products with a lifetime spanning
multiple years. IoT radio standards such as LoRaWAN [1]
and 6TiSCH [2] attain low-power operations as follows.
First, they limit their maximum transmission unit to be 1-
2 orders of magnitude smaller than that in non-constrained
networks. Second, they prioritize ‘‘upstream’’ traffic from
the IoT device to the gateway, over delay-prone downstream
traffic. Third, they allow for long sleep periods. There are also
cellular low-power technologies, such as NB-IoT [3], that are
designed for reducing power consumption by limiting peak
data rates, bandwidth and output power, and through extended
discontinuous reception to allow longer sleep periods.

These low-power networks are formed of constrained de-
vices. At the heart of a constrained device is a low-power
microcontroller running at 10’s of MHz, with 10’s of kB of
random-accessmemory and 100’s of kB of codememory. The
microcontrollers often have some sort of hardware accelera-
tion available for cryptographic algorithms, including asym-
metric operations. Implementing cryptographic algorithms
in software is possible, although avoided as it is slow and
reduces the available code space for the actual application.
Pulling in generic software processing libraries may similarly
be prohibitively expensive from a memory point of view.

To implement the Internet Protocol (IP) and seamlessly
integrate the constrained devices into the Internet, the net-
working packets necessarily include some overhead from the
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IP protocol suite. Standardized protocols developed for con-
strained radio technologies need to be efficient by carefully
encoding data into bytes to minimize the number of bytes
in the air. Data compression techniques represent a different
method of reducing the number of bytes in the air. However,
without any context about the data to compress, they are less
efficient than the native encoding.

Over the last decade, the Internet Engineering Task Force
(IETF) has been working through its variousWorking Groups
on defining lightweight protocols for constrained networks
and devices. ‘‘Lightweight’’ refers to the minimal process-
ing overhead, memory footprint and number of bytes in the
air, compared to the protocol counterparts used for non-
constrained devices in the Internet. Protocols standardized
within the IETF are used as building blocks by industry
alliances to build their protocol stacks for specific appli-
cation domains. One example is the OMA SpecWorks De-
vice Management Working Group, which has specified the
Lightweight Machine to Machine (LwM2M) [4] device man-
agement stack.

The overall communication security of an IoT networking
stack relies on different protocols used throughout the product
lifetime. This includes key exchange accompanied by proper
key storage and performed with different application entities
possibly during device onboarding, as well as communication
security and message protection. Each of these protocols
relies on authentication credentials such as public certificates
or shared symmetric keys, to establish trust between entities
and to achieve the desired security properties.

This article presents standardization activities at the IETF
on the definition of such a lightweight security protocol stack.
The contribution of this article is a twofold:

• It describes in a pedagogic and comprehensive manner
the new protocol and data format standards from the
IETF targeting a lightweight communication security
stack.

• It presents a comparative analysis of the message over-
head for key establishment and application data protec-
tion protocols.

The rest of this article is organized as follows. In Section II,
we first discuss the building blocks that enable a secure stack
for constrained devices: the Constrained Application Proto-
col (CoAP), a web transfer protocol similar to HTTP; the
Concise Binary Object Representation (CBOR) data format
and the related object security format CBOR Object Sign-
ing and Encryption (COSE); and C509 certificates, an IoT-
equivalent of the X.509 standard. Section III then discusses
the protocols for secure one-to-one communication: how the
Ephemeral Diffie-Hellman over COSE (EDHOC) protocol
enables authenticated key exchange for the most constrained
IoT use cases; and the end-to-end message protection through
the Object Security for Constrained RESTful Environments
(OSCORE) protocol. Section IV introduces the protocols
for secure group communication and discusses the Group
OSCORE protocol. In Section V, we present an evaluation
of the message sizes of the protocols and compare with the

(Datagram) Transport Layer Security protocol typically used
in non-constrained environments. In Section VI, we present
the related works. In Section VII, we provide a high-level,
qualitative overview of the formats and protocols presented
in the paper, with respect to corresponding protocols and for-
mats used in non-constrained environments and applications.
Finally, in Section VIII, we draw our conclusions.
To illustrate the protocols in action, we outline an industrial

scenario and give examples of how the presented security
components can be used, as they are introduced throughout
the article.

II. BUILDING BLOCKS
The main building blocks for constrained low-power wireless
systems are: CoAP, CBOR, COSE and C509. Both one-to-
one and one-to-many secure group communication, detailed
below, build on those.

A. COAP: CONSTRAINED APPLICATION PROTOCOL
The Constrained Application Protocol (CoAP) standard [5]
is a web transfer protocol adapted for constrained networking
technologies and similar to HTTP.
CoAP especially supports IoT communication paradigms

such as group communication and asynchronicity. The proto-
col is compact: a message starts with a fixed 4-byte header,
possibly extended by options before the application payload.
CoAP operates on a request-response model with optional re-
sponse asyncronicity through theObserve extension. Group
communication is supported through an extension to the core
protocol, and relies on one-to-many requests (e.g., over IP
multicast) and unicast responses. One core feature of CoAP
is response caching at intermediaries. This allows a client to
retrieve an IoT device’s data even when that device has its
radio off.

B. CBOR: CONCISE BINARY OBJECT REPRESENTATION
The Concise Binary Object Representation (CBOR) standard
[6] is a data format designed for encoding compactness, small
code size and extensibility. It is based on the JavaScript Object
Notation (JSON) data model [7], but uses binary encoding.
CBOR defines several ‘‘major types’’ such as unsigned and
negative integers, byte and text strings, arrays, and dictionar-
ies. CBOR is a basic building block of many IoT protocols
standardized in the IETF, including the security protocols
discussed in this article.

C. COSE: CBOR OBJECT SIGNING AND ENCRYPTION
The CBOR Object Signing and Encryption (COSE) standard
[8] [9] [10] describes how to create and process represen-
tations for cryptographic keys, ciphertexts, signatures, mes-
sage authentication codes, and key exchange, using CBOR
for serialization. COSE builds on JSON Object Signing and
Encryption, but because it uses CBOR, COSE objects are
smaller. COSE is designed for allowing constrained devices
to verify protected messages efficiently.
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D. C509 CERTIFICATES
CBOR-encoded X.509 (C509) Certificates is an ongoing
IETF work [11] to standardize a CBOR encoding of X.509
certificates suitable especially for the IoT. The CBOR en-
coding already supports a large subset of X.509 certificates.
The C509 encoding can, in many cases, reduce the size of
certificates by over 50%, and can be used independently of
certificate compression, which, when combined, may provide
additional reduction. Two different types of C509 certificates
are specified, and differ only in the content of the signature
field: 1) for CBOR re-encoded X.509 certificates, the sig-
nature is made over the original DER- and ASN.1-encoded
X.509 certificate.; 2) for natively signed C509 certificates,
the CBOR encoding itself is signed. The latter avoids the
ASN.1 processing and the decoding process, both of which
are complex for constrained devices. While natively signed
C509 significantly simplifies the processing at constrained
devices, it loses backwards compatibility with existing X.509
certificates until CBOR encoding is deployed in CAs, for
which the CBOR re-encoded X.509 provides a migration
path.

III. SECURE ONE-TO-ONE COMMUNICATION
We distinguish ‘‘one-to-one communication’’, where a device
exchanges information with another device, from ‘‘group
communication’’, where one device communicates with a
group of other devices. The security solutions described in
this article are designed to apply to both, by providing con-
fidentiality, integrity, freshness, and other security properties
detailed further. We start by describing one-to-one communi-
cation using EDHOC for key establishment and OSCORE for
message protection.

A. EXAMPLE SCENARIO
Without loss of generality, we refer to an industrial scenario
to illustrate what the needs are and what the standards offer.

We consider the scenario of a factory floor in an industrial
plastics manufacturer, where 20 machines on the floor pro-
duce plastic bottles. Each machine is equipped with a hopper
in which plastic granulate gets poured every now and then.
The machine melts these granulates, injects the molten plastic
into a mold, and produces a plastic bottle which falls in a
container every 30 s.

Previously, workers had to manually monitor the hopper
state, pour granulates when its level was low, and monitor the
container to swap it when full of bottles. Failing to keep the
hopper full caused themachine to ‘‘run empty’’, and restarting
it took a skilled technician 1-2 h of work, during which the
machine was down. Across three shifts, this happened 1-
2 times per month.

Today, this is automated through each machine equipped
with three sensors and two actuators. A level sensor measures
the fill level of the hopper, and granulates can be poured
into the hopper from a pipe using a solenoid valve. Then,
a weight sensor monitors the fill level of the container of
bottles, and an industrial blinking light can be switched on so

Initiator (I) Responder (R)

SuitesI, G
X, EAD1

GY, Enc (ID_CREDR, MAC2, EAD2)

AEAD (ID_CREDI, MAC3, EAD3)

message_1

message_2

 message_3

← R 
calculates GXY

I calculates 
GXY →

I authenticates 
R →

← R 
authenticates I

Diffie-Hellman 
key exchange

Mutual 
authentication

Identity 
protection

FIGURE 1. Selected fields of an EDHOC exchange in its static
Diffie-Hellman authentication mode. The optional message_4 is omitted.
Enc denotes binary additive stream cipher encryption. AEAD stands for
Authenticated Encryption with Additional Data.

that a worker can swap the container. On top of this, a wireless
transceiver is installed on the extension port of the machine
and publishes internal values (number of bottles produced,
internal temperature, state of the motors). Each of these five
devices is battery powered and communicates wirelessly to
avoid complex cabling. The wireless medium exposes the
operations to a variety of threats including denial-of-service,
decreased production quality or quantity, safety of employees,
ransomware and industrial espionage, from adversary agents
within coverage.
With 20 machines on the factory floor, there are 100 de-

vices in total. A wireless network interconnects all these
devices with the gateway, itself connected to control software
running on a server in the company’s cloud. The control
software receives and logs all sensor values, and triggers
the opening of the valves and the switching of the lights,
when needed. Given its criticality in the production system,
communication between the wireless devices and the control
software must be secure. Unfortunately, the Internet connec-
tivity between the gateway on the factory floor and the control
software may go down for short periods of time. Therefore,
the gateway implements a simple proxy function by caching
packets whenever the Internet connection is down.
The following sections describe the different protocols

used for securely integrating devices in the factory network,
and to be able to establish and maintain secure interactions
among those. All protocols build on the building blocks dis-
cussed above.

B. EDHOC: ESTABLISHMENT OF KEYING MATERIAL
The Ephemeral Diffie-Hellman Over COSE (EDHOC) [12]
is the protocol which establishes a shared symmetric key
between two devices. EDHOC is based on an authenticated
Diffie-Hellman key exchange. It is designed to be lightweight
with low overhead, and suitable to resource-constrained envi-
ronments.
To achieve mutual authentication, EDHOC uses peer au-
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thentication credentials, e.g., public-key certificates. To re-
duce the size of EDHOC messages, the authentication cre-
dentials can also be transported by reference, instead of by
value. If an authentication credential is transported by refer-
ence, its value is typically distributed out-of-band and then
retrieved from the local storage using the reference. Through
this and other design decisions, EDHOC achieves a small
message size which compares favorably to alternatives such
as (D)TLS [12].

The overall security design of the protocol is based on
the SIGMA-I MAC-then-SIGN variant [13] that provides:
forward secrecy, the guarantee that a compromise of long-
term authentication credentials or of a session key does not
compromise past session keys; protection of identities; and
peer mutual authentication. EDHOC uses COSE for cryp-
tographic operations and CBOR for data encoding, and is
typically transported over CoAP. The EDHOC design also
provides negotiation and support for a range of cipher suites
and authentication methods, as based on either signatures or
Message Authentication Codes (MACs) calculated from a
shared Diffie-Hellman secret. EDHOC has undergone formal
verification of its security properties, which was taken as
input in the protocol design [14].

The execution of EDHOC takes place between two peers:
one has the role of Initiator, the other the role of Respon-
der (see Fig. 1). Based on the exchanged ephemeral Diffie-
Hellman keys GX and GY , the two peers derive the shared
secret GXY . By additionally exchanging authentication cre-
dentials (ID_CREDI and ID_CREDR) and MACs (MAC2 and
MAC3), EDHOC adds mutual authentication to the basic
Diffie-Hellman exchange. By encrypting the exchanged iden-
tities with temporary keys, EDHOC protects the Responder
identity from passive attacks, and the Initiator identity from
active attacks.

The authorization data fields (EAD1, EAD2 and EAD3) al-
low external security applications to be integrated in EDHOC
without increasing the number of round trips, and enabling
additional use of parameters transported in EDHOC. One
example is to involve a trusted third party performing on-
line authorization of the interaction between message_1 and
message_2, through a voucher requested in EAD_1 and re-
trieved in EAD_2. This enables the Initiator to simultaneously
authenticate and authorize the Responder after the second
message. As another example, by including a certificate en-
rolment request in EAD_3, the Responder is able to authenti-
cate and authorize the Initiator after the third message, and
to involve a Certification Authority to request the issue of
a C509 operational certificate for the Initiator to use in this
particular deployment. The C509 certificate may be returned
to the Initiator in message_4 (in the message field EAD_4), or
alternatively only a reference is sent back, and the certificate
is cached in a repository for non-constrained devices to access
without loading the constrained links.

Both examples above are applicable in the industrial sce-
nario to optimize the secure on-boarding of new units in the
factory, by performing mutual authentication and authoriza-

tion, and issuing dedicated device certificates from a factory
local Certification Authority in two round trips with minimal
overhead.
Design Considerations. One of the main protocol design

requirements was low implementation complexity and con-
sequently low code footprint. Meeting this requirement while
ensuring that the protocol is usable in a wide range of use
cases and deployment scenarios is not trivial. For example,
one of the initial goals of the protocol was to support au-
thentication based on symmetric keys, apart from asymmetric
authentication credentials. To meet the requirement of low
complexity, a design decision was made to rule out authen-
tication based on symmetric keys and focus exclusively on
asymmetric credentials.
Another example was the selection of the mandatory to

implement cipher suites, which is important from an interop-
erability point of view, as the common denominator among
different applications. An EDHOC cipher suite consists of
several algorithms, for authenticated encryption, hashing, key
exchange curve and signing. There was no controversy on
mandating cipher suites based on Advanced Encryption Stan-
dard (AES), as it is a symmetric primitive that is widely
implemented in hardware even for constrained devices. Simi-
larly, the SHA-256 algorithmwas considered the go-to choice
for hashing, due to the many available hardware implemen-
tations for constrained devices. The community was split
in its preferred choice to mandate an elliptic curve and the
corresponding signature algorithm: the question was whether
to support the NIST P-256 curve and Elliptic Curve Digital
Signature Algorithm (ECDSA), or instead Curve25519 and
the Edwards-curve Digital Signature Algorithm (EdDSA).
The fact that the EdDSA algorithm is specified with a dif-
ferent hash algorithm than SHA-256 meant that a device
implementing EDHOC would have to support two different
hash algorithms. This was deemed unacceptable from the
code footprint point of view. A decision was made to mandate
the NIST P-256 curve and ECDSA, also due to the good
support available in constrained hardware.

C. OSCORE
The protocol Object Security for Constrained RESTful Envi-
ronments (OSCORE) [15] allows protection of CoAP mes-
sages at the application layer, while enabling those to be
forwarded by a proxy (the gateway in our illustrative sce-
nario). OSCORE ensures confidentiality, replay protection,
authentication, integrity and ordering of protected messages.
In particular, it provides end-to-end security from message
producer to message consumer, also in the presence of inter-
mediaries such as proxies.
OSCORE is especially suited for resource-constrained en-

vironments, and its design prioritizes small message size and
small code footprint, in order to ensure operation in con-
strained networks. To this end, it relies on CBOR for data
encoding and on COSE for security-related services such as
encryption. In addition to CoAP, the OSCORE protocol is
applicable also to HTTP messages and supports proxy oper-
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Version Type Token 
Length Code Message ID Token Class U

Options PayloadClass E
Options

AEAD

PlaintextAdditional Authentication Data 
(AAD)

Version Type Token 
Length

Dummy 
Code Message ID Token Class U

Options Ciphertext

OSCORE Option

CoAP message before transformation

OSCORE-protected message

FIGURE 2. The OSCORE transformation and protection of CoAP messages. AEAD stands for ‘‘Authenticated Encryption with Additional Data’’.

ations for translating between CoAP and HTTP. The security
of OSCORE is based on authenticated symmetric encryption.

To communicate using OSCORE, two peers need to first
establish an OSCORE Security Context with one another.
This can be pre-provisioned to the two peers, or derived by
using EDHOC, in which case the two peers start from asym-
metric key material to establish a shared secret for keying
OSCORE.

The OSCORE Security Context defines a number of pa-
rameters needed for communication with OSCORE. These
include: OSCORE identifiers for the two peers, as concep-
tually distinct from their EDHOC identifiers; settings on
the encryption algorithm to use; a counter keeping track of
message sequence numbers; a replay window; and crypto-
graphic key information. OSCORE relies on a Master Secret
and a Master Salt to generate individual symmetric keys for
message protection and unprotection through a key derivation
function. Messages in different directions are processed with
different keys: a Sender Key for outgoing messages, and a
Recipient Key for incoming messages.

OSCORE takes a CoAP message as input and produces
a protected CoAP message as output (see Fig. 2). In an
OSCORE-protected CoAP message, the CoAP method, the
payload and most of the CoAP options are encrypted.

When using EDHOC and OSCORE together, their oper-
ation can be optimized (see Fig. 3). In case the EDHOC
Initiator has data to send immediately after EDHOC has com-
pleted, it is possible to use the optimized flow and piggyback
EDHOC message_3 with the first OSCORE request. This
optimization, defined in an ongoing work [16], reduces the
communication overhead by one round trip.

Design Considerations. The design of OSCORE was led

Initiator Responder

EDHOC message_1

EDHOC message_2

EDHOC message_3
+

OSCORE request

OSCORE response

FIGURE 3. The piggybacking of an OSCORE request with EDHOC
message_3 to reduce communication overhead is specified in an ongoing
work [16] of the IETF CoRE Working Group.

by the motivation to enable end-to-end security in the pres-
ence of proxies. This means that the OSCORE security as-
sociation between two peers does not terminate at a proxy,
like in the case of DTLS, but is instead truly end-to-end. A
consequence of this design decision is that the proxy has to
be able to read the elements of the CoAP message necessary
to be able to forward it to the intended recipient. As we
show in Fig. 2, an OSCORE-protected message is a valid
CoAPmessage including the OSCORE option, which a proxy
can seamlessly forward. The OSCORE-protected message,
however, hides as much information as possible from the
proxy: it encrypts the CoAP code and leaves in clear only the
options necessary for the proxy to see, e.g., those indicating
the host part of the resource identifier at the server.
In its initial design, OSCORE was not based on CBOR
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and COSE, but defined its own encoding and cryptographic
processing. While this initial encoding was very efficient, it
required custom processing logic for an OSCORE implemen-
tation. Later on in the standardization process, as the CBOR
and COSE specifications became stable, it was deemed ben-
eficial to rely on them for reducing the overall code footprint
of the security stack for constrained devices.

D. RENEWAL OF KEYING MATERIAL
In our example scenario, EDHOC establishes keying material
from the certificates that are pre-installed on the devices. To
ensure secure communication over years, it is important to be
able to renew that keying material. We want the protocols to
allow for this renewal without requiring a worker to walk to
each device and connect specialized equipment using a cable.

There are several reasons why renewing keying material is
important, such as the exhaustion of sequence numbers used
for the construction of nonces, or the attainment of usage
limits for the keying material. For AEAD algorithms, specific
limits to be respected exist on the number of times that a
key has been used to encrypt data or for an unsuccessful
decryption (as potentially due to message forgery) [17]. Not
following these limits enables an attacker to break the security
properties of the used algorithm. The limits depend on the
specific algorithm and its properties. The typical limit values
for the algorithms used in OSCORE are 220 message encryp-
tions and 220 failed decryptions, using a specific key [17]. If
we consider each of our sensor devices generating one packet
every minute (a typical value), it takes approximately 2 years
to reach this limit. That is, during the typical lifetime of an
IoT device of around 10 years, the device needs to be rekeyed
several times.

There are several ways of rekeying, such as by using the
EDHOC KeyUpdate function, rerunning the full EDHOC
handshake or rekeying at the application layer, e.g., using the
KUDOS protocol defined in an ongoing work [18].

IV. SECURE GROUP COMMUNICATION
The protocols described above allow for secure one-to-
one communication, including establishing the keying mate-
rial, securely communicating through proxies, and rekeying.
Some use cases require efficient secure group communica-
tion, where one device communicates with many devices
at the same time, i.e., the same information is intended for
multiple recipients.While this could be achieved through one-
to-one communication with each device of the group, this
adds significant overhead in terms of network bandwidth and
discovery. We hence focus on ‘‘true’’ group communication,
as relying on the ‘‘one-to-many’’ paradigm (e.g., over IP
multicast), where the network natively supports this type of
communication.

A. EXAMPLE SCENARIO
Let us imagine that our factory has been operating for a
couple of months. We realize that the valve is sometimes
not filling correctly, thus causing the downtime we wanted to

avoid. After we trace the malfunction to a bug in the actuators
firmware, a fix is quickly implemented, and we now need to
update the firmware on the devices in the factory floor. This
is a typical use case for group communication: the central
controller needs to send a new 100-200 kB firmware image
to the devices in the network. Because each packet typically
contains at most 100 B of payload, it takes 100 packets to
carry the image from the controller to a device. It is hence
much more efficient to enable group communication rather
than repeating the same 100 packets, once for each device.
Also, an inspection of the factory safety reveals that, due

to the ambient noise, workers may not hear the general evac-
uation alarm when standing next to a machine. Because they
are equipped with powerful lights, the recommendation is to
switch all the lights at the same time to signal an evacuation.
This means sending a command from the control software as
addressed to all devices. As the latency is in the order of 1 s in
the low-power wireless network, it is important to use group
communication to turn on the lights all at the same time, rather
than relying on one-to-one communication and turn them on
one after the other.
However, how can such group communication occur se-

curely?

B. GROUP OSCORE

Applications relying on one-to-many and many-to-many ex-
changes of CoAP messages can benefit from secure commu-
nication through the security protocol Group OSCORE [19].
Group OSCORE extends the OSCORE protocol and pro-
tects end-to-end CoAP requests addressed to one or multiple
recipients in a group, as well as the corresponding unicast
CoAP responses. Like in OSCORE, the responses are cryp-
tographically bound to the same associated request. Group
OSCORE fulfills similar security requirements as OSCORE
and provides confidentiality, replay protection, source au-
thentication, integrity and ordering of protectedmessages. All
members of an OSCORE group share the same symmetric
keying material used for encryption, hence they are able to
decrypt messages exchanged in the group. Source message
authentication is achieved through signatures when using the
group mode.
Group OSCORE relies on a trusted third party, the Group

Manager, as responsible for managing OSCORE groups.
Each OSCORE group is identified by a Group ID, unique
under the same Group Manager. As a new group member
joins, theGroupManager provides it with the necessary group
keying material, the Group ID, and an available OSCORE
Sender ID.When protecting a message, Group OSCORE also
relies on the authentication credential of the Group Manager,
which prevents attacks based on group cloning and message
injection.
When protecting a message intended for multiple recipi-

ents, its source authentication is ensured by using a digital
signature computed with the sender’s private key. The sender
first encrypts the message with symmetric keying material
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FIGURE 4. Architecture of Group OSCORE.

shared with the whole group, and then signs the result with
its private key.

Fig. 4 overviews how group communication with Group
OSCORE works. Administrative operations for creating and
configuring the OSCORE groups, as well as the authorized
joining and key provisioning operations are defined in detail
in the ongoing works by the IETF ACE Working Group [20]
[21].

Design Considerations.With the intent of building on top
of the EDHOC- and OSCORE-based security stack, Group
OSCORE reuses building blocks and concepts from OS-
CORE. This reduces the code footprint and adds minimal
overhead for an implementation of Group OSCORE comple-
menting an existing OSCORE implementation.

Since the Group OSCORE signature is of non-negligible
length (e.g., 64 bytes), it is transported at the end of the CoAP
message payload, instead of in the message header. This
enables possible fragmentation of the CoAP message at the
application layer, rather than less conveniently at lower trans-
port layers. Furthermore, the signature is in turn encrypted
with separate, per-group keying material in the interest of
privacy, as preventing from tracking a group member across
different OSCORE groups. That is, it is not possible to infer
that a node is a member of two different OSCORE groups,
without also being a member of both of those groups.

V. EVALUATION
We evaluate the protocols discussed in this paper in terms of
message size. We analyze the protocol fields in detail as they
are standardized in the IETF, and deduce the corresponding
message sizes as a function of protocol parameters. The fol-
lowing analysis is based on the results of the work-in-progress
document in the IETF at [22].
We compare the message sizes of the protocols discussed

in this paper with those for the (D)TLS protocol. To have
a fair comparison, we make the following assumptions. We
use the shortest available authentication tag length, i.e., 8
bytes. During cipher suite negotiation, a minimum number
of cipher suites is offered by the protocols. The length of
the key identifiers and of the connection identifiers is 1 byte.
We include only the mandatory extensions of DTLS. We do
not consider the Denial-of-Service mitigation feature of the
protocols.

A. KEY ESTABLISHMENT OVERHEAD
We compare the overhead of the EDHOC protocol and the
DTLS 1.3 Handshake protocol. We consider different creden-
tial types: certificates, raw public keys (RPKs), or pre-shared
symmetric keys (PSKs). Table 1 summarizes the message
sizes of the key establishment protocols for different config-
urations.
With reference to DTLS, compression refers to the encod-

ing of an elliptic curve point in the compressed format, such
that only the X coordinate is carried over the wire. In the
uncompressed format, both X and Y coordinates are carried
over the wire.
DTLS provides a feature to cache the certificate carried

over the wire in one of the previous handhshake runs. In sub-
sequent runs, the certificate does not need to be carried again,
which reduces the message size. We denote this configuration
with ‘‘Cached RPK’’ or ‘‘Cached X.509’’, depending on the
type of credential used.
EDHOC offers different authentication methods, based ei-

ther on digital signatures (denoted as ‘‘Signature’’) or static
Diffie-Hellman keys (denoted as ‘‘Static DH’’). X.509 cer-
tificates in EDHOC can be identified by their hash value,
without the need to carry the whole certificate over the wire
(denoted as ‘‘x5t’’). Raw Public Keys (RPKs) in EDHOC can
be identified using a key identifier (‘‘kid’’).
In terms of raw public keys, if we compare Cached RPK

of DTLS 1.3 with the signature mode of EDHOC using
RPKs, we can see that EDHOC achieves ×4 reduction in
the total number of bytes transported over the wire. In terms
of certificates, DTLS 1.3 needs a total of 869 bytes in case
the certificate is cached (Cached X.509, RPK, ECDHE),
compared to 242 bytes needed by EDHOC. Finally, the most
efficient method of EDHOC using authentication with Static
Diffie-Hellman keys requires only 101 bytes to complete
the handshake. DTLS 1.3 does not support authentication
based on Static Diffie-Hellman keys, hence the comparison
is not straightforward. However, we can note that in this
configuration, EDHOC achieves×5 reduction over DTLS 1.3
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authenticated with symmetric pre-shared keys, while keeping
the benefits of asymmetric credentials.

Flight #1 #2 #3 Total
DTLS 1.3 - RPKs, ECDHE 185 454 255 894
DTLS 1.3 - Compressed RPKs, ECDHE 185 422 223 830
DTLS 1.3 - Cached RPK, PRK, ECDHE 224 402 255 881
DTLS 1.3 - Cached X.509, RPK, ECDHE 218 396 255 869
DTLS 1.3 - PSK, ECDHE 219 226 56 501
DTLS 1.3 - PSK 136 153 56 345
EDHOC - Signature X.509s, x5t, ECDHE 37 115 90 242
EDHOC - Signature RPKs, kid, ECDHE 37 102 77 216
EDHOC - Static DH X.509s, x5t, ECDHE 37 58 33 128
EDHOC - Static DH RPKs, kid, ECDHE 37 45 19 101

TABLE 1. Message sizes in bytes for different key establishment
protocols and configurations. ECDHE stands for Elliptic-Curve
Diffie-Hellman Exchange.

B. OVERHEAD OF APPLICATION DATA PROTECTION
PROTOCOLS
To compare the overheads of different application data pro-
tection protocols, we additionally consider a fixed 6-byte long
plaintext. Also, we consider an 8-byte authentication tag. The
following overheads also comprise the presence of sequence
numbers and connection identifiers of the same length. We
present the overhead in bytes, as a function of the length
of sequence numbers in three representative configurations.
Table 2 summarizes the application data protection overhead.

We can note that, separately for each protocol version, the
(D)TLS overhead is independent of the length of the sequence
number, except in the case of TLS with Generic Header
Compression (GHC). The OSCORE overhead depends on the
CoAP layer, and more specifically, on the number of CoAP
options introduced. We can see that OSCORE requests and
TLS 1.3 have a comparable overhead, while the overhead is
slightly lower in the case of OSCORE responses.

We also present the Group OSCORE overhead in pairwise
mode, a special mode where each member of the group can
efficiently derive a symmetric pairwise key with any other
member of the group. This allows us to have a fair comparison
in terms of the considered features, as both OSCORE and
(D)TLS use symmetric-key cryptography for the protection of
application data. Otherwise, if Group OSCORE is used in its
Groupmode with asymmetric-key cryptography, a digital sig-
nature is appended to each message. This increases the over-
head by at least 64 bytes, while on the other hand enabling
one-to-many, protected messages with source authentication,
which is not possible to achieve with the other considered
protocols.

VI. RELATED WORK
The protocols outlined in this article have triggered multiple
pieces of academic research, including formal analysis and
performance evaluations. In this section, we highlight how
these protocols have been analyzed or covered in various
research settings.

Sequence Number ’05’ ’1005’ ’100005’
DTLS 1.2 29 29 29
DTLS 1.3 11 11 11
DTLS 1.2 (GHC) 16 16 16
DTLS 1.3 (GHC) 12 12 12
TLS 1.2 21 21 21
TLS 1.3 14 14 14
TLS 1.2 (GHC) 17 18 19
TLS 1.3 (GHC) 15 16 17
OSCORE request 13 14 15
OSCORE response 11 11 11
Group OSCORE pairwise request 14 15 16
Group OSCORE pairwise response 11 11 11

TABLE 2. Message overhead (in bytes) for protection of application data.
GHC stands for Generic Header Compression, a feature of the 6LoWPAN
adaptation layer.

Multiple papers have been written on the topic of formal
analysis, employing model solvers or theoreom provers to
test the properties of EDHOC. The output of these works
has been taken as input during the design and work on the
EDHOC protocol within the IETF. A formal analysis of
EDHOC was performed in [23], providing insights about the
protocol’s resilience under various threat models. The study
examined version 12 of the EDHOC specification, and em-
ployed the SAPIC+ protocol platform that leverages tools like
PROVERIF, TAMARIN, and DEEPSEC for a comprehensive
assessment. While confirming EDHOC’s security against ba-
sic threats, this research uncovered vulnerabilities in more
advanced threat scenarios, leading to modifications in version
14 of the specification.
Another formal analysis of EDHOC was presented in the

study [24] that analyzed all the EDHOC methods, by using
an enhanced symbolic Dolev-Yao model. The analysis was
done by employing the Tamarin tool and revealed certain
limitations in achieving injective agreement authentication.
At the same time it confirmed the protocol’s capability for
implicit authentication and forward secrecy. The study also
identified scenarios where a session key might inadvertently
be established with a compromised peer. The output from this
study was provided as input to the standardization process to
consider for the designing of EDHOC.
Another perspective on the formal analysis of EDHOCwas

provided in [25], which involved a formal analysis focus-
ing on integrity, secrecy, and forward secrecy. This research
utilized ProVerif as the chosen tool for formal verification
and analysis. The study provided a better understanding of
EDHOC’s security properties, and it identified violations of
some security properties in the protocol’s reduced round-trip
modes. These findings were reported as input to consider in
the protocol design process.
The study in [26] evaluated EDHOC, performing an in-

vestigation centered around the protocol’s security level. The
researchers identified vulnerabilities that could potentially
undermine the claimed 128-bit security level. Given that ED-
HOCuses 8-byteMACs in itsmost constrained configuration,
their analysis highlighted attacks feasible within 26̂4 opera-
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tions and provided proposals for resolving these issues. Some
of these enhancements did not impose additional communi-
cation costs, therebymaintaining the lightweight nature of the
protocol.

A number of papers have presented additional testing or
performance evaluation of EDHOC implementations.

[27] presents EDHOC-Fuzzer, which is a protocol state
fuzzer designed for EDHOC implementations. This tool uses
model learning to construct a state machine model of an
EDHOC implementation. EDHOC-Fuzzer can perform com-
prehensive model-based testing and a range of useful analysis
steps. The authors present three instances of usage of the
fuzzing tool on existing EDHOC implementations, including
some for constrained devices. This allowed them to discover
a number of unexpected behaviours in the considered imple-
mentations.

The paper [28] presents the development of CompactED-
HOC, a version of EDHOC that externalizes the negotia-
tion of security parameters, using an out-of-band process
relying on a third party entity, in order to reduce message
overhead. This approach is targeted mainly towards resource-
constrained IoT settings. The paper provides practical eval-
uations using real IoT hardware and simulations, showing
reduced message overhead of CompactEDHOC compared to
EDHOC and DTLS.

[29] presents the design of an embedded EDHOC im-
plementation for ARM-based devices using the Contiki-NG
operating system. Additionally, it provides a performance
evaluation exploring runtime, memory overhead, and execu-
tion time on constrained devices. The evaluation also explores
the utilization of hardware acceleration for performing cryp-
tographic operations.

The authors of [30] presented a design of open-source
software libraries implementing OSCORE and EDHOC for
conventional microcontrollers, and for systems employing
a Trusted Execution Environment (TEE) module. The au-
thors perform a performance evaluation on IoT devices, by
measuring RAM and flash memory usage in addition to
computing time and energy usage. The results show that: a
CoAP message can be protected with OSCORE in a matter
of milliseconds; the EDHOC authentication based on static-
static Diffie-Hellman keys displays better performance than
that when signature keys are used; and the use of RPKs as
authentication credentials results in a smaller overhead than
when using certificates.

Different works also study the evaluation of the OSCORE
and Group OSCORE protocols.

In [31], the authors present an open-source implementation
of OSCORE for the Contiki-NG operating system. Addition-
ally, they perform a comprehensive experimental evaluation
of their implementation running on one resource-constrained
hardware platform. The evaluation provides a comparison of
DTLS versus OSCORE in terms of payload size, round trip
time (RTT), and resource utilization on the device. The results
indicate that OSCORE displays better performance compared
to DTLS.

Similarly, [32] presents an implementation of the Group
OSCORE protocol for the Contiki-NG operating system.
The paper provides results from a performance evaluation of
Group OSCORE on two separate resource constrained hard-
ware platforms. The evaluation focuses on device resource
utilization and RTT, comparing CoAP, OSCORE, and Group
OSCORE, also considering the use of hardware acceleration
for cryptographic operations. The results show that using
Group OSCORE on the two tested hardware platforms is fea-
sible, while noting that the signing and verification operations
of protectedmessages are themain responsible for longRTTs.

VII. DISCUSSION
This section discusses formats and protocols that are suitable
for constrained environments and applications, and that com-
pose the lightweight security stack presented in this paper.
Also, it provides a high-level, qualitative comparison with
analogous protocols and formats that are intended for non-
constrained environments and applications.
Table 3 overviews the different formats and protocols at-a-

glance, positioning them in their respective category.
Constrained environments especially benefit from the use

of concise and efficient data formats. A suitable option is
CBOR (see Section II-B), which extends the data model of
JSON as the corresponding, most common option in non-
constrained environments. However, while JSON is text-
based, CBOR provides a binary, hence more efficient data
representation, which in turn results in a considerably smaller
overhead. In particular, CBOR enables extremely small code
size, fairly small message size, and extensibility without the
need for version negotiation. At the same time CBOR sup-
ports all JSON data types for conversion to and from JSON.
The COSE standard (see Section II-C) makes it possible

to efficiently create and process signatures, message authen-
tication codes and encryption, as well as to represent crypto-
graphic keys. To this end, it uses CBOR for achieving concise
and efficient data serialization. COSE has been designed
taking as starting point JOSE as the corresponding, most
common option in non-constrained environments. However,
COSE has re-examined some of the decisions originally taken
for JOSE, and resulted in a single overall message structure,
the use of binary encoding rather than base64 encoding,
different message types for signatures and MACs, separate
signed message headers for the signed content and the signa-
ture, and a partly overlapping set of cryptographic algorithms.
C509 certificates (see Section II-D) enable the use of

compact public-key certificates as authentication credentials
in constrained environments. With respect to X.509 certifi-
cates as the corresponding, most common option in non-
constrained environments, C509 certificates rely on CBOR
instead of the DER and ASN.1 encoding, thus achieving
concise and efficient data serialization. The variant based on
CBOR re-encodedX.509 certificates enables amigration path
at the price of performing the ASN.1 processing and decod-
ing, while natively signed C509 certificates lack backwards
compatibility but do not require re-encoding operations.
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Category Constrained Non-constrained
Data format CBOR [6] JSON [7]
Object security format COSE [8] [9] JOSE [33] [34] [35]
Certificate format C509 [11] X.509 [36]
Web transfer protocol CoAP [5] HTTP [37]
Secure communication One-to-one communication OSCORE [15], DTLS Record layer [38] TLS Record layer [39], IPsec [40]
protocol Group communication Group OSCORE [19] IPsec for IP multicast [41]
Key establishment One-to-one communication EDHOC [12], DTLS Handshake [38] TLS Handshake [39], IKEv2 [42]
protocol Group communication Key provisioning for Group OSCORE with ACE [21] G-IKEv2 [43]

TABLE 3. Overview of formats and protocols. The "Constrained" column includes those used in constrained environments and applications, as largely
composing the lightweight security stack presented in this paper. The "Non-constrained" column includes the corresponding ones that are intended for
non-constrained environments and applications.

CoAP is a lightweight, RESTful web transfer protocol suit-
able for constrained environments (see Section II-A), which
natively supports also group communication, e.g., over IP
multicast. The corresponding web transfer protocol for non-
constrained environments is HTTP, of which CoAP shares
a subset of functionalities. This allows for a straightforward
mapping from CoAP to HTTP messages and vice versa with
the aid of a cross-protocol proxy, thus enabling the seam-
less integration of the IoT with traditional web applications.
There are several reasons why HTTP was deemed inade-
quate for low-power IoT. Being connection-oriented, HTTP
demands non-negligible resources for connection establish-
ment and maintenance, lacking features that are useful for
IoT-based machine-to-machine applications. These include
built-in discovery, multicast support and asynchronous mes-
sage exchanges. Also, HTTP uses messages whose structure
and extensibility through headers is not designed to limit
communication overhead, an important factor in resource-
constrained networks.

As to secure communication, CoAP originally relied on
the DTLS Record layer for protecting messages at the trans-
port layer. In the presence of intermediaries such as proxies,
this approach does not provide end-to-end security between
the origin sender and the origin recipient, since the secure
channel terminates at the proxy. In particular, the proxy has
to establish two separate secure channels (i.e., one with the
sender and onewith the recipient), and it can see ormodify the
plain exchanged data without being noticed. As a more recent
alternative, the OSCORE security protocol (see Section III-C)
can be used to protect CoAP messages end-to-end between
the origin sender and the origin recipient, also in the presence
of (untrusted) intermediaries. In particular, OSCORE uses
CBOR and COSE, and results in a smaller overhead com-
pared toDTLS (see Table 2). UnlikeDTLS running overUDP,
OSCORE is not devoted to a particular transport and works
wherever CoAP works. Corresponding secure communica-
tion protocols for non-constrained environments are: the TLS
Record layer, for protecting messages transported over TCP
at the transport layer; and the IPsec protocol for protecting IP
packets at the IP layer, possibly paired with the enforcement
of packet filtering and rule-based packet processing.

Group communication is not attainable at the transport
layer, and not even DTLS over UDP supports protection of

one-to-many message exchanges. As suitable also to con-
strained environments and applications, group communica-
tion for CoAP can be protected with the Group OSCORE
security protocol (see Section IV-B), which extendsOSCORE
and adapts it for working in group communication setups.
Group OSCORE ensures the cryptographic binding between
a one-to-manyCoAP request and all themultiple, correspond-
ing CoAP responses. A corresponding secure group commu-
nication protocols for non-constrained environments is IPsec
for IP multicast for protecting IP packets at the IP layer, as an
extension of IPsec for group communication setups.
For the establishment of keying material, CoAP originally

relied on the DTLS Handshake, in order to establish a DTLS
session for protecting communications at the transport layer.
More recently, the EDHOC key establishment protocol has
also been specified (see Section III-B). Unlike DTLS running
over UDP, EDHOC is not devoted to a particular transport,
and it always ensures mutual authentication of the two peers
through their public authentication credentials. Also, the es-
tablished cryptographic secret always has forward secrecy,
and it can be used to derive arbitrary keying material (e.g.,
an OSCORE Security Context), while the DTLS Handshake
specifically establishes a DTLS session. EDHOC messages
are considerably smaller in size when compared to the DTLS
Handshake messages (see Table 1), especially due to its use
of CBOR and COSE. The corresponding key establishment
protocols for non-constrained environments are: the TLS
Handhshake, for establishing TLS sessions to protect com-
munications at the transport layer; and the IKEv2 protocol,
for establishing IPSec Secure Associations to protect com-
munications at the IP layer.
When group communication for CoAP is protected with

Group OSCORE, key provisioning can be performed through
a dedicated application profile of the ACE framework for
authentication and authorization in constrained environments
(see Section IV-B). In particular, a trusted Group Manager is
responsible for such a process as paired with access control
enforcement, thus ensuring that only authorized nodes can
become member of an OSCORE group. In non-constrained
environments, one can rely on the G-IKEv2 protocol for
establishing group Security Associations to protect commu-
nications over IP multicast at the IP layer.
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VIII. CONCLUSION

This article has presented the lightweight security protocols
for Internet-of-Things use cases being standardized at the
IETF. We have described different security protocols pro-
viding authentication, authorization, secret key establishment
and secure communication. We have highlighted design con-
siderations taken into account during the design of these pro-
tocols. The protocols build on common building blocks suit-
able for implementation in constrained environments. These
protocols and their building blocks together complete the
suite of efficiently encoded security items: i) the EDHOC
protocol, which enables efficient authentication and Diffie-
Hellman key exchange even for the most constrained radio
technologies; ii) the OSCORE protocol, which efficiently
provides end-to-end protection of CoAPmessages in the pres-
ence of intermediary proxies; and iii) the Group OSCORE
protocol, which provides end-to-end security to group com-
munication for CoAP, e.g., over IP multicast.

The protocols presented in this paper have already been the
subject of different academic studies. The EDHOC protocol
has been thoroughly analyzed for vulnerabilities using both
symbolic and computational model approaches. Performance
of EDHOC is also the subject of different academic studies.
Authors also examined the performance of OSCORE and
GroupOSCORE protocols in different IoT scenarios. This pa-
per additionally presents the evaluation of protocol message
sizes in different configurations. Even when authentication
based on asymmetric keys in EDHOC is compared to authen-
tication based on symmetric pre-shared keys in DTLS 1.3, we
have shown a×5 reduction in the total number of bytes trans-
mitted over the wire. Protocols protecting application data
present a similar overhead than that of the DTLS 1.3 Record
protocol, but additionally enable end-to-end protection of
application data even in the presence of intermediaries and
also in group communication setups. Through the evaluation
of message sizes in different configurations, we have shown
how these protocols are tailored for the constrained Internet-
of-Things environments with limited maximum transmission
units.

We have demonstrated a significant reduction in message
overhead for key establishment. This reduction in message
overhead has three main implications: 1) it often avoids the
need for fragmentation, leading to smaller and simpler code
base; 2) it reduces the energy consumption due to less bytes
to transmit; 3) it reduces the associated transmission delays.
For these reasons, we recommend the usage of the presented
security protocols for Internet-of-Things environments such
as LoRaWAN, 6TiSCH and NB-IoT, where the maximum
transmission units or the available energy budget are limited.

Finally, each use case requires specific security properties.
While the protocols discussed in this article provide funda-
mental security services, future work concerns their extension
for more advanced cases. This includes secure enrollment,
certificate revocation, and remote attestation.
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