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Microbiome composition as a potential 
predictor of longevity in rabbits
Iliyass Biada1, Noelia Ibáñez‑Escriche1*   , Agustín Blasco1, Cristina Casto‑Rebollo1 and Maria A. Santacreu1 

Abstract 

Background  Longevity and resilience are two fundamental traits for more sustainable livestock production. These 
traits are closely related, as resilient animals tend to have longer lifespans. An interesting criterion for increasing 
longevity in rabbit could be based on the information provided by its gut microbiome. The gut microbiome is essen‑
tial for regulating health and plays crucial roles in the development of the immune system. The aim of this research 
was to investigate if animals with different longevities have different microbial profiles. We sequenced the 16S rRNA 
gene from soft faeces from 95 does. First, we compared two maternal rabbit lines with different longevities; a standard 
longevity maternal line (A) and a maternal line (LP) that was founded based on longevity criteria: females with a mini‑
mum of 25 parities with an average prolificacy per parity of 9 or more. Second, we compared the gut microbiota 
of two groups of animals from line LP with different longevities: females that died/were culled with two parities 
or less (LLP) and females with more than 15 parities (HLP).

Results  Differences in alpha and beta diversity were observed between lines A and LP, and a partial least square 
discriminant analysis (PLS-DA) showed a high prediction accuracy (> 91%) of classification of animals to line A ver‑
sus LP (146 amplicon sequence variants (ASV)). The PLS-DA also showed a high prediction accuracy (> 94%) to classify 
animals to the LLP and HLP groups (53 ASV). Interestingly, some of the most important taxa identified in the PLS-DA 
were common to both comparisons (Akkermansia, Christensenellaceae R-7, Uncultured Eubacteriaceae, among others) 
and have been reported to be related to resilience and longevity.

Conclusions  Our results indicate that the first parity gut microbiome profile differs between the two rabbit maternal 
lines (A and LP) and, to a lesser extent, between animals of line LP with different longevities (LLP and HLP). Several 
genera were able to discriminate animals from the two lines and animals with different longevities, which shows 
that the gut microbiome could be used as a predictive factor for longevity, or as a selection criterion for these traits.

Background
Longevity and resilience are different concepts but are 
highly related. In livestock production, longevity refers 
to the length of the productive life of a farm animal [1]. 
Resilience has been defined as the animal’s ability to 
be minimally impacted by disturbances and to quickly 

regain its production performance after an environmen-
tal perturbation [2]. A positive genetic correlation has 
been reported between longevity and resilience [3–6], 
which suggests that animals with better resilience tend 
to have greater longevity. This correlation can be attrib-
uted to specific traits that are associated with resilience, 
such as disease resistance and reproductive performance. 
These traits can reduce the occurrence of involuntary 
culling and thereby increase longevity [1].

In rabbits, longevity has a lower economic weight than 
traits such as litter size and feed efficiency [7]. As a result, 
longevity has not been included in the breeding goals for 
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rabbits. However, selection that focuses only on increas-
ing productive traits has led to replacement rates of 120% 
per year [8] and to nearly 50% of all females replaced dur-
ing their first three parities [9], which is a direct indicator 
of the degradation of longevity and resilience.

Selection for longevity and resilience is a complicated 
and slow process. Although longevity has been recorded 
and evaluated in many studies and species [1, 10, 12], 
there has been no consensus on how to define the trait 
and how to analyse the phenotypic data collected for 
genetic evaluation. As a result, heritability estimates 
found in the literature are quite heterogenous [10, 11]. In 
rabbits, the mean heritability is around 0.13, but ranges 
from 0.02 to 0.24, depending on the model and the defi-
nition of the trait [12]. Similarly, studies on resilience are 
quite heterogeneous and conditioned by the resilience 
indicator used [13]. Differences between expected pat-
terns and fluctuations in performance (environmental 
variance) have been described as a promising indicator 
of resilience [13]. In rabbits, an experiment of divergent 
selection for environmental variance of litter size showed 
that animals with a low(er) variance of litter size coped 
better with environmental disturbances, while those with 
a high(er) variance were more affected [14].

The gut microbiota influences the host’s resilience and 
longevity by affecting various physiological functions 
[15]. Studies in germ-free animals have shown extensive 
and complex interactions between microbial cells and the 
host immune system [16]. These interactions are neces-
sary for proper development and maturation of the gut 
immune system [17]. In addition, the gastrointestinal 
microbial community acts as an anti-infectious barrier by 
a mechanism called ‘colonization resistance’, which inhib-
its adherence and subsequent colonization of pathogens 
[18, 19]. Through these processes, the gut microbiota 
could influence longevity and resilience.

Microbial communities can be characterized by ampli-
fying and sequencing the 16S rRNA gene from biological 
samples (tissue or faecal samples) [20]. Recent advances 
in metagenomics and gut microbiome studies may allow 
us to explore novel ways to improve longevity and resil-
ience in rabbit breeding. E.g., gut microbiota profiles 
could be incorporated into selection criteria for longev-
ity and resilience in rabbits, if they play a role on their 
phenotypic variation [21, 22]. In addition, if specific taxa 
within gut microbiota were found to influence longevity 
and resilience, they could be incorporated into prediction 
models (similar to genetic markers) or allow development 
of probiotics to modify the gut microbiota of rabbits.

Therefore, the aim of this study was to compare the 
gut microbiome profiles of rabbits with different lon-
gevities using 16S rRNA gene analysis and to identify 
discriminating taxa. For this purpose, we compared: (1) 

the gut microbiota of a high longevity line (LP) with that 
of a standard longevity maternal line (A); and (2) the gut 
microbiota of LP line females that died or were culled 
after two parities or less (LLP) with those with a high lon-
gevity, i.e. females with 15 parities or more (HLP).

Methods
Animals
In total, 95 females from two rabbit lines (LP and A) 
currently selected for litter size at weaning were used in 
this experiment. The 31 females from line A were from 
the 50th generation of selection and the 64 females from 
line LP from the 15th generation. Line A is a standard 
commercial maternal line that was founded by sam-
pling New Zealand White rabbits reared by farmers near 
Valencia (Spain). Line LP is a robust maternal line that 
was founded in 2002 by females with a minimum of 25 
parities and with an average prolificacy per parity of nine 
or more, which is the average prolificacy of commercial 
rabbits in Spain [23]. Since its foundation, the LP line has 
consistently demonstrated longer longevity compared 
to line A, with a doe from line A being 1.8 times more 
likely to die or be culled than a doe from line LP, with a 
statistical probability of 99% [24]. The females for this 
experiment were reared in the same conditions and were 
allowed to reach the maximum number of parities. They 
were all housed on the farm of the Universidad Politèc-
nica de Valencia (UPV) in individual cages (flat‐deck) 
with an extractable nest box with isolated plastic, and 
under a photoperiod of 16‐h light: 8‐h dark and con-
trolled temperature and ventilation. Access to the same 
standard commercial diet was ad  libitum for the entire 
experimental period. The females in this experiment 
were used for two comparisons: (1) DLINES, which is 
a comparison between females from line A (n = 31) and 
line LP (n = 40) with the samples from these females col-
lected during the same trimester of the same year (from 
02/07/2018 to 17/09/2018), and (2) DLP, which is a com-
parison between LP females with different longevities, 
i.e. LP females with two parities or less during their life-
time (group LLP, n = 19), and LP females who reached 
15 parities or more (group HLP, n = 22). The samples of 
DLP were collected from 30/04/2018 to 06/08/2018 and 
the HLP and LLP groups were balanced between the two 
trimesters.

Sample collection and DNA extraction
During the second week after first parity, daily attempts 
were made to collect fecal samples from the anus of 
females by applying gentle pressure to the perianal area. 
Three separate collections were attempted each day until 
successfully obtaining a sample. Once the fecal samples 
were available, they were immediately frozen at − 72  °C 
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until DNA extraction. Bacterial genomic DNA was iso-
lated from the frozen faecal samples using the DNeasy 
PowerSoil kit (QIAGEN Inc, Hilden, Germany) follow-
ing the manufacturer’s instructions with the following 
modifications: faecal samples (0.1 g) were disrupted with 
three 4-mm glass beads in a bead homogeniser (BeadMill 
4, ThermoFisher), at maximum speed (6 m/s) for 1 min 
in the presence of C1 buffer, and incubated at 95  °C for 
5 min. These steps were repeated twice. The sample tubes 
were spun at 10,000g for 30  s and the supernatant was 
transferred to a new tube according to the manufacturer’s 
instructions. In the final step, the DNA was eluted from 
the column in a 100-µl volume. DNA concentration and 
purity were estimated first by spectrometry on a Nan-
odrop ND-1000 and, second, by fluorometry on a Qubit 
4 fluorometer (Invitrogen, Thermo Fisher Scientific, 
Carlsbad, CA, USA) with the dsDNA HS DNA assay kit 
(Invitrogen).

PCR amplification, barcoding, and DNA sequencing
Microbial genomic DNA (5  ng/μL in 10  mM Tris pH 
8.5) was amplified and purified according to the 16S 
Metagenomic Sequencing Library Preparation proto-
col by Illumina. First, regions V3 and V4 of the bacte-
rial 16S rRNA gene were amplified using the following 
recommended primers (Forward Primer = 50TCG​TCG​
GCA​GCG​TCA​GAT​GTG​TAT​AAG​AGA​CA GCC​TAC​
GGGNGGC​WGC​AG; Reverse Primer = 50GTC​TCG​
T GGG​CTC​GGA​GAT​GTG​TAT​AAG​AGA​CAG​GAC​
TACHVGGG​TAT​CTA​ATC​C) and the suggested cycling 
conditions (3  min at 95  °C; 25 cycles of 30  s at 95  °C, 
30 s at 55 °C, 30 s at 72 °C; 5 min at 72 °C). After ampli-
fication of the 16S rRNA gene, the multiplexing step was 
performed using the Nextera XT Index Kit (FC-131-
2001) by attaching dual indices to both ends of the PCR 
products. The PCR products (1 μL) were analysed with 
a Bioanalyzer DNA 1000 chip to verify their size, with 
the expected size on a Bioanalyzer trace being ~ 550 bp. 
After size verification, the libraries were sequenced using 
a 2 × 300 pb paired-end run (MiSeq Reagent kit v3 (MS-
102-3003) on a MiSeq Sequencer according to the manu-
facturer’s instructions (Illumina).

Bioinformatic analyses
Primary processing was carried out on the raw sequenc-
ing reads, starting with a quality control filtering using 
the fastp program [25] with the following parameters: 
min_length: 50, trim_qual_right: 30, trim_qual_type: 
mean and trim_qual_window: 10. Then, the paired-end 
Miseq Illumina reads (2*300  bp) were processed in R 
version (4.1.1) [26], using the DADA2 pipeline for Illu-
mina-sequenced fastq [27]. Forward and reverse reads 
were trimmed to 260 and 240  bp, respectively, to have 

Q-scores higher than 20. Chimera filtering (using the 
consensus method) and denoising were applied using 
the DADA2 pipeline that infers true biological sequences 
from reads [28]. This resulted in the identification of 
amplicon sequence variants (ASV), on the basis of which 
the ASV table was constructed. The taxonomic annota-
tion of ASV was performed using the QIIME2 software 
version 2021.11 [29], with a Naive Bayes classifier pre-
trained on the SILVA v138 database. The ASV that were 
classified as Eukaryotes or Archaea were removed. For 
diversity analysis, for each comparison, samples were 
rarefied to an even sampling depth according to alpha 
rarefication curves, and then, diversity metrics (alpha and 
beta) were computed using QIIME2 [29]. Alpha diversity 
analysis was assessed using the Kruskal–Wallis test based 
on three alpha diversity indices: Shannon’s diversity, 
observed diversity, and Pielou’s evenness [30–32]. Beta 
diversity differences were assessed with a permutational 
multivariate analysis of variance (PERMANOVA) using 
two beta diversity dissimilarity matrices: Bray–Curtis 
and Jaccard [33, 34]. To rule out differences due to a high 
degree of dispersion (within-group variance), a permuta-
tional analysis of multivariate dispersions (PERMDISP) 
was performed. Differences in the distribution of alpha 
and beta diversities between groups were considered sig-
nificant when the P-value of the test was lower than 0.05. 
If the results of the statistical tests at the ASV level were 
significant, alpha and beta diversity tests were performed 
at the genus level.

Partial least squares discriminant analyses (PLS‑DA)
All statistical analyses of abundance were done in R [26], 
following Casto-Rebollo et  al. [35]. PLS-DA was per-
formed at both the ASV and genus level for each compar-
ison (DLINES and DLP). First, variables (ASV or genera) 
that were not present in at least 50% of the animals in 
each line and each group within line LP were removed. 
A principal component analysis was conducted on each 
dataset to remove outlier animals, according to the pop-
ulation structure. After exploratory analyses, one was 
added to all datasets to deal with the remaining zeros. 
The datasets were transformed by the additive log-ratio 
(ALR) transformation to consider their compositional 
nature [36]. The variable (ASV or genus) with the lowest 
coefficient of variation was used as the reference variable 
( xref  ) and all the other variables as numerator ( xj ) [36]. 
ALR transformation was as follows:

where the number of total ALR is j− 1 , with j being the 
total number of variables (ASV or genus) in each dataset. 

(1)ALR
(

j|ref
)

= log

(

xj

xref

)

= log
(

xj
)

− log
(
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)
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The ASV sequence used as a reference variable for both 
comparisons (DLINES and DLP) is indicated in Addi-
tional file 1: Text S1, while the genus UCG-005 was used 
as the reference for both the DLINES and the DLP com-
parison. Procrustes analysis was performed to verify the 
quality of each transformation [36] resulting in a Pro-
crustes correlation of ~ 0.99 for all transformations.

PLS-DA was used for the DLINES and DLP compari-
sons to identify the ASV and genera that can classify rab-
bits between lines A and LP or between groups of rabbits 
with different longevities (LLP vs HLP) within line LP. 
PLS-DA was performed using the ‘mixOmics’ R package 
[37]. For each comparison, the inputs were a categori-
cal vector y that indicates the rabbit population of each 
sample and an X matrix of dimensions n × k, where n is 
the number of samples and k = j-1, the number of ALR 
variables (ASV DLINES, k = 259; genus DLINES, k = 61; 
ASV DLP, k = 349; genus DLP, k = 66). A PLS-DA model 
with 10 components was fitted for each of the four ALR-
transformed datasets. Then, an iterative process was 
carried out until each model reached the highest clas-
sification performance. In each iteration, the optimal 
number of components for each model was selected 
considering the balanced error rate (BER) displayed for 
the Mahalanobis distance, computed by fourfold cross-
validation repeated 100 times. The BER is calculated as 
the average of the errors for each class: BER = 0.5*(FP/
(TN + FP) + FN/(FN + TP)), where FP is the false positive 
count, FN the false negative count, TN the true positive 
count, and TN the true negative count. Variable selection 
was performed using variable important prediction (VIP) 
[38], i.e. the influence of each of the previously selected 
variable on the model projection and classification. The 
variables selected for the final PLS-DA were those with 
a VIP higher than 1 [38]. To check the robustness of the 
PLS-DA, a confusion matrix and a permutation test were 
computed using a fourfold cross-validation repeated 
10,000 times. The confusion matrix collects the outputs 
of the classification model and evaluates the classification 
performance by counting the number of false positives, 
false negatives, true positives, and true negatives [39]. 
The permutation test evaluates whether the classification 
of the individuals to the two groups is significantly bet-
ter than any other random classification to two arbitrary 
groups [40].

Differential abundance analysis
A Bayesian linear model [41] was used for differential 
abundance analysis. The objective was to determine 
the relevance of the difference in the ASV and genera 
selected by the PLS-DA final models between the two 
rabbit lines A and LP, and between the two groups of LP. 
The model included the line (A and LP) or LP longevity 

group (LLP and HLP) as fixed effects for each compari-
son at the ASV and genus level. The residuals of the 
model were assumed to follow a normal distribution and 
the priors for the fixed effects and the residual variance 
were flat. The Bayesian models were solved by the Gibbs 
Markov chain Monte Carlo (MCMC) sampling algo-
rithm using 50,000 iterations, a lag of 10 and a burn-in of 
1000 iterations. Convergence was checked by the R-hat 
statistic [42]. Marginal posterior distributions of the dif-
ferences in the DLINES and the DLP comparisons were 
computed to estimate the posterior means and the prob-
ability of the difference being greater (if the difference is 
positive) or less (if negative) than 0 (P0). The posterior 
mean of the differences was expressed in units of stand-
ard deviations (SD) for each variable. A Bayesian approxi-
mation of the false discovery rate (FDR) was computed 
by using the cumulative posterior error probability (PEP), 
similar to the q-value, to establish the threshold for the 
identification of relevant taxa [35, 40]. The PEP was cal-
culated as (1 − P0)/0.5. We assumed a cumulative PEP 
of 0.05 as a threshold, meaning that approximately 5% 
of the taxa that were identified as significant were false 
positives.

Results
Abundance tables and taxonomic annotation
The final abundance table of all 95 samples used in this 
experiment contained 6515 ASV and 2,801,584 reads; the 
ASV sequences are in Additional file 2: Text S2. The mean 
number of reads per sample was 29,490, with a maxi-
mum per sample of 62,439 and a minimum of 10,863. The 
taxonomic annotation resulted in a total of 11 phyla, 16 
classes, 42 orders, 65 families, and 139 genera. Among 
the 11 phyla detected in all samples, Firmicutes were 
consistently the most abundant phylum, accounting for 
a relative abundance of 87% (± 0.39). The other most 
abundant phyla were Actinobacteria with 6% (± 0.06) 
and Bacteroidota with 3% (± 0.03). Additional phyla 
with a sizable abundance included Verrucomicrobiota 
and Patescibacteria. At the family level, the most abun-
dant families were Lachnospiraceae (26% ± 0.13), Oscil-
lospiraceae (20% ± 0.11), Ruminococcaceae (15% ± 0.1), 
and Clostridia_UCG-014 (9% ± 0.04). Figure 1 illustrates 
the relative abundance of microbial ASV for the groups 
used in the two comparisons DLINES (lines A and LP) 
and DLP (groups LLP and LP).

Diversity measures
After rarefaction to 10,226 reads in the DLINES and to 
11,108 in the DLP comparison groups, the final data-
set had 3887 ASV and 71 samples for the DLINES 
comparison and 3488 ASV and 41 samples for the DLP 
comparison. Kruskal–Wallis tests for alpha diversity 



Page 5 of 12Biada et al. Genetics Selection Evolution           (2024) 56:25 	

indices at the ASV level (Fig.  2a and b) showed a sig-
nificant higher diversity in line LP than in line A for 
the observed diversity (p-value = 0.03) and Shannon’s 
(p-value = 0.001) indices. However, alpha diversity 
using Pielou’s evenness index was not significantly 
different between lines A and LP (p-value = 0.17) 
(see Additional file  3: Fig. S1). After rarefaction, the 
Kruskal–Wallis test results at the genus level showed 
that Shannon`s (p-value = 0.01) and Pielou’s evenness 
(p-value = 0.03) indices were both clearly higher for line 
LP than line A (Fig. 2c and d). These results for alpha-
diversity indicate that the microbiota of line LP had 
higher richness and evenness than that of line A. In the 
DLP comparison, the alpha-diversity indices showed no 
difference between the two groups (HLP and LLP) of 
line LP, (see Additional file 3: Figs. S2, S3 and S4).

The PERMANOVA tests for the DLINES comparison 
at the ASV level showed differences for both beta-diver-
sity indices, Bray–Curtis (p-value = 0.001) and Jaccard 
(p-value = 0.001). However, the Bray Curtis index was 
discarded because the PERMDISP test was significant 
(p-value = 0.02), which indicates that the differences 
could be due to large variation within each group. At the 
genus level, for both indices, the PERMANOVA tests 
indicated that differences between lines A and LP were 
significant for both Bray–Curtis (p-value = 0.001) and 
Jaccard beta (p-value = 0.01) indices. The PERMDISP 
tests were not significant for both indices, and none of 

the indices were discarded. Both beta diversity indices 
were not significantly different for the DLP comparison.

Partial least squares discriminant analyses
After ALR transformation, the final PLS-DA models 
identified 146 ASV and 22 genera that could discrimi-
nate between the A and LP lines (Table 1 and Fig. 3a and 
b). The final 146 ASV identified for the DLINES com-
parison were collapsed at the genus level, which allowed 
us to have taxonomic information about each ASV and 
to compare it with the results of the genus model (see 
Additional file 4: Table S1). Among the 22 genera identi-
fied in the DLINES comparison at the genus level, ASV 
that belonged to 10 of these genera were also identified 
in the model at the ASV level. The DLINES comparison 
at the ASV level showed a prediction performance (true 
positive rate) of 91% for line A, and 94% for line LP. At 
the genus level, the prediction performance was 85% for 
line A and 86% for line LP. The prediction performance 
of the permutation test for the DLINES comparison was 
42% for line A and 58% for line LP at the ASV level and 
48% for line A and 52% for line LP at the genus level. The 
permutation results suggest that the taxa identified in the 
PLS-DA did not randomly discriminate between groups.

In the DLP comparison, the PLS-DA identified 53 
ASV and 20 genera that allowed discrimination between 
the LLP and HLP groups (Table  1 and Fig.  3c and d). 
After collapsing the final 53 ASV to the genus level, of 

Fig. 1  Relative abundance of microbiome families in the A, LP, LLP and HLP groups. DLINES: comparison between A and LP lines; DLP: comparison 
between LP does with at least two parities and those with at least 15 parities; A line: standard commercial maternal line; LP line: maternal line 
founded based on longevity criteria; LLP: LP does with two parities or less; and HLP: does with at least 15 parities (HLP)
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the 20 genera detected in the DLP comparison at the 
genus level, five were also identified in the model at the 
ASV level (see Additional file  4: Table  S1). The confu-
sion matrix for the DLP comparison resulted in predic-
tion performances of 99% (HLP) and 94% (LLP) at the 
ASV level and of 82% (HLP) and 67% (LLP) at the genus 
level. The permutation test resulted in prediction per-
formances of 53% for the HLP group and 47% for LLP 
at the ASV level and of 52% for HLP and 48% for LLP at 

the genus level. Due to the model’s low prediction perfor-
mance at the genus level (67% and 82%), the results and 
taxa identified in the DLP comparison at the genus level 
were excluded from further analyses and discussion.

The final PLS-DA models included 19 ASV that were 
common to the DLINES and DLP comparisons (see 
Additional file  4: Table  S1). These ASV belonged to the 
genera Christensenellaceae R-7 group, Colidextribacter, 
UCG-005, Bacteroides, and Tyzzerella. The remaining 

Fig. 2  Alpha diversity boxplots of the comparison between lines A and LP. a Observed diversity index computed at the amplicon sequence 
variant (ASV) level for line A (standard commercial maternal line) and line LP (maternal line founded using longevity criteria); b Shannon diversity 
index computed at the ASV level for lines A and LP; c Pielou’s evenness computed at the genus level for lines A and LP; d Shannon diversity index 
computed at the genus level for lines A and LP

Table 1  Partial least square discriminant analysis (PLS-DA) specifications using amplicon sequence variant (ASV) and genera taxa

DLINES: comparison between A and LP lines; DLP: comparison between LP does with two parities or less and those with at least 15 parities; BER: Balance error rate 
calculated as the average of the errors on each class

Comparison PLS-DA model Number of variables Number of components Balance error rate 
(BER)

Standard 
deviation of 
BER

DLINES ASV 146 3 0.09 0.03

Genus 22 1 0.18 0.02

DLP ASV 53 4 0.07 0.03

Genus 20 1 0.28 0.02
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ASV were not classified to the genus level, with some 
being classified only as bacteria, or to the order Oscil-
lospirales, and others being classified to the family level, 
and belonging to Lachnospiraceae, Eggerthellaceae, 
Atopobiaceae and Oscillospiraceae.

Differential abundance analysis
The differential abundance analysis revealed 105 ASV 
with significant differences in abundance between the A 
and LP lines. Of these, 26 ASV were more abundant in 
line LP with differences at least larger than 0.5 SD, while 
21 ASV were more abundant in line A with differences 
larger than 0.5 SD (see Additional file 5: Table S2). These 

ASV were collapsed to the genus level and resulted in five 
genera that were more abundant in line LP and 12 genera 
that were more abundant in line A (Table 2). Differential 
abundance analysis at the genus level revealed 11 genera 
that exhibited differences in abundance larger than 0.5 
SD between lines A and LP. Of these, nine were more 
abundant in line LP, including Uncultured_Eubacte-
riaceae, Akkermansia, Parabacteroides and others, while 
the genera Ruminococcus and Lachnospiraceae UCG,001 
were more abundant in line A (Table 2). There were some 
overlapping results between the ASV and genus models, 
with Uncultured Eubacteriaceae, Akkermansia, Chris-
tensenellaceae R7 group, and Lachnospiraceae NK4B4 

Fig. 3  Individual plots of the results from the final partial least squares discriminant analysis (PLS-DA) models. a First and second components 
of the DLINES comparison (between lines A and LP) at the amplicon sequence variant (ASV) level. b First and second components of the DLINES 
comparison at the genus level. c First and second components of the DLP comparison (between LP does with two parities or less (LLP) and does 
with at least 15 parities (HLP) at the ASV level. d First and second components of PLSDA on the DLP comparison at the genus level



Page 8 of 12Biada et al. Genetics Selection Evolution           (2024) 56:25 

group consistently more abundant in line LP at both 
levels. Similarly, Ruminococcus and Lachnospiraceae 
UCG,001 were more abundant in line A at both levels.

In the differential abundance analysis of the DLP com-
parison, 37 ASV with differences in abundance larger 
than 0.5 SD between the LLP and HLP groups were iden-
tified (see Additional file 5: Table S2). Of these, six ASV 
were more abundant in the HLP group and the other 31 
ASV were more abundant in the LLP group. These ASV 
resulted in four genera that were more abundant in the 
HLP group and 13 genera that were more abundant in 
the LLP group (Table 2).

Comparative analysis of the final taxa identified in both 
comparisons revealed that eight genera were common to 
the DLINES and DLP comparisons. Specifically, Blautia, 
Clostridia UCG,014, Colidextribacter and UCG,005 were 
more abundant in line A (low longevity line) and in the 
LLP group (animals that died or were culled before their 
third parity). Conversely, uncultured Eubacteriaceae was 
more abundant in line LP (high longevity line) and in the 
HLP group (consisting of animals that had at least 15 
parities). However, some genera showed opposite results, 
with Akkermansia and Christensenellaceae R,7 group 
being more abundant in line LP and in the LLP group, 
while Subdoligranulum was more abundant in line A and 
in the HLP group.

Discussion
Among all the samples analysed, 11 bacterial phyla were 
detected in the gut microbiota of the rabbits. Consist-
ent with previous findings [43], Firmicutes were by far 
the most abundant phylum. It has been shown that this 
phylum is classified as the most efficient for cellulose 
degradation and has a fundamental role in the digestion 
in rabbits [44]. Actinobacteria and Bacteroidetes were the 

second and third most abundant phyla, respectively. Xing 
et  al. [45] also reported that Actinobacteria and Bacte-
roidetes were among the most abundant phyla in rabbits 
after Firmicutes. Actinobacteria and Bacteroidetes have 
been described as playing a major role in maintaining the 
gut barrier homeostasis [46]. At the family level, some 
of the most abundant bacterial families characterized in 
this study were Lachnospiraceae and Ruminococcaceae, 
which confirms a previous study by Cotozzolo et al. [47]. 
These families have been shown to play important roles 
in gut health [48]. Therefore, the observed microbiome 
composition of the most abundant bacteria was consist-
ent with previous studies in rabbits [43, 45, 47].

The alpha and beta diversity indices showed differences 
in microbiome composition between lines A and LP. 
Greater alpha diversity was observed in line LP compared 
to line A. It should be noted that line LP has greater 
longevity than line A [24]. Hence, these findings are 
consistent with the idea that high microbial diversity is 
beneficial for coping with environmental stress and pro-
motes a good health status [49, 50]. Animals with a more 
diverse microbial community are potentially better able 
to deal with pathogenic microbes [51]. The benefits of a 
high diversity have been linked to increased functional 
redundancies among the microbial community, which 
can contribute to a more stable metabolic state and better 
resilience to face variability in available feeding resources 
[52]. Likewise, in the DLP comparison (within line LP), 
we expected that the HLP group, with higher longevity, 
would have a higher diversity than the LLP group, but no 
differences in diversity were found.

Regarding the results from the PLS-DA, prediction 
performance based on the confusion matrix was high for 
the comparison between lines A and LP. At the ASV level, 
the results were 91% true positives for A and 94% for LP, 

Table 2  Genera with differential abundance greater than 0.5 standard deviations for the two comparisons

DLINES: comparison between lines A and LP; DLP: comparison between LP does with two parities or less (LLP) and those with at least 15 parities (HLP); ASV: amplicon 
sequence variance

DLINES Level LP A

ASV Uncultured_Eubacteriaceae, Akkermansia, Christensenellaceae_R_7 
group, Incertae_Sedis, Lachnospiraceae_NK4B4_group

[Eubacterium]_siraeum_group, Anaerofustis, Blautia, Clostridia_
UCG_014, Colidextribacter, Lachnospiraceae_UCG,001, Flavonifractor, 
Methanobrevibacter, Oscillibacter, Ruminococcus, Subdoligranulum, 
UCG_005

Genus Uncultured_Eubacteriaceae, Akkermansia, Parabacteroides, Phasco-
larctobacterium, Enteroscipio, Christensenellaceae_R7_group, 
Shuttleworthia, Lachnospiraceae_NK4B4_group, Coprobacter

Ruminococcus, Lachnospiraceae_UCG_001

DLP Level HLP LLP

ASV Uncultured_Eubacteriaceae, Subdoligranulum, Monoglobus, 
Sellimonas

Muribaculum, Blautia, Clostridia_vadinBB60_group, Clostridia_
UCG_014, Colidextribacter, Alistipes, Bacteroides, Akkermansia, 
Butyricicoccus, Christensenellaceae_R_7_group, Lachnospiraceae_
ND3007_group, Tyzzerella, UCG_005
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and at the genus level 85% for A and 86% for LP. A slight 
decrease in prediction accuracy was observed when mov-
ing from the ASV model to the genus model. For the sec-
ond comparison (DLP), prediction performance was also 
high at the ASV level, with 94% and 99% true positives 
for the LLP and HLP groups, respectively. Moving to the 
genus level, prediction performance dropped to 67% for 
the LLP and 82% for the HLP groups. More sample vari-
ability was noticeable, and LLP encompassed most of the 
HLP group (Fig. 3d). The drop in prediction performance 
from the ASV to the genus level can be attributed to the 
fact that the ASV are more specific than the genus level, 
as one genus can encompass multiple species, subspe-
cies, and ASV, which reduces the discriminative ability of 
the PLS-DA genus model. However, because the drop in 
prediction performance was large in the DLP comparison 
(67% for LLP), the results and taxa identified in the DLP 
comparison at the genus level were discarded from fur-
ther analyses, as they were considered unreliable because 
of the high error rate of predictions.

It is important to underline that the DLINES compari-
son involved two rabbit lines that are characterized by 
distinct genetic backgrounds. Line LP was founded based 
on longevity criteria [23], and it has consistently exhib-
ited significantly greater longevity than line A [24]. The 
gut microbiota has been shown to be under genetic regu-
lation [53, 54] and this may explain the observed differ-
ences in hologenomes [55]. In this experiment, both lines 
shared the same environmental and dietary conditions 
and, therefore, the observed differences are likely to be 
due to the genetics of the hosts. These different genetic 
backgrounds are the result of the underlying criteria used 
when the lines were founded but also of genetic drift. 
Thus, gut microbiome differences may or may not be 
fully associated with the differences in longevity between 
the two lines. However, differences observed between the 
HLP and LLP groups within line LP, which shared the 
same genetic background but differed only in terms of 
longevity, lend further support to the notion that the gut 
microbiota is a predictive factor for longevity in rabbits. 
If the specific taxa identified were found to be shared 
between both comparisons and/or to play a role in lon-
gevity and resilience in rabbits, this information could 
hold promise for improving these traits in rabbits.

A differential abundance analysis was performed using 
Bayesian statistics to detect the most reliable taxa and 
to determine in which lines (A and LP) and groups (LLP 
and HLP) they were more abundant. The genus Uncul-
tured Eubacteriaceae was one of the few relevant genera 
that was identified in the DLINES and DLP comparisons. 
This genus was found in great abundance in the groups 
with longer longevity, i.e., in line LP and group HLP. In a 
study comparing two rabbit lines, i.e. Sichuan White and 

New Zealand rabbits, a higher abundance of Uncultured 
Eubacteriaceae was found in the Sichuan White rabbit 
group, which also exhibited a significantly higher sur-
vival rate (p < 0.05) compared to the New Zealand rabbit 
group [56]. Line A in this study was founded from New 
Zealand rabbits and had a lower survival rate than line LP 
[24], supporting the possible importance of the Uncul-
tured Eubacteriaceae in modulating longevity. Blautia 
and Colidextribacter were found to be more abundant 
in line A and in group LLP. Similarly, Blautia was more 
abundant in the New Zealand rabbit group that is charac-
terized with a lower survival rate [56]. Regarding Colidex-
tribacter, a study conducted in cattle found a significant 
increase in the genus Colidextribacter in milk samples 
taken from cows with mastitis [57]. It should be noted 
that mastitis is among the main reproduction-related 
causes that lead to culling in rabbits [58]. Akkermansia 
and Christensenellaceae R-7 group were also identified in 
both comparisons. In the DLINES comparison, they were 
more abundant in line LP. Similarly, the Sichuan White 
rabbits’ line, which had a higher survival rate, was also 
found to have a greater abundance of both Akkermansia 
and Christensenellaceae R-7 group compared to the New 
Zealand rabbit line [56]. The Christensenellaceae family 
is one of the most heritable families in gut microbiota, 
with its abundance having a heritability of 0.42 (95% 
CI = 0.25–0.48) [59]. The differences in genetic make-up 
between the LP and A lines may explain the difference in 
abundance of the Christensenellaceae R-7 group between 
these two lines, thus highlighting the role of the host 
genome in influencing longevity, including through its 
impact on the microbiome. Notably, some of the findings 
regarding differences in the abundance of genera, both 
between the rabbit lines and between animals within the 
same line, are consistent with genera that were associ-
ated with resilience and host genetics in a previous rab-
bit study [35]. The genus Parabacteroides was found to be 
more abundant in line LP (DLINES comparison), which 
is consistent with the findings of Casto-Rebollo [35] who 
observed a higher abundance of Parabacteroides sp. in a 
rabbit line with greater resilience. Similarly, Flavonifrac-
tor and Ruminococcus were more abundant in line A, and 
Muribaculum was more abundant in group LLP, which 
mirrors the findings of Casto-Rebollo [35], who showed 
that these genera were more abundant in non-resilient 
rabbit lines.

An important result from the abundance analysis, is 
the shared ASV and genera identified for the DLINES 
and DLP comparisons, including Uncultured Eubac-
teriaceae, Blautia, Colidextribacter, Akkermansia and 
Christensenellaceae R-7 group. These taxa may be related 
to longevity since they discriminated between lines A 
and LP, which have different genetic backgrounds, and 
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between groups LLP and HLP within the same line. 
Moreover, in the literature, these taxa have been directly 
associated with longevity in rabbits, or with other related 
traits, such as resilience. If there is a direct association 
or a possible influence of these taxa on longevity and/or 
resilience, their abundance could be used as a selection 
criterion for these traits and included in their prediction 
model [21, 22]. An interesting alternative is to create a 
probiotic to modify the rabbit’s gut microbiota.

Conclusions
Our results support that the gut microbiome differs 
between the two rabbit maternal lines LP and A, with line 
LP having a superior longevity compared to line A. We 
found differences in the gut microbiome between ani-
mals with different longevities within line LP, LLP (died 
or culled with 2 parities or less) and HLP (minimum of 
15 parities). Line LP had a higher alpha diversity than 
line A, which is consistent with the prevailing thinking 
that a more diverse microbiota is associated with greater 
resilience and longevity. In addition, PLS-DA identified 
taxa that discriminate between groups with different lon-
gevities. Although further studies are needed to validate 
these results, in the literature, some of these genera were 
found to be regulated by the host genetics, thus, could be 
used as an alternative criterion to select for longevity. An 
alternative would be to develop a probiotic to deliberately 
modify the gut microbiota of rabbits and increase their 
longevity.
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