

High resolution mass spectrometry-based untargeted approach: a cutting-edge analytical technique for the detection and identification of organophosphorus synthesis sources

Carla Orlandi, Grégoire Delaporte, Emmanuel Joubert, Christine Albaret, Anne Bossée, Laurent Debrauwer, Emilien Jamin

▶ To cite this version:

Carla Orlandi, Grégoire Delaporte, Emmanuel Joubert, Christine Albaret, Anne Bossée, et al.. High resolution mass spectrometry-based untargeted approach: a cutting-edge analytical technique for the detection and identification of organophosphorus synthesis sources. CBRNE Research & Innovation; 6th International Conference, Mar 2024, Strasbourg, France. hal-04530537

HAL Id: hal-04530537 https://hal.science/hal-04530537

Submitted on 3 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Liberté Égalité Fraternité

High resolution mass spectrometrybased untargeted approach

A cutting-edge analytical technique for the detection and identification of organophosphorus synthesis sources

Carla ORLANDI carla.orlandi@inrae.fr

> Context

Events using toxic chemical threat agents \rightarrow crucial to obtain as much historical information as possible Synthesis route and conditions aging Production batches and/or precursors low concentrations • Source or geographical origin complex matrices SOURCING Decomposition The process of **search** and **identification** of discriminating elements whose Additives Degradation various properties allow us to attribute an origin to a product or sample Persistent **Hydrolysis products** contaminants Precursors and **Secondary reaction** Interaction by-Impurities unreacted raw products products materials **Chemical Attribution Signature**

The role of chemical analysis is to provide well-founded information about the source of the sample, in support of forensic investigations

CBRNE Research & Innovation Strasbourg 2024 - Carla Orlandi

alim

> Syntheses of Chlorpyrifos

Simplest and least specific \rightarrow preserve as much information as possible

Wide rar	nge of compo	ounds and
X= H ; Cl (di + tri + tetraCl)	X= H ; Cl Y = H ; ^t Bu ; P(S)(OEt) ₂	X= H ; Cl Y = H; ^t Bu ; P(S)(OEt) ₂
	X YON OY	

SynthesisPrecursorReactantS14Ab1AaS24Ab1BaS34Ba1AaS44Ba1BaS54Ba1CaS64Db1AaS74Db1Ba

7 chlorpyrifos synthesis combinations (21 samples) – Exp1

Wide variety of aspects \rightarrow homogeneity of samples analyzed

(3 trials/triplicate/synthesis, i.e. 63 samples) – Exp2

Homogeneity of synthesis raw materials (Exp2)

> Analytical conditions LC-HRMS

Mode and Ionization optimization APCI & ESI

ACQUITY UPLC I class Waters

- Hypersil Gold C18 (100x2.1mm, 1.9μm)
- Mobile phases:
 A) H₂O/CH₃OH/AcOH
 B) CH₃OH/AcOH
- 0.3mL/min at 40°C
- Injection volume: 10μL

MS spectra m/z 50 - 800 MS resolution ~15000

ESI parameters	POS		
Capillary (kV)	0.7		
Sampling Cone (V)	20		
Source Offset	60		
Source T (°C)	130		
Desolvaton T (°C)	250		
Cone Gas (L/Hr)	50		
Desolvation Gas (L/Hr)	550		
Nebuliser G (Bar)	6.5		

Positive mode ESI : more suitable for these compounds class and greater number of ions formed

Sequence acceptability criteria (QC)

K. Dinis et al. Food Control 139 (2022) 109098

> <u>Chemometrics</u>

Multivariate methods suitable to provide a more complete description of studied phenomena

◦ Major directions of variability → PCA (unsupervised) → exploratory

S7

4Db

1Ba

INRA

CBRNE Research & Innovation Strasbourg 2024 - Carla Orlandi

> <u>Chemometrics</u>

Multivariate methods suitable to provide a more complete description of studied phenomena

◦ Specific directions of variability \rightarrow PLS (supervised) \rightarrow predictive of regression or discrimination

INRAE Texalim

CBRNE Research & Innovation Strasbourg 2024 – Carla Orlandi

> Annotation Challenges

HRMS : sensitive and selective detection of discriminating impurities

- Features (PLSDA; VIP>1) annotated using LC, MS, MSMS and IMS to propose a putative structure
- $MS^2 \rightarrow$ characteristic fragments for structural elucidation

How sensitive is	ROC CURVES	CTRL: Ex (21 samp	p1 PAT bles) (63 sa	: Exp2 (Second states)			
Remove 20% of the	Common discriminating features	intensi	ty inte	ensity			
Area under the ROC curve	S1	S2	S3	S4	S 5	S 6	S7
Area 95% confidence interval P value <0.0001 ?	0.85 0.78 to 0.92 yes	0.85 0.78 to 0.91 yes	0.83 0.76 to 0.90 yes	0.86 0.80 to 0.93 yes	0.76 0.68 to 0.83 yes	0.78 0.71 to 0.85 yes	0.82 0.75 to 0.89 yes
Specificity (Rmv 20% Exp1)	S1	S2	S3	S4	S5	S6	S7
Area 95% confidence interval P value <0.0001 ?	0.86 0.79 to 0.92 yes	0.85 0.78 to 0.91 yes	0.83 0.76 to 0.90 yes	0.86 0.80 to 0.92 yes	0.76 0.68 to 0.83 yes	0.78 0.71 to 0.85 yes	0.82 0.75 to 0.89 yes
Sensitivity (Rmv 20% Exp2)	S1	S2	S 3	S4	S5	S6	S7
Area 95% confidence interval	0.71 0.62 to 0.80	0.71 0.62 to 0.80	0.69 0.61 to 0.78	0.71 0.62 to 0.80	0.67 0.58 to 0.76	0.69 0.60 to 0.77	0.69 0.60 to 0.78
P value <0.0001 ?	ves	ves	ves	ves	no	ves	ves

ROC curve: Data/Synthesis 4

All the AUC values > 0.5 \rightarrow results are not random Model still valid to variations modeling real case samples

> Chemical Attribution Signature (W4M, MetaboAnalyst)

alim

> Conclusions

Sensitivity : Link a manufacturing origin/process to a chemical footprint from synthetic raw materials

Selectivity : Footprint characteristic of a single route or set of pathways with common steps

> <u>Perspectives</u>

Ruggedness

Is it applicable to complex samples?

✓ Model Validation

✓Crude yields

s6 s2 4 s5 s1 8 33 3 s3 4 s7 3 s4

To be continued...

Acknowledgements

Emilien **JAMIN** Laurent **DEBRAUWER**

Collaborators and funders DGA NRBC

> Grégoire **DELAPORTE** Anne **BOSSEE** Emmanuel **JOUBERT** Christine **ALBARET**

Grant DGA N° 22470120

Grant AID N° 2022 65 0036

Monitoring committee

Thank you for your attention

CBRNE Research & Innovation Strasbourg 2024 – Carla Orlandi