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Abstract

We consider the class of moving average symmetric α-stable processes, for 1 <
α < 2. These processes are H-self-similar (0 < H < 1) with stationary increments,
indexed by Rd, and driven by a symmetric α-stable random measure Mα. Our aim is
to identify them by estimating the Hurst parameter H , using estimators derived from
p-variations and a wavelet decomposition.
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processes, Wavelet basis, Sums of independent random variables, Random measures
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1. Introduction

Self similar processes hold a crucial role in modeling complex data; Particularly
noteworthy is the Fractional Brownian Motion (F.B.M.), that has been extensively
studied since Mandelbrot’s pioneering work [20]. Such a process is recognized for
its self-similarity, characterized by the index 0 < H < 1, and satisfies to the property

(X(λx), x ∈ R) (d)
= (λHX(x), x ∈ R),∀λ > 0 (1.1)

where
(d)
= stands for equality in distribution. This process is known for its two inte-

gral representations: the moving average and the harmonizable representations. De-
spite their different formulations, these representations are considered equivalent due
to their distribution equality up to a constant factor for the Gaussian framework. Vari-
ous methods evaluating the effectiveness of the estimations are discussed in [16]. Still
in the context of Gaussian models, generalizations have been proposed by Benassi et
al. [8, 7], and Lévy-Véhel et al. [23], [2], introducing processes that are self-similar
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with stationary increments (H-sssi). These processes can be described and identified
by either a moving average or a real harmonizable representation, underscoring the
sufficiency of estimating H for one of the two representation due to their equivalence.
Expanding beyond Gaussian models, the α-stable H-sssi non-Gaussian processes, as
detailed in [26] or more recently in [24] can take two different forms, moving aver-
age and harmonizable processes respectively denoted by X and Z. The estimation of
the Hurst parameter H for stable processes is a significant issue as published in recent
works as [17]. When 0 < α < 2 these representations do not share proportional laws,
as highlighted in [26, p.358] and [9]. This requires separate analyses for each model.

This work proposes an estimation strategy for H for the moving average process.
The challenge of estimating H in stable processes underscores the complexities arising
from their infinite variance nature. Despite these challenges, the study of stable distri-
butions is motivated by their practical relevance. Many models, especially in imaging
or financial contexts, are based on Gaussian distributions. Recently, Bianchi et al.
[13, 14] published several very interesting works on multi-fractional Brownian motion
and time varying Hurst exponent applied in finance. In [11, 12], the study also delves
into the time-varying Hurst exponent, highlighting its applications within the field of
behavioral finance and market efficiency. Similarly, self-similar stable processes find
application in physics for modeling long-range dependencies and high variability, as
demonstrated by Taqqu et al.’s work on network traffic [27, 29], further validating the
significance of these models. In finance, Lévy-Véhel et al. suggested modeling asset
returns using α-stable distributions with 1 < α < 2 in [6], challenging the Gaussian as-
sumption prevalent in the Capital Asset Pricing Model. Other applications in wireless
communications modeling can be found in [3, 4]. Self-similar stable processes are also
used in physics as a model for self-similar processes with long-range dependence (the
so-called Joseph effect) and infinite variance or high variability (Noah effect); recently,
estimation results have been obtained for processes with long range dependence in [5].
A pioneering work of Taqqu et al. provide a limit Lévy stable motion when modeling
the network traffic (see [27, 29]). Other development can be also found in [22] and
references within. Physicists have also proposed in [1] a wavelet based estimator for
the Hurst parameter of the moving average stable process in dimension 1. They used
averages of the logarithm of the absolute value of coefficients of the discrete wavelet
transform in order to come back to the L2-case. Several other works have also been
developed for this topic more details can be found for instance in [28, 15, 22].

Before diving into the main topic of our work, let’s briefly revisit the Gaussian
framework. In [10], Benassi, Jaffard, and Roux introduce the concept of elliptic self-
similar processes. They show that every centered elliptic self-similar Gaussian process
can be represented through a moving average model. A prominent method for esti-
mating the Hurst parameter H involves the use of quadratic variations. Importantly,
for such Gaussian processes, it is adequate to perform the estimation along a single
direction on the unit sphere Sd−1 in Rd. Let f be a function R → R, take N > 0,
0 ≤ l ≤ N − 1 and consider the quadratic variations defined from

VN,2 (f) =
1

N

N−1∑
l = 0

∣∣∣∣f ( l + 1

N

)
− f

(
l

N

)∣∣∣∣2 . (1.2)
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Then, taking f = Yu = (Yu (t) , t ∈ R) the H-sssi Gaussian process defined by
Yu (t) = Y (tu) , t ∈ R, with u ∈ Sd−1 (see [8]). Hence define Ĥu

N , N ≥ 1 as
follows

Ĥu
N =

−1

2 logN
log VN,2 (Yu) , (1.3)

Ĥu
N almost surely converges to H as n tends to infinity, independently of u ∈ Sd−1.

This paper’s objective is to express an estimator for the Hurst index H with p-
variation for the Stable non-gaussian moving average process X , supplemented by
an unbiased estimator and its rate of convergence. The structure of the document is
outlined as follows: Section 2 presents the main findings, including a Law of Large
Numbers and outcomes articulated in three distinct manners, depending on the value
of exponent p. Indeed, this method stems from the fact that the convergence rate and the
applicable domain—either Gaussian or Stable non-Gaussian—are influenced by how
p relates to α

2 . Section 3 details the approach for determining the domain of attraction
and convergence rates through the development of triangular arrays. Then Section 4
describes the methodology for creating triangular arrays via a wavelet decomposition
of the moving average process X . Subsequently, Section 5 synthesizes all preceding
steps with the proofs of the main results to formulate the proposed estimator for the H-
index, alongside providing an unbiased estimator. Finally, Section 6 offers concluding
remarks and envisages the extension of this work to real harmonizable processes with
a nod to potential applications in economics and finance. The reader can find in Ap-
pendix A, Appendix B and Appendix C all the intermediary proofs and the theoretical
developments on Triangular arrays, wavelet decomposition and auxiliary lemmas.

2. Main results - Law of Large Numbers and Estimators

2.1. Toward the α-stable framework

Let Mα be an independently scattered symmetric α-stable (SαS) stochastic mea-
sure, with the terminology of Samorodnitsky and Taqqu [26, p.281]. We focus on the
family of the moving average α-stable processes defined by a stochastic integral as
follows:

X (x) =

∫
Rd

(
|x− y|H−d/α

Q

(
x− y

|x− y|

)
− |y|H−d/α

Q

(
y

|y|

))
Mα (dy) (2.1)

where Q is an even function defined on Sd−1 the unit sphere of Rd verifying c ≤
Q ≤ 1

c for some 0 < c < 1. It has been demonstrated in [26] that the process
X =

(
X(x), x ∈ Rd

)
exhibits self-similarity and possesses stationary increments,

characterized by the Hurst parameter H with 0 < H < 1. These attributes of α-
stability, H-self-similarity, and stationary increments of X stem from the correspond-
ing properties of the random measure Mα. It have been further explored in [9] that for
1 < α < 2, thanks to a Plancherel like formula, the process X admits the following
harmonizable like representation
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X (x) =

∫
Rd

fα∗ (x, ξ) M̂α (dξ) , x ∈ Rd (2.2)

where M̂α is the Fourier transform of Mα, the term α∗ = α
α−1 is the α-conjugate, and

the integrated function is given by:

fα∗ (x, ξ) =
exp(ix.ξ)− 1

|ξ|H+d/α∗
Q∗
(

ξ
|ξ|

)
where Q∗ is also an even function defined on Sd−1 and verifying c ≤ Q∗ ≤ 1

c .
Our aim is to extend the estimator (1.3) to the case of SαS-stable H-sssi processes,

with 1 < α < 2 and by replacing the power 2 in the second hand side of the quadratic
variation (1.2) by the power of p for any 0 < p < α. The technical idea consist in
using the wavelet decomposition of random measure Mα. Using the stochastic integral
representation (2.2), it comes that the processes X can be written in the following
wavelet decomposition:

X (x) =
∑
λ∈Λd

2−jHΦv
α

(
2jx− k

)
ηαλ , (2.3)

where (ηαλ , λ ∈ Λd) is a sequence of SαS random variables and Φv
α are the adapted

wavelets calculated from the wavelets decomposition of (2.2). They are defined by the
two following integral representations:

ηαλ =

∫
Rd

Ψλ,αMα(dx) and Φv
α (x) =

∫
Rd

fα∗ (x, ξ) Ψ̂v (ξ) dξ (2.4)

where Ψ̂v (ξ) is the Fourier transform of the mother wavelet and

Ψλ,α (x) = 2j
d
αΨv

(
2jx− k

)
(2.5)

In Appendix A, we recall all the ingredients and the theoretical developments on
the wavelets that leads to these equations.

2.2. Main result: Law of Large Numbers - Almost sure consistency

We aim at providing an estimator of the Hurst index H ∈ ]0, 1[ for SαS moving average
process X (2.1). We define the following p-variations, 0 < p < α with N = 2n, n ∈
N∗

V u
n,p (X) =

1

2n

2n−1∑
l = 0

∣∣∣∣X ( l + 1

2n
u

)
−X

(
l

2n
u

)∣∣∣∣p (2.6)

for u belonging to Sd−1 , 0 ≤ l ≤ 2n − 1, 1 < α < 2. For the sake of simplicity, we
will next denote the normalized increments of the process X by:

ξnl (X) = 2nH
(
X

(
l + 1

2n
u

)
−X

(
l

2n
u

))
(2.7)

4



so that

2nHpV u
n,p (X) =

l

2n

2n−1∑
l = 0

|ξnl |
p
. (2.8)

Theorem 1. Estimator of H
Let Mα be a stochastic symmetric α-stable measure, let X be the moving aver-

age stochastic processes associated to Mα by (2.1) and V u
n,p (X) the associated p-

variations defined by (2.6) with 0 < p < α. We take

Ĥu
n,p =

−1

np
log2 V u

n,p (X) , (2.9)

then
lim

n→∞
Ĥu

n,p = H Pa.s. ∀u ∈ Sd−1. (2.10)

This estimator (2.9) has a bias. In order to get an unbiased estimator for H , we
form hereafter quotient of p-variations (2.12) as stated in Corollary 1 (developed and
proved in subsection 5.3).

Corollary 1. Unbiased estimator of H
Under the same assumptions as in Theorem 1, we form the following p-variations

V u,r
n,p , for any n ∈ N∗, r ∈ N∗

V u,r
n,p (X) =

1

2n − 2r + 1

2n−2r∑
l = 0

∣∣∣∣X ( l + 2r

2n
u

)
−X

(
l

2n
u

)∣∣∣∣p , (2.11)

where V u,0
n,p (X) = V u

n,p (X) (2.6). Now define the estimator

H̃u,r
n,p =

1

rp
log2

V u,r
n,p (X)

V u,0
n,p (X)

, (2.12)

then lim
n→∞

H̃u,r
n,p = H Pa.s., ∀u ∈ Sd−1 and E

∣∣∣H̃u,r
n,p

∣∣∣ = H .

2.3. Secondary results: Asymptotic behavior of the estimator

The approached used to get estimator (2.9) and consequently unbiased estimator
(2.12) is based on establishing a Law of Large Numbers and getting the convergence
rate. Such results articulate into three distinct parts, since the convergence rate and the
domain of attraction can be either Gaussian or Stable non-Gaussian, depending on the
position of value of exponent p related to α

2 . We distinguish three cases with different
behaviors: (i) 0 < p < α

2 , a critical case (ii) p = α
2 , and (iii) α

2 < p < α, as we
describe in the following statements.

Theorem 2. Domain of attraction
Let 0 < p < α, consider variations V u,r

n,p (2.11) . Then, given an = 2n

Mn
with

Mn = 2Kn2
Ln , where Kn ∼ log2(n), Ln ∼ log2(n), with n ∈ N∗, we get:
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(i) if 0 < p < α
2 , then (an)

1
2
V u,1
n,p −2HpV −u,0

n,p

V −u,0
n,p

belongs to the domain of attraction of
a normal law,

(ii) if p = α
2 , then (anlog2(n))

1
2
V u,1
n,p −2HpV −u,0

n,p

V −u,0
n,p

belongs to the domain of attraction
of a normal law,

(iii) if α
2 < p < α, then (an)

1
α̃

V u,1
n,p −2HpV −u,0

n,p

V −u,0
n,p

belongs to the domain of attraction

of a symmetric stable law with stability index α̃ = α
p (1 < α̃ < 2).

The proof of this Theorem, as well as the one of the following Corollary on the
convergence rate of the estimator deduced from (2.12), is based on Proposition 1 and
Proposition 2, with, in addition, an application of the delta-Method.

Corollary 2. convergence rate of the estimator

Consider H̃n,p = H̃u,1
n,p defined from (2.12), we have:

(i) if 0 < p < α
2 , then (an)

1
2 (H̃n,p −H) converges in law toward a normal law,

(ii) if p = α
2 , then (anlog2(n))

1
2 (H̃n,p−H) converges in law toward a normal law,

(iii) if α
2 < p < α, then (an)

1
α̃ (H̃n,p − H) converges in law toward a α̃-stable

non-Gaussian law, where α̃ = α
p .

From now, in the remainder parts of this article, we give the necessary steps to prove
these main and secondary results. The the idea is to write the estimator as normalised
sum. By the wavelet decomposition (2.3) we get that the increments (2.7) of the process
can be written

ξnl = 2nH
∞∑

j=−∞
2−jH

∑
k,v

(
Φv

α

(
2j

(l + 1)u

2n
− k

)
− Φv

α

(
2j

lu

2n
− k

))
ηαj,k,v.

(2.13)
If those increments were independent, we would prove that normalized p-variations
2npHV u

n,p(X) (2.6) almost surely converges to a constant. But p-variations (2.6) are
expressed as the sum of non independent terms. The idea is hence to use results from
triangular arrays limit theorems - the results on convergent triangular arrays are given in
Appendix B. In order to comply with the usual notations, let T = ((Tn,l = |ξnl |

p
, 0 ≤

l ≤ 2n − 1), n ∈ N∗) . We study in section 3 its domain of attraction in each case (i),
(ii) and (iii) (proposition 1) and derive from it a Law of Large Numbers in proposition
2. For this purpose we have to show that the set T have the triangular array’s structure
with the suitable normalising constants For this purpose, we need to rearrange the dou-
ble sum in (2.13) so that it components have the structure of dependence of triangular
arrays. This is done into three steps:

• First, we use a truncated wavelet decomposition, detailed in Section 4
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• so that we adapt the supports of the corresponding wavelets to be in disjoint sets
and then use the independent increments of the α-stable random measure Mα,

• then apply the appropriated normalizing constant to obtain the L.L.N. of propo-
sition 2

Then in section 5 those intermediary results and steps are grouped together and we
prove the convergence of estimators (2.9) and (2.12).

3. Law of Large Numbers for Triangular Arrays

Given (in, n ∈ N∗) a sequence of positive numbers, we define a triangular array
by setting T = ({Tn,l, 0 ≤ l ≤ in − 1} , n ∈ N∗) where random variables Tn,l are
independent identically distributed (i.i.d.) column by column, along each row n.

Definition 1. T is a convergent array if it satisfies the following equality in law

lim
n→∞

1

Bn

in−1∑
l = 0

Tn,l
(d)
= V

for a given positive sequence (Bn, n ∈ N∗) and for a given random variable V .

Definition 2. T admits a Law of Large Numbers (L.L.N.) if

∃c ∈ R such that lim
n→∞

1

in

in−1∑
l = 0

Tn,l = c Pa.s.

Set (ξnl , l ∈ N) a sequence of i.i.d. random variables with common SαS law for a
given n. Let

T (p) =
({

τ
(p)
n,l , 0 ≤ l ≤ 2n − 1

}
, n ∈ N∗

)
be a triangular array with variables τ (p)n,l defined along a given line n by

τ
(p)
n,0

(d)
= |ξn0 |

p − E |ξn0 |
p

for 0 < p < α. Let F (respectively Fτ ) denote the common distribution function of
variables ξnl (respectively τ

(p)
n,l ).

Proposition 1. T (p) is a convergent array with normalization
(
B

(p)
n , n ∈ N∗

)
(i) if 0 < p < α

2 with B
(p)
n = 2

n
2 , then Fτ belongs to the domain of attraction of a

normal law,

(ii) if p = α
2 with B

(p)
n =

(
2n log

(
2

n
2

)) 1
2

, then Fτ belongs to the domain of
attraction of a normal law,
(iii) if α

2 < p < α with B
(p)
n = 2

n
α̃ , then Fτ belongs to the domain of attraction of

a symmetric stable law with stability index α̃ = α
p (1 < α̃ < 2).
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Proposition 2. In these three cases, T (p) admits a Law of Large Numbers

lim
n→∞

1

2n

2n−1∑
l = 0

τ
(p)
n,l = 0 Pa.s. (3.1)

Remark 1. In Gaussian (i) and critical cases (ii), we can work with any N > 0 but
stable case (iii) require us to work with an exponential sub-sequence (2n, n ∈ N∗) as
it will be explained in commentary after lemma 5.

In what follows, when there exists no possible confusion, we just note τn,l and Bn to
lighten. The proofs of propositions 1 and 2 are in Appendix B.

4. Truncated Adapted Wavelets decomposition

Let X be the moving average α-stable process defined by (2.1). Set u ∈ Sd−1,
consider p-variations (2.6). Take l ∈ {0, 2n − 1} and let (ξnl (X) , n ∈ N∗) be the
sequence of stationary random variables defined by (2.7) and normalized p-variations
(2.8). Let T be the triangular array T = ((Tu

n,l, 0 ≤ l ≤ 2n − 1), n ∈ N∗) where
Tu
n,l = |ξnl |

p, 0 < p < α. When there is no possible confusion, we denote ξnl (X)
and ξnl (Z) by ξnl for short. Variables we now consider are correlated. Our aim is to
come down to results for independent variables. For this, we use the wavelet decompo-
sition (2.3) of the moving average process X . By (2.4), normalized increments around
a given point l can be written as done in (2.13). If those normalized increments were
independent along each line n, then we could apply proposition 2. They aren’t thought.
Our aim is thus to amount to the first case of arrays of independent random variables.
The principle of reduction to the independent case is the following : consider wavelets
with pairwise disjoint supports, as measure Mα is independently scattered, the corre-
sponding random variables ηαλ defined by (2.4) are independent for a fixed j. For this,
we will use truncated variables.

4.1. Definition of truncated process
Decomposition (Appendix A.4) is made of two essential components : functions

Φv
α (A.7) and random variables ηαλ (A.1) for X . In order to work with compact support

adapted wavelets Φv
α, we cut them with the help of χK , the C∞ function equals to

1 between −K and +K (with radius K > 0), decreasing on (−K − ε,−K) and
(K,K + ε), and equals to 0 elsewhere, that is

Φv,K
α = Φv

α × χK so that lim
K→∞

Φv,K
α = Φv

α. (4.1)

By a misuse of notation, we still denote by χK function ξ 7→ χK(|ξ|). Next, we
will consider Kn which slowly tends to infinity with n. Using such functions Φv,K

α ,
we hence work with a finite number of wavelets. We denote by ΦK

λ,α the functions
constructed from the Φv,K

α ’s by dilatation and translation as in (A.6). They are with
compact support. In the same way, we construct

Ψv,K
α = Ψv

α × χK so that lim
K→∞

Ψv,K
α = Ψv

α. (4.2)

8



We denote by ΨK
α,λ the corresponding wavelets defined as in (Appendix A.1) and

by ηα,Kλ the corresponding random variables formed as in (A.1). We still call X the
resulting process.

4.1.1. Cut off on adapted wavelets
Given ε (Φv

α) the error made when using Φv,K
α instead of initial function Φv

α in the
expression of X . By construction (4.1), we have

Φv,K
α (x) = Φv

α (x) if |x| ≤ K, 0 else.

Besides, as Φv
α is with rapid decrease, it comes

ε (Φv
α) = max

x∈Rd

∣∣(Φv
α − Φv,K

α

)
(x)
∣∣ = max

|x|>K

Cβ1

1 + |x|β1

We deduce from this relation that the error which has repercussions on |ξnl |
p is

εp (Φ
v
α) = O

(
K−β1p

)
. (4.3)

4.1.2. Cut off on wavelets
Let now ε (ηαλ ) denote the error made when using ΨK

λ,α instead of initial function
Ψλ,α in the construction of ηαλ and εp (η

α
λ ) the error which affects |ξnl |

p. Set RK,λ the
cut part of ηαλ ,

εp (η
α
λ ) = |

∣∣RK
λ

∣∣ |Lp(P).

As ηαλ is constructed from the random measure Mα by (A.1), we write

εp (η
α
λ ) =

(
E
∣∣Mα

(
Ψλ,α −ΨK

λ,α

)∣∣p) 1
p

with (
Ψv

α −Ψv,K
α

)
(x) = 0 if |x| ≤ K, Ψv

α (x) else.

Thus (A.3) and (Appendix A.1) yield that

(εp (η
α
λ ))

p = (cp,α)
p

(∫
|2jx−k|>K

2jd
∣∣Ψv

α

(
2jx− k

)∣∣α dx

) p
α

≤ (cp,α)
p
(Cβ2

)
p

(∫
|y|>K

dy

1 + |y|αβ2

) p
α

for all β2 > 0 by property of rapid decrease of functions Ψv , with Cβ2
> 0. Then by

the change of variable ρ = |y|, it comes

(εp (η
α
λ ))

p ≤ c(p, α, β2)

(∫ ∞

K

1

1 + ραβ2
ρd−1dρ

) p
α

.
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We therefore conclude that for β2 > d/α,

εp (η
α
λ ) = O

(
K(d−β2α)

1
α

)
. (4.4)

Last, we rapidly check that those two terms of error introduced by the use of both trun-
cated wavelets and truncated adapted wavelets have a negligible contribution in |ξnl |

p.
From (4.3), (4.4) and Borel-Cantelli’s lemma under conditions β1 > 1

p (m+ 1),β2 >
1
p (m+ 1) + d

α , ∀m > 0, we get from some random rank

εp (Gλ,α) + εp (η
α
λ ) ≤ K−m.

Hence we can work with truncated normalized increments still written ξnl with an abuse
of notation, without loss of information since K large enough.

4.2. Decomposition of the increments
For a fixed n, we decompose each term ξnl , 0 ≤ l ≤ 2n − 1 in three components;

respectively low, middle and high frequency:

ξnl = ξnl,− + ξnl,0 + ξnl,+. (4.5)

Define

Iδn =

 ]−∞;n− Ln[ if δ = −1
[n− L;n+ Ln] if δ = 0
]n+ Ln;∞[ if δ = 1.

First we show that the middle-component ξnl,0 is the only significant one. For this, we
must prove that the low and high frequency components are negligible. We first prove
that those increments can be considered as being independent.

4.2.1. Low and High Frequency components
Set L > 0. Let ξnl,− be the low frequency (L.F.) component of ξnl and ξnl,+ be the

high frequency (H.F. ) component, n ∈ N∗, 0 ≤ l ≤ 2n − 1, defined by

ξnl,δ = 2nH
∑
λ∈Λd

j∈Iδ
n

(
ΦK

λ,α

(
l + 1

2n
u

)
− ΦK

λ,α

(
l

2n
u

))
ηα,Kλ (4.6)

Lemma 1. (A) sup
0≤l≤2n−1

(
E
∣∣∣ξnl,− (X)

∣∣∣p) 1
p

≤ c 2−L(1−H),

(B) sup
0≤l≤2n−1

(
E
∣∣∣ξnl,+ (X)

∣∣∣p) 1
p

≤ c′2−LH , as n → ∞, where c, c′ > 0.

Remark 2. As functions GK
λ,α are with compact support, we sum for each fixed l on a

finite number of k. Take y ∈ Rd, set Nk the number of translations k ∈ Zd such that
y − k ∈ B(0,K), then Nk ≤ (2K + 1)d.

Set Φu,λ (t) = ΦK
λ,α (tu) , t ∈ R and Φv

u,k (t) = Φv,K
α (tu− k) by a misuse of nota-

tion. In what follows, we often denote the difference ΦK
λ,α

(
l+1
2n u

)
− ΦK

λ,α

(
l
2nu
)

by
∇Φu,λ (l/2

n) and we use the notation ξn,δl where δ ∈ {−1;+1} for short. The proof
of lemma 1 is given in Appendix C.
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4.2.2. The middle frequency component (n− L ≤ j ≤ n+ L)

To study the behavior of the initial process (before truncation), we have to make K
tends to infinity. We whence consider a slowly varying cut Kn which tends to infinity
with n. As said before, we also make the frequency cut L tend to infinity. Take for
instance Kn = β log2(n) and Ln = γ log2(n),with β, γ > 0. Note Hδ = H or 1−H
respectively when δ = 1 (which corresponds to H.F.) or δ = −1 (for L.F.). Notice
that the use of Kn and Ln leads no modification in lemma 1 to the extend that 2−LnHδ

is the dominant term when compared to (2Kn + 1)
d as n tends to infinity. Then the

normalized increments (2.7) considered in the middle-frequency band are written as
follows

ξn,Ln,Kn

l,δ (X) = 2nH
∑
j∈Iδ

n
k,v

2−jH
(
Φv,Kn

j,k,α

(
2−n (l + 1)u

)
− Φv,Kn

j,k,α

(
2−nlu

))
ηα,Kn

j,k,v .

(4.7)
Taking such a varying cut Ln, other components are asymptotically negligible as given
by the following lemma

Lemma 2. If Kn ,Ln are chosen under conditions β > 0,γ > (1 + ν)/Hδp,ν > 0

then lim
n→∞

1
2n

∑2n−1
l=0

∣∣∣ξn,Ln,Kn

l,δ

∣∣∣p = 0 Pa.s. for all 0 < p < α with δ ∈ {−1;+1}.

The proof of lemma 2 is given in Appendix C. We deduce from lemma 2 that high
and low frequency components are negligible in expression (4.5). Note εδp the error

made in the expression of
∣∣∣ξn,Ln,Kn

l

∣∣∣p when neglecting HF (δ = 1) and LF (δ = −1)

components. We have εδp = O
(
2−LnHδp

)
which is negligible in the decomposition

when taking a frequency cut Ln −→
n→∞

∞. To amount to a study of independent random
variables, we now base our study on this middle frequency range as it is the only
significant one and we use form ξn,Ln,Kn

l,0 which is very close to ξnl from a rank nε.
When there exists no possible confusion, we note ξn,Ln,Kn

l,0 =: ξn,Ln,Kn

l .

5. Estimators of H for X

Once again, we consider the triangular array

T =
((
Tu
n,l, 0 ≤ l ≤ 2n − 1

)
, n ∈ N∗)

where Tu
n,l = |ξnl |

p satisfying Tu
n,l ≃

∣∣∣ξn,Ln,Kn

l

∣∣∣p with Ln and Kn two slowly growing
functions as previously. Consider variables (4.7) in the middle frequency band centered
around frequency n of length 2Ln. The lower frequency we meet is j = n−Ln where
there are 2n−Ln truncated wavelets with their supports of length 2Kn2

−(n−Ln) (so that
we have, along one direction ui ∈ Sd−1, −Kn ≤ 2jxi − k ≤ Kn where x = Σxiui.
From now, set Mn := 2Kn2

Ln .
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5.1. Sub sampling
Take γ ∈ (0;Mn) and let us set θnγ,l = ξn,Ln,Kn

ml,γ(n)
with ml,γ(n) = γ + lMn, l ∈

(0; 2n

Mn
− 1). We thus form packets Wγ = {θnγ,l, 0 ≤ l ≤ 2n

Mn
− 1} of 2n

Mn
increments

made from disjoint compact support wavelets. Furthermore as random measure Mα

is independently scattered, those random variables θnγ,l are independent within each
packet Wγ . This enables us to amount to the case of arrays of independent random
variables studied in section 3. Finally, take s ∈ (0; 1) and define γn(s) its relative
position in (0;Mn) by setting s = γn(s)

Mn
+ εn with |εn| < 1

Mn
. Then we can apply

proposition 2 in each packet which yields the following convergence result toward

σX (u) = (E |X (u)|p)
1
p , u ∈ Sd−1 , 0 < p < α (5.1)

Lemma 3. For each s ∈ (0; 1) and Ln, Kn defined as in lemma 2, we consider the
sub-variation:

2nHpV u,γn(s)
n,p =

Mn

2n

2n/Mn−1∑
l = 0

∣∣∣θnγn(s),l

∣∣∣p .
for u ∈ Sd−1. Then

lim
n→∞

2nHpV u,γn(s)
n,p = σp

X(u) P a.s. (5.2)

independently of s, where σX(u) is the constant defined by (5.1), independent of H
and s.

The proof of lemma 3 is given in Appendix C.

5.2. Convergence of p-variations
We now have to control family {θnγn(s),l

, 0 ≤ l ≤ 2n

Mn
−1} when n tends to infinity.

Recall that when we make n tends to infinity, then Ln and Kn slowly tend to infinity so
that we work with initial increments ξnl . Consider p-variations defined by the following
relation

V u
n,p =

1

Mn

Mn−1∑
γn(s)=0

V u,γn(s)
n,p . (5.3)

Then, parameter H being known, we obtain an estimation of (5.1) by this last lemma:

Lemma 4. Under conditions of lemma 3, we have

lim
n→∞

2nHpV u
n,p = σp

X(u) P a.s. (5.4)

where σX is the constant (5.1).

The proof of lemma 3 is given in Appendix C. Then this relation can be written under
the following form

lim
n→∞

nHp+ log
(
V u
n,p − 2−nHpσp

X(u)
)
= 0 Pa.s.

This enables us to get the estimator (2.9) and the main result stated in section 2.
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5.3. unbiased estimator

From this first estimator (2.9), we now consider variations V u
n,p,r (2.11) to get an

unbiased estimator (2.12). With the same reasoning line, we get as in (5.4) that

lim
n→∞

2nHpV u
n,p,r − 2rHpσp

X = 0 Pa.s. (5.5)

Hence, by (5.4) and (5.5), it comes

lim
n→∞

V u
n,p,r

V u
n,p,0

= 2rHp Pa.s.

Thus H̃u
n,p,r defined by

H̃u
n,p,r =

1

rp
log2

V u
n,p,r

V u
n,p,0

(5.6)

almost surely converges to H as n tends to infinity for all r > 0. We easily check
that H̃u

n,p,r is unbiased as we get E
∣∣∣H̃u

n,p,r

∣∣∣ = H by the H-sssi property of X , so
Corollary 1 holds. □

6. Conclusion and perspectives

In this paper, we introduced an estimator along with its unbiased version for the
Hurst exponent H associated with the α-Stable non-Gaussian having a moving average
representation (2.1), for 1 < α < 2. Furthermore, we showed a Law of Large Numbers
for these estimations. The proposed estimator (2.9) and its unbiased version (2.12)
are based on p-variations. Their rates of convergence and the conditions under which
they converge to either a Gaussian or a Stable non-Gaussian distribution have been
detailed.We also showed that, the relationship of the p exponent to the threshold α

2
influences the estimators’ behavior and the limiting laws family.

Several perspectives may be investigated beyond this work. For instance, exploring
finance applications, notably in the stable-Capital Asset Pricing Model (CAPM) that
employs α-Stable distributions for modeling financial asset returns where 1 < α < 2,
would be highly valuable. Empirical investigations into self-similarity and stability
have revealed the market’s fractal nature, assuming symmetric α-Stable asset returns.
Considering the ongoing challenges in machine learning, exploring overfitting within
these contexts as a continuation of the research on fractional and multifractional Brow-
nian motion presented in [11] is pertinent.
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Appendix A. Wavelet decomposition

Appendix A.1. Recalls on Lemarié-Meyer wavelets

Set Λd = Z×Zd ×E∗
d where E∗

d = {0, 1}d \ {(0, ..., 0)}. Take λ = (j, k, v) , λ ∈
Λd. Let (Ψv, v ∈ E∗

d) be a generator system of an orthogonal basis of L2
(
Rd
)

made
with Lemarié-Meyer wavelets and construct the so-called Littlewood-Paley basis (refer
to the book of Y.Meyer [21]) of L2

(
Rd
)

made of the following wavelets

Ψλ (x) = 2j
d
2Ψv

(
2jx− k

)
.

Notice that v determine the choice of the mother wavelet Ψv (vector (0, ..., 0) is ex-
cluded as it designs the scale function). We define an unconditional basis (Ψλ,α , λ ∈ Λd)
of Lα

(
Rd
)
, α > 0, constructed after Lα-normalization of the usual Lemarié-Meyer

basis of L2
(
Rd
)

in the following way

Ψλ,α (x) = 2j
d
αΨv

(
2jx− k

)
as announced in (2.5) where 2j

d
α is the Lα

(
Rd
)
-normalization.

Appendix A.2. Random measures

Using the notations of Samorodnitsky-Taqqu (see [26]chapter 3), let us introduce
the stochastic SαS measure Mα, with a Lebesgue control measure m. It is an applica-
tion from Lα(Rd) to Lp (⩽̸,F ,P), p < α, such that Mα (f) =

∫
Rd f (x)Mα (dx) for

each integrand f ∈ Lα(Rd). Then (ηαλ , λ ∈ Λd) defined by (A.1) are given by

ηαλ = Mα (Ψλ,α) (A.1)

so that it is a sequence of SαS random variables satisfying the following stationarity
property

ηαj+r,k,v

(d)
= ηαj,k,v and ηαj,k+s,v

(d)
= ηαj,k,v ∀r ∈ Z, s ∈ Zd. (A.2)

In addition, using a known property of stable random variables ([26] p.18), we recall
the following relation connecting ||Mα (f) ||L2 and ||f ||Lα

(E|Mα (f) |p)
1
p = cp,α.

(∫
Rd

|f (x)|α dx

) 1
α

(A.3)

where cp,α is a constant.

Appendix A.3. Adapted wavelets

Set

fβ (x, ξ) =
exp(ix.ξ)− 1

|ξ|H+d/β
S
(

ξ
|ξ|

) (A.4)
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where 0 < H < 1, β > 1 and S ∈ Mc,1/c. We check that fβ (x, .) ∈ Lβ(Rd). Then
define

Φλ,α (x) =

∫
Rd

fα∗ (x, ξ) Ψ̂λ,α∗ (ξ) dξ (A.5)

where α∗ is the α-conjugate. Such functions Φλ,α are called the adapted wavelets
associated to X . We deduce from (Appendix A.1) that they satisfy the following
scaling relation

Φλ,α (x) = 2−jHΦv
α

(
2jx− k

)
(A.6)

where Φv
α is defined from the mother wavelet Ψv by

Φv
α (x) =

∫
Rd

fα∗ (x, ξ) Ψ̂v (ξ) dξ. (A.7)

Appendix A.4. Wavelet decomposition of X

We here use the wavelet decomposition of random measure Mα as done in [9].
It comes that the moving average process X admits the wavelet decomposition an-
nounced in (2.3)

X (x) =
∑
λ∈Λd

2−jHΦv
α

(
2jx− k

)
ηαλ

where (ηαλ , λ ∈ Λd) is a sequence of SαS random variables defined by (A.1) and
function Φλ,α is given by (A.5).

Appendix B. Convergent Triangular Arrays

First, quote this known property of stable variables ( [26]p.16), for all x > 0

P [|ξnl | > x] ∼
x→∞

λαcα x−α

where λ > 0 is the scale parameter of the SαS law, cα ∈ R and a (x) ∼
x→∞

b (x) means

that lim
x→∞

a(x)
b(x) = 1. Then it comes that Fτ behaves as follow as |x| → ∞

Fτ (x) = 1− (c′α + o (1))x− α̃ if x > 0, 0 otherwise (B.1)

where α̃ = α
p (α̃ > 1) and c′α ∈ R.

Appendix B.1. Step 1 : Gaussian behavior (case (i))

Using a convergence result of Gnedenko-Kolmogorov for sums of independent ran-
dom variables with finite variance ([theorem3 p.101][19]), Fτ belongs to the domain of
attraction of a normal law with normalization Bn =

√
2n as it fulfills the two following

conditions for all ε > 0

2n
∫
|x|≥ε

x2 dFτ (Bnx) → 0 and 2n
∫
|x|<ε

x2 dFτ (Bnx) → σ
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as n → ∞, where the choice of Bn proceed from (B.1). So we asymptotically have

P

[
2−

n
2

2n−1∑
l=0

τn,l ≥ xn

]
∼

n→∞

∫ ∞

xn

1

σ
√
2π

exp

(
− t2

2σ2

)
dt (B.2)

with xn −→ ∞
n→∞

and σ2 denotes finite variance of τ (p)1 . Taking xn = (2µ ln (2n))
1
2

with µ/σ > 1, it comes ∑
n≥1

∫ ∞

xn

exp
(
−t2/2σ2

)
dt < ∞

since
∫∞
xn

exp
(
−t2/2σ2

)
dt ≤ exp

(
−x2

n/2σ
2
)

as soon as xn > σ2.

Thus 2−n
∑2n−1

l = 0 τn,l ≤ xn2
−n

2 from some random rank n0 by Borel-Cantelli, and
(3.1) holds as lim

n→∞
xn2

−n
2 = 0.

Appendix B.2. Step 2 : Critical case (case (ii))
For this case, variables τn,l are not with finite second order moment so they don’t

fulfill conditions of theorem3 in [19], applied in step Appendix B.1. This no more
possible to refer to next step Appendix B.3 either as the limit law would be with
stability index α̃ = 2 by Gnedenko’s result [18] whereas Rosovskii’s lemma only
applies for 1 < α̃ < 2. These are the reasons why we have to treat this case apart.
By another result of Gnedenko-Kolmogorov on limit distributions of sums of i.i.d.
random variables ([19]thm2 p.128), we get that Fτ belongs to the domain of attraction
of a normal law as it fulfills the two following conditions for all ε > 0

2n
∫
|x|≥ε

dFτ (Bnx) → 0

and

2n

∫
|x|<ε

x2 dFτ (Bnx)−

(∫
|x|<ε

x dFτ (Bnx)

)2
→ 1

as n → ∞, for a normalizing sequence with general term Bn =
√
2n ln

(√
2n
)
. Its

form is obtained using expression (B.1) of Fτ . We get the same kind of result as in
step 1 but with a necessary logarithmic correcting term. Hence we obtain (B.2) apart
from a constant. So, taking xn as in the first step, we conclude that (3.1) holds thanks
to Borel-Cantelli’s lemma, as lim

n→∞
xn

(
ln (2n) 2−n−1

)1/2
= 0.

Appendix B.3. Step 3 : Stable behavior (case (iii))
As {τn,l, 0 ≤ l ≤ 2n − 1} is a sequence of centered i.i.d. random variables satisfy-

ing (B.1), a Gnedenko’s result [18] gives us that Fτ belongs to the domain of attraction
of a stable law with index of stability α̃ = α

p with Bn = 2n/α̃. As 1 < α̃ < 2, we can
apply the following result, due to Rosovskii (formula (1.2) p.454 in [25])
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Lemma 5. Set s2n = τn,0 + ...+ τn,2n , and (Bn, n ∈ N∗) a positive sequence. Then

P (s2n > xn) ∼
n→∞

2n (1− Fτ (xn)) (B.3)

uniformly for all sequence (xn)n∈N∗ such that xn

Bn
−→
n→∞

∞.

Take xn = n2n/α̃. As xn −→
n→∞

∞ and xn

Bn
−→
n→∞

∞, thanks to (B.1) and (B.3) we can
write

P
(
τn,0 + ...+ τn,2n > n2n/α̃

)
∼

n→∞
c′α n− α̃.

Notice that we here have to work with an exponential sub-sequence (2n, n ∈ N∗) in
order to get convergence of

∑
n≥1 n

− α̃. Then Borel-Cantelli’s lemma yields that from

some random rank n1, we get 2−n
∑2n−1

l=0 τn,l ≤ n2−n/α̃∗
(with α̃∗ the α̃-conjugate)

which allows us to conclude that (3.1) holds.

Appendix C. Proof of intermediary Lemmas

Appendix C.1. Proof of Lemma1

Proof of (A). As the Φλ,α’s are real valued, we apply the Taylor-Young equality:
∇Φu,λ (l/2

n) = 2−n (Φu,λ)
′
(2−nl) + 1

22
−2n (Φu,λ)

′′
(2−nl + θ) with θ ∈ ]0, 2−n[

where (Φu,λ)
(m) designs the mth derivative of Φu,λ. Hence (4.6) may be of the fol-

lowing form

ξnl,− = 2nH
∑
λ∈Λd

[
2−n (Φu,λ)

′ (
2−nl

)
+ 2−2n−1 (Φu,λ)

′′ (
2−nl + θ

)]
ηα,Kλ .

By (A.6) it comes that (Φu,λ)
(m)

(t) = 2−jH2mj (DmΦv
k)
(
2jtu

)
in one direction u.

Set

ξn,1l,,− = 2nH
∑

j<n−L

2−jH
∑

k∈Zd,v∈E∗
d

2j−n (DΦv
k)

(
2j

l

2n
u

)
ηα,Kj,k,v ,

R (l) = 2nH−1
∑

j<n−L

2−jH
∑

k∈Zd,v∈E∗
d

22(j−n)
(
D2Φv

k

)(
2j
(

l

2n
+ θ

)
u

)
ηα,Kj,k,v ,

so that
ξnl,− = ξn,1l,,− +R (l) .

In a first time, consider the case where 1 ≤ p < α. This enables us to apply the
Minkowski inequality,

(
E
∣∣ξnl,−∣∣p) 1

p ≤
(
E
∣∣∣ξn,1l,,−

∣∣∣p) 1
p

+ (E |R (l)|p)
1
p . (C.1)

Set M = sup
y∈Rd

∣∣Φv,K
α (y)

∣∣, M ′ = sup
y∈Rd

∣∣∣∣DΦv,K
α (y)

∣∣∣∣ , and M ′′ = sup
y∈Rd

∣∣∣∣D2Φv,K
α (y)

∣∣∣∣.
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We first treat the second order term R (l). Since α > p, by properties of α-stable

random variables and (A.1), there exists a ∈ R+ such that (E
∣∣∣ηα,Kλ

∣∣∣p) 1
p = a. Thus

the Minkowski inequality yields

||R (l)||Lp(P) ≤
a

2

∑
j<n−L

2−(j−n)H22(j−n)
∑
k,v

∣∣∣∣∣∣∣∣D2Φv
k

(
2j
(

l

2n
+ θ

)
u

)∣∣∣∣∣∣∣∣ .
From remark 2, it becomes

sup
0≤l≤2n−1

(E |R (l)|p)
1
p ≤ a

2
M ′′ (2K + 1)

d
∑
j>L

2jH2−2j .

Then by the change of variable j′ = n− j, using the fact that H < 1, we obtain

sup
0≤l≤2n−1

(E |R (l)|p)
1
p ≤ C ′′ (p) (2K + 1)

d
2−L(2−H) (C.2)

where C
′′
(p) > 0. Then study part ξn,−l,1 . The same arguments lead to

sup
0≤l≤2n−1

(
E
∣∣∣ξn,1l,,−

∣∣∣p) 1
p

≤ aM ′(2K + 1)d
∑
j>L

2−j(1−H)

so that

sup
0≤l≤2n−1

(
E
∣∣∣ξn,1l,,−

∣∣∣p) 1
p

≤ C ′ (p) (2K + 1)
d
2−L(1−H) (C.3)

with C
′
(p) > 0. In order to come down to the initial process, we have to make

the frequency cut L tend to infinity. As 2−L(2−H) = o(2−L(1−H)) when L → ∞,
using (C.2) and (C.3), we can disregard the second order term in (C.1). It comes that

E
∣∣∣ξnl,,−∣∣∣p = O(2−L(1−H)p) which leads us to (i) with c := c1 (p,K) > 0 independent

of n.

Next, if p ≤ 1, we use the Hölder inequality : supl
(
E
∣∣∣ξnl,,−∣∣∣p) 1

p

≤ supl E
∣∣∣ξnl,,−∣∣∣ and

we apply the results pointed out with a constant c1 (1,K). □

Proof of (B). Using self-similarity of X and (A.2), we get

ξnl,,+
(d)
= 2−LH

∑
j>0

2−jH
∑
k,v

(
Φv,K

α

(
2j+L (l + 1)u− k

)
− Φv,K

α

(
2j+Llu− k

))
ηα,Kj,k,v.

Thus ξnl,,+
(d)
= 2−LHV +

L,n (X) where V +
L,n (X) is a variation of process X . As previ-

ously for 1 ≤ p < α, the Minkowski inequality applies. Then remark 3 yields that

sup
l

(
E
∣∣∣V +

L,n (X)
∣∣∣p) 1

p

≤ 2aM (2K + 1)
d (

2H − 1
)−1

as H > 0. So it comes that (ii) holds with c′ := c2 (p,K) independent of n.
If p ≤ 1, we apply the Hölder inequality once again and we use the previous result
with c2 (1,K), thus lemma 1 holds. □
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Appendix C.2. Proof of Lemma2

By the well-known Bienaymé-Tchebycheff inequality,

P

(
1

2n

2n−1∑
l=0

∣∣∣ξn,Ln,Kn

l,δ

∣∣∣p > εn

)
≤ 1

2nεn

2n−1∑
l=0

E
∣∣∣ξn,Ln,Kn

l,δ

∣∣∣p .
Take εn = n−ν , ν > 0. As 2−n

∑2n−1
l=0 E

∣∣∣ξn,Ln,Kn

l,δ

∣∣∣p ≤ c2−LnHδp by lemma 1, we
conclude by Borel-Cantelli for Ln = γ log2(n) as soon as γHδp− ν > 1. □

Appendix C.3. Proof of Lemma3

As random variables θnγn(s),l
are independent, result (3.1) holds. It comes that

lim
n→∞

Mn

2n

2n/Mn−1∑
l = 0

∣∣∣θnγn(s),l

∣∣∣p − E
∣∣∣θnγn(s),l

∣∣∣p = 0 P a.s.

where the average Mn

2n

∑2n/Mn−1
l=0 E

∣∣∣θnγn(s),l

∣∣∣p = E |X (u)|p using (1). So constant

σp
X(u) in (5.2) equals E |X (u)|p which term dependents only on α and p. □

Appendix C.4. Proof of Lemma4

As lemma 3 holds uniformly in s, it comes that for all s we have

lim
n→∞

1

Mn

Mn−1∑
γ=0

2nHpV u,γ
n,p =

∫ 1

0

σp
X(u) ds P.a.s.

so using (5.3), relation (5.4) holds as σp
X does not depend on s. □
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