

High resolution mass spectrometry-based untargeted approach: a cutting-edge analytical technique for the detection and identification of organophosphorus synthesis sources

Carla Orlandi, Grégoire Delaporte, Emmanuel Joubert, Christine Albaret, Anne Bossée, Laurent Debrauwer, Emilien Jamin

▶ To cite this version:

Carla Orlandi, Grégoire Delaporte, Emmanuel Joubert, Christine Albaret, Anne Bossée, et al.. High resolution mass spectrometry-based untargeted approach: a cutting-edge analytical technique for the detection and identification of organophosphorus synthesis sources. CBRNE Research & Innovation; 6th International Conference, Mar 2024, Strasbourg, France. hal-04530537

HAL Id: hal-04530537 https://hal.science/hal-04530537v1

Submitted on 3 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

High resolution mass spectrometrybased untargeted approach

A cutting-edge analytical technique for the detection and identification of organophosphorus synthesis sources

Carla ORLANDI

carla.orlandi@inrae.fr

Context

Events using toxic chemical threat agents -> crucial to obtain as much historical information as possible

- Synthesis route and conditions
- Production batches and/or precursors
- Source or geographical origin

- aging
- low concentrations
- complex matrices

SOURCING **Decomposition** The process of **search** and **identification** of discriminating elements whose **Additives** Degradation various properties allow us to attribute an origin to a product or sample **Persistent Hydrolysis products** contaminants **Precursors and Secondary reaction** Interaction by-**Impurities** unreacted raw products products materials

Chemical Attribution Signature

The role of chemical analysis is to provide well-founded information about the source of the sample, in support of forensic investigations

Metabolomics-based trace discovery strategies

Approaches

Goals

and quantification

Unambiguous identification Sensitivity

Curation

Chemometrics

Information

Methodology to support attribution of the origin of a

toxic agent according to the

chemical signature of

resulting from substances

its production pathway

Targeted Known unknowns unknowns unknowns

Suspect Screening

Qualitative detection rate and halfquantitative values

> New markers detection

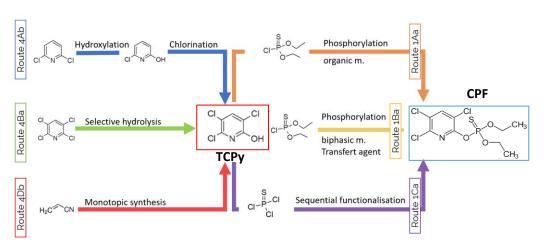
UHPLC-HRMS Data processing Sample Preparation

MS/MS ID

Chlorpyrifos (CPF)

C₀H₁₁Cl₂NO₃PS Exact Mass: 348.926288 u CAS: 2921-88-2

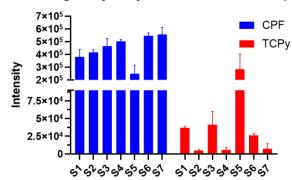
Chemical Attribution Signature


Features detection

> Syntheses of Chlorpyrifos

Simplest and least specific → preserve as much information as possible

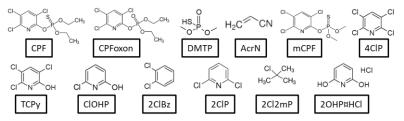
X CI N CI	$X \longrightarrow X$	X X OY
X= H ; Cl	X= H ; Cl	X= H ; Cl
(di + tri + tetraCl)	Y = H ; ^t Bu ; P(S)(OEt) ₂	Y = H; ^t Bu ; P(S)(OE1


Wide range of compounds and possible impurities combinations

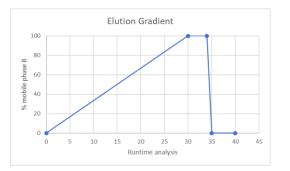
Synthesis	Precursor	Reactant
S1	4Ab	1 Aa
S2	4Ab	1Ba
S 3	4Ba	1Aa
S4	4Ba	1Ba
S5	4Ba	1Ca
S6	4Db	1 Aa
S7	₄Db	1Ba

7 chlorpyrifos synthesis combinations (21 samples) – Exp1

Wide variety of aspects → homogeneity of samples analyzed (3 trials/triplicate/synthesis, i.e. 63 samples) – Exp2


Homogeneity of synthesis raw materials (Exp2)

Analytical conditions LC-HRMS


Positive mode ESI: more suitable for these compounds class and greater number of ions formed

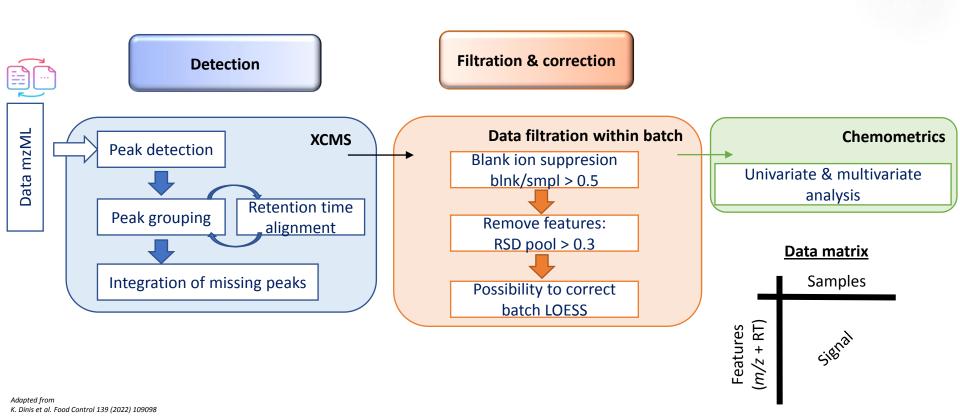
ACQUITY UPLC I class Waters

- Hypersil Gold C18 (100x2.1mm, 1.9μm)
- Mobile phases:
 - A) H₂O/CH₃OH/AcOH
 - B) CH₃OH/AcOH
- 0.3mL/min at 40°C
- Injection volume: 10μL

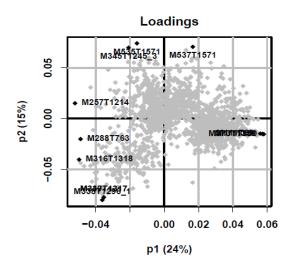
Sequence acceptability criteria (QC)

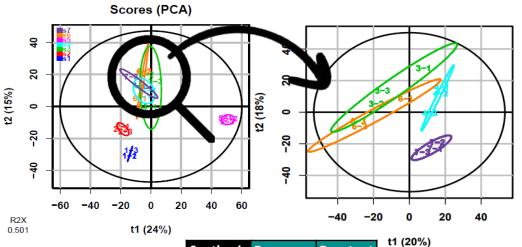
QToF Synapt G2-Si HRMS Waters

MS spectra m/z 50 - 800 MS resolution ~15000


ESI parameters	POS	
Capillary (kV)	0.7	
Sampling Cone (V)	20	
Source Offset	60	
Source T (°C)	130	
Desolvaton T (°C)	250	
Cone Gas (L/Hr)	50	
Desolvation Gas (L/Hr)	550	
Nebuliser G (Bar)	6.5	

> Untargeted data processing



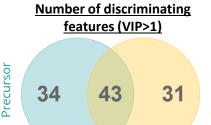


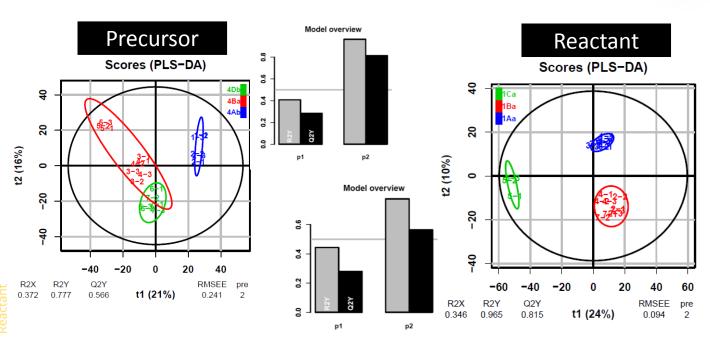
> Chemometrics

Multivariate methods suitable to provide a more complete description of studied phenomena

○ Major directions of variability → PCA (unsupervised) → exploratory

PCA: First overview of variability between samples and correlation between features

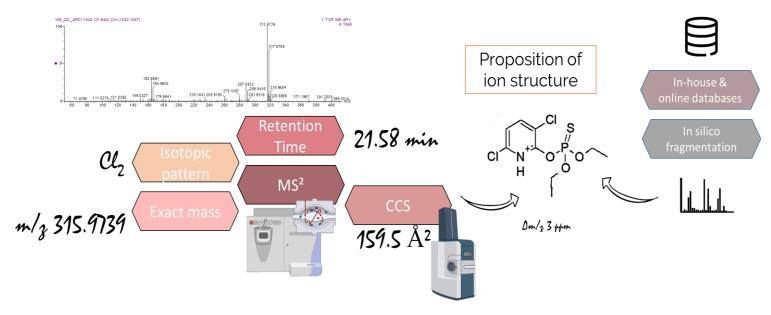

Synthesis	Precursor	Reactant	
S1	4Ab	1Aa	
S2	4Ab	1Ba	
S3	4Ba	1Aa	
S4	4Ba	1Ba	
S5	4Ba	1Ca	
S6	4Db	1Aa	
S7	4Db	1Ba	


> Chemometrics

Multivariate methods suitable to provide a more complete description of studied phenomena

○ Specific directions of variability → PLS (supervised) → predictive of regression or discrimination

Synthesis	Precursor	Reactant
S1	4Ab	1Aa
S2	4Ab	1Ba
S3	4Ba	1Aa
S4	4Ba	1Ba
S5	4Ba	1Ca
S6	4Db	1Aa
S7	4Db	1Ba


PLSDA: discrimination of synthetic sources achieved Quality of the model was assessed with Q²Y >0.4 and permutation test

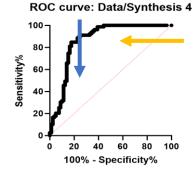
> Annotation Challenges

HRMS: sensitive and selective detection of discriminating impurities

- Features (PLSDA; VIP>1) annotated using LC, MS, MSMS and IMS to propose a putative structure
- $MS^2 \rightarrow$ characteristic fragments for structural elucidation

Sumner et al. Metabolomics (2007) 3, 211-221 Schymanski et al. Environ Sci Technol. (2014) 48:2097-8

[1] Confirmation Structure	[2] Probable Structure	[3] Tentative Candidate	[4] Unknown
4	14	28	55


How sensitive is the model to variation?

Remove 20% of the weakest features

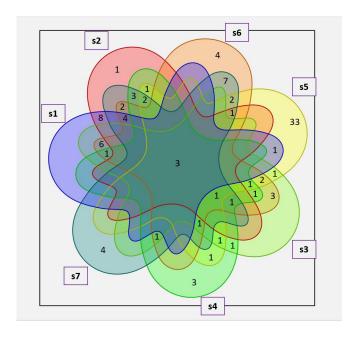
ROC CURVES	CTRL: Exp1 (21 samples)	PAT: Exp2 (63 samples)
Common discriminating features	intensity	intensity

Area under the ROC curve	S1	S2	S3	S4	S5	S6	S7
Area	0.85	0.85	0.83	0.86	0.76	0.78	0.82
95% confidence interval	0.78 to 0.92	0.78 to 0.91	0.76 to 0.90	0.80 to 0.93	0.68 to 0.83	0.71 to 0.85	0.75 to 0.89
P value <0.0001?	yes						
Specificity (Rmv 20% Exp1)	S1	S2	S3	S4	S5	S6	S7
Area	0.86	0.85	0.83	0.86	0.76	0.78	0.82
95% confidence interval	0.79 to 0.92	0.78 to 0.91	0.76 to 0.90	0.80 to 0.92	0.68 to 0.83	0.71 to 0.85	0.75 to 0.89
P value <0.0001?	yes						
Sensitivity (Rmv 20% Exp2)	S1	S2	S3	S4	S 5	S 6	S7
Area	0.71	0.71	0.69	0.71	0.67	0.69	0.69
95% confidence interval	0.62 to 0.80	0.62 to 0.80	0.61 to 0.78	0.62 to 0.80	0.58 to 0.76	0.60 to 0.77	0.60 to 0.78
P value <0.0001?	yes	yes	yes	yes	no	yes	yes

All the AUC values > 0.5 → results are not random Model still valid to variations modeling real case samples

> Chemical Attribution Signature (W4M, MetaboAnalyst) M350T1434_3 M242T688 M316T1295_1 **Boxplot** Heatmap **Hierarchical Clustering Analysis**

Different graphical representations can be used to illustrate synthesis impurities giving information about sourcing

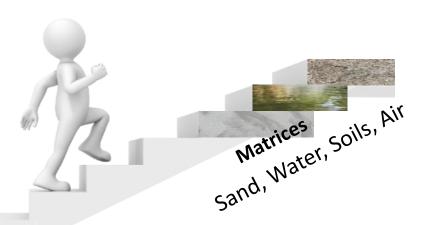


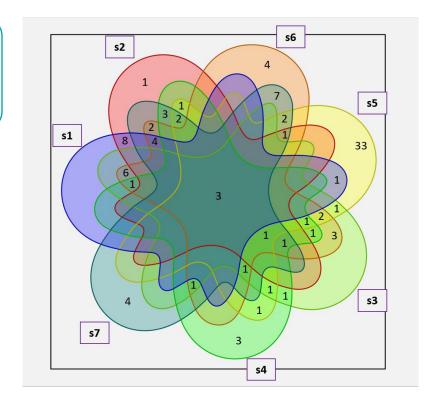
Volcano Plot (S1 vs. S2)

> Conclusions

Sensitivity: Link a manufacturing origin/process to a chemical footprint from synthetic raw materials

Selectivity: Footprint characteristic of a single route or set of pathways with common steps





Perspectives

© Ruggedness

• Is it applicable to complex samples?

✓ Model Validation

✓ Crude yields

To be continued...

Acknowledgements

Supervisors

Emilien JAMIN Laurent DEBRAUWER

Collaborators and funders

DGA NRBC

Grant AID N° 2022 65 0036

Monitoring committee

STRASBOURG FRANCE March 19th - 21st 2024

Thank you for your attention

