

Que peut apporter la chromatographie liquide bidimensionnelle en heart-cutting à la métabolomique non ciblée?

Carla Orlandi, Carine Jacques, Hélène Duplan, Laurent Debrauwer, Emilien Jamin

▶ To cite this version:

Carla Orlandi, Carine Jacques, Hélène Duplan, Laurent Debrauwer, Emilien Jamin. Que peut apporter la chromatographie liquide bidimensionnelle en heart-cutting à la métabolomique non ciblée ?. SEP 21, Oct 2021, Paris, France. hal-04530571

HAL Id: hal-04530571 https://hal.science/hal-04530571

Submitted on 3 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Que peut apporter la chromatographie liquide bidimensionnelle en heart-cutting à la métabolomique non ciblée ?

Carla ORLANDI MetaboHUB-Metatoul-AXIOM INRAE ToxAlim Toulouse

Objectifs

Augmenter la couverture métabolique sur l'ensemble des analyses par LC-HRMS
Miniaturisation des méthodes (µLC)

- ✓ Gagner en sensibilité de détection
- ✓ Améliorer la séparation des composés co-élués
- ✓ Diminuer le volume d'échantillon injecté et le nombre d'injections
- ✓ Diminuer la consommation de solvant
- ✓ Améliorer la rapidité des méthodes d'analyse
- ✓ Proposer une analyse globale

Principe Heart-Cutting: Injection de l'échantillon

Principe Heart-Cutting: Etape de piégeage

Principe Heart-Cutting: Analyse 1^{ère} dimension µHILIC

Principe Heart-Cutting: Elution et analyse sur la 2^{ème} dimension µRP

2D-µLC-MS: axes de développements

Développement des méthodes µHILIC et µRP sur un mélange de standards

- Colonnes de dimensions et phases stationnaires
- Tampons, [C] et pH
- Gradients et compatibilité phases mobiles

- > Optimisations:
 - HILIC//RP avec cartouche de piégeage RP
 - Temps de piégeage et solvant de rinçage
 - Paramètres de reconditionnements
 - Paramètres d'ionisation MS

100

50

0

5 10 15 20 TEMPS (MIN)

8 %

Evaluation par rapport à une méthode RP-HRMS existante [1]

[1] Jacques C. and Jamin E.L. et al. Archive Tox. (2021) 95, 3303-3322

Conditions chromatographiques et d'ionisation

	μHILIC (Dimension1)	μRP (Dimension 2)	ISM et Trap	
Phase A	10 mM ammonium formate pH 10.5 (NH ₄ OH)	H ₂ O/ACN/HCOOH (95/5/0.1)	100 % H ₂ O	
Phase B	ACN 100%	ACN/HCOOH (100/0.1)		
Débit	0.05 mL/min	0.15 mL/min	0.5 mL/min	
P° initiales	90 bars	512 bars		
SealWash	ACN/H ₂			
Wash, A2, B2	ACN/H ₂			
Colonne	Acquity BEH Amide (1.0 x 100 mm, 1.7μm)	Acquity HSS T3 (1.0 x 100 mm, 1.8μm)	XBridge C18 (2.1 x 20 mm, 5μn	
Température	4			
V injection	1			
Capillary Voltage	1.			
Sampling Cone				
Source Offset				
T° Source	10	Acqui		
T° Desolvatation	50			
Cone Gas				
Desolvatation Gas	6			
Nebuliseur				

Waters Acquity UPLC I Class – QToF Synapt G2Si

Application: premiers résultats sur mélange de standards

1: TOF MS ES-130.087 60.00PPM Leu/IIe 2.53e4 22.50 25.00 27.50 30.00 32.50 1: TOF MS ES-215.032 60.00PPM Gala/Fruct 8.07e3 30.55 31.78 13.41 15.1215.44 17.25 18.81 19.28 20.67 22.15 24.85 27.16 29.42 22.50 25.00 27.50 30.00 32.50 1: TOF MS ES-259.022 60.00PPM G6P 7.19e4 22.50 25.00 27.50 30.00 32.50 1: TOF MS ES-269.249 60.00PPM C17:0 28.55 2.66e3 42.30.78 32.56 22,50 25.00 27.50 30.00 32,50 1: TOF MS ES-UMP 323.029 60.00PPM 2.55e5 22.50 25.00 27.50 30.00 32.50 1: TOF MS ES-Adi 134.047 60.00PPM 1.92e6 22.50 25.00 27.50 30 00 32.50 1: TOF MS ES-Ado 266.089 60.00PPM 1.31e5 22.50 25.00 27.50 30,00 32.50 1: TOF MS ES-611.144 60.00PPM GlutOx 1.39e4 21.38 22.42 24.27 25.26 25.00 27.50 30.00 32.50 22.50 1: TOF MS ES 21.38 391.285 60.00PP Cheno/Hyod 1 08 - Time 25.00 27.50 30.00 32.50 50 2D µRP 1D µHILIC

2D µHILIC-µRP

100-

100-

100-

100-

100-

100-

100-

100-

100-

Annotation Plasma NIST avec méthode de référence

Application méthodes 1D et 2D

•

Comparaison des méthodes

Comportement des analytes durant le piégeage ?

Cas 1°: métabolites détectés en 1D µRP mais pas en 2D

Composé	NEG	m/z	Attribution	μHILIC	μRP	2D
Capric acid (decanoic acid)	NEG	171.1388	[M-H]-	1.55	11.43	nd
C16:3	NEG	249.1860	[M-H]-	1.56	14.23	24.88
Tridecanoic acid	NEG	213.1864	[M-H]-	1.56	14.68	nd
Aldosterone	NEG	359.1861	[M-H]-	1.58	8.7	19.46
Phytanic acid	NEG	311.2953	[M-H]-	1.58	12.52	23.09
Nonanoic acid	NEG	157.1236	[M-H]-	1.59	10.25	20.37
Hexanoylcarnitine	NEG	258.1710	[M-H]-	1.6	9.97	20.63
Decanoylcarnitine	NEG	314.2338	[M-H]-	1.61	10.82	21.42
Hexadecanedioic acid	NEG	285.2070	[M-H]-	1.61	11.73	23.32
Octanoylcarnitine	NEG	286.2024	[M-H]-	1.61	10.82	22.28
12-Hydroxydodecanoic acid	NEG	215.1654	[M-H]-	1.62	11.35	21.97
DL-beta-Hydroxylauric acid	NEG	215.1656	[M-H]-	1.62	11.35	21.97
Taurochenodeoxycholic acid and Taurodeoxycholic acid	NEG	498.2900	[M-H]-	1.62	7.2	17.3
Octanoic acid	NEG	143.1077	[M-H]-	1.65	8.43	nd
Prostaglandin E1	NEG	353.2333	[M-H]-	1.65	9.54	18.69
undecanedioic acid	NEG	215.1282	[M-H]-	1.65	7.15	17.97
Ferulic acid	NEG	193.0507	[M-H]-	1.66	4.85	nd
Hydrocinnamic acid (Tr Variable)	NEG	149.0609	[M-H]-	1.66	10.61	21.23
2-hydroxycaproic acid	NEG	131.0714	[M-H]-	1.67	3.46	nd
Tetradecanedioic acid	NEG	257.1758	[M-H]-	1.7	9.97	21.57
Deoxycholic acid	NEG	391.2854	[M-H]-	1.72	9.84	20.47
Ursodeoxycholic acid and chenodeoxycholic acid	NEG	391.2854	[M-H]-	1.72	9.84	20.47
4-Hydroxybenzaldehyde	NEG	121.0298	[M-H]-	1.75	3.33	nd
Phenylacetylglycine and 2- Methylhippuric acid	NEG	192.0668	[M-H]-	1.79	3.47	nd

Hypothèse: composés perdus lors du piégeage

→ Rinçage avec 10mM formate d'ammonium pH10.5 au lieu de H2O

Essais à venir :

- autres cartouches de piégeage
- diminuer le temps de rinçage

Hypothèse: acétonitrile diminue l'ionisation par rapport au méthanol en fin de gradient

 \rightarrow méthanol en phases mobiles µRP

Composé	NEG	m/z	Attribution	Ref C18	μHILIC	μRP	2D
C14:1	NEG	225.1860	[M-H]-	25,43	nd	nd	nd
C14:2	NEG	223.1703	[M-H]-	24,45	1.62	nd	nd
C15:1	NEG	239.2016	[M-H]-	26,30	1.48	nd	nd
C19:1	NEG	295.2642	[M-H]-	28,60	1.51	nd	nd
C19:2	NEG	293.2485	[M-H]-	27,96	1.54	nd	nd
C20:0	NEG	311,2928	[M-H]-	29,68	1,49	nd	nd
C22:0	NEG	339.3268	[M-H]-	30,19	1.45	nd	nd
C23:0	NEG	353.3419	[M-H]-	30,39	1.44	nd	nd
C24:0	NEG	367.3651	[M-H]-	30,58	1.44	nd	nd
C24:1	NEG	365.3427	[M-H]-	30,32	1.48	nd	nd
C24:5	NEG	357.2795	[M-H]-	28,56	1.52	nd	nd

Essai à venir : nouvelle optimisation des paramètres ESI

Conclusion

Méthodes 1D et 2D développées, répétables, sans carry-over:

- Applicables à la métabolomique
- Preuve de concept plasma NIST: détection de 235 métabolites avec injections consécutives µHILIC puis µRP:
 - Métabolites annotés sur la base d'une analyse C18 de référence
 - -> probablement plus avec une analyse HILIC de référence
- Passage de 2 méthodes 1D à 1 méthode 2D heart-cutting:
 - Diminution jusqu'à 35% du temps d'analyse total → pour 100 échantillons ~ 33h en moins
 - Volume d'injection divisé /2
- Derte de 3% de métabolites :
 - Raisonnablement acceptable compte tenu du gain en temps d'analyse et en volume d'échantillon
 - En cours d'amélioration

Carine JACQUES Hélène DUPLAN

Merci de votre attention

Emilien JAMIN Laurent DEBRAUWER

