
HAL Id: hal-04530935
https://hal.science/hal-04530935

Preprint submitted on 4 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Iterative optimization RCO: A ”Ruler & Compass”
deterministic method

Maurice Clerc

To cite this version:
Maurice Clerc. Iterative optimization RCO: A ”Ruler & Compass” deterministic method. 2024.
�hal-04530935�

https://hal.science/hal-04530935
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Iterative optimization RCO: A “Ruler & Compass”
deterministic method

Maurice Clerc∗

2024-04-01

1 Introduction
Take a piece of paper and a pen, and draw any "reasonable" function (i.e., not entirely random),
even one that varies greatly, as shown in the figure 1a. For many algorithms, finding the minimum
would be challenging, but the Ruler & Compass Optimizer (RCO) described here requires very few
iterations. Furthermore, it is deterministic. How is this possible?

No magic, just elementary geometry.
∗Maurice.Clerc@WriteMe.com

1

(a) Landscape

(b) 32 constructed points (c) Path followed

Figure 1: RCO on a test function.

2 Principle
The iterative construction of positions to sample in the search space can be detailed on a very
simple example, defined by

f (x) = (x− 3)
2
for x ∈ [0, 10]

The only parameter is an estimated lower bound. Here -5 to better see what happens, although
-0.1 would be sufficient.

Tables 1 to 5 illustrate the process. Of course, in higher dimension D lines become (hyper-
)planes but the method is the same. At each time step we consider D planes defined by D + 1
points and their intersection point with the lower bound plane. There are two cases:

2

• If its position lies outside the search space (possibly at infinity), then the new position is
determined by a weighted combination of the 2D previous positions.

• If its position is within the search space, then it is kept as the new position.

Table 1: Principle. Step 1

An horizontal lower bound is defined. The “corners” are evaluated. The line
connecting them intersects the lower bound beyond the search space, this
intersection point is rejected and will be replaced with another one (step 2).

Table 2: Principle. Step 2

The new position is defined so that a/b = A/B. In dimension 1 it can be done
thanks to a “Ruler & Compass” construction. Then the position is evaluated
to define the third point.

3

Table 3: Principle. Step 3

Now the line joining the two last points does intersect the lower bound on a
point whose position is inside the search space. This position is then
maintained and evaluated. The same process is repeated, again ...

aine

Table 4: Principle. Step 9, zoom

... and again.

4

Table 5: Principle. Step 10, and zoom

After Step 9, the line connecting the last two points is nearly horizontal and
intersects the lower boundary outside of the search space. Consequently, we
generate a new position using the same method as in Step 2. This occurrence
becomes increasingly frequent as the positions approach the solution. Hence,
the new position often approximates the mean of the last two positions, which
is a favorable behavior for better approaching the solution.

3 Examples
The definitions of the problems are given in the source codes (8.4.1). Some classical problems have
been shifted in order to be not too easy.

3.1 Six Hump Camel Back
The dimension of the problem is two, so the landscape has four corners. The search space is
[−2, 2]× [−1, 1].

5

The minimum is −1.031628453489877. A sure lower bound is -1.1.

Table 6: Six Hump Camel Back

Constructed points
(evaluations) Best fitness

14 -0.957541
24 -1.008877
34 -1.008877
44 -1.027089
54 -1.027089
64 -1.027089
74 -1.028805
84 -1.030535
94 -1.030535
104 -1.030535

6

Figure 2: Six Hump Camel Back. Lower bound -1.1. After the construction of 4+10 points the
result is -0.9575.

3.2 Shifted Rastrigin
The minimum is zero so a sure lower bound is -0.1.

Table 7: Shifted Rastrigin

Dimension Constructed points (evaluations) Best fitness
1 52 0.000557
2 1004 0.001511
3 1508 0.002548
4 50016 0.001735
5 250032 0.004518

7

-10 -5 0 5 10

0

20

40

60

80

100

120

140

160

(a) 1D, 12 points

(b) 2D, 14 points

Figure 3: Shifted Rastrigin

8

3.3 Rosenbrock
The minimum is zero so a sure lower bound is -0.1.

Table 8: Rosenbrock

Dimension Evaluations Best fitness
2 252 0.002788
3 1508 0.001003
4 10016 0.003756
5 15032 0.005719

3.4 Pressure Vessel
There are four values to find, the two first ones are discrete. The minimum value is 6059.714335048436,
as proved in Yang et al. 2013.

The lower bound used here is 6000. Due to the discrete variables, the algorithm encounters
difficulties in converging.

Table 9: Pressure Vessel

Evaluations Best fitness
1052 11056.81
2049 6646.71
3074 6615.977
4074 6615.977
5074 6615.977
6076 6592.011

3.5 Gear Train
There are four values to find, all discrete. The minimum is 2.700857× 10−12.

Here the lower bound is simply set to 0. The algorithm quickly proposes a solution that is far
from optimal, and then stagnates without further improvement.

9

Table 10: Gear Train. Discretization is applied only at the very end to all values, so more search
effort does not always imply a better result.

Evaluations Best fitness
116 3.10E-03
130 1.20E-03
173 6.65E-09
223 6.65E-09
1753 6.65E-09

4 Comparison
Let’s compare RCO with a slightly improved version of Standard PSO (SPSO-Dicho on my technical
website (Clerc 2024b). To slightly favor PSO, I’ve selected the best run out of five. The results are
presented in 11. Also, refer to the figure 4 for Shifted Griewank, where the two methods appear to
be equivalent, particularly for dimensions 1 to 5 and the number of evaluations respectively set to
100, 200, 5000, 10000, and 20000.

In lower dimensions (less than 10), RCO performs better and sometimes significantly so. How-
ever, for higher dimensions, RCO stagnates while PSO continues to find better solutions, as evi-
denced by Shifted Rastrigin and Rosenbrock.

10

Table 11: RCO vs PSO

Problem Dimension Evaluations RCO PSO
Six Hump Camel Back 4 54 -1.031277 -1.011030

504 -1.031473 -1.031628
Shifted Rastrigin 1 52 0.000557 0.510724

2 1004 0.001511 0.4397499
5 250032 0.004578 0.994959
10 251024 35.246 1.9899

Rosenbrock 2 252 0.002788 266.94
5 15032 0.005719 0.0864
10 101024 8.996 5.19e-08

Pressure Vessel 4 3074 6615.977 6890.347
5074 6615.977 6821.931
20074 6583.75 6820.410

Gear Train 4 173 6.65e-09 2.35e-09
1154 6.65e-09 2.35e-09

199752 1.18e-09 1.26e-09

Figure 4: Shifted Griewank. RCO and PSO are equivalent.

11

5 Complexities
To evaluate an algorithm a common practice is to perform a theoretical analysis of its space com-
plexity and of its time complexity. Note that, however, and as explained in Clerc 2024a, this is not
always pertinent and a safer approach is to estimate the real memory space that is used and the
real computing time.

Here, at each time step, there are two possible cases:

1. solving a linear system of D equations to find a new position with D coordinates. The needed
space is D2 +D and the time complexity O(D3).

2. computing a linear combination of 2D positions with D coordinates. The needed space is
D × 2D and the number of multiplications is2D.

To assess an algorithm, it’s common practice to conduct a theoretical analysis of both its space
complexity and time complexity. However, as explained in Clerc 2024a, this approach isn’t always
appropriate, and a more reliable method is to estimate the actual memory usage and computational
time.

In this context, there are two possible scenarios at each time step:

1. Solving a linear system of D equations to determine a new position with D coordinates. The
required space is D2 +D, with a time complexity of O(D3).

2. Computing a linear combination of 2D positions, each with D coordinates. The required space
is O(D × 2D), and the number of multiplications is O(2D).

However such a classical reasoning does not correspond to the behavior of the algorithm in practice.
The point is that the second situation usually does not occur very often. Moreover it depends on
the landscape of the problem and also on the “budget” (the number of evaluations).

Let’s consider, for example, the computing time per evaluation for two problems: Planes and
Shifted Rastrigin. We have already seen the Shifted Rastrigin and Planes is defined by

f (x) =

D∑
d=1

(x (d)− 3) (1)

.The figure 5 depicts its landscape in two dimensions.

12

Figure 5: 2D Planes problem landscape.

As we can see on table 12 the real computing time indeed grows exponentially, but more like
1.35D than like 2D.

13

Table 12: Computing time per iteration

Dimension Planes Shifted Rastrigin
1 2.40E-05 1.60E-05
2 3.20E-05 4.80E-05
3 4.50E-05 5.30E-05
4 6.09E-05 6.69E-05
5 8.17E-05 8.47E-05
6 1.05E-04 1.05E-04
7 1.37E-04 1.38E-04
8 1.80E-04 1.78E-04
9 2.57E-04 2.31E-04
10 3.91E-04 3.15E-04
11 5.15E-04 4.67E-04
12 1.04E-03 1.09E-03

6 When it doesn’t work
On some problems, even continous and of low dimension, RCO doesn’t work well. Let’s consider for
example the Frequency-Modulated Sound Waves (FM) from the CEC 2011 competition benchmark
(Das and Suganthan 2011). The search space is [−6.4, 6.35]

6 and the minimum is zero. Even after
50064 evaluations the best final value is 24.07. This is because many intersection positions (21238)
are outside the search space (i.e. inacceptable).

Note that in such case it may be a little bit beneficial to expand the search space, if possible. If it
is now [−500, 500]

6 there are 17322 inacceptable intersections and the final best value is 17.42. But
many classical stochastic algorithms find a far better solution, precisely because the stochasticity
can cope with the highlly cahotic landscape (see the cross section 6).

In some instances, even when problems are continuous and of low dimension, RCO doesn’t
perform well. For instance, let’s examine the Frequency-Modulated Sound Waves from the CEC
2011 competition benchmark (Das and Suganthan 2011). The search space is [−6.4, 6.35]

6 and the

14

minimum value is zero. Despite 50064 evaluations, the best final value achieved is 24.07. This is
primarily due to a considerable number of intersection positions (21238) lying outside the search
space, rendering them unacceptable.

It’s worth noting that in such cases, expanding the search space might provide some benefit if
feasible. For example, if the search space is expanded to [−500, 500]

6, there are 17322 unacceptable
intersections, resulting in a final best value of 17.42. However, many classical stochastic algorithms
tend to discover significantly better solutions. This is because stochasticity can effectively navigate
a highly chaotic landscape, as is the one of FM (see Figure: 6).

Figure 6: Frequency-Modulated Sound Waves problem. Cross section on dimensions 2 and 5.

7 Conclusion
Even in low dimensions, evaluating the objective function can sometimes be very expensive. In
such cases, RCO may be useful as it may propose a sure solution after a few evaluations. However,
there are some drawbacks:

15

• It requires a reasonably good lower bound. On the other hand, compared to most other
methods, this is the only user-defined parameter. In practice, for real problems, such a bound
is often known.

• It does not work well on some problems, even of low dimension.

• It does not perform well on discrete problems, particularly when all variables are discrete.
However, it still seems to be usable when only some variables are discrete.

• Its computing time per iteration grows exponentially with the dimension of the search space.
It does not grow as quickly as theoretically expected, but nonetheless, in practice, it can be
difficult to use on a laptop for high-dimensional problems.

8 Appendix

8.1 A bit of geometry
For the “Ruler & Compass” construction in dimension 1 and as seen on the figure 2 we have to be
able to define two segments a and b so that a/b = A/B. The method is more than 2600 years old
(Thales of Miletus) so you may have forgotten it ...

The figure 7 shows how to do.
To perform the "Ruler & Compass" construction in one dimension, as depicted in Figure 2 ,

it is necessary to define two segments, denoted as a and b, such that a/b = A/B. This method,
dating back over 2600 years to Thales of Miletus, may have slipped from your memory over time...

Figure 7 illustrates the procedure.

Figure 7: Ruler a&nd Compass method to define proportional segments.

8.2 Sensitivity
There is only one user-defined parameter: the lower bound. Therefore, it is crucial to understand
the algorithm’s sensitivity to this parameter. As depicted in the figures 8, we observe that efficiency

16

is indeed sensitive to changes in the lower bound. Though the sensitivity is not extreme, it could
still be beneficial to experiment with various values. It’s worth noting that setting the lower bound
to the exact minimum value, if known, is not the optimal choice.

(a) Parabola

(b) Six Hump Camel Back

Figure 8: Efficiency is somewhat sensitive to the user-defined lower bound, but not excessively so.

17

A clear example of sensitivity can be observed when attempting to solve the optimal control
problem of the bifunctional catalyst blend in the CEC 2011 competition (Das and Suganthan 2011).

As depicted in Figure 9, even a slight modification to the lower bound leads to significantly
different behavior due to the very small slope. Conversely, due to the same reason, a position far
from the optimal one already exhibits a value close to the minimum.

(a) Lower bound -0.00001 (b) Lower bound 0.00001

Figure 9: CEC 2011 bifunctional catalyst blend optimal control problem. 12 evaluations.

If you are unsure about the lower bound, you can utilize an adaptive one (refer to the parameter
adaptOption in the source code). In fact, the results can occasionally be quite satisfactory, as
evidenced by Table 13. Thus, it may be worthwhile to try different methods: user-defined and the
adaptive ones. In the source code, there are three potential formulas for adaptation, but they are
rather rudimentary. Certainly, there is room for improvement.

Table 13: Adaptive lower bound may improve the efficiency ... or the contrary!

Dimension Evaluations Lower
bound

Non
adaptive

Adaptive 3
coeff. 0.5

Adaptive 3
coeff. 0.1

Six Hump
Camel Back 2 104 -1.1 -1.031473 -1.03157 -0.947

Shifted Rastrigin 3 1508 -0.1 0.002548 0.06729 3.27E-05
4 50016 -0.1 0.00173 1.78E-15 0

Rosenbrock 3 1508 -0.1 0.001 0.1866 0.238
4 10016 -0.1 0.003756 7.52E-22 8.94E-24

Pressure Vessel 4 6076 6000 6592 6955 1.29E+05
Gear Train 4 1753 0 6.65E-09 1.38E-06 6.60E-10

18

8.3 More examples
For amusement, here are a few 1D and 2D figures illustrating how rapidly the algorithm approaches
the solution, thanks to steps defined purely by geometry. Initially, they are quite large and gradually
diminish in size as they approach the solution’s position.

Figure 10: Multiparaboloid. 14 evaluations, final value 0.38 (real minimum 0).

19

(a) 12 evaluations, final value -1.899584 (real minimum -1.8996).

(b) 16 evaluations, final value -1.732.

Figure 11: Combination of sinus.

20

Figure 12: Branin. 44 evaluations, final value 0.3988 (real minimum 0.397887).

21

Figure 13: Shifted Griewank. 14 evaluations, final value 0.34 (real minimum 0).

8.4 Source codes
Written for Octave/Matlab©. Depending on the versions a few instructions (especially those for
plotting) may not work with Octave.

Here is a typical run for Pressure Vessel:'

&

$

%

>> RCO(11,4,3000)
==
Best after init 4.636519e+07
function 11, dimension 4, budget 3000
lowerBound 6000.000000
Evaluations 3074 (including 58 for discretisation)
noWayCount 12
outsideCount 341
fBest 6.615977e+03
on

1.0000 0.5000 50.2674 97.8799
>>

22

8.4.1 Problems

See also in the attached cec.zip file:
c_bifunc_data.mat
data6Bus.m
diffsolv.m
cec2011_TNEP.m
that are needed for some problems of the CEC 2011 competition.

function [xMin, xMax, lowerBound,quantis]=get_func(func,D)
One=ones(1,D);
quantis=[];
switch func

case -3 % abs(sin(x) + ax)
xMin=zeros(1,D);
xMax=10*One;
lowerBound=-0.1;

case -2 % Test
xMin=zeros(1,D);
xMax=10*One;
lowerBound=-0.1;

case {-1,0,3,4,5,8}
xMin=zeros(1,D);
xMax=10*One;
lowerBound=-0.1;

case 6
xMax=10*One;
xMin=-xMax;
lowerBound=-0.1;

case 7
xMin=-One;
xMax=One;
lowerBound=-0.1;

case 9 % Rosenbrock
xMax=100*One;
xMin=-xMax;
lowerBound=-0.1;
%lowerBound=0;

case 10 % Six Hump Camel Back
xMin=[-2,-1];
xMax=-xMin;

23

lowerBound=-1.1;
%lowerBound=-1.031628453489877;

case 11 % Pressure Vessel (D=4)
q=0.0625;
quantis=[q,q,0,0];
xMin=[q,q,10,10];
xMax=[99,99,200,200];
lowerBound=6000;
%lowerBound=6059.714335048436;

case 12 % Gear Train (D=4)
D=4;
ones4=ones(1,4);
xMin=12*ones4;
xMax=60*ones4;
quantis=[1,1,1,1];
lowerBound=0;
%lowerBound=2.700857e-12;

case 13 % Griewank
xMax=100*One;
xMin=-xMax;
lowerBound=0;

case 14 % Sin Sin
xMin=-2.7*One;
xMax=7.5*One;
lowerBound=-2*D;

case 15 % CEC 2011. Frequency-Modulated (FM) Sound Waves
% COUNTER EXAMPLE
D=6;
xMin=-6.4*One;
xMax=6.35*One;
lowerBound=-0.0001;

case 16 %CEC 2011. The bifunctional catalyst blend optimal control problem
D=1;
xMin=0.6;
xMax=0.9;
lowerBound=-0.00001;

case 17 % CEC 2011. Transmission Network Expansion Planning
% Difficult. Finds only 231 after 50000 evaluations
% as most heuristics find the minimum 220.

24

% And quite sensitive to the lower bound.
D=7;
xMin=One;
xMax=15*One;
lowerBound= 150;

% ...
case 39 % Branin

D=2;
xMin=[-5, 0];
xMax=[10,15];
lowerBound=0;

otherwise
xMin=-10*One;
xMax=10*One;
lowerBound=0;%-0.1;

end
end

function RCO(func,D,tMax) % Ruler and Compass Optimisation
rng(123456789) % Only for test with function -2
%{

Maurice.Clerc@WriteMe.com
2024-04-03

A simple deterministic optimisation method.
On dimension 1 you just need a ruler and a compass to apply it.
And also on higher dimension D ... assuming you have
a D-ruler and a D-compass!
%}
warning(’off’) % Don’t display warnings (in particular for singular matrix)
global noWayCount outsideCount
noWayCount=0;
outsideCount=0;
qAlways=true; % For (partly) discrete problem
% false (experimental) => discretisation only at the very end, on xBest
% true => at each time step
tQuantis=0; % For (partly) discrete problems. Number of improvements
adaptLBcoeff=0.5; %0.1; % ~=0 => adaptive lower bound

% 0 => only user defined lower bound (see get_func.m)
adaptOption=2; % 1, 2 or 3 Adaptation method.It may be useful to

% try the three.
% Possible plots for D=1 or 2
plotLandscape=true;

25

plotPoints=false;
plotLine=true;
plotDash=false; % Only for D=1
plotRun=(plotPoints || plotLine || plotDash) && D<=2;
fprintf(’\n===’)
% Define the problem
[xMin, xMax, lowerBound,quantis]=get_func(func,D);
tStart=cputime;
% -------------------------------- Initialisation
% Define all "corners"
x=corners(xMin,xMax);
% Evaluate them
[nPoints,~]=size(x);
for n=1:nPoints

f(n)=fit(x(n,:),func);
end
% Save the best
[fBest,Ind]=min(f);
fprintf(’\n Best after init %e’,fBest)
xBest=x(Ind,:);
fBestQ=fBest;
if plotRun

line=zeros(tMax+nPoints,D+1); % Just to speed up
for n=1:nPoints

line(n,1:D)=x(n,:); line(n,D+1)=f(n);
end

end
% --------------------------------
tp=nPoints;
for t=1:tMax

if adaptLBcoeff ~=0 % Adaptive lower bound
if ~isempty(quantis) && qAlways

fB=fBestQ;
else

fB=fBest;
end

switch adaptOption
case 1 % Method 1

if fB>=0
LB=adaptLBcoeff*fB;

else
LB=(1+adaptLBcoeff)*fB;

end

case 2 % Method 2

26

% LB=(lowerBound+fB)*adaptLBcoeff;
LB=adaptLBcoeff*lowerBound +(1-adaptLBcoeff)*fB;

case 3 % Method 3
if fB>0

LB=fB*adaptLBcoeff;
else
% LB=(lowerBound+fB)*adaptLBcoeff;

LB=adaptLBcoeff*lowerBound +(1-adaptLBcoeff)*fB;
end

end
else % User defined lower bound

LB=lowerBound;
end
[xn,fn]=new(x,f,xMin,xMax,func,LB,t);

if plotRun % Keep positions for future plots
tp=tp+1;
line(tp,1:D)=xn; line(tp,D+1)=fn;

end

if ~isempty(quantis) && qAlways
if fn<fBestQ % Keep the best solution after discretisation

xQ=quantify(xn,quantis);
fQ=fit(xQ,func);
tQuantis=tQuantis+1;
if fQ<fBestQ

fBestQ=fQ;
xBest=xQ;

end

end
else

if fn<fBest
fBest=fn;
xBest=xn;

end
end

% Define another line (D=1) or plane (D=2) or hyperplane (D>2)
for p=1:nPoints-1

x(p,:)=x(p+1,:);
f(p)=f(p+1);

end
x(nPoints,:)=xn;

27

f(nPoints)=fn;

end % end of the run
% -------------------------------- Results
if ~isempty(quantis) % Some problems may be (partly) discrete

if ~qAlways
xBest=quantify(xBest,quantis);
fBest=fit(xBest,func);
tQuantis=tQuantis+1;

else
fBest=fBestQ;

end
end
tEnd=cputime;
fprintf(’\n function %i, dimension %i, budget %i’,func,D,tMax);
if adaptLBcoeff~=0

switch adaptOption
case 1

fprintf(’\n Adaptation 1’)
fprintf(’\n Totally adaptive lower bound, coefficient %f’,adaptLBcoeff);

case 2
fprintf(’\n Adaptation 2’);
fprintf(’\n Mix user defined lower bound %e + adaptive, coefficient %f’,...

lowerBound,adaptLBcoeff);
fprintf(’\n (no matter the sign of fBest)’)

case 3
fprintf(’\n Adaptation 3’);
fprintf(’\n Mix user defined lower bound %e + adaptive, coefficient %f’,...

lowerBound,adaptLBcoeff);
fprintf(’\n (depending on the sign of fBest)’);

end
else

fprintf(’\n lowerBound %f’,lowerBound);
end
fprintf(’\n Evaluations %i’, tMax+nPoints+tQuantis);
if tQuantis>0

fprintf(’ (including %i for discretisation)’,tQuantis)
end
fprintf(’\n noWayCount %i’,noWayCount);
fprintf(’\n outsideCount %i’,outsideCount);
fprintf(’\n fBest %e’,fBest)
fprintf(’\n on \n’); disp(xBest)
fprintf(’\n CPU time %e \n’,tEnd-tStart)
% ================================== Plots
if plotRun figure; end
if plotLandscape && D<=2

28

fPlot(func,D,xMin,xMax,lowerBound);
hold on

end
if plotLine

switch D
case 1

plot(line(:,1), line(:,2),’r-’,’LineWidth’,2);
%axis([xMin,xMax,lowerBound, max(line(:,2))]);
hold on

case 2
plot3(line(:,1), line(:,2),line(:,3),’r-’,’LineWidth’,2);
hold on

end
end
if plotPoints

switch D
case 1

plot(line(:,1), line(:,2),’r.’,’MarkerSize’,12)
%axis([xMin,xMax,lowerBound, max(line(:,2))]);
hold on

case 2
plot3(line(:,1), line(:,2),line(:,3),’r.’,’MarkerSize’,12)
hold on

end
end
if plotDash && D==1

[tMax,~]=size(line);
for t=1:tMax-2

X=[line(t,1),line(t+2,1)];
Y=[line(t,2),lowerBound];
plot(X,Y,’r--’,’LineWidth’,1);
hold on

end

for t=1:tMax % Vertical lines
X=[line(t,1),line(t,1)];
Y=[lowerBound,line(t,2)];
plot(X,Y,’r--’,’LineWidth’,1);
hold on

end
%axis([xMin,xMax,lowerBound, max(line(:,2))]);

end
end

29

8.4.2 Algorithm

function RCO(func,D,tMax) % Ruler and Compass Optimisation
rng(123456789) % Only for test with function -2
%{

Maurice.Clerc@WriteMe.com
2024-04-03

A simple deterministic optimisation method.
On dimension 1 you just need a ruler and a compass to apply it.
And also on higher dimension D ... assuming you have
a D-ruler and a D-compass!
%}
warning(’off’) % Don’t display warnings (in particular for singular matrix)
global noWayCount outsideCount
noWayCount=0;
outsideCount=0;
qAlways=true; % For (partly) discrete problem
% false (experimental) => discretisation only at the very end, on xBest
% true => at each time step
tQuantis=0; % For (partly) discrete problems. Number of improvements
adaptLBcoeff=0.5; %0.1; % ~=0 => adaptive lower bound

% 0 => only user defined lower bound (see get_func.m)
adaptOption=2; % 1, 2 or 3 Adaptation method.It may be useful to

% try the three.
% Possible plots for D=1 or 2
plotLandscape=true;
plotPoints=false;
plotLine=true;
plotDash=false; % Only for D=1
plotRun=(plotPoints || plotLine || plotDash) && D<=2;
fprintf(’\n===’)
% Define the problem
[xMin, xMax, lowerBound,quantis]=get_func(func,D);
tStart=cputime;
% -------------------------------- Initialisation
% Define all "corners"
x=corners(xMin,xMax);
% Evaluate them
[nPoints,~]=size(x);
for n=1:nPoints

f(n)=fit(x(n,:),func);
end
% Save the best
[fBest,Ind]=min(f);
fprintf(’\n Best after init %e’,fBest)
xBest=x(Ind,:);

30

fBestQ=fBest;
if plotRun

line=zeros(tMax+nPoints,D+1); % Just to speed up
for n=1:nPoints

line(n,1:D)=x(n,:); line(n,D+1)=f(n);
end

end
% --------------------------------
tp=nPoints;
for t=1:tMax

if adaptLBcoeff ~=0 % Adaptive lower bound
if ~isempty(quantis) && qAlways

fB=fBestQ;
else

fB=fBest;
end

switch adaptOption
case 1 % Method 1

if fB>=0
LB=adaptLBcoeff*fB;

else
LB=(1+adaptLBcoeff)*fB;

end

case 2 % Method 2
% LB=(lowerBound+fB)*adaptLBcoeff;
LB=adaptLBcoeff*lowerBound +(1-adaptLBcoeff)*fB;

case 3 % Method 3
if fB>0

LB=fB*adaptLBcoeff;
else
% LB=(lowerBound+fB)*adaptLBcoeff;

LB=adaptLBcoeff*lowerBound +(1-adaptLBcoeff)*fB;
end

end
else % User defined lower bound

LB=lowerBound;
end
[xn,fn]=new(x,f,xMin,xMax,func,LB,t);

if plotRun % Keep positions for future plots
tp=tp+1;
line(tp,1:D)=xn; line(tp,D+1)=fn;

31

end

if ~isempty(quantis) && qAlways
if fn<fBestQ % Keep the best solution after discretisation

xQ=quantify(xn,quantis);
fQ=fit(xQ,func);
tQuantis=tQuantis+1;
if fQ<fBestQ

fBestQ=fQ;
xBest=xQ;

end

end
else

if fn<fBest
fBest=fn;
xBest=xn;

end
end

% Define another line (D=1) or plane (D=2) or hyperplane (D>2)
for p=1:nPoints-1

x(p,:)=x(p+1,:);
f(p)=f(p+1);

end
x(nPoints,:)=xn;
f(nPoints)=fn;

end % end of the run
% -------------------------------- Results
if ~isempty(quantis) % Some problems may be (partly) discrete

if ~qAlways
xBest=quantify(xBest,quantis);
fBest=fit(xBest,func);
tQuantis=tQuantis+1;

else
fBest=fBestQ;

end
end
tEnd=cputime;
fprintf(’\n function %i, dimension %i, budget %i’,func,D,tMax);
if adaptLBcoeff~=0

switch adaptOption
case 1

fprintf(’\n Adaptation 1’)
fprintf(’\n Totally adaptive lower bound, coefficient %f’,adaptLBcoeff);

32

case 2
fprintf(’\n Adaptation 2’);
fprintf(’\n Mix user defined lower bound %e + adaptive, coefficient %f’,...

lowerBound,adaptLBcoeff);
fprintf(’\n (no matter the sign of fBest)’)

case 3
fprintf(’\n Adaptation 3’);
fprintf(’\n Mix user defined lower bound %e + adaptive, coefficient %f’,...

lowerBound,adaptLBcoeff);
fprintf(’\n (depending on the sign of fBest)’);

end
else

fprintf(’\n lowerBound %f’,lowerBound);
end
fprintf(’\n Evaluations %i’, tMax+nPoints+tQuantis);
if tQuantis>0

fprintf(’ (including %i for discretisation)’,tQuantis)
end
fprintf(’\n noWayCount %i’,noWayCount);
fprintf(’\n outsideCount %i’,outsideCount);
fprintf(’\n fBest %e’,fBest)
fprintf(’\n on \n’); disp(xBest)
fprintf(’\n CPU time %e \n’,tEnd-tStart)
% ================================== Plots
if plotRun figure; end
if plotLandscape && D<=2

fPlot(func,D,xMin,xMax,lowerBound);
hold on

end
if plotLine

switch D
case 1

plot(line(:,1), line(:,2),’r-’,’LineWidth’,2);
%axis([xMin,xMax,lowerBound, max(line(:,2))]);
hold on

case 2
plot3(line(:,1), line(:,2),line(:,3),’r-’,’LineWidth’,2);
hold on

end
end
if plotPoints

switch D
case 1

plot(line(:,1), line(:,2),’r.’,’MarkerSize’,12)
%axis([xMin,xMax,lowerBound, max(line(:,2))]);
hold on

33

case 2
plot3(line(:,1), line(:,2),line(:,3),’r.’,’MarkerSize’,12)
hold on

end
end
if plotDash && D==1

[tMax,~]=size(line);
for t=1:tMax-2

X=[line(t,1),line(t+2,1)];
Y=[line(t,2),lowerBound];
plot(X,Y,’r--’,’LineWidth’,1);
hold on

end

for t=1:tMax % Vertical lines
X=[line(t,1),line(t,1)];
Y=[lowerBound,line(t,2)];
plot(X,Y,’r--’,’LineWidth’,1);
hold on

end
%axis([xMin,xMax,lowerBound, max(line(:,2))]);

end
end

function C=corners(xMin,xMax)
D=numel(xMin);
C=combinRepet([0,1],D);
[nPoints,~]=size(C);
for n=1:nPoints

for d=1:D
if C(n,d)==0

C(n,d)=xMin(d);
else

C(n,d)=xMax(d);
end

end
end
end

function [xn,fn]=new(x,f,xMin,xMax,func,lowerBound,t)
% Construct the new point and evaluate it
global noWayCount outsideCount

34

% At the very beginning the intersection would necessarily be
% either "noWay" or "outside".
% We don’t count it and don’t check it.
if t==1

xn=out2in(f,x,lowerBound);
fn=fit(xn,func);

return
end
% -------------------
[~,D]=size(x);
% Define (hyper)planes (or lines if D=1)
for n=1:D

P=[];
F=[];
for d=1:D+1

rank=n+d-1;
P=[P;x(rank,:)];
F=[F;f(rank)];

end

Plane(n,1:D+1)=plane(P,F);
end
P=[];
for n=1:D

P=[P;Plane(n,:)];
end
[xn,noWay]=intersect(P,lowerBound);
if noWay % Weighted combination

noWayCount=noWayCount+1; %Just for information
xn=out2in(f,x,lowerBound);

else %Intersection but maybe outside the search space
outside=false;
for d=1:D

if xn(d)<xMin(d) || xn(d)>xMax(d)
outside=true;
outsideCount=outsideCount+1;
break;

end
end
% Note: For simplicity we apply the same modification for
% "noWay" and "outside". You may try something else.
if outside
xn=out2in(f,x,lowerBound);

end
end

35

fn=fit(xn,func);
end

function xq=quantify(x,quantis)
D=numel(x);
for d=1:D

q=quantis(d);
if q>0

xq(d)=q*nearest(x(d)/q);
else

xq(d)=x(d);
end

end
end

function [xn,noWay]=intersect(P,lowerBound)
[nbPlans,n]=size(P);
D=n-1;
P3=[];
for np=1:nbPlans

P3=[P3;lowerBound-P(np,n)];
end
M=[];
for np=1:nbPlans

M=[M;P(np,1:D)];
end
%fprintf(’\n M, P3 \n’); disp([M,P3])
xn=linsolve(M,P3);
% No solution
noWay=false;
check=find(xn==Inf);
%fprintf(’\n check1 ’); disp(check)
if ~isempty(check)

noWay=true;
else

check=find(xn==-Inf);
if ~isempty(check)

noWay=true;
else

for d=1:D
if isnan(xn(d))

noWay=true; break;
end

36

end
end

end

function C = combinRepet(list, K)
% Combinations with repetition
% We assume K >0
nL = length(list) ;

if K == 1 % Just the column vector
C = list(:) ;

else
[L{K:-1:1}] = ndgrid(1:nL) ;
rL = reshape(cat(K+1, L{:}), [], K) ;
C = list(rL) ;

end
end

function xn=out2in(f,x,lowerBound)
[~,D]=size(x);
if min(f)<0

deltaf=f-lowerBound;
else

deltaf=f;
end
w=sum(deltaf)-deltaf;
sw=sum(w);
for d=1:D

xn(d)=sum(w’.*x(:,d))/sw;
end
end

function A=plane(P,F)
[n,~]=size(P);
M=[P,ones(n,1)]; % Add a column of 1
A=linsolve(M,F)’;
end

function fPlot(func,D,xMin,xMax,lowerBound)
a=0.01; % For highly variable functions (like -2) use 0.001
step=a*max(xMax-xMin);

37

switch D
case 1 % D=1

X=xMin:step:xMax;
lX=length(X);

for i=1:lX
Y(i)=fit(X(i),func);

end
plot(X,Y)
axis([xMin,xMax,lowerBound, max(Y)]);
%axis([xMin,xMax]);

case 2 % D=2
X=xMin(1):step:xMax(1);
Y=xMin(2):step:xMax(2);

lX=length(X);
lY=length(Y);

[Xx,Yy]=meshgrid(X,Y);

for lx=1:lX
x=X(lx);
for ly=1:lY

y=Y(ly);
Z(lx,ly)=fit([x,y],func);

end
end
%surf(Xx,Yy,Z’);
mesh(Xx,Yy,Z’);
xlabel("x");
ylabel("y");
alpha 0.01 % For transparency

end
end

References
Clerc, Maurice (Mar. 2024a). “Iterative optimization -Complexity and Efficiency are not antinomic.”

doi: 10.13140/RG.2.2.26318.43847. url: https://hal.science/hal-04487869 (visited on
03/11/2024).

— (2024b). PSO programs. url: http://clerc.maurice.free.fr/pso/ (visited on 03/27/2024).
Das, Swagatam and P. N. Suganthan (2011). Problem Definitions and Evaluation Criteria for CEC

2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems.
Tech. rep.

38

Yang, Xin-She et al. (Jan. 2013). “True global optimality of the pressure vessel design problem: a
benchmark for bio-inspired optimisation algorithms.” In: International Journal of Bio-Inspired
Computation 5.6, pp. 329–335. issn: 1758-0366. doi: 10.1504/IJBIC.2013.058910. url:
http://www.inderscienceonline.com/doi/abs/10.1504/IJBIC.2013.058910 (visited on
11/05/2017).

39

