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ESTIMATES OF DISCRETE TIME DERIVATIVES FOR THE

PARABOLIC-PARABOLIC ROBIN-ROBIN COUPLING METHOD

ERIK BURMAN, REBECCA DURST, MIGUEL A. FERNÁNDEZ, JOHNNY GUZMÁN, AND SIJING LIU

Abstract. We consider a loosely coupled, non-iterative Robin-Robin coupling method proposed

and analyzed in [J. Numer. Math., 31(1):59–77, 2023] for a parabolic-parabolic interface problem

and prove estimates for the discrete time derivatives of the scalar field in different norms. When
the interface is flat and perpendicular to two of the edges of the domain we prove error estimates

in the H2-norm. Such estimates are key ingredients to analyze a defect correction method for the
parabolic-parabolic interface problem. Numerical results are shown to support our findings.

1. Introduction

Time splitting methods are popular for fluid-structure interaction (FSI) problems (see, e.g., [2, 16,
4, 17, 9, 10, 24, 25, 30, 28, 8])). One of the first stable splitting methods was proposed by Burman
and Fernández [16]. Later the same authors [17] developed a related method which was coined the
genuine Robin-Robin splitting method. Both these methods however suffered from a coupling between
the space and time discretization parameters that reduced the accuracy. This constraint was lifted
by eliminating the mesh dependence of the Robin parameter in [15]. The resulting method has been
analyzed in [15, 13, 11]. A very similar method was developed and analyzed by Bukac and Seboldt

[29]. In [13] it was proved for the FSI problems that the method converges as O(
√
∆t) where ∆t is the

time step. Numerical evidence suggested that those estimates were not sharp, and nearly first-order
accuracy was proved (mod possibly a logarithmic factor) in [11] for the analogue method applied to
the parabolic-parabolic and wave-parabolic problems. The analysis was extended to the FSI problem
in [22, 14]. For parabolic-parabolic couplings, there is a rich literature on splitting schemes motivated
by models of ocean-atmosphere interaction. In these models, friction forces on the interface render
the physical coupling dissipative through a Robin-type coupling condition, as discussed in [26]. This
aspect has been successfully exploited in the design of splitting methods [20, 21, 19, 33, 32, 34, 31, 27].
In our case, the coupling conditions consist of continuity of both the primal variables and the fluxes
across the interface. This coupling is conservative, and hence the approach suggested in the above
references fails. Instead, the splitting method uses a Robin condition for the computational coupling,
which turns out to lead to an unconditionally stable algorithm. An approach for conservative fluid-
fluid coupling problems was proposed in [23], using Nitsche or Robin type couplings similar to those
introduced in [17]. In a domain decomposition framework, a splitting method based on subcycling,
i.e., iterative solution, was proposed and analyzed in [6, 5]. In a similar spirit, but focusing on a multi-
timestep approach, a Robin-Robin coupling for time-dependent advection–diffusion was introduced in
[18], with numerical investigation of the stability.

It is well known that discrete time differences for time stepping methods (e.g., backward Euler
method) superconverge. In particular, when the backward Euler method is applied to a parabolic
problem, the first-time difference of the errors converge with order O((∆t)2). In this paper, we prove
similar results for the splitting method [11] applied to an interface problem. In particular, we will
prove second-order convergence for the scalar fields living on the two sub-domains in the L2-norm.
Moreover, in special configurations (i.e., the interface is flat and perpendicular to two sides of the
domain), we will be able to prove second-order convergence in the H2-norm. Numerically, the H2

second-order convergence rates seem to hold on more general configurations. This appears to be the
1
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first work where error estimates in stronger norms for splitting methods applied to interface problems
have been considered.

Error estimates of derivatives of the solution are, of course, of interest in their own right in many
applications. However, our main motivation for this work is the application of these estimates in
the analysis of a prediction-correction method [12] that we are concurrently developing. The aim is
to improve the first order convergence of [11] to second order convergence in time through a defect-
correction procedure [7]. The method in [12] uses a prediction step, which is exactly the splitting
method we analyze here. The second-order accuracy of the correction step depends on the second-
order accuracy of time differences of the prediction step, which is precisely the subject of this paper.

As for a single parabolic problem, the idea to prove higher convergence for time differences is to use
that the time differences satisfy a similar discrete equation with new right-hand sides that have time
differences themselves. Then, one uses the error analysis for the original method to proceed. In our
case, we will use the analysis provided in [11] to do this. The main difference here is that we consider
a problem with Neumann boundary conditions on two of the sides of a square instead of pure Dirichlet
boundary conditions, which were considered in [11]. This, in fact, simplifies the analysis slightly, and
additionally, one can remove the logarithmic factor that appears in [11]. It should be mentioned that
we only consider the time discrete case. The fully discrete case is more involved.

The rest of the paper is organized as follows. In Section 2, we introduce a parabolic-parabolic
interface problem and the corresponding Robin-Robin coupling method. In Section 3, we present
stability results for a Robin-Robin method. Section 4 is devoted to the error estimates. Finally, we
provide some numerical results in Section 5 and end with some concluding remarks in Section 6.

2. The Parabolic-Parabolic interface problem and Robin-Robin coupling method

Let Ω = (0, 1)2 and suppose that Ω = Ωf ∪Ωs∪Σ. The interface Σ is assumed to be a line segment
that intersects Ω on the two side edges; see Figure 1. We let ΓN denote the two side edges of Ω and
we let ΓD be the bottom and top edges of Ω. We let Γi

N = Γi
N ∩ ∂Ωi for i = s, f .

Ωf

Ωs Σ

Γf
D

Γs
D

Γf
N

Γf
N

Γs
N

Γs
N

Figure 1. The domains Ωf and Ωs with interface Σ and Neumann boundaries.

2.1. The Parabolic-parabolic problem. We consider the interface problem

∂tu− νf∆u =0, in [0, T ]× Ωf ,

u(0, x) =u0(x), on Ωf ,(2.1a)

u =0, on [0, T ]× Γf
D,

∂nu =0, on [0, T ]× Γf
N ,
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∂tw − νs∆w =0, in [0, T ]× Ωs,

w(0, x) =w0(x), on Ωs,(2.1b)

w =0, on [0, T ]× Γs
D,

∂nw =0, on [0, T ]× Γs
N ,

w − u =0, in [0, T ]× Σ,(2.1c)

νs∇w · ns + νf∇u · nf =0, in [0, T ]× Σ,(2.1d)

where nf and ns are the outward facing normal vectors for Ωf and Ωs, respectively. We assume that
the initial data is smooth and that u and w are smooth on Ωf and Ωs, respectively.

2.2. Variational form. Let (·, ·)i be the L2-inner product on Ωi for i = f, s. Moreover, let
〈
·, ·
〉
be

the L2-inner product on Σ. Let N > 0 be an integer, and define ∆t := T
N , and let un := u(tn, ·),

where tn := n∆t for n ∈ {0, 1, 2, . . . , N}. We consider the spaces

Vf :={v ∈ H1(Ωf ) : v = 0 on Γf
D},(2.2a)

Vs :={v ∈ H1(Ωs) : v = 0 on Γs
D},(2.2b)

Vg :=L2(Σ).(2.2c)

By setting ln+1 := νf∂nf
un+1 and assuming that ln+1 ∈ L2(Σ) for all n, the solution to (2.1) also

satisfies the following variational formulation, for n = 0, . . . , N − 1:

(∂tw
n+1, z)s + νs(∇wn+1,∇z)s +

〈
ln+1, z

〉
=0, z ∈ Vs,(2.3a)

(∂tu
n+1, v)f + νf (∇un+1,∇v)f −

〈
ln+1, v

〉
=0, v ∈ Vf ,(2.3b) 〈

wn+1 − un+1, µ
〉
=0, µ ∈ Vg.(2.3c)

2.3. Robin-Robin coupling: time discrete method. We define the discrete time derivatives:

∂∆tv
n+1 =

vn+1 − vn

∆t
,

and

∂2∆tv
n+1 =

vn+1 − 2vn + vn−1

(∆t)2
.

The Robin-Robin method solves sequentially:

∂∆tw
n+1 − νs∆w

n+1 =0, on Ωs,(2.4a)

wn+1 =0, on Γs
D,(2.4b)

∂nw
n+1 =0, on Γs

N ,(2.4c)

αwn+1 + νs∂ns
wn+1 =αun − νf∂nf

un on Σ.(2.4d)

∂∆tu
n+1 − νf∆u

n+1 =0, in Ωf ,(2.5a)

un+1 =0, on Γf
D,(2.5b)

∂nu
n+1 =0, on Γf

N ,(2.5c)

αun+1 + νf∂nf
un+1 =αwn+1 + νf∂nf

un on Σ.(2.5d)



4 ERIK BURMAN, REBECCA DURST, MIGUEL A. FERNÁNDEZ, JOHNNY GUZMÁN, AND SIJING LIU

We let λn+1 = νf∂nf
un+1. Then, the time semi-discrete solution solves the following: Find wn+1 ∈ Vs,

un+1 ∈ Vf , and λ
n+1 ∈ Vg such that, for n ≥ 0,

(∂∆tw
n+1, z)s + νs(∇wn+1,∇z)s + α

〈
wn+1 − un, z

〉
+
〈
λn, z

〉
=0, z ∈ Vs,(2.6a)

(∂∆tu
n+1, v)f + νf (∇un+1,∇v)f −

〈
λn+1, v

〉
=0, v ∈ Vf ,(2.6b) 〈

α(un+1 − wn+1) + (λn+1 − λn), µ
〉
=0, µ ∈ Vg,(2.6c)

with u0 = u0(x) and w
0 = w0(x).

One can re-write (2.6c) as

(2.7) α(un+1 − wn+1) = λn − λn+1, on Σ.

3. Stability Result

In this section we will prove stability results for the Robin-Robin method with a more general
right-hand side: Find wn+1 ∈ Vs, u

n+1 ∈ Vf , such that, for n ≥ 0,

∂∆tw
n+1 − νs∆w

n+1 =bn+1
1 , on Ωs,(3.1a)

wn+1 =0, on Γs
D,(3.1b)

∂nw
n+1 =0, on Γs

N ,(3.1c)

αwn+1 + νs∂ns
wn+1 =αun − νf∂nf

un + εn+1
1 on Σ.(3.1d)

∂∆tu
n+1 − νf∆u

n+1 =bn+1
2 , in Ωf ,(3.2a)

un+1 =0, on Γf
D,(3.2b)

∂nu
n+1 =0, on Γf

N ,(3.2c)

αun+1 + νf∂nf
un+1 =αwn+1 + νf∂nf

un + εn+1
2 on Σ,(3.2d)

with

(3.3) u0 = w0 = b0i = ε0i = 0 i = 1, 2.

We assumed zero initial conditions for simplicity and this will be enough for the error analysis below.
When analyzing the error of the Robin-Robin method the terms {bni }, {εni } will be the residual terms.

Remark 3.1 (Regularity). We assume that un+1 ∈ H2(Ωf ) and w
n+1 ∈ H2(Ωs) for the remainder of

this paper.

Remark 3.2 (Notations). For any negative superscripts, we set the values of the terms on the right-
hand side to be zero, i.e.,

(3.4) uj = wj = bji = εji = 0 j < 0, i = 1, 2.

We let λn+1 = νf∂nf
un+1 and we see that the above solution satisfies, for n ≥ 0,

(∂∆tw
n+1, z)s + νs(∇wn+1,∇z)s + α

〈
wn+1 − un, z

〉
+
〈
λn, z

〉
=L1(z), z ∈ Vs,(3.5a)

(∂∆tu
n+1, v)f + νf (∇un+1,∇v)f −

〈
λn+1, v

〉
=L2(v), v ∈ Vf ,(3.5b) 〈

α(un+1 − wn+1) + (λn+1 − λn), µ
〉
=L3(µ), µ ∈ Vg,(3.5c)
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where

L1(z) :=(bn+1
1 , z)s +

〈
εn+1
1 , z

〉
,

L2(v) :=(bn+1
2 , v)f ,

L3(µ) :=
〈
εn+1
2 , µ

〉
.

For convenience we rewrite (3.5c) as:

(3.6) α(un+1 − wn+1) = λn − λn+1 + εn+1
2 , on Σ.

We will need to define the following quantities for the stability estimates.

Zn+1(ψ, ϕ, θ) :=
1

2
∥ϕn+1∥2L2(Ωf )

+
1

2
∥ψn+1∥2L2(Ωs)

+
∆tα

2
∥ϕn+1∥2L2(Σ) +

∆t

2α
∥θn+1∥2L2(Σ),

Sn+1(ψ, ϕ, θ) :=∆t(νf∥∇ϕn+1∥2L2(Ωf )
+ νs∥∇ψn+1∥2L2(Ωs)

) +
1

2
(∥ψn+1 − ψn∥2L2(Ωs)

+ ∥ϕn+1 − ϕn∥2L2(Ωf )
)

+
α∆t

2
∥ϕn+1 − ϕn +

1

α
(θn+1 − θn)∥2L2(Σ).

We first state a preliminary result.

Lemma 3.3. Let w, u solve (3.1) and (3.2) then the following identity holds.

Zn+1(w, u, λ) + Sn+1(w, u, λ) = Zn(w, u, λ) + ∆tFn+1(w, u) +
∆t

α

〈
εn+1
2 , λn+1

〉
,(3.7)

where

Fn+1(w, u) :=(bn+1
1 , wn+1)s + (bn+1

2 , un+1)f +
〈
εn+1
1 + εn+1

2 , wn+1
〉
+
〈
un+1 − un, εn+1

2

〉
.

Proof. To begin, we set z = ∆t wn+1 in (3.5a) and v = ∆t un+1 in (3.5b) to get

1

2
∥wn+1∥2L2(Ωs)

+
1

2
∥un+1∥2L2(Ωf )

+
1

2
∥wn+1 − wn∥2L2(Ωs)

+
1

2
∥un+1 − un∥2L2(Ωf )

+ νs∆t∥∇wn+1∥2L2(Ωs)
+ νf∆t∥∇un+1∥2L2(Ωf )

(3.8)

=
1

2
∥wn∥2L2(Ωs)

+
1

2
∥un∥2L2(Ωf )

+∆tJn+1,

where

(3.9) Jn+1 :=− α
〈
wn+1 − un, wn+1

〉
−
〈
λn, wn+1

〉
+
〈
λn+1, un+1

〉
+ L1(w

n+1) + L2(u
n+1).

Manipulating the first three terms in (3.9) and using (3.6), we obtain

(3.10) − α
〈
wn+1 − un, wn+1

〉
−
〈
λn, wn+1

〉
+
〈
λn+1, un+1

〉
= Jn+1 +

1

α

〈
εn+1
2 , λn+1

〉
+
〈
εn+1
2 , wn+1

〉
−
〈
un − un+1, εn+1

2

〉
,

with

Jn+1 := α
〈
un − un+1, un+1

〉
+

1

α

〈
λn − λn+1, λn+1

〉
−
〈
un − un+1, λn − λn+1

〉
.

One can easily show that

Jn+1 =
α

2
(∥un∥2L2(Σ) − ∥un+1∥2L2(Σ)) +

1

2α
(∥λn∥2L2(Σ) − ∥λn+1∥2L2(Σ))

− α

2
∥(un − un+1) +

1

α
(λn − λn+1)∥2L2(Σ).
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By combining this identity with (3.9) and (3.10), we arrive at

Jn+1 =
α

2
(∥un∥2L2(Σ) − ∥un+1∥2L2(Σ)) +

1

2α
(∥λn∥2L2(Σ) − ∥λn+1∥2L2(Σ))

− α

2
∥(un − un+1) +

1

α
(λn − λn+1)∥2L2(Σ)

+ L1(w
n+1) + L2(u

n+1) +
1

α

〈
εn+1
2 , λn+1

〉
+
〈
εn+1
2 , wn+1

〉
+
〈
εn+1
2 , un+1 − un

〉
.

If we plug in these results to (3.8) we arrive at the identity. □

We can now state an identity for the last term in (3.7).

Lemma 3.4. Let w, u solve (3.1) and (3.2) and assuming that εn+1
2 ∈ Vf then the following identity

holds

∆t

α

N−1∑
n=0

〈
εn+1
2 , λn+1

〉
=− ∆t

α

N−1∑
n=1

(un, ∂∆tε
n+1
2 )f +

∆t

α

N−1∑
n=0

(
νf (∇un+1,∇εn+1

2 )f − (bn+1
2 , εn+1

2 )f

)
+

1

α
(uN , εN2 )f .

Proof. We first take v = ∆tεn+1
2 in (3.5b) to obtain

∆t
〈
εn+1
2 , λn+1

〉
= (un+1 − un, εn+1

2 )f +∆tνf (∇un+1,∇εn+1
2 )f −∆t(bn+1

2 , εn+1
2 )f .

If we take the sum over n = 0, . . . , N − 1 and use summation by parts, we get

∆t

N−1∑
n=0

〈
εn+1
2 , λn+1

〉
=−∆t

N−1∑
n=1

(un, ∂∆tε
n+1
2 )f +∆t

N−1∑
n=0

(
νf (∇un+1,∇εn+1

2 )f − (bn+1
2 , εn+1

2 )f

)
+ (uN , εN2 )f − (u0, ε12).

We conclude the proof by using (3.3). □

To state the stability estimate we need the next definition.

ΞN (m1,m2, s1, s2) :=∆t

N−1∑
n=0

[
1

νs
∥mn+1

1 ∥2L2(Ωs)
+

(
1

νf
+ 1

)
∥mn+1

2 ∥2L2(Ωf )

]

+∆t

N−1∑
n=0

( 1

νfα2
∥∂∆ts

n+1
2 ∥2L2(Ωf )

+
νf
α2

∥∇sn+1
2 ∥2L2(Ωf )

+
1

α
∥sn+1

2 ∥2L2(Ωf )

)
+∆t

N−1∑
n=0

( 1

νs
∥sn+1

1 + sn+1
2 ∥2L2(Σ) +

1

νf
∥sn+1

2 ∥2L2(Σ)

)
+

1

α2
∥sN2 ∥2L2(Ωf )

.

Theorem 3.5. Let w, u solve (3.1) and (3.2) and assuming that εn+1
2 ∈ Vf then the following estimate

holds

ZN (w, u, λ) +

N−1∑
n=0

Sn+1(w, u, λ) ≤ CΞN (b1, b2, ε1, ε2).

Proof. Using Lemma 3.3 and taking the sum we get

ZN (w, u, λ) +

N−1∑
n=0

Sn+1(w, u, λ) = Z0(w, u, λ) + ∆t

N−1∑
n=0

Fn+1(w, u) +
∆t

α

N−1∑
n=0

〈
εn+1
2 , λn+1

〉
.
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Using the Poincaré and trace inequalities, we easily obtain the following bound

∆t

N−1∑
n=0

Fn+1(w, u) ≤1

8

N−1∑
n=0

Sn+1(w, u, λ) + C∆t

N−1∑
n=0

(
1

νs
∥bn+1

1 ∥2L2(Ωs)
+

1

νf
∥bn+1

2 ∥2L2(Ωf )
)

+ C∆t

N−1∑
n=0

( 1

νs
∥εn+1

1 + εn+1
2 ∥2L2(Σ) +

1

νf
∥εn+1

2 ∥2L2(Σ)

)
.

Using Lemma 3.4 and the Poincaré inequality we have

∆t

α

N−1∑
n=0

〈
εn+1
2 , λn+1

〉
≤1

4
∥uN∥2L2(Ωf )

+
1

8

N−1∑
n=0

Sn+1(w, u, λ)

+ C∆t

N−1∑
n=0

( 1

νfα2
∥∂∆tε

n+1
2 ∥2L2(Ωf )

+
νf
α2

∥∇εn+1
2 ∥2L2(Ωf )

+
1

α
∥εn+1

2 ∥2L2(Ωf )

)
+ C

∆t

α

N−1∑
n=0

∥bn+1
2 ∥2L2(Ωf )

+ C
1

α2
∥εN2 ∥2L2(Ωf )

.

It follows from (3.3) and the definition of Z0 that Z0(w, u, λ) = 0. We finish the proof by combining
the above estimates. □

Due to Remark 3.2, the discrete time derivative of u and w solves (3.1) and (3.2) with discrete time
derivatives of the data as the right-hand sides, we immediately get the following.

Corollary 3.6. Let w, u solve (3.1) and (3.2) and assuming that ∂∆tε
n+1
2 ∈ Vf then

ZN (∂∆tw, ∂∆tu, ∂∆tλ) +

N−1∑
n=0

Sn+1(∂∆tw, ∂∆tu, ∂∆tλ) ≤CΞN (∂∆tb1, ∂∆tb2, ∂∆tε1, ∂∆tε2)

Similarly, the second-order discrete time derivative of u and w solves (3.1) and (3.2) with the
second-order discrete time derivatives of the data as the right-hand sides, we also have the following.

Corollary 3.7. Let w, u solve (3.1) and (3.2) and assuming that ∂2∆tε
n+1
2 ∈ Vf then

ZN (∂2∆tw, ∂
2
∆tu, ∂

2
∆tλ) +

N−1∑
n=0

Sn+1(∂2∆tw, ∂
2
∆tu, ∂

2
∆tλ) ≤CΞN (∂2∆tb1, ∂

2
∆tb2, ∂

2
∆tε1, ∂

2
∆tε2)

Remark 3.8. We can also analyze the problem (3.1)-(3.2) but replacing the homogeneous Neumann
boundary conditions with homogeneous Dirichlet boundary conditions. In other words, the problem
with pure Dirichlet boundary conditions that is Γi

D = ∂Ωi\Σ for i = s, f . In this case exactly the same
estimates hold. Now of course, we assume εn2 ∈ Vf where Vf has zero Dirichlet boundary conditions

on Γf
D = ∂Ωf\Σ.

3.1. H2 stability in a special case. In this section we prove H2 estimates for u in a special
configuration. Again, we assume that Ω = (0, 1)2, and now assume Σ is parallel to the x-axis (see
Figure 2). We take advantage of the fact that the sides composing ΓN are perpendicular to the x-axis
and, moreover, we also notice that Σ is parallel to the x-axis.

Then, in this particular case we have, for n ≥ 0,

∂∆t∂xw
n+1 − νs∆∂xw

n+1 =∂xb
n+1
1 , on Ωs,(3.11a)

∂xw
n+1 =0, on Γs

D,(3.11b)

∂xw
n+1 =0, on Γs

N ,(3.11c)

α∂xw
n+1 + νs∂nf

∂xw
n+1 =α∂xu

n − νf∂nf
∂xu

n + ∂xε
n+1
1 on Σ.(3.11d)
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Ωf

Ωs

Σ

Γf
D

Γs
D

Γf
N Γf

N

Γs
N Γs

N

Figure 2. The domains Ωf and Ωs with horizontal interface Σ.

∂∆t∂xu
n+1 − νf∆∂xu

n+1 =∂xb
n+1
2 , in Ωf ,(3.12a)

∂xu
n+1 =0, on Γs

D,(3.12b)

∂xu
n+1 =0, on Γs

N ,(3.12c)

α∂xu
n+1 + νf∂nf

∂xu
n+1 =α∂xw

n+1 + νf∂nf
∂xu

n + ∂xε
n+1
2 on Σ,(3.12d)

with

(3.13) ∂xw
0 = ∂xu

0 = ∂xb
0
i = ∂xε

0
i = 0 i = 1, 2,

according to (3.3).
We then get an immediate Corollary from Remark 3.8 and Theorem 3.5.

Corollary 3.9. Suppose that Σ is perpendicular to the two sides of ΓN as in Figure 2. Let w, u solve

(3.1) and (3.2) and assuming that ∂xε
n
2 ∈ {v ∈ H1(Ωf ) : v = 0 on ∂Ωf\Σ} on Γf

N then the following
estimate holds

ZN (∂xw, ∂xu, ∂xλ) +

N−1∑
n=0

Sn+1(∂xw, ∂xu, ∂xλ) ≤ CΞN (∂xb1, ∂xb2, ∂xε1, ∂xε2).

Corollary 3.10. Under the hypothesis of Corollaries 3.9 and 3.6 we have

∆t

N−1∑
n=0

νf∥D2un+1∥2L2(Ωf )
≤C
(
ΞN (∂∆tb1, ∂∆tb2, ∂∆tε1, ∂∆tε2) + ΞN (∂xb1, ∂xb2, ∂xε1, ∂xε2)

)
+ C∆t

N−1∑
n=0

νf∥bn+1
1 ∥2L2(Ωf )

.

Proof. From Corollary 3.9 we get

∆t

N−1∑
n=0

νf∥∇∂xun+1∥2L2(Ωf )
≤ CΞN (∂xb1, ∂xb2, ∂xε1, ∂xε2).
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Moreover, using (3.2a) and Corollary 3.6, we have

∆t

N−1∑
n=0

νf∥∆un+1∥2L2(Ωf )
=∆t

N−1∑
n=0

νf∥∂∆tu
n+1 − bn+1

1 ∥2L2(Ωf )

≤CΞN (∂∆tb1, ∂∆tb2, ∂∆tε1, ∂∆tε2) + 2∆t

N−1∑
n=0

νf∥bn+1
1 ∥2L2(Ωf )

.

Finally, using the following estimate,

∆t

N−1∑
n=0

νf∥∂2yun+1∥2L2(Ωf )
≤ 2∆t

N−1∑
n=0

νf

(
∥∂2xun+1∥2L2(Ωf )

+ ∥∆un+1∥2L2(Ωf )

)
,

and combining the above estimates we obtain the result. □

4. Error estimates of the Robin-Robin method

In this section we apply the stability results of the previous sections to obtain error estimates of
the Robin-Robin splitting method (2.4)-(2.5) applied to (2.1). We use the following notation for the
errors :

Un :=un − un, Wn := wn − wn, Λn := ln − λn.

We use the convention uj = uj = u0 and wj = wj = w0 for j < 0.
Then the error equations read, for n ≥ 0,

∂∆tW
n+1 − νs∆W

n+1 =− hn+1
1 , on Ωs,(4.1a)

Wn+1 =0, on Γs
D,(4.1b)

∂nW
n+1 =0, on Γs

N ,(4.1c)

αWn+1 + νs∂ns
Wn+1 =αUn − νf∂nf

Un + αgn+1
1 − gn+1

2 on Σ.(4.1d)

∂∆tU
n+1 − νf∆U

n+1 =− hn+1
2 , in Ωf ,(4.2a)

Un+1 =0, on Γs
D,(4.2b)

∂nU
n+1 =0, on Γs

N ,(4.2c)

αUn+1 + νf∂nf
Un+1 =αWn+1 + νf∂nf

Un + gn+1
2 on Σ.(4.2d)

where

hn+1
1 := ∂tw

n+1 − ∂∆tw
n+1, gn+1

1 := un+1 − un,

hn+1
2 := ∂tu

n+1 − ∂∆tu
n+1, gn+1

2 := ln+1 − ln.

The equations (4.1)-(4.2) are well-defined and we also have

(4.3) W 0 = U0 = h0i = g0i = 0, i = 1, 2,

(4.4) ∂∆tW
0 = ∂∆tU

0 = ∂∆th
0
i = ∂∆tg

0
i = 0, i = 1, 2,

(4.5) ∂2∆tW
0 = ∂2∆tU

0 = ∂2∆th
0
i = ∂2∆tg

0
i = 0, i = 1, 2.

We then extend l to Ωf in a natural way. We let l̃ = ϕνf∇u · nf where ϕ is a function that is one

on Σ and vanishes on Γf
D. Then, we define g̃n+1

2 = l̃n+1 − l̃n. By construction g̃n+1
2 ∈ Vf and g̃n2 = gn2

on Σ. We immediately get the following result if we apply Theorem 3.5 and Corollary 3.6.
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Corollary 4.1. Let u,w solve (2.1) and w, u solve (2.4) and (2.5) then

ZN (W,U,Λ) +

N−1∑
n=0

Sn+1(W,U,Λ) ≤ CΞN (h1, h2, αg1 − g2, g̃2),(4.6)

(4.7)
ZN (∂∆tW,∂∆tU, ∂∆tΛ) +

N−1∑
n=0

Sn+1(∂∆tW,∂∆tU, ∂∆tΛ)

≤ CΞN (∂∆th1, ∂∆th2, α∂∆tg1 − ∂∆tg2, ∂∆tg̃2),

and

(4.8)
ZN (∂2∆tW,∂

2
∆tU, ∂

2
∆tΛ) +

N−1∑
n=0

Sn+1(∂2∆tW,∂
2
∆tU, ∂

2
∆tΛ)

≤ CΞN (∂2∆th1, ∂
2
∆th2, α∂

2
∆tg1 − ∂2∆tg2, ∂

2
∆tg̃2).

Then, it is quite straightforward to get a convergence rate by estimating the right-hand sides. The
proof of the following Corollary can be found in Appendix A.

Corollary 4.2. Let u,w solve (2.1) and w, u solve (2.4) and (2.5) then

ZN (W,U,Λ) +

N−1∑
n=0

Sn+1(W,U,Λ) ≤ C(∆t)2Y,(4.9)

ZN (∂∆tW,∂∆tU, ∂∆tΛ) +

N−1∑
n=0

Sn+1(∂∆tW,∂∆tU, ∂∆tΛ) ≤ C(∆t)2Y,(4.10)

and

ZN (∂2∆tW,∂
2
∆tU, ∂

2
∆tΛ) +

N−1∑
n=0

Sn+1(∂2∆tW,∂
2
∆tU, ∂

2
∆tΛ) ≤ C(∆t)2Y,(4.11)

where Y is defined as

(4.12)

Y :=
1

νs
∥∂2tw∥2L2(0,T ;L2(Ωs))

+ (
1

νf
+ 1)∥∂2t u∥2L2(0,T ;L2(Ωf ))

)

+ (
νf
α2

+
ν2f
α
)∥∂tu∥2L2(0,T ;H1(Ωf ))

+
(νf )

3

α2
∥∂tu∥2L2(0,T ;H2(Ωf ))

+
α2

νs
∥∂tu∥2L2(0,T ;L2(Σ)) +

1

νf
∥∂tl∥2L2(0,T ;L2(Σ)) +

ν2f
α2

∥∂tu∥2L∞(0,T ;H1(Ωf ))
,

Y is defined as

(4.13)

Y :=
1

νs
∥∂3tw∥2L2(0,T ;L2(Ωs))

+ (
1

νf
+ 1)∥∂3t u∥2L2(0,T ;L2(Ωf ))

)

+ (
νf
α2

+
ν2f
α
)∥∂2t u∥2L2(0,T ;H1(Ωf ))

+
(νf )

3

α2
∥∂2t u∥2L2(0,T ;H2(Ωf ))

+
α2

νs
∥∂2t u∥2L2(0,T ;L2(Σ)) +

1

νf
∥∂2t l∥2L2(0,T ;L2(Σ)) +

ν2f
α2

∥∂2t u∥2L∞(0,T ;H1(Ωf ))
,
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and Y is defined as

(4.14)

Y :=
1

νs
∥∂4tw∥2L2(0,T ;L2(Ωs))

+ (
1

νf
+ 1)∥∂4t u∥2L2(0,T ;L2(Ωf ))

)

+ (
νf
α2

+
ν2f
α
)∥∂3t u∥2L2(0,T ;H1(Ωf ))

+
(νf )

3

α2
∥∂3t u∥2L2(0,T ;H2(Ωf ))

+
α2

νs
∥∂3t u∥2L2(0,T ;L2(Σ)) +

1

νf
∥∂3t l∥2L2(0,T ;L2(Σ)) +

ν2f
α2

∥∂3t u∥2L∞(0,T ;H1(Ωf ))
.

4.1. H2 error estimates in a special case. Here we assume that we have the configuration as

in Figure 1. Then, we see that ∂xg̃2
n+1 vanishes on Γf

N and Γf
D and hence belongs to Vf . Hence,

Corollary 3.10 gives the following corollary.

Corollary 4.3. Suppose that Σ is perpendicular to the two sides of ΓN as in Figure 2. Let u,w solve
(2.1) and w, u solve (2.4) and (2.5) then

∆t
N−1∑
n=0

νf∥D2(Un+1)∥2L2(Ωf )
≤CΞN (∂∆th1, ∂∆th2, ∂∆t(αg1 − g2), ∂∆tg̃2)

+ CΞN (∂xh1, ∂xh2, ∂x(αg1 − g2), ∂∆t∂xg̃2)

+ C∆t

N−1∑
n=0

νf∥hn+1
1 ∥2L2(Ωf )

.

Since ∂∆tU and ∂∆tW satisfy the same equations as U,W with time difference right-hand sides,
we have

Corollary 4.4. Suppose that Σ is perpendicular to the two sides of ΓN as in Figure 2. Let u,w solve
(2.1) and w, u solve (2.4) and (2.5), then

(4.15)

∆t

N−1∑
n=0

νf∥D2(∂∆tU
n+1)∥2L2(Ωf )

≤CΞN (∂2∆th1, ∂
2
∆th2, ∂

2
∆t(αg1 − g2), ∂

2
∆tg̃2)

+ CΞN (∂∆t∂xh1, ∂∆t∂xh2, ∂∆t∂x(αg1 − g2), ∂∆t∂xg̃2)

+ C∆t

N−1∑
n=0

νf∥∂∆th
n+1
1 ∥2L2(Ωf )

.

Then, it is straight-forward to obtain the convergence rate by estimate the right-hand sides. See
Appendix B for a proof for the following Corollary.

Corollary 4.5. Suppose that Σ is perpendicular to the two sides of ΓN as in Figure 2. Let u,w solve
(2.1) and w, u solve (2.4) and (2.5) then

∆t

N−1∑
n=0

νf∥D2(∂∆tU
n+1)∥2L2(Ωf )

≤ C(∆t)2(Y+ Y+ νf∥∂3tw∥2L2((0,T ),L2(Ωs))
)

where Y is defined in Corollary 4.2 and Y is defined as,

(4.16)

Y :=
1

νs
∥∂x∂3tw∥2L2(0,T ;L2(Ωs))

+ (
1

νf
+ 1)∥∂x∂3t u∥2L2(0,T ;L2(Ωf ))

)

+ (
νf
α2

+
ν2f
α
)∥∂x∂2t u∥2L2(0,T ;H1(Ωf ))

+
(νf )

3

α2
∥∂x∂2t u∥2L2(0,T ;H2(Ωf ))

+
α2

νs
∥∂x∂2t u∥2L2(0,T ;L2(Σ)) +

1

νf
∥∂x∂2t l∥2L2(0,T ;L2(Σ)) +

ν2f
α2

∥∂x∂2t u∥2L∞(0,T ;H1(Ωf ))
.
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5. Numerical Experiments

In this section we provide numerical experiments that agree with our theoretical results. We let

eu = ∥UN∥L2(Ωf ), e1,u = ∥UN − UN−1∥L2(Ωf ),

e2,u = ∥(UN − UN−1)− (UN−1 − UN−2)∥L2(Ωf ),

eλ = ∥ΛN∥L2(Σ), e1,λ = ∥ΛN − ΛN−1∥L2(Σ)

e1,u,2 = ∥UN − UN−1∥H2(Ωf ).

All numerical experiments are performed using FEniCS and multiphenics [1, 3]. Although we only
analyze the semi-discrete method, here we present the results for a fully discrete method where we use
the piecewise linear finite element method for the spatial discretization, except for the computation of
e1,u,2, where we use the piecewise quadratic finite element method because piecewise linear function
do not approximation a function well in H2. In addition, we also present convergence rates for the
Lagrange multiplier.

Example 5.1. We consider the domain Ω = (0, 1)2, Ωf = (0, 1) × (0, .75) and Ωs = (0, 1) × (.75, 1).
See Figure 2 for an illustration. We take νf = 1 = νs and take the solution of (2.3) to be

w = u = e−2π2t cos(πx1) sin(πx2).

We take h = ∆t, T = 0.25 and α = 4 where h is the mesh size of the triangulation.

∆t eu rates e1,u rates e2,u rates
(1/2)2 7.65e-02 - 7.73e-02 - 6.57e+01 -
(1/2)3 3.72e-02 1.04 5.87e-02 0.40 1.55e-01 8.73
(1/2)4 1.74e-02 1.10 1.47e-02 1.99 7.91e-03 4.29
(1/2)5 7.95e-03 1.13 3.58e-03 2.04 1.27e-03 2.64
(1/2)6 3.52e-03 1.17 8.41e-04 2.09 1.75e-04 2.85
(1/2)7 1.62e-03 1.12 1.96e-04 2.10 2.15e-05 3.03
(1/2)8 7.70e-04 1.07 4.69e-05 2.06 2.62e-06 3.04
(1/2)9 3.75e-04 1.04 1.14e-05 2.04 3.22e-07 3.02

Table 1. Errors and convergence rates of UN for Example 5.1

∆t eλ rates e1,λ rates e1,u,2 rates
(1/2)2 2.55e-01 - 2.55e-01 - 1.33e+01 -
(1/2)3 9.73e-02 1.39 2.41e-01 0.08 1.11e+01 0.26
(1/2)4 3.06e-02 1.67 4.41e-02 2.45 2.61e-01 2.08
(1/2)5 1.62e-02 0.92 6.69e-03 2.72 5.76e-02 2.18
(1/2)6 9.20e-03 0.82 2.06e-03 1.70 1.40e-02 2.04
(1/2)7 4.55e-03 1.01 5.28e-04 1.97 3.32e-03 2.07
(1/2)8 2.23e-03 1.03 1.31e-04 2.01 8.03e-04 2.05
(1/2)9 1.10e-03 1.02 3.26e-05 2.01 1.97e-04 2.03

Table 2. Error and convergence rates of ΛN for Example 5.1

As we can see from Tables 1-2, the L2 error at the final step, eu is of order (∆t) whereas the
difference of two consecutive errors, e1,u is (∆t)2 and the second difference, e2,u is (∆t)3. The L2

error of the Lagrange multiplier at the final time, eλ is of order ∆t and the difference e1,λ, is of order
(∆t)2. It is also clear that the H2 error of the difference of UN , e1,u,2 is of order (∆t)2 as we proved
in Corollary 4.5.
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Example 5.2. In this example, we test our algorithm for a non-horizontal interface problem. We
consider the domain Ω = (0, 1)2 and we let Σ be defined as the straight line connecting (0, 0.25) and
(1, 0.75). We then define Ωs as the region above Σ and Ωf as the region below Σ. We take νf = 1 = νs
and take the solution of (2.3) to be

w = u = e−2π2t cos(πx1) sin(πx2).

Other parameters are identical to those of Example 5.1.

We report the convergence results in Tables 3-4. We again observe expected convergence rates for
both UN and ΛN . It indicates that our methods also work for a more general interface problem.

∆t eu rates e1,u rates e2,u rates
(1/2)2 8.05e-02 - 9.64e-02 - 4.87e+01 -
(1/2)3 5.10e-02 0.66 4.23e-02 1.19 1.36e-01 8.48
(1/2)4 2.46e-02 1.05 1.57e-02 1.43 4.94e-03 4.78
(1/2)5 9.20e-03 1.42 4.07e-03 1.95 1.47e-03 1.74
(1/2)6 3.52e-03 1.38 8.46e-04 2.27 1.82e-04 3.02
(1/2)7 1.52e-03 1.22 1.86e-04 2.18 2.11e-05 3.11
(1/2)8 7.00e-04 1.11 4.33e-05 2.10 2.49e-06 3.08
(1/2)9 3.36e-04 1.06 1.04e-05 2.06 3.02e-07 3.04

Table 3. Errors and convergence rates of UN for Example 5.2

∆t eλ rates e1,λ rates e1,u,2 rates
(1/2)2 8.51e-01 - 8.54e-01 - 2.04e+01 -
(1/2)3 5.01e-01 0.76 3.81e-01 1.16 9.67e-01 1.08
(1/2)4 1.94e-01 1.37 1.45e-01 1.39 3.66e-01 1.40
(1/2)5 5.34e-02 1.86 2.44e-02 2.58 9.08e-02 2.01
(1/2)6 1.84e-02 1.54 4.38e-03 2.48 1.86e-02 2.29
(1/2)7 7.49e-03 1.30 9.10e-04 2.27 4.04e-03 2.20
(1/2)8 3.39e-03 1.14 2.07e-04 2.13 9.31e-04 2.11
(1/2)9 1.61e-03 1.07 4.95e-05 2.07 2.23e-04 2.06

Table 4. Error and convergence rates of ΛN for Example 5.2

6. Concluding Remarks

We analyzed the Robin-Robin coupling methods [11] for parabolic\parabolic interface problems and
proved higher convergence rates in time for the first-order and second-order discrete time derivatives.
We also prove H2 estimates of the discrete time derivatives in a special case. All the estimates in
this work are key ingredients in proving that a prediction correction method [12] produces a O((∆t)2)
convergence rate.
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Appendix A. Sketch of Proof: Corollary 4.2

Proof of (4.9) in Corollary 4.2. To prove (4.9), it is suffice to bound the term ΞN (h1, h2, αg1−g2, g̃2).
Note that since gn+1

2 = g̃n+1
2 on Σ, we have

ΞN (h1, h2, αg1 − g2, g̃2) :=∆t

N−1∑
n=0

(
1

νs
∥hn+1

1 ∥2L2(Ωs)
+ (

1

νf
+ 1)∥hn+1

2 ∥2L2(Ωf )
)

+ ∆t

N−1∑
n=0

( 1

νfα2
∥∂∆tg̃

n+1
2 ∥2L2(Ωf )

+
νf
α2

∥∇g̃n+1
2 ∥2L2(Ωf )

+
1

α
∥g̃n+1

2 ∥2L2(Ωf )

)
+∆t

N−1∑
n=0

( 1

νs
∥αg1∥2L2(Σ) +

1

νf
∥g̃n+1

2 ∥2L2(Σ)

)
+

1

α2
∥g̃N2 ∥2L2(Ωf )

= T1 + T2 + . . .+ T8.

All the terms in ΞN (h1, h2, αg1 − g2, g̃2) can be easily estimated by (A.2b) except the T3 and T4. For
T3, it follows from (A.5) that,

(A.1)

∆t

N−1∑
n=0

1

νfα2
∥∂∆tg̃

n+1
2 ∥2L2(Ωf )

= (∆t)3
N−1∑
n=0

1

νfα2
∥∂2∆t l̃

n+1∥2L2(Ωf )

≤ C
(∆t)2

νfα2
∥∂2t l̃∥2L2(0,T ;L2(Ωf ))

≤ C(∆t)2
νf
α2

∥∂2t u∥2L2(0,T ;H1(Ωf ))
.

The term T4 can be bounded as follows,

∆t
νf
α2

N−1∑
n=0

∥∇g̃n+1
2 ∥2L2(Ωf )

≤ C∆t
(νf )

3

α2

N−1∑
n=0

(
∥∇(un+1 − un)∥2L2(Ωf )

+ ∥D2(un+1 − un)∥2L2(Ωf )

)
.

Here D2u denotes the Hessian of u. Using (A.2a) we get

∆t
νf
α2

N−1∑
n=0

∥∇g̃n+1
2 ∥2L2(Ωf )

≤C(∆t)2 (νf )
3

α2
∥∂tu∥2L2(0,T ;H2(Ωf ))

.

The estimates above imply (4.9). □

Before we prove the estimate (4.10), we need the following preliminary results. We use the Bochner

norms ∥v∥L2(a,b;X) =
( ∫ b

a
∥v(·, s)∥2Xds

)1/2
and ∥v∥L∞(a,b;X) = ess supa≤s≤b∥v(·, s)∥X . For a Sobolev

space X, it is well known that

∥vn+1 − vn∥2X ≤C∆t
∫ tn+1

tn

∥∂tv(·, s)∥2Xds,(A.2a)

∥∂∆tv
n+1 − ∂tv

n+1∥2X ≤C∆t
∫ tn+1

tn

∥∂2t v(·, s)∥2Xds,(A.2b) ∫ b

a

∥v(·, s)∥2Xds ≤(b− a)∥v∥2L∞(a,b;X).(A.2c)

The following identities can easily be shown

(A.3) ∂2∆tv
n =

1

(∆t)2

∫ ∆t

−∆t

(∆t− |s|)∂2t v(·, tn + s)ds,
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and

(A.4)

∂2∆tv
n − ∂2∆tv

n−1

∆t
=

1

(∆t)3

∫ ∆t

−∆t

(∆t− |s|)
(
∂2t v(·, tn + s)− ∂2t v(·, tn−1 + s)

)
ds

=
1

(∆t)3

∫ ∆t

−∆t

(∆t− |s|)
∫ tn+s

tn−1+s

∂3t v(·, r)drds.

From these we can show that

(A.5) ∥∂2∆tv
n∥2X ≤ C

∆t

∫ tn+1

tn−1

∥∂2t v(·, s)∥2Xds,

and

∥∂
2
∆tv

n − ∂2∆tv
n−1

∆t
∥2X ≤ C

∆t

∫ tn+1

tn−2

∥∂3t v(·, r)∥2Xdr.(A.6)

Proof of (4.10) in Corollary 4.2. It is similar to prove (4.10). Indeed, let us define, for j = 1, 2

Gn+1
j = ∂∆tg

n+1
j , G̃n+1

2 = ∂∆tg̃
n+1
2 , Hn+1

j = ∂∆th
n+1
j .

We then need to bound the term

ΞN (H1, H2, αG1 −G2, G̃2)

=∆t

N−1∑
n=0

(
1

νs
∥Hn+1

1 ∥2L2(Ωs)
+ (

1

νf
+ 1)∥Hn+1

2 ∥2L2(Ωf )
)

+ ∆t

N−1∑
n=0

( 1

νfα2
∥∂∆tG̃

n+1
2 ∥2L2(Ωf )

+
νf
α2

∥∇G̃n+1
2 ∥2L2(Ωf )

+
1

α
∥G̃n+1

2 ∥2L2(Ωf )

)
+∆t

N−1∑
n=0

( 1

νs
∥αG1∥2L2(Σ) +

1

νf
∥G̃n+1

2 ∥2L2(Σ)

)
+

1

α2
∥G̃N

2 ∥2L2(Ωf )

=R1 +R2 + . . .+R8.

For R1, it follows from the definitions of Hn+1
1 and hn+1

1 that,

(A.7)

∥Hn+1
1 ∥2L2(Ωs)

=

∫
Ωs

(
hn+1
1 − hn1

∆t

)2

dx

=

∫
Ωs

(
∂tw

n+1 − ∂∆tw
n+1 − ∂tw

n + ∂∆tw
n

∆t

)2

dx

=

∫
Ωs

(
∂∆t(∂tw)

n+1 − ∂2∆tw
n
)2
dx

=

∫
Ωs

(
∂∆t(∂tw)

n+1 − ∂2tw
n + ∂2tw

n − ∂2∆tw
n+1
)2
dx

≤ C

∫
Ωs

(
1

∆t

∫ tn+1

tn

(∂2tw(tn)− ∂2tw(s)) ds

)2

dx

+ C

∫
Ωs

(
1

(∆t)2

∫ tn+1

tn−1

(
∆t− |s− tn|

)(
∂2tw(s)− ∂2tw(tn)

)
ds

)2

dx

≤ C∆t∥∂3tw∥2L2((tn−1,tn+1),L2(Ωs))
.
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Therefore, we obtain

(A.8) ∆t

N−1∑
n=0

1

νs
∥Hn+1

1 ∥2L2(Ωs)
≤ C(∆t)2

1

νs
∥∂3tw∥2L2((0,T ),L2(Ωs))

The estimate of R2 is similar to that of R1. The term R3 can be estimated as follow by (A.6),

(A.9)

∆t

N−1∑
n=0

1

νfα2
∥∂∆tG̃

n+1
2 ∥2L2(Ωf )

= (∆t)3
N−1∑
n=2

1

νfα2
∥∂

2
∆t l̃

n − ∂2∆t l̃
n−1

∆t
∥2L2(Ωf )

≤ C
(∆t)2

νfα2
∥∂3t l̃∥2L2(0,T ;L2(Ωf ))

≤ C(∆t)2
νf
α2

∥∂3t u∥2L2(0,T ;H1(Ωf ))
.

For R4, it follows from the definition of l̃ and the fact ∥∇ϕ∥L2(Ωf ) ≤ C that,

(A.10)

∥∇G̃n+1
2 ∥2L2(Ωf )

=

∫
Ωf

(
∇̃ln+1 − 2∇̃ln + ∇̃ln−1

∆t

)2

dx

=

∫
Ωf

(
1

∆t

∫ tn+1

tn−1

(
∆t− |s− tn|

)
∂2t ∇̃l(s) ds

)2

dx

≤ C

∫
Ωf

(∫ tn+1

tn−1

|∂2t ∇̃l(s)| ds

)2

dx

≤ C∆t

∫
Ωf

∫ tn+1

tn−1

(∂2t ∇̃l(s))2 ds dx

≤ Cν2f∆t∥∂2t u∥2L2(tn−1,tn+1;H2(Ωf ))
,

and hence,

(A.11) ∆t

N−1∑
n=0

νf
α2

∥∇G̃n+1
2 ∥2L2(Ωf )

≤ C(∆t)2
(ν3f )

α2
∥∂2t u∥2L2(0,T ;H2(Ωf ))

.

The remaining terms R5 to R8 can be estimated similarly, we give the estimate of R6 here:

(A.12)

∥Gn+1
1 ∥2L2(Σ) =

∫
Σ

(
gn+1
1 − gn1

∆t

)2

dσ

=

∫
Σ

(
un+1 − 2un + un−1

∆t

)2

dσ

=

∫
Σ

(
1

∆t

∫ tn+1

tn−1

(
∆t− |s− tn|

)
∂2t u(s) ds

)2

dσ

≤ C∆t∥∂2t u∥2L2((tn−1,tn+1),L2(Σ)),

and therefore, we obtain

(A.13) ∆t

N−1∑
n=0

1

νs
∥αG1∥2L2(Σ) ≤ C

α2

νs
∥∂2t u∥2L2((0,T ),L2(Σ)).

We finish the proof by combining all the estimates above. □

In order to prove (4.11), we define the following quantities for j = 1, 2,

(A.14) Gn+1
j = ∂∆tG

n+1
j , Hn+1

j = ∂∆tH
n+1
j , G̃n+1

2 = ∂∆tG̃
n+1
2 .
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Note that we also have the following

(A.15) G̃n+1
2 =

g̃n+1
2 − 2g̃n2 + g̃n−1

2

(∆t)2
=

l̃n+1 − 3̃ln + 3̃ln−1 − l̃n−2

(∆t)2
.

Denote

(A.16) ∂3∆tv
n+1 =

vn+1 − 3vn + 3vn−1 − vn−2

(∆t)3
,

thus we see that

(A.17)
G̃n+1
2 − G̃n

2

(∆t)2
=
∂3∆t l̃

n+1 − ∂3∆t l̃
n

∆t
.

Moreover, we see that

∂3∆tv
n − ∂3∆tv

n−1

∆t
=

1

(∆t)4

(∫ ∆t

−∆t

(∆t− |s|)
(
∂2t v(·, tn + s)− ∂2t v(·, tn−1 + s)

)
ds

−
∫ ∆t

−∆t

(∆t− |s|)
(
∂2t v(·, tn−1 + s)− ∂2t v(·, tn−2 + s)

)
ds

)

=
1

(∆t)4

(∫ ∆t

−∆t

(∆t− |s|)
(
∂2t v(·, tn + s)− 2∂2t v(·, tn−1 + s) + ∂2t v(·, tn−2 + s)

)
ds

)

=
1

(∆t)4

∫ ∆t

−∆t

(∆t− |s|)
∫ tn+s

tn−2+s

(∆t− |r − tn−1|)∂4t v(·, r)drds.

Therefore, we obtain the following estimate

∥∂
3
∆tv

n − ∂3∆tv
n−1

∆t
∥2X ≤ C

∆t

∫ tn+1

tn−3

∥∂4t v(·, r)∥2Xdr.(A.18)

Proof of (4.11) in Corollary 4.2. We now bound the term ΞN (∂2∆th1, ∂
2
∆th2, ∂

2
∆t(αg1 − g2), ∂

2
∆tg̃2)

which is ΞN (H1,H2, (αG1 − G2), G̃2) according to (A.14). The techniques are similar to those men-

tioned above. We present the key estimates involving H1 and G̃2 first. It follows from the definition
of Hn+1

1 that,

(A.19)

∥Hn+1
1 ∥2L2(Ωs)

=

∫
Ωs

(
hn+1
1 − 2hn1 + hn−1

1

(∆t)2

)2

dx

=

∫
Ωs

(
∂∆t(∂tw)

n+1 − ∂2∆tw
n+1 − (∂∆t(∂tw)

n − ∂2∆tw
n)

∆t

)2

dx

=

∫
Ωs

(
∂2∆t(∂tw)

n+1 − ∂3∆tw
n+1
)2
dx

=

∫
Ωs

(
∂2∆t(∂tw)

n+1 − ∂3tw
n + ∂3tw

n − ∂3∆tw
n+1
)2
dx

≤ C

∫
Ωs

(
1

(∆t)2

∫ tn+1

tn−1

(
∆t− |s− tn|

)(
∂3tw(s)− ∂3tw(tn)

)
ds

)2

dx

+ C

∫
Ωs

(
1

(∆t)3

∫ ∆t

−∆t

(∆t− |s|)
∫ tn+s

tn−1+s

∂3tw(tn)− ∂3tw(·, r) ds

)2

dx

≤ C∆t∥∂4tw∥2L2((tn−2,tn+1),L2(Ωs))
.
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We also have, according to the definition of l̃ and the fact ∥∇ϕ∥L2(Ωf ) ≤ C that,

(A.20)

∥∇G̃n+1
2 ∥2L2(Ωf )

=

∫
Ωf

(
∇̃ln+1−2∇̃ln+∇̃ln−1

∆t − ∇̃ln−2∇̃ln−1+∇̃ln−2

∆t

∆t

)2

dx

=

∫
Ωf

(
1

(∆t)2

∫ ∆t

−∆t

(∆t− |s|)
(
∂2t ∇̃l(·, tn + s)− ∂2t ∇̃l(·, tn−1 + s)

)
ds

)2

dx

≤ C

∫
Ωf

(
1

∆t

∫ ∆t

−∆t

|
∫ tn+s

tn−1+s

∂3t ∇̃l(·, r)dr| ds

)2

dx

≤ C∆t

∫
Ωf

∫ tn+1

tn−2

(∂3t ∇̃l(·, r))2 dr dx

≤ Cν2f∆t∥∂3t u∥2L2(tn−2,tn+1;H2(Ωf ))
.

It follows from (A.18) that,

(A.21)

∆t

N−1∑
n=0

1

νfα2
∥∂∆tG̃2

n+1
∥2L2(Ωf )

= (∆t)3
N−1∑
n=0

1

νfα2
∥∂

3
∆t l̃

n − ∂3∆t l̃
n−1

∆t
∥2L2(Ωf )

≤ C
(∆t)2

νfα2
∥∂4t l̃∥2L2(0,T ;L2(Ωf ))

≤ C(∆t)2
νf
α2

∥∂4t u∥2L2(0,T ;H1(Ωf ))
.

Then we follow the same idea as before and obtain the following bound:

(A.22) ΞN (H1,H2, (αG1 − G2), G̃2) ≤ C(∆t)2Y,

where Y is defined in (4.14). □

Appendix B. Sketch of Proof: Corollary 4.5

Proof. According to Corollary 4.4, we need to bound the terms on the right-hand side of the inequal-
ity (4.15). The first term in (4.15) is bounded in Corollary 4.2 while the last term in (4.15) can be easily
bounded according to (A.7). At last, the analysis to bound the term ΞN (∂∆t∂xh1, ∂∆t∂xh2, ∂∆t∂x(αg1−
g2), ∂∆t∂xg̃2) is almost identical to that of the term ΞN (H1, H2, αG1 −G2, G̃2) except the additional
partial derivative which does not affect the techniques. Therefore, we obtain the bound

(B.1) ΞN (∂∆t∂xh1, ∂∆t∂xh2, ∂∆t∂x(αg1 − g2), ∂∆t∂xg̃2) ≤ C(∆t)2Y,
where Y is defined in (4.16). This finishes the proof. □
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