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Early response of monocyte‑derived 
macrophages from vaccinated 
and non‑vaccinated goats against in vitro 
infection with Mycobacterium avium subsp. 
paratuberculosis
Noive Arteche‑Villasol1*† , Daniel Gutiérrez‑Expósito1†, Raquel Vallejo1, Jose Espinosa1, Natalia Elguezabal3, 
Iraia Ladero‑Auñon3, Marcos Royo1, María del Carmen Ferreras1, Julio Benavides2 and Valentín Pérez1 

Abstract 

Paratuberculosis is a disease of ruminants caused by Mycobacterium avium subsp. paratuberculosis (Map). Vaccination 
is the most cost‑effective control method. However, despite the fact that macrophages are the main target cells for 
this pathogen, the precise mechanisms behind the response of the macrophage to Map infection and how it is modi‑
fied by vaccination are yet poorly understood. The aim of this study was to investigate the effect of  Silirum® vaccina‑
tion in the early immune response of caprine monocyte‑derived macrophages (CaMØs). Peripheral blood mononu‑
clear cells (PBMCs) were obtained from vaccinated and non‑vaccinated goats, cultured in vitro until differentiation 
to macrophages and infected with Map. After a 24 h incubation, Map viability and DNA were assessed in culture by 
viable colony count and real time quantitative polymerase chain reaction (qPCR). In addition, Map phagocytosis and 
expression of IL‑10, IL‑12, IFN‑γ, TNF‑α, IL‑17A, IL‑1β, iNOS, IL‑6 and MIP‑1β were also evaluated through immunofluo‑
rescence labelling and reverse transcriptase qPCR (RT‑qPCR), respectively. A significant reduction of Map viability was 
observed in both supernatants (P < 0.05) and CaMØs (P < 0.001) from the vaccinated group. Similarly, the percentage 
of infected CaMØs and the number of internalized Map by CaMØs (P < 0.0001) was higher in the vaccinated group. 
Finally, iNOS (P < 0.01) and IL‑10 were significantly up‑regulated in CaMØs from vaccinated goats, whereas only MIP‑1β 
was up‑regulated in non‑vaccinated animals (P < 0.05). These results show that vaccination modifies the immune 
response of CaMØs, suggesting that the phagocytosis and microbiocidal activity of macrophages against Map is 
enhanced after vaccination.
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Introduction
Paratuberculosis, a disease characterized by the develop-
ment of a chronic granulomatous enteritis, is caused by 
the intracellular pathogen Mycobacterium avium sub-
species paratuberculosis (Map) that affects domestic 
ruminants such as cattle, sheep and goats and may cause 
weight loss, reduced milk production and premature 
culling [1, 2]. Animals are usually infected when they are 
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young because of a high degree of environmental con-
tamination [3, 4] but clinical signs, are usually not devel-
oped until adulthood. Nonetheless, most of the infected 
animals remain subclinical for their entire life [5].

Vaccination against paratuberculosis is among the 
most efficient measures for reducing the incidence of 
clinical cases [6]. To date, different types of vaccines have 
been evaluated, from killed whole-cell-based vaccines 
to attenuated vaccines or those more recent, made from 
recombinant protein or DNA [7]. The only heat-killed 
mycobacteria vaccines commercially available (Gudair® 
and  Silirum®) are not able to confer sterile immunity but 
they have shown important benefits in reducing the pro-
ductive losses and environmental contamination [6, 8].

Vaccines are focused on a rapid and effective stimula-
tion of a cell-mediated immune response [8, 9] although 
the specific mechanisms that explain how this modula-
tion occurs are yet unknown [10]. The ability to control 
the disease has been associated with the development 
of a Th1-type immune response mediated by  CD4+ 
lymphocytes and the classical activation (M1) of mac-
rophages [11, 12]. In this context, macrophages are the 
target cells where Map is able to survive and multiply 
[13] and play a crucial role in the host–pathogen inter-
action as they are responsible for Map elimination [14]. 
Specifically, after penetrating the intestinal epithelial bar-
rier, Map is phagocytosed by sub-epithelial macrophages, 
stimulating the recruitment of lymphocytes and mono-
cytes in  situ and the development of focal granulomas 
[15]. Initial stages of Map infection are characterized by a 
strong cell-mediated immune response via stimulation of 
IFN-γ by  CD4+ lymphocytes that induces classical acti-
vation of macrophages (M1), releasing pro-inflammatory 
cytokines (e.g. TNF-α, IL-1β and IL-6) and increasing 
microbicidal activity [16–18]. However, progression of 
the disease shifts to a Th2-type immune response where 
macrophages are predominantly alternatively activated 
(M2) by the stimulation of IL-10 and IL-4 [19, 20], lead-
ing to the up-regulation of anti-inflammatory cytokines 
such as TGF-β or IL-10 and favouring the intracellular 
survival and growth of Map [17, 18].

Due to the importance of macrophages in the immune 
response against paratuberculosis, peripheral blood 
monocyte-derived macrophages (MDMs) have emerged 
as a relevant in  vitro experimental model to study the 
immune response (phagocytosis, growth and cytokine 
production) against Map infection [13, 21, 22]. Survival 
of Map inside macrophages lies on the ability to modify 
the intracellular environment so as to prevent its destruc-
tion [23], for example, through the interference of phago-
lysosome maturation or acidification [24]. Besides that, 
Map may be involved in the modification of gene expres-
sion profiles that could limit microbicidal response [25].

Despite their key role in the immune response against 
Map, and the proved influence of vaccination on this 
response, studies addressing the modulation of mac-
rophages by paratuberculosis vaccination are scarce 
[26], especially those conducted using MDMs models. 
For this reason, the aim of this study was to analyse 
whether vaccination could modify the phagocytic activ-
ity and immune response of caprine MDMs against 
Map.

Materials and methods
Ethics statement
All the procedures were approved by the Ethics Com-
mittee of the Instituto de Ganadería de Montaña (IGM, 
CSIC-ULE) and the Subcommittee on Animal Experi-
ments and Welfare of the University of León (ULE). 
Handing and sampling procedures were designed 
according to European (86/609) and Spanish laws (R.D. 
223/1988, R.D. 1021/2005, R.D. 53/2013) and were mini-
mized in order to reduce stress and the health risks of the 
animals and personnel involved.

Animals
Twelve one-month-old goat female kids (murciano-gra-
nadina breed) were selected from a flock without clini-
cal cases, tested negative to paratuberculosis in the last 
five years and housed in the facilities of the Instituto de 
Ganadería de Montaña (IGM, CSIC-ULE) in Grulleros, 
León. After one month of adaptation period, animals 
were tested against Map infection by indirect enzyme-
linked immunoabsorbent assay (ID  Screen® Paratubercu-
losis indirect, IDVet, Grabels, France) and IFN-γ release 
test  (Bovigam® Mycobacterium bovis IFN-γ test for cattle, 
Thermo Fisher Scientific, Waltham, USA). Both commer-
cial kits have been previously used and standardized for 
diagnosis of ovine and caprine paratuberculosis [27–29]. 
Once established that animals did not have antibodies 
against Map and were negative to the IFN-γ release test, 
they were separated into two groups: non-vaccinated 
(n = 6) and vaccinated (n = 6). At the age of two months, 
vaccination was performed by a subcutaneous injection 
in the brisket with 1 mL of commercial vaccine  Silirum® 
which contained 2.5  mg of heat-killed 316F Map strain 
plus Montanide mineral oil as adjuvant (CZVaccines, 
Porriño, Spain). Heparinized-blood samples of each ani-
mal were collected 30 days after vaccination to generate 
caprine monocyte-derived macrophages (CaMØs) in 
order to perform the in vitro assays. This response win-
dow was selected based on our previous observations in 
vaccinated goat kids that showed an increase in the IFN-γ 
response from that time onwards (data not shown).
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In vitro generation of caprine monocyte‑derived 
macrophages
CaMØs were generated as previously described [30]. 
Briefly, 200  mL of peripheral blood of each animal was 
collected from the jugular vein into lithium heparin 
Vacutainer™ tubes (Becton Dickinson and Company, 
UK). Peripheral blood mononuclear cells (PBMCs) were 
separated by gradient density centrifugation on Lym-
phoprep™ (STEMCELL  Technologies®, Cologne, Ger-
many), seeded in cell culture flasks (Labbox, Barcelona, 
Spain) at a density of  107 cells/mL in 10  mL of supple-
mented RPMI1640 medium + GlutaMax™ (Gibco, Pais-
ley, UK), and incubated for 3 h at 37 °C and 5%  CO2 in a 
humidified incubator. Later on, non-adherent cells were 
removed and 10  mL of fresh supplemented RPMI16040 
medium with 60  ng/mL of caprine GM-CSF (King-
Fisher  Biotech®, MN, USA) was added. At the third day 
of culture, flasks were washed twice with warm PBS 1× 
and medium was replaced by fresh supplemented RPMI 
medium. Adherent monocytes were allowed to differen-
tiate for the next 4 days to CaMØs which were checked 
under an inverted microscope (LEITZ DM IL, Leica, 
Wetzlar, Germany). At day 7 of culture and once CaMØs 
complied with the morphological and phenotypic char-
acteristics described by Arteche-Villasol et  al. [30], 
cells were harvested using ice-cold PBS 1× with 2  mM 
EDTA and soft scraping and reseeded at a density of 
 105 cells/mL in supplemented RPMI medium with GM-
CSF in 24-well culture plates and 24-well culture plates 
with sterile glass coverslips of 13 mm diameters (VWR, 
Darmstadt, Germany). The purity of CaMØs (> 90%) was 
determined by flow cytometry using CD14, MHC-II and 
CD11b antibodies [30]. Then, CaMØs were allowed to 
adhere for 24 h in the same conditions mentioned above.

Bacteria culture and CaMØs infection
Map strain K10, a standardized reference bovine type 
strain, was provided by NEIKER (Basque Institute for 
Agricultural Research and Development, Derio, Spain). 
The organisms were grown in 7H9 broth supplemented 
with 10% oleic acid-albumin-dextrose-catalase enrich-
ment (OADC) (Becton Dickinson and Company, MD, 
USA), 0.2% glycerol, 0.05% Tween 80 (Panreac Quimica 
SA, Barcelona, Spain) and 2 mg/L of mycobactin J (Allied 
Monitor, Fayette, MO) (7H9-OADC-MJ) to exponen-
tial phase for 3 weeks at 37 ± 1  °C. Bacterial suspension 
was adjusted at a concentration of  108 Map CFU/mL in 
glycerol: water (1:1) after colony forming units (CFU) 
estimation by optical density and colony count in agar-
solidified 7H9 with OADC, glycerol and mycobactin J in 
quadruplicate to assess the CFU per mL in the inoculum. 
Afterwards, bacterial suspension was frozen at −80  °C 

until use in the next three weeks. Prior to CaMØs infec-
tion, aliquots were thawed in fresh 7H9-OADC-MJ 
medium and incubated for 3 h at 37  °C. Then, bacterial 
suspensions were centrifuged at 3000 × g for 10 min and 
bacterial pellets were washed twice with PBS 1× and 
resuspended in PBS 1× and passed through a 30-gauge 
needle and vigorously vortexed to disperse clumps before 
infection [31].

Prior to infection, CaMØs, including control wells, 
were washed twice with warm PBS 1× and freshly sup-
plemented RPMI1640 medium without antibiotics were 
added to wells. Then, CaMØs were infected with Map 
at a multiplicity of infection (MOI) 10:1 (10 bacilli/mac-
rophage) [32]. Thereupon, plates were incubated at 37 °C 
and 5%  CO2 in a humidified incubator for 24 h as previ-
ously described [32]. For each animal, supernatants and 
CaMØs were tested for (i) Map viability by CFU count 
and (ii) DNA quantification by qPCR in independent 
wells using duplicates for each test. In addition, a third 
and a fourth sample of CaMØs were assessed for (iii) 
cytokines and iNOS expression by RT-qPCR and (iv) 
quantification of intracellular Map by epifluorescence 
microscopy by duplicate (Additional file 1).

For Map viability, supernatants were collected and cen-
trifuged at 10 000 × g for 10 min, washed twice with PBS 
1×, resuspended in 200 µL of PBS 1× and stored at 4 °C 
until use. Then CaMØs were scraped and collected in 500 
µL of PBS 1× and stored at −20 °C until use.

For Map-DNA quantification by real time qPCR, 
supernatants were collected and stored at −20  °C 
whereas CaMØs were processed as mentioned above for 
viability assay.

CaMØs seeded onto sterile glass coverslips of 13  mm 
diameters (VWR, Darmstadt, Germany) for Map quan-
tification by epifluorescence microscopy were fixed and 
permeabilized with 500 µL methanol (Fisher Chemical™, 
UK) for 20 min at −20 °C and washed twice with PBS 1×. 
Then, fixed CaMØs were stored with 2 mL of PBS 1× per 
well at 4 °C until staining.

Collected samples for Map viability, DNA quantifica-
tion and epifluorescence microscopy were processed 
within a week.

Finally, for the study of gene expression levels, CaMØs 
were lysed by adding 350 µL of RLT buffer per well (RNe-
asy Mini Kit, Quiagen, Hilden, Germany) for subsequent 
RNA isolation following manufacturer indications.

Map viable count
Viable count of Map was performed in both collected 
supernatants and CaMØs. Briefly, CaMØs were centri-
fuged and the cell pellet was lysed by vigorous vortexing 
for 10 s with 500 µL of 0.1% Triton X-100. Two 10-fold 
serial dilutions in PBS of cell lysates and their respective 
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supernatants were grown by spreading 100 µL of the 
samples in triplicate on 7H9-OADC-MJ-T agar plates 
before incubation at 37 °C for one month. Finally, CFUs 
count was performed by direct observation of the plates 
and total number of viable CFU was estimated for each 
sample.

Quantification of Map by real time quantitative 
polymerase chain reaction
Total DNA extraction of CaMØs cultures and their 
respective supernatants was carried out using  Maxwell® 
16 Cell DNA Purification Kit with the Maxwell 16 Instru-
ment (Promega, WI, USA) following manufacturer’s 
protocol. Afterwards, DNA was quantified using Quan-
tiFluor™ ONEdsDNA System kit and Quantus™ Flu-
oremeter (Promega, WI, USA). In order to quantify Map 
DNA in culture samples and supernatants, a standard 
curve was generated using genomic DNA extracted from 
2 ×  108 Map bacteria.

Quantification of IS900 sequence was performed as 
previously described Espinosa et al. [33] using 7500 Real-
Time PCR System (Applied Biosystems™, Spain). The 
reaction mixture contained 0.5 µL of 250 nM of forward 
(MP10-1, [5′-ATG CGC CAC GAC TTG CAG CCT-3′]) 
and reverse (MP11-1, 5′-GGC ACG GCT CTT GTT GTA 
GTCG-3′]) primers [34], 10 µL of PowerUp™ SYBR™ 
Green Master Mix (Applied Biosystems™, CA, USA) and 
9 µL of DNA template in a final volume of 20 µL and was 
carried out in duplicate. Following an initial activation 
at 95 °C for 15 min, quantification was performed via 45 
cycles of a two-step assay with denaturation at 95 °C for 
30  s and annealing and amplification at 68  °C for 60  s. 
The standard curve for this assay was performed with 
10-fold diluted samples of Map-genomic DNA ranging 
from 1000  pg to 0.001  pg/reaction. Samples were con-
sidered as positive when the dissociation peak (Tm) was 
89.1 ± 1.5 °C and threshold cycles (Ct) were ≤ 37 [35, 36]. 
The qPCR results were analysed using 7500 Software 
v2.0.6 (Applied Biosystems™, Spain). Thus, the quantity 
of Map DNA (pg) of each well was calculated by inter-
polation of their Ct values with the standard curve as 
previously described [37] and the mean quantity was cal-
culated from both duplicates.

Quantification of intracellular Map by epifluorescence 
microscopy
Fixed CaMØs were washed twice with PBS 1× and Map 
was stained with polyclonal antibody anti-Map (Dako, 
CA, USA) at a dilution of 1:2000 in block buffer Animal-
Free Blocker® and Diluent, R.T.U (Vector Laboratories, 
CA, USA) and incubated overnight at 4 °C. CaMØs were 
washed again and a secondary antibody goat anti-rabbit 
IgG Alexa  Fluor® 488 (ab150077, Abcam, Cambridge, 

UK) was added at a dilution of 1:2000 in block buffer and 
incubated for 45  min at room temperature in the dark. 
After secondary antibody incubation, wells were washed 
twice and CellMask (ThermoFisher Scientific, OR, USA) 
was added in a proportion of 1:500 and incubated for 
30 min in the dark. Finally, CaMØs were washed again, 
removed from the wells and mounted with DAPI mount-
ing medium (Abcam, Cambridge, UK) on glass slides and 
stored in the dark at 4 °C. Immunofluorescence staining 
was previously optimized in order to avoid non-specific 
binding and autofluorescence through the incubation of 
CaMØs with primary and secondary antibodies sepa-
rately. Slide observation was performed at 400× mag-
nification on a direct microscope (Eclipse Ni-E, Nikon, 
NY, USA) and using appropriate epifluorescence fil-
ters for FITC, TRITC and DAPI. Images were captured 
using a CMOS scientific camera  (Photometrics® Prime 
BSI™, AZ, USA) and merged by NIS-Elements software 
(Nikon, NY, USA). Twenty different fields were randomly 
selected and examined in each slide using ImageJ 1.52t 
(NIH) and the total number of infected and non-infected 
CaMØs were counted in order to estimate the percentage 
of infected cells. Because Map tendency to form clumps 
hampered the estimation of the number of bacteria per 
CaMØ [38] we followed a procedure similar to that 
described by Gollnick et al. [39], where three categories 
were established based on the size of the positive signal 
corresponding to Map bacilli (s) clump: low (2–40 µm2: 
1–4 bacilli), medium (41–100 µm2: 5–10 bacilli) and high 
(101–200 µm2: 10–20 bacilli).

Determination of cytokines and iNOS mRNA expression
Total RNA isolation from CaMØs was carried out the 
same day of collection using  RNeasy® Mini Kit (Quiagen, 
Hilden, Germany) following manufacturer’s steps. RNA 
was quantified using a QuantiFluor™ RNA System kit 
and Quantus™ Fluoremeter (Promega, WI, USA). Then, 
reverse transcription of a maximum of 2.5 µg of RNA was 
performed by using SuperScript™ VILO™ Master Mix 
(Invitrogen™, Paisley, UK) according to the manufac-
turer’s instructions using SimpliAmp™ Thermal Cycler 
(Applied Biosystems™, Warrington, UK). Finally, all 
cDNA samples were adjusted to 10 ng/µL by dilution in 
nuclease-free water and stored at −80 °C and used within 
two weeks.

RT-qPCR reactions were performed in a 96-well 
plate (Applied Biosystems™, Warrington, UK) using 10 
µL of PowerUp™, SYBR™ Green master mix (Applied 
Biosystems™, CA, USA), 10  µM of each primer and 2 
µL of diluted cDNA template on a 7500 Fast Real-Time 
PCR System (Applied Biosystems™, CA, USA). Primer 
sequences used for IFN-γ, IL-10, TNF-α, IL-12 and 
β-actin have been described previously (Additional 
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file 2) [40, 41]. Primers for IL-1β, IL-17A, iNOS, IL-6 
and MIP-1β were designed and checked by using 
Primer3Plus and Oligoanalyzer Tool (IDT™) software, 
respectively (Additional file 2). The mRNA expression 
levels were normalized using β-actin as housekeep-
ing gene. Furthermore, amplification efficiencies were 
analysed including a seven-point standard curve for 
each target gene on every plate prepared from 10-fold 
serial dilutions of a starting concentration of 1  ng/µL 
of a conventionally prepared PCR product.

Data were analysed by using relative quantification 
 2−ΔΔCt method as previously described Livak and Schi-
mitten, [42]. To assess the effect of Map infection and 
vaccination on cytokine expression in CaMØs, ΔCt 
mean value of non-infected CaMØs (C-) from non-
vaccinated animals were used as calibrator for calcula-
tion of ΔΔCt. cDNA samples from control and infected 
CaMØs were prepared in parallel and analysed on the 
same real-time PCR run.

Statistical analysis
Normality of data distribution was tested using Shap-
iro–Wilk test analysis where only results from cytokine 
expression levels were normally distributed. Non-par-
ametric Wilcoxon signed-rank tests for related samples 
were conducted to estimate the differences in the Map-
DNA quantification between supernatants and CaMØs 
stemming from the same group (non-vaccinated and 
vaccinated group). Besides, differences between non-
vaccinated and vaccinated groups in supernatants and 
CaMØs were calculated using Mann–Whitney U test 
for unrelated samples.

Similarly, results from cytokine expression and loga-
rithmic transformation of viable count were used for 
comparisons between supernatants and CaMØs within 
non-vaccinated and vaccinated groups by paired t-test 
whereas differences between groups for each type of 
sample were assessed by unpaired t-test.

Finally, the percentage of Map-infected cells quan-
tified by epifluorescence microscopy was calculated 
by the division of the number of infected cells by the 
total number of CaMØs per photograph. In addition, 
the infection rate was calculated by dividing the num-
ber of cells from each category (low, medium, high) by 
the total number of infected cells. Then, comparisons 
between non-vaccinated and vaccinated groups were 
made using Mann–Whitney U test. All the statisti-
cal analyses were carried out using Graphpad Prism 
6.0 software (San Diego, CA, USA), where a P value 
of < 0.05 was considered statistically significant.

Results
Viability of Map in CaMØs and supernatants
No Map growth was observed in any of the uninfected 
(C-) CaMØs from vaccinated and non-vaccinated goats. 
In infected CaMØs from both groups, the number of 
viable bacteria was higher inside CaMØs than in the 
supernatants. This difference was 60 and 40-fold higher 
in vaccinated (P < 0.05) and non-vaccinated (P < 0.0001) 
groups, respectively (Figure  1). When comparing the 
vaccinated and non-vaccinated animals, and despite 
large inter-individual variations, a statistically signifi-
cant 10-fold reduction in the number of viable bacteria 
was observed in CaMØs from the vaccinated group in 
comparison to the non-vaccinated group (P < 0.001) (Fig-
ure 1). Similarly, the number of viable bacteria was also 
lower (15-fold reduction) in supernatants from vacci-
nated goats than in non-vaccinated ones (P < 0.05) (Fig-
ure 1) (Additional file 3).

Quantification of Map DNA in CaMØs and supernatants
Map DNA was quantified in CaMØs and supernatants 
from vaccinated and non-vaccinated goats. Control (C-), 
non-infected CaMØs and its supernatants from vac-
cinated and non-vaccinated groups proved to be nega-
tive. Regarding the infected CaMØs, the quantity of Map 
DNA inside CaMØs from vaccinated goats was an aver-
age 5 times higher than in their supernatants. In contrast, 
CaMØs from non-vaccinated animals showed a quantity 
of Map DNA 5 times lower than in their supernatants 
(Figure  2). Besides, when comparing between groups, 
vaccinated goats showed an average of 5 times higher 
Map DNA quantity within CaMØs than non-vaccinated. 
In contrast, Map DNA detected in supernatants was 5 

Figure 1 Total viable count of internalized and free Map in 
CaMØs and in supernatants, respectively.  Log10 transformed 
data from non‑vaccinated and vaccinated goats are represented as 
means values and standard deviations (n = 6). *p < 0.05; **p < 0.01; *** 
p < 0.001; ****p < 0.0001.
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times higher in the non-vaccinated group than in vacci-
nated (Figure 2). However, statistical differences were not 
found in any comparisons studied (P > 0.05), possibly due 
to the high individual variability observed between ani-
mals from the same group (Figure 2) (Additional file 3).

Quantification of CaMØs containing Map 
by epifluorescence microscopy
The mean percentage of infected CaMØs from vacci-
nated goats was significantly greater (48 ± 24.3%) than 
from non-vaccinated goats (20.5 ± 16.2%) (P < 0.0001). In 
both groups, most of the infected CaMØs were classified 
within the “low” category (Figure  3), however, the per-
centage of CaMØs belonging to this category was signifi-
cantly higher in non-vaccinated goats (94.75 ± 13.16%) 
(P < 0.0001) than in vaccinated (81.36 ± 20.34%) (Fig-
ure  3). On the other hand, the proportion of CaMØs 
belonging to the “medium” category was significantly 
higher in the vaccinated group (11.5 ± 13.21%) compared 
to the non-vaccinated group (1.87 ± 4.73%) (P < 0.0001) 
(Figure  3). No statistical differences between groups 
were found within the “high” category (2.02 ± 9.33% in 
non-vaccinated and 2.05 ± 2.97% in vaccinated) (P > 0.05) 
(Figure 3).

Cytokine expression of infected CaMØs
The in  vitro immune response was characterized by 
analysing the RNA transcription of IL-10, IL-12, IFN-
γ, TNF-α, IL-17A, IL-1β, iNOS, IL-6 and MIP-1β in 
CaMØs, both infected and non-infected (C-) with Map, 
from non-vaccinated and vaccinated groups (Figure 4). 
None of RNA samples showed a significant decrease in 
the β-actin gene expression, suggesting an equivalent 
RNA loading and the good yield of this gene as internal 
control.

When comparing the expression of non-infected 
CaMØs (C-) between vaccinated and non-vaccinated 
animals (Figure 4), significant differences were found in 
the transcription levels of iNOS and IL-10 and MIP-1β. 
The transcription of iNOS and IL-10 was increased 
in the vaccinated animals (2.96-fold and 1.31-fold 
increase, respectively) while MIP-1β was decreased in 
the vaccinated group (1.89-fold decrease).

Similar differences were found when analysing 
transcription levels in infected CaMØs, as signifi-
cant higher transcription levels of iNOS (2.83-fold 
increase) and IL-10 (1.34-fold increase) were found 
in macrophages from vaccinated goats in comparison 
with non-vaccinated (P < 0.01 and P < 0.05, respec-
tively), while MIP-1β transcription was significantly 
lower (3.52-fold increase) in the non-vaccinated group 
(P < 0.05) (Figure 4).

In addition, but without statistical significance, dif-
ferences were also observed in the transcription of 
pro-inflammatory cytokines IL-6, TNF-α, IL-1β, IL-12, 
IFN-γ and IL-17A, especially when analysing the results 
from infected CaMØs, where a greater transcription 

Figure 2 Quantification of IS900 sequence by qPCR in CaMØs 
and supernatants from non‑vaccinated and vaccinated goats. 
Quantification was performed after 24 h of incubation with a MOI of 
10:1 of Mycobacterium avium subsp. Paratuberculosis (Map) (10 bacilli/
macrophage). Amplification slopes ranged between −3.48 and −3.59 
with a correlation coefficient (R2) of 0.992–0.997 and an efficiency of 
90.85−93.87%. Data is represented as picograms in bar plots as mean 
values and standard deviations (n = 6).

Figure 3 Percentage of Map‑infected CaMØs belonging to 
the “low”, “medium” and “high” categories. Proportions were 
calculated by dividing the number of CaMØs of each category by 
the total number of infected cells. Data from non‑vaccinated and 
vaccinated goats are represented as means and standard deviations 
(n = 6). *p < 0.05; **p < 0.01; *** p < 0.001; ****p < 0.0001.
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was found in the non-vaccinated group compared with 
vaccinated one. The high individual variation probably 
caused the lack of statistical significance in those differ-
ences (Figure 4).

Discussion
Paratuberculosis control programs based on vaccination 
with heat-killed vaccines such as  Silirum® or  Gudair® 
have shown beneficial effects on reducing the sever-
ity of clinical signs, lesions and deaths in infected ani-
mals [8]. Despite the proved efficacy of this measure, 
some vaccinated animals still developed severe lesions 
and/or remained infected and might shed Map [10]. 

These failures in protection are still a main concern on 
vaccination programs and are a reflection of the lack of 
knowledge in the mechanisms of the immune response 
taking part in the protection elicited by vaccination. In 
this regard, the role of macrophages is especially relevant 
in the host/pathogen interaction, as they are a key player 
in the pathogenesis of this disease [43].

Macrophages are the key target cells for Map and it has 
been reported that this mycobacterium is able to survive 
and grow for several days within MDMs isolated from 
healthy naïve cattle [14, 44]. Here, CaMØs from both vac-
cinated and non-vaccinated goats were able to phagocyte 
Map. However, Map DNA quantification results revealed 

Figure 4 Cytokine and iNOS expression levels of control and Map‑infected CaMØs from non‑vaccinated and vaccinated goats. Data were 
analysed by the  2−ΔΔCt method taking β‑actin as housekeeping gene and mean of no infected macrophages from no vaccinated goats as calibrator. 
Graphs represent mean values whereas vertical lines represent the standard deviation (n = 6). *p < 0.05; **p < 0.01; *** p < 0.001; ****p < 0.0001.
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that CaMØs from vaccinated goats seem to be more 
active in phagocytosis, increasing the number of engulfed 
bacteria according to the Map-DNA detected in CaMØs 
and in their supernatants. However, the qPCR technique 
does not allow to differentiate the DNA of alive and dead 
bacteria [45], so the viability count helped to comple-
ment Map quantification results. Bearing in mind that 
a significant reduction in Map viability was observed in 
CaMØs from vaccinated goats compared with non-vac-
cinated ones, it is tempting to hypothesize that a greater 
microbiocidal activity of CaMØs was induced by the vac-
cination in these goats. These results contrast with those 
obtained by Pooley et al. [26] in which ovine monocytes 
did not show differences in the killing ability between 
 Gudair®-vaccinated and non-vaccinated sheep deter-
mined by qPCR and viability count. These differences 
might be explained by (i) the animal species (sheep vs 
goat), (ii) the use of monocytes instead of macrophages 
that differ in their phagocytic and microbicidal activity 
[46], (iii) the co-culture with PBMCs that can modulate 
the immune response, (iv) the different response window 
(30 days vs 1 year) and (v) the different vaccine. However, 
the low number of viable Map in all animals is striking 
(Additional File 3) despite of the initial amount of Map 
infection inoculum. This could be related with a decrease 
in the viability after being engulfed into the CaMØs (kill-
ing effect) and/or after thawing step prior to infection. 
Nevertheless, since all CaMØs were infected with the 
same inoculum under the same conditions, differences 
between groups could not be explained by differences in 
the inoculum.

Supporting these results, differences in the percentage 
of infected CaMØs between groups were also observed 
by immunofluorescence labelling (48% in vaccinated and 
20% in non-vaccinated goats) together with the pres-
ence of a higher number of Map-bacilli detected inside 
CaMØs from vaccinated animals. When Gollnick et  al. 
[39] compared between animals tested (by fecal culture 
and ELISA) negative (non-exposed) and positive (pre-
viously exposed) to paratuberculosis infection without 
clinical sings, no differences neither in the percentage of 
infected MDMs nor in the number of bacteria per cell 
were observed. Natural infection with Map showed dif-
ferences in the cellular and humoral response between 
exposed and non-exposed animals [47]. These differences 
between MDMs from naturally exposed and vaccinated 
animals could be explained by the fact that vaccination 
is able to generate a stronger and more effective immune 
response than the natural sensitization with Map on 
account of the continuous contact with the pathogen and 
the potentiating action of the adjuvant [7, 48].

Vaccination also influenced the transcriptional 
levels of pro-inflammatory iNOS and MIP-1β and 

anti-inflammatory IL-10. CaMØs from vaccinated goats 
showed a marked up-regulation of iNOS and slighter 
increase of IL-10 in both C- and infected CaMØs, 
whereas expression level of MIP-1β was significantly up-
regulated in CaMØs from non-vaccinated goats. In con-
trast, no statistically significant differences were detected 
between vaccinated and non-vaccinated goats in the 
transcription levels of IL-12, IFN-γ, TNF-α, IL-1β, IL-
17A and IL-6 by CaMØs.

iNOS has been implicated in the modulation of the 
Th1 and Th2 response and the production of the reactive 
molecule nitric oxide [49, 50] that has been involved in 
the killing and growth inhibition of mycobacteria [51]. 
In fact, the up-regulation of this enzyme in CaMØs may 
be contributing to the enhancement of phagocytosis and 
reduction of Map viability, and hence, the increase of 
intracellular killing observed in CaMØs from vaccinated 
goats [50]. The higher expression of iNOS has been previ-
ously described in focal lesions with none or low presence 
of Map, suggesting that it participated in limiting intra-
cellular Map growth in relation with classically activated 
macrophages (M1) [19]. Weiss et  al. [44] demonstrated 
that the infection of MDMs with mycobacteria induces 
an increase of iNOS expression after 24 h of incubation 
that was higher in classically activated MDMs. Classi-
cal activation of MDMs from naturally resistant cows by 
supplementation of cell cultures with IFN-γ and/or LPS 
resulted in a greater expression of iNOS by these MDMs, 
higher phagocytic index and lower mycobacteria viability 
suggesting a better microbiocidal activity [52].

Conversely, IL-10 has been related with the survival 
of Map due to its inhibitory effect over the pro-inflam-
matory cytokines IL-12 and IFN-γ, suppressing the M1 
activation of macrophages [53]. Furthermore, studies 
employing MDMs as in vitro experimental models have 
shown that Map was able to induce the expression and 
secretion of IL-10 and TGF-α, both of them down-reg-
ulating IFN-γ expression levels [32], whereas its neu-
tralization has been related with a higher expression of 
pro-inflammatory TNF-α, IL-12, IL-8, MHC-II and pro-
duction of nitric oxide and the intracellular killing of 
Map [54]. IL-10 can be present together with pro-inflam-
matory cytokines as a regulatory mechanism prevent-
ing host tissue damage [55]. In addition, it is known that 
vaccination with killed whole-cell vaccine induces strong 
cellular and humoral responses [56]. Thus, it is feasible 
that protective immunity to Map may require the devel-
opment of a tightly regulated anti and pro-inflammatory 
response. In fact, a study carried out by Coussens et  al. 
[57] reported that PBMCs from paratuberculosis sub-
clinically infected cows had higher transcription levels 
of IL-10 after in vitro infection with Map than clinically 
infected cows. This suggests that the role of this cytokine 
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in the effective protection against paratuberculosis con-
sists in the control of the pro-inflammatory response, 
and hence, the local tissue damage. Therefore, it can be 
hypothesized that increased IL-10 expression by CaMØs 
from vaccinated animals as reported here, could reflect 
a key role in controlling the inflammatory response, for 
instance, by regulating the release of pro-inflammatory 
cytokines and chemokines that drive the recruitment of 
other macrophages acting as a niche favouring intracellu-
lar multiplication of Map and hence the progression and 
severity of the lesions [13, 57].

Despite the fact that TNF-α, IL-1β, IL-6 and IFN-γ 
cytokines have been implicated in the in vitro activation 
of Th1 immune response, the destruction of Map and the 
development of characteristic granulomas [58–61], the 
current study found no significant influence of vaccina-
tion or infection over the transcription of these cytokines 
by CaMØs, presumably due to the high individual vari-
ability. Previous in vitro studies have shown the effect of 
IFN-γ on the acidification and maturation of phagosomes 
in MDMs that reduce Mycobacterium avium subsp. 
avium, Mycobacterium bovis and Map viability [52, 62]. 
In this regard, some studies have reported the potential 
effect of adherent lymphocytes to tissue plastic plate cul-
ture in the macrophages, such as the production of IFN-γ 
[63] that might modulate the in vitro immune response. 
Here, the purity of CaMØs, was ~90% [30] and it was 
verified through the use of CD14, MHC-II and CD11b 
antibodies. Thus, lack of in  vitro supplementation with 
IFN-γ or the scarce presence of other adherent cells 
that modulate the host immune response, such as lym-
phocytes or natural killer cells, [64, 65], give rise to the 
absence of specific signals associated with their environ-
ment that may limit the variations on cytokine transcrip-
tion from pure CaMØs culture.

In this sense,  Silirum® vaccination has been associ-
ated with the establishment of a persistent cellular medi-
ated immune response characterized by the increase of 
IFN-γ production by peripheral blood lymphocytes [8]. 
Therefore, it can be inferred that paratuberculosis vac-
cination could trigger the prior activation of peripheral 
blood monocytes, possibly via IFN-γ stimulation by Th1 
lymphocytes present in the blood, and consequently 
increase their phagocytic ability after in vitro maturation 
of CaMØs.

Vaccination seemed to exert a stronger influence over 
cytokine transcription than infection of the CaMØs, as 
in both groups (vaccinated and non-vaccinated), no sig-
nificant differences in transcription levels were observed 
between infected and C- CaMØs in any of the studied 
cytokines, although IL-12, IFN-γ, TNF-α, IL-1β, MIP-1β 
and IL-6 tend to be up-regulated in CaMØs infected with 
Map. In addition to the absence of lymphocytes whose 

presence is related to the modulation of expression and 
production of theses cytokines, the lack of statistical sig-
nificance in these differences could be due to the high 
individual variability between animals of the same group. 
As mentioned previously, and despite their efficacy in 
controlling the disease at heard/flock level, commercially 
available vaccines not only are unable to confer sterile 
immunity in all cases [6, 7] but vaccination failure could 
also result in severe, multibacillary lesions, linked to bac-
teria shedding and death, both in natural [9] and experi-
mentally infected cases [66]. The reasons behind these 
vaccination failures in some animals are yet unknown but 
preliminary studies detected differences in the immune 
response in those individuals where vaccination failed 
to protect against Map infection [66]. Individual differ-
ences on how CaMØs react against Map have also been 
observed in the present study, as in the vaccinated group 
there were great differences in Map viability. CaMØs 
from some animals showed lower number of infected 
macrophages and these with a lower bacterial load com-
pared to other animals from the same group. It has been 
described that the macrophages from naturally-resistant 
individuals showed a higher phagocytic and microbicidal 
activity against Mycobacterium bovis than susceptible 
ones [52]. Thus, the genetic background of the host could 
most definitely influence the immune response devel-
oped by macrophages against Map. For instance, certain 
polymorphisms in the solute carrier family 11 member 
A1 gene (SLC11A1), protein that favours the elimina-
tion of bacteria, have been associated with susceptibility 
to Map infection [67, 68] since a significant transcrip-
tion level of SLC11A1 has been detected in MDMs from 
resistant animals.

Recently, the term trained immunity has been used to 
refer to a non-specific response to a secondary infection 
against a related or non-related microorganism medi-
ated by the innate immune system [69, 70]. This process 
happens independently of T or B lymphocytes and is the 
result of epigenetic reprogramming of innate immune 
cells after the first contact with a pathogen, either 
through infection or vaccination, occurring in bone mar-
row, peripheral blood and in the tissue through modi-
fications in the intracellular signalling and metabolic 
response [71]. These changes could lead to the modifica-
tion of pattern recognition receptors (PRRs) in “trained” 
macrophages that are involved in the rapid pathogen rec-
ognition and an increased protection against secondary 
pathogens [70].

The most studied stimulus of trained immunity is 
that caused by Bacillus Calmette-Guerín (BCG) vacci-
nation in humans [72, 73] which has been related with 
an enhanced function and growth inhibition of circu-
lating monocytes against reinfection and non-related 
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pathogens such as Staphylococcus aureus and Candida 
albicans [74, 75]. In the present study, the protective 
role of paratuberculosis vaccination against non-related 
pathogens such as S. aureus has not been assessed; 
however, in the light of the results, the role of a trained 
immunity cannot be ruled out given the increased 
response of CaMØs from vaccinated animals to rein-
fection with Map. Furthermore, since during Map 
infection there is a recruitment of peripheral blood 
monocytes at the site of infection that could have been 
previously “trained”, the possible role of this response is 
relevant for the understanding of the paratuberculosis 
outcome after vaccination.

The current study has used CaMØs as an in  vitro 
experimental model for investigating the interaction 
between Map and macrophages in goats vaccinated with 
 Silirum®. In this sense, this study has found that vaccina-
tion could predispose to a greater capacity of phagocy-
tosis of Map and the reduction of its viability in CaMØs. 
In addition, vaccination also promoted the transcription 
of IL-10 and iNOS in CaMØs, suggesting that the effec-
tive protection conferred by vaccination not necessar-
ily depends on a pro-inflammatory response but also 
on an anti-inflammatory response and its balance. The 
high individual variability observed in this study may be 
related to the variable response observed in in vivo vac-
cination studies. Further studies aimed at evaluating the 
role of other variables such as individual genetic varia-
tions or different Map strains could contribute to explain 
in more detail the changes in the macrophage function 
and immune response elicited by vaccination.
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