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A B S T R A C T

Fatigue Damage Spectra (FDS) and Extreme Response Spectra (ERS) are well-established tools
for characterizing and evaluating the impact of vibration loads on mechanical structures. While
this is particularly valuable in producing test-tailored specifications, their current application
is limited to uniaxial analysis despite evidence indicating their inadequacy in representing
real-world loads, which are often multiaxial.

The proposed method offers a system-oriented approach to characterize and compare
multiaxial environments in terms of their severity, independently or not of any physical
structure. In addition, it introduces a generalization of the FDS and ERS, referred to as Fatigue
Damage multi-Spectrum (FDmS) and Extreme Response multi-Spectrum (ERmS) respectively.
These extensions allows for the consideration of multiaxial phenomena, such as correlation and
modal proximity. Finally, this paper demonstrates through several case studies the method’s
capability to capture phenomena not addressed by established uniaxial approaches.

. Introduction

Many mechanical systems are exposed to random vibrations caused by their operational environment, such as propulsion systems
r aerodynamic perturbations. Therefore, accurately characterizing and assessing the severity of these loads is crucial for ensuring
omponent durability and evaluating performance.

The methods developed for this purpose operate either in the time domain – using recorded data – or in the frequency domain,
ften preferred for its efficiency and ability to preserve the signal’s randomness [1–3]. In the frequency domain, measured field
ata are converted into Power Spectral Densities (PSDs). These PSDs are then analyzed through statistical models that are based on
he assumption of a zero-mean Gaussian signal. As a result, the procedure presented in this work applies exclusively to zero-mean
tationary Gaussian vibrations.

Fatigue Damage Spectra (FDS) and Extreme Response Spectra (ERS) offer a representation of the random vibrations severity,
hich eases the comparison between loads and the identification of the most energetic frequencies [4]. They are often used to
evelop test-tailored specifications by synthesizing mechanical environments into a single equivalent vibration, which simplifies
nd speeds up the product durability testing [5–8]. Even though FDSs and ERSs can be computed in both the time and frequency
omains, they are mainly used in the latter due to its computational efficiency.
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List of Symbols

𝐶 S-N curve constant
𝐶𝑒𝑞 Multiaxial S-N curve constant
𝐾 Stress–strain elastic coefficient
𝑇 Duration of signal
𝛤 (∙) Gamma function
𝛷𝑥 PSD of signal 𝑥
𝛷𝑠,𝑒𝑞 Equivalent stress response PSD
𝛷𝑥𝑦 CSD of signals 𝑥 and 𝑦
�̈�𝑟𝑚𝑠 RMS acceleration response of the structure
𝐇𝐚 Accelerance FRF Matrix
𝐇𝐫 Receptance FRF Matrix
𝐊 Stress–strain elastic coefficients matrix
𝐐 Equivalent stress coefficients matrix
Φ𝐚 Acceleration PSD matrix of the structure’s

response
Φ𝐞 Acceleration PSD matrix of the load
Φ�̈�,𝐞𝐪 Equivalent acceleration PSD of the struc-

ture’s response
CSD Cross-Spectral Density

ERS𝑠𝑡𝑑 Enveloped extreme response spectrum
ERmS Extreme response multi-spectrum
FDS𝑠𝑡𝑑 Fatigue damage spectrum for sequential tests
FDmS Fatigue damage multi-spectrum
FRF Frequency Response Function
PSD Power Spectral Density
RMS Root Mean Square
S − N Stress - Number of cycles
SDOF Single Degree of Freedom
𝜏 Time delay
𝜉 Damping
𝑏 Slope of S-N curve
𝑏𝑒𝑞 Multiaxial S-N curve slope
𝑓 Frequency
𝑓0 Natural frequency
𝑗 Imaginary Unit
𝑟RMS RMS displacement response of the structure
𝑠RMS RMS stress

However, the current FDS and ERS are limited to uniaxial applications, while real-life environments can be multiaxial. Moreover,
ecent research has emphasized the relevance of multiaxial testing, which is seen as more realistic and severe than uniaxial testing [9–
1]. The originality of this work is to address this limitation by developing a generalized FDS and ERS, respectively called Fatigue
amage multi-Spectrum (FDmS) and Extreme Response multi-Spectrum (ERmS), which are suited for combined loads. These new

pectra can be used in the same way as the original FDS and ERS while simplifying the characterization of real-life environments.
hey also aim to develop more accurate tailored tests that closely resemble real-world system operating conditions.

Due to its multi-disciplinary nature, this work presents the basics involved in the development of fatigue damage and extreme
esponse multi-spectra, followed by their application in various numerical case studies of increasing realism. These applications are
onducted using the Python language with the Matplotlib, Numpy and Scipy packages.

2. Theoretical background

2.1. Characterization of signal properties

2.1.1. Random stationary Gaussian processes
A signal is considered random when its time evolution is neither known nor predictable. Its random nature makes each sample

of duration 𝑇 unique, and their ensemble forms a random process. (Fig. 1-𝑎).
The analysis of a long-duration signal is often preceded by a stationary evaluation to ensure that results are independent of the

chosen sample. Usually, the stationarity of a process 𝑥(𝑡) is evaluated using the ensemble of its samples 𝑥𝑖∈[0;𝑁](𝑡). However, in most
cases, only one sample 𝑥0(𝑡) is available. In this scenario, the analysis involves the auto-correlation function 𝑅𝑥𝑥 of the single sample
𝑥0(𝑡) and its time-delayed counterpart 𝑥0(𝑡 + 𝜏) [12,13] :

R𝑥𝑥(𝜏) = ∫

+∞

−∞
𝑥0(𝑡) ⋅ 𝑥0(𝑡 + 𝜏) d𝑡 (1)

The process 𝑥(𝑡) is then said stationary if its mean value and auto-correlation R𝑥𝑥 are both time-independent. However, this
is a strong assumption since real-life loads are rarely stationary. A theoretically non-stationary process can still be considered as
weakly-stationary if it can be partitioned into stationary intervals.

Finally, a process 𝑥(𝑡) is said to be random Gaussian if the set of each samples’ instantaneous values follows a Gaussian distribution
of mean value 𝜇 and standard deviation 𝜎 (Fig. 1-𝑏). Its probability density at time 𝑡 is denoted as p[𝑥(𝑡)] and its expression is:

p
[

𝑥(𝑡)
]

= 1

𝜎
√

2𝜋
⋅ exp

(

−
|𝑥(𝑡) − 𝜇|2

2𝜎2

)

(2)

The time domain offers the ability to process any type of signal, although it tends to be computationally slow. To overcome this
rawback, fatigue assessment often employs frequency-domain signal processing, which offers faster computation but is limited to
tationary zero-mean Gaussian signals.
2
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Fig. 1. Samples of a Gaussian random process.

2.1.2. Frequency-domain analysis
A power spectral density (PSD) describes the signal’s power distribution in terms of frequencies. One of the main benefits of

this description is its capability to preserve the randomness of recorded data. Indeed, an infinite number of energetically equivalent
vibrations can be generated with a single PSD, whereas time-domain signals are deterministic. The computation of a one-sided PSD
relies on the Fourier transform TF[.] of the zero-mean signal’s auto-correlation function R𝑥𝑥 (Eq. (1)) [12]:

𝛷𝑥(𝑓 ) = TF[R𝑥𝑥(𝜏)] = ∫

+∞

0
R𝑥𝑥(𝜏) ⋅ 𝑒−𝑗⋅2𝜋⋅𝑓 ⋅𝜏 d𝜏 (3)

When two signals 𝑥(𝑡) and 𝑦(𝑡) are processed together, it is possible to assess their Cross-Spectral Density (CSD) (Eq. (5)). This
spectrum describes the cross-correlation – or the ‘‘relationship’’ – between the two datasets in terms of coherence and phase shift.
The CSD definition is based on the inter-correlation function [14]:

R𝑥𝑦(𝜏) = ∫

+∞

−∞
𝑥(𝑡) ⋅ 𝑦(𝑡 + 𝜏) d𝑡 (4)

𝛷𝑥𝑦(𝑓 ) = ∫

+∞

0
R𝑥𝑦(𝜏) ⋅ 𝑒−𝑗⋅2𝜋⋅𝑓 ⋅𝜏 d𝜏 (5)

A CSD 𝛷𝑥𝑦 can also be defined from the related PSDs 𝛷𝑥 and 𝛷𝑦 by introducing a correlation coefficient (Eq. (6)). It is a complex
number with a modulus 𝜌, which provides information about the signals’ coherence (their ‘‘similarities’’), and a phase angle 𝜑
representing the phase-shift between the data sets. Usually, CSDs are therefore complex functions [13].

𝛷𝑥𝑦(𝑓 ) =
√

𝛷𝑥(𝑓 ) ⋅𝛷𝑦(𝑓 ) ⋅ 𝜌𝑥𝑦(𝑓 ) ⋅ 𝑒
𝑗⋅𝜑𝑥𝑦(𝑓 ) (6)

The spectral analysis of a random vibrations from their PSDs usually requires the evaluation of spectral moments [14,15] as they
provide information about the dataset’s properties. The 𝑖th spectral moment 𝑚𝑖 of a stationary random signal described by a PSD 𝛷
is computed as follows:

𝑚𝑖(𝛷) = ∫

+∞

0
(2𝜋𝑓 )𝑖 ⋅𝛷(𝑓 ) d𝑓 (7)

These spectral moments are especially used to assess the frequency of positive slope zero crossings per time unit, written 𝑛+0 [16]:

𝑛+0 = 1
2𝜋

⋅
√

𝑚2
𝑚0

(8)

as well as the expected positive peak frequency per time unit 𝑛+𝑝 :

𝑛+𝑝 = 1
2𝜋

⋅
√

𝑚4
𝑚2

(9)

The computation of Eq. (8) and/or Eq. (9) is usually required to perform fatigue damage analysis since these numbers provide
information about the number of cycles, as will be further discussed.
3
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Fig. 2. Process for generating fatigue damage spectra.

2.2. Fatigue damage spectrum (FDS)

The fatigue damage spectrum (FDS) provides a representation of the expected damage caused by random vibrations on a single
degree-of-freedom (SDOF) structure, depending on its resonant frequency (Fig. 2).It is important to note that the purpose of this
spectrum is neither to precisely describe the damage caused to a structure nor its lifetime. Instead, it provides a general understanding
of the actual load severity based on standardized data and a reference structure. It is thus used for system-scale comparative studies,
such as comparing the potential damage of different vibrations or identifying the most vulnerable components in a system.

The process of building fatigue damage spectra involves several steps, beginning with the computation of the stress response
PSD 𝛷𝑠 of the SDOF reference structure. For linear systems, the magnitude of the receptance frequency response function (FRF)
|𝐻𝑎| which relates the acceleration of the load �̈�(𝑡) to the relative displacement response 𝑟(𝑡) is defined as follows:

|𝐻𝑎(𝑓 )| =
1

(2𝜋𝑓0)2
⋅

1
√

4𝜉2(𝑓∕𝑓0)2 +
[

1 − (𝑓∕𝑓0)2
]2

(10)

The receptance FRF 𝐻𝑎 is fully determined by the resonant frequency 𝑓0 and damping coefficient 𝜉 of the SDOF system, typically
set at 5% [4,15]. This value, although arbitrary, must be maintained consistent throughout the analysis in order to ensure that
comparisons between spectra remain meaningful.

The SDOF stress response PSD 𝛷𝑠 can then be computed from the receptance FRF (Eq. (10)) and the load PSD 𝛷�̈� [14]. An elastic
coefficient 𝐾 is introduced in accordance with the assumption of linearity.

𝛷𝑠(𝑓 ) = 𝐾2 ⋅𝛷𝑟(𝑓 ) = 𝐾2 ⋅ |𝐻𝑎(𝑓 )|
2 ⋅𝛷�̈�(𝑓 ) (11)

An arbitrary elastic coefficient value 𝐾 = 1 is usually assumed when no real material is considered [4]. Then, a second step aims
to estimate the damage of the reference structure from the parameter 𝑛+0 (Eq. (8)) and the RMS stress 𝑠𝑅𝑀𝑆 , which is defined as
follows:

𝑠2𝑅𝑀𝑆 = 𝑚0(𝛷𝑠) = ∫

+∞

0
𝛷𝑠 d𝑓 (12)

The number of cycles to failure 𝑁𝑟, computed from the RMS stress (Eq. (12)), can be estimated using the S-N relation (Eq. (13))
and its coefficients 𝑏 and 𝐶 [17]. Similar to the elastic coefficient 𝐾 and the damping coefficient 𝜉, the parameters of the S-N
curve are set to standard values when no real material is considered (or a material with unknown properties). A fatigue exponent
𝑏 = 8 is commonly used for structural materials, and the fatigue constant 𝐶 is usually set to a unit value [4]. In fact, the S-N curve
coefficients 𝑏 and 𝐶 often represent system-equivalent parameters since the structure may be an assembly of several components
made from various materials.

𝑁𝑟 ⋅ 𝑠
𝑏
𝑅𝑀𝑆 = 𝐶 (13)

While various spectral methods are available [18], the conventional approach for computing (FDSs) typically involves the
assessment of the damage induced by a load applied over a duration 𝑇 under the Narrow-Band approximation (Eq. (14)). This method
is favored due to its established conservatism across a wide range of process bandwidths [19], making it especially advantageous
for the development of specifications in vibration durability testing.

FDS = 𝑛+ ⋅ 𝑇 ⋅
2𝑏∕2

⋅ 𝑠𝑏 ⋅ 𝛤
(

1 + 𝑏) (14)
4
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The Narrow-band expression relies on the Gamma function 𝛤 as well as the Palmgren-Miner linear cumulative damage rule
(Eq. (15)) [20]. It gives an estimation of the total fatigue damage 𝐷 due to 𝑛𝑖∈[1;𝑁] cycles of 𝑁 vibrations at stress levels that would
cause failure at 𝑁𝑟𝑖∈[1;𝑁]

cycles (Eq. (15)).

𝐷 =
𝑁
∑

𝑖=1

𝑛𝑖
𝑁𝑟𝑖

(15)

As no universally accepted cumulative damage law exists, the Palmgren-Miner rule is still widely used due to its simplicity,
despite its potential inaccuracy in some cases [21,22].

The computation of the fatigue damage (Eq. (14)) for various resonant frequencies of the SDOF structure generates the FDS
related to the analyzed random load (Fig. 2). This spectrum simplifies the comparison of damage severity caused by different loads
based on the structure’s resonant frequency. The FDS can also identify the frequencies where the estimated damage is especially
significant and, as a result, highlight the most vulnerable components of the system.

Since the reference SDOF structure is uniaxial, it only account for unidirectional loads. As a result, the FDS cannot be used for
multiaxial load analysis, even though this type of environments is more representative of real-life operational loads.

Most vibration tests use an axis-by-axis approach where each component of the multiaxial load is applied successively on the
respective axis of the structure, as described in various standards [4,23–25]. Because of the uniaxial nature of fatigue damage spectra,
the procedure must be repeated for each load component to obtain a separate FDS for each excitation axis. By hypothesis, the damage
caused by the sequentially-applied uniaxial loads are assumed to be equivalent to the damage generated by the multiaxial one. The
multi-directional damage caused by 𝑁 sequentially-applied components of the load, noted FDS𝑠𝑡𝑑 , can be estimated as follows (the
subscript std stands for ‘‘standard’’):

FDS𝑠𝑡𝑑 (𝑓01 ,… , 𝑓0𝑁 ) =
𝑁
∑

𝑖=1
FDS𝑁𝐵,axis 𝑖(𝑓0𝑖 ) (16)

Here, FDS𝑁𝐵,axis 𝑖 represents the 𝑖th axis FDS derived from the Narrow-band approximation (Eq. (14)) and associated with the natural
frequency 𝑓0𝑖 of that specific axis. The multi-directional standard FDS, denoted as FDS𝑠𝑡𝑑 , is the cumulative result of all single-axis
FDS. Therefore, FDS𝑠𝑡𝑑 is a function of all the axes’ natural frequencies, explaining the notation FDS𝑠𝑡𝑑 (𝑓01 ,… , 𝑓0𝑁 ).

Yet, by assuming a linear relationship between damage and excitation level, Eq. (16) represents a substantial simplification,
given that the actual relationship is rather exponential, as shown in Eq. (41). Moreover, this formulation overlooks the potential
impact of cross-axis interaction, which can be significant on the structure’s failure time [26–30]. Some of these phenomena will be
further investigated in the upcoming case studies (Section 4).

2.3. Extreme response spectrum (ERS)

The Extreme Response Spectrum (ERS) operates on the same principle as the FDS, which is illustrated in Fig. 2. However, instead
of offering an estimated damage, it emphasizes the most likely acceleration peak response of the reference SDOF structure [15].

As for the FDS, it is mainly used to compare load severity or to highlight the weak spots of a composite system presenting various
resonant frequencies.

The mathematical description of the ERS is based on the Extreme Values Theory. Since the load is presumed Gaussian, the SDOF
response can also be stated as such [15]. At first, the RMS value of the relative displacement response 𝑟𝑅𝑀𝑆 is defined from the
frequency of positive slope 𝑎-level crossings:

𝑁+
𝑎 = 𝑛+0 ⋅ 𝑇 ⋅ exp

(

− 𝑎2

2𝑟2𝑅𝑀𝑆

)

(17)

The maximum peak value 𝑟𝑚𝑎𝑥 of the response is, by definition, exceeded only once throughout the duration 𝑇 of the signal. By
using Eq. (17), the value 𝑎 = 𝑟𝑚𝑎𝑥 where 𝑁+

𝑎 = 1 gives the estimated maximum peak:

𝑟𝑚𝑎𝑥 = 𝑟𝑅𝑀𝑆 ⋅
√

2 log(𝑛+0 𝑇 ) (18)

For linear systems, stress is related to the response through a linear coefficient with 𝑠𝑅𝑀𝑆 = 𝐾 ⋅𝑟𝑅𝑀𝑆 . However, the ERS is defined
o compute the extreme response of the reference SDOF structure in terms of acceleration instead of displacement, as estimated by
q. (18). The ERS can finally be obtained by multiplying the expected maximum peak 𝑟𝑚𝑎𝑥 by the quantity (2𝜋 ⋅ 𝑓0)2:

ERS(𝑓0) =
(2𝜋𝑓0)2

𝐾
⋅ 𝑠𝑅𝑀𝑆 ⋅

√

2 log(𝑛+0 𝑇 ) (19)

ERSs can be expressed directly from the acceleration response PSD using the receptance FRF (Eq. (20)), but it is often more
fficient to compute both ERS and FDS from the same stress response PSD 𝑠𝑅𝑀𝑆 (Eq. (19)) instead of computing two separate ones
rom different FRF.

ERS(𝑓0) = �̈�𝑅𝑀𝑆 ⋅
√

2 log(𝑛+0 𝑇 ) (20)

As ERSs are primarily designed for uniaxial applications, they require adjustments when dealing with multiple axes. The
ommonly employed and standardized approach involves generating individual ERSs for each axis of interest, following a procedure
5
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similar to that of FDS. Subsequently, an envelope spectrum is created by superimposing these individual spectra, as outlined in
the Ref. [4]. This method assumes that the envelope accurately represents the system’s response under multiaxial conditions. The
resulting extreme response caused by the enveloped ERS of the load’s axial components 𝐸𝑅𝑆𝑠𝑡𝑑 , can be estimated as follows (where
the subscript 𝑠𝑡𝑑 refers to ‘‘standard’’):

ERS𝑠𝑡𝑑 (𝑓01 ,… , 𝑓0𝑁 ) = max
[

ERSaxis 1(𝑓01 ),… ,ERSaxis 𝑁 (𝑓0𝑁 )
]

(21)

Yet, just like the FDS, this solution is only partial as it ignores the possibility of cross-axis interactions and thus may not accurately
reflect the severity of real-life environments. It is nonetheless expected that the multiaxiality of the load will have a greater impact
on the FDS than on the ERS because of the exponential relationship between load and damage in the FDS (Eq. (14)).

3. Generalized framework for multiaxial loads

Aiming to correct some limitations of the commonly-used uniaxial procedures already described (Sections 2.2 and 2.3), two
spectral methods are proposed to assess the fatigue damage and the extreme response of structures subject to combined random
loads. These new methods are based on FDSs and ERSs, and are respectively called fatigue damage multi-spectrum (FDmS) and
extreme response multi-spectrum (ERmS).

3.1. Assumptions and hypothesis

The FDmS and ERmS share most of the assumptions required for the development of FDS and ERS. Therefore, although this
aspect is often implied in uniaxial procedures, this generalized approach also considers a system-scale description, where loads are
defined in terms of both translations and rotations. This means that the analysis focuses on characterizing the loads themselves
rather than the actual stress state of the structure.

In the case of multiaxial loads, it is assumed that the stress induced by each axial component of the load is exclusively uniaxial
along its respective axis. In other words, each translation introduces a distinct uniaxial normal stress on the structure, while each
rotation results in a unique uniaxial shear stress. The advantage of this approach is that the analysis can take into account up to six
degrees of freedom : three translations and as many rotations. As a result, the structure is defined by six resonant frequencies, as
only the first mode of each axis is considered. It is assumed that other natural frequencies are smaller contributors to the response
and can be neglected. However, the procedure can account for secondary resonant frequencies if necessary by modifying the FRF
definition (Eq. (10)).

3.1.1. Equivalent stress PSD
As previously stated, the reference SDOF structure used in the FDS and ERS procedures has evolved into a multi-degrees-of-

freedom (MDOF) system where each load axis generates stresses on the same axis. This requires the development of a uniaxial
stress-state equivalent PSD, as damage assessment requires a scalar, uniaxial stress. To this end, a 6 × 6 PSD matrix is introduced to
depict the multiaxial stress state of the reference MDOF structure. This matrix can be derived from the excitation PSD matrix Φ𝐞,
the diagonal-assumed matrix of the structure’s receptance FRF 𝐇𝐫 and the diagonal matrix of the elastic coefficients 𝐊:

Φ𝐬 = 𝐊 ⋅𝐇𝐫 ⋅Φ𝐞 ⋅𝐇H
𝐫 ⋅𝐊T (22)

here 𝐇H
𝐫 is the conjugated and transposed terms matrix of 𝐇𝐫 , and 𝐊T is the transposed matrix of 𝐊. In addition, the symmetrical

atrix of the load’s acceleration PSD Φ𝐞 is defined as follows, where extra-diagonal terms are the loads’ cross-correlations PSDs.

Φ𝐞 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛷�̈� 𝛷�̈��̈� 𝛷�̈��̈� 𝛷�̈��̈�𝑥 𝛷�̈��̈�𝑦 𝛷�̈��̈�𝑧
𝛷�̈� 𝛷�̈��̈� 𝛷�̈��̈�𝑥 𝛷�̈��̈�𝑦 𝛷�̈��̈�𝑧

𝛷�̈� 𝛷�̈��̈�𝑥 𝛷�̈��̈�𝑦 𝛷�̈��̈�𝑧
𝛷�̈�𝑥 𝛷�̈�𝑥 �̈�𝑦 𝛷�̈�𝑥 �̈�𝑧

... 𝛷�̈�𝑦 𝛷�̈�𝑦 �̈�𝑧
𝛷�̈�𝑧

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(23)

For a material-scale analysis, Preumont’s Equivalent Von Mises Stress (EVMS) [31,32] is a widely used and accepted method for
producing equivalent stress PSD in spectral domain. This is mainly due to its simplicity and relative accuracy [33,34] despite some
limitations for certain materials and load configurations [35,36]. Its matrix formulation can be expressed as follows:

𝛷EVMS
𝑠,eq = Trace

(

𝐐𝐕𝐌 ⋅Φ𝐬
)

(24)

where 𝐐𝐕𝐌 is the Von Mises coefficients matrix:

𝐐𝐕𝐌 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

1 −0.5 −0.5 0 0 0
−0.5 1 −0.5 0 0 0
−0.5 −0.5 1 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

(25)
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An alternative to this popular formulation is derived from the Equivalent Lemaitre Stress [37]. It has been introduced in order
o incorporate the effect of hydrostatic stress and address some limitations of EVMS. Its matrix expression is similar to the EVMS
ormulation [38]:

𝛷LM
𝑠,eq = Trace

(

𝐐𝐋𝐌 ⋅Φ𝐬
)

(26)

where 𝐐𝐋𝐌 is the Lemaitre coefficients matrix:

𝐐𝐋𝐌 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −𝜈 −𝜈 0 0 0
−𝜈 1 −𝜈 0 0 0
−𝜈 −𝜈 1 0 0 0
0 0 0 2.(1 + 𝜈) 0 0
0 0 0 0 2.(1 + 𝜈) 0
0 0 0 0 0 2.(1 + 𝜈)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(27)

As can be seen when the Poisson’s ratio 𝜈 is set to 0.5, the EVMS formulation is identical to the equivalent Lemaitre stress PSD
(Eqs. (24) and (26)). In addition, both formulations take account of the multiaxial stress-state and material properties of the structure.
However, these properties may still be unknown during the specification development process, since it is usually performed prior
to or during the design of the system. Hence, the use of a generic coefficient matrix 𝐐 filled with parameters 𝑞𝑖𝑗 where (𝑖, 𝑗) ∈ [1; 6]2
is suggested. Similarly to parameters 𝐾, 𝑏, 𝐶 and 𝜉, the values assigned to 𝐐 can be standard or adapted to a specific structure if
desired, as long as they remain consistent throughout the analysis. As a result, the generic equivalent stress PSD can be expressed
in the following manner:

𝛷𝑠,eq = Trace
(

𝐐 ⋅𝐊 ⋅𝐇𝐫 ⋅Φ𝐞 ⋅𝐇H
𝐫 ⋅𝐊T) (28)

For the applications discussed further in Section 4, 𝐐 will use Lemaitre’s coefficients with 𝜈 = 0.3 (Eq. (27)). This choice
aligns with the values of 𝜈 commonly encountered in various metallic materials, simplifying result comparisons with experimental
observations. It can be deduced from Eq. (27) that both the off-diagonal and last three diagonal terms depend on 𝜈. These coefficients
can be regarded as the influence of, respectively, the correlations and the angular loads on the equivalent stress response. Therefore,
an increase of 𝜈 amplify the weight of correlations and rotation-induced damages.

3.1.2. Equivalent resultant acceleration PSD
The Section 2.3 described how the ERS relies on the acceleration response of the structure for estimating the most probable

extreme response. In multiaxial conditions, each axis contributes to the resultant acceleration response �̈�(𝑡). To make full use of
the 6-DOF configuration, the response must take into account both linear acceleration responses �̈�(𝑡), �̈�(𝑡), �̈�(𝑡) and angular ones
�̈�𝑥(𝑡), �̈�𝑦(𝑡), �̈�𝑧(𝑡). Assuming that point 𝑃 in polar coordinates (𝑟, 𝜃0,𝑧) is subjected to a 𝑧-axis rotation 𝜃𝑧, centered at 𝑂. The position
vector #   »𝑂𝑃 can be expressed as follows:

#  »OP = 𝑟 cos(𝜃0 + 𝜃𝑧) #»𝑥 + 𝑟 sin(𝜃0 + 𝜃𝑧) #»𝑦 (29)

The acceleration resulting from the rotation around the 𝑧-axis can thus be defined in the following manner:

d2 #  »OP
d𝑡2

= −𝑟
[

�̈�𝑧 ⋅ sin(𝜃0 + 𝜃𝑧) + �̇�2𝑧 ⋅ cos(𝜃0 + 𝜃𝑧)
]

#»𝑥 + 𝑟
[

�̈�𝑧 ⋅ cos(𝜃0 + 𝜃𝑧) − �̇�2𝑧 ⋅ sin(𝜃0 + 𝜃𝑧)
]

#»𝑦 (30)

onsidering that vibrations result in minor displacements and rotations, it is possible to derive a linear approximation of Eq. (30)
ased on the initial position (𝑥0; 𝑦0) of the studied point 𝑃 :

𝜃𝑧 ≈ 0 ⇒

{

𝑟 cos(𝜃0 + 𝜃𝑧) ≈ 𝑟 cos(𝜃0,𝑧) = 𝑥0
𝑟 sin(𝜃0 + 𝜃𝑧) ≈ 𝑟 sin(𝜃0,𝑧) = 𝑦0

(31)

It can be inferred from Eq. (30) that for accelerations below 4.𝑓 2 – where 𝑓 represents the minimal excitation frequency –
neglecting the angular velocity �̇�𝑧 results in small errors. Specifically, these errors remain under 10% when the magnitudes of
he coordinates 𝑥0 and 𝑦0 are roughly equivalent. As a result, by substituting Eq. (31) in Eq. (30) and simplifying the latter by
isregarding the angular velocity provides the definition of the 𝑍-axis acceleration (Eq. (32)c).

Following the same approach considering this time three independant rotations 𝜃𝑥, 𝜃𝑦 and 𝜃𝑧, the vector of the rotation-induced
cceleration can be expressed as:

d2 #  »OP
d𝑡2

≈

⎧

⎪

⎨

⎪

⎩

− 𝑧0�̈�𝑥 ⋅
#»𝑦 + 𝑦0�̈�𝑥 ⋅

#»𝑧 (a)
− 𝑥0�̈�𝑦 ⋅

#»𝑧 + 𝑧0�̈�𝑦 ⋅
#»𝑥 (b)

− 𝑦0�̈�𝑧 ⋅
#»𝑥 + 𝑥0�̈�𝑧 ⋅

#»𝑦 (c)
(32)

sing Eqs. (32)a, (32)b, (32)c, in addition to the linear accelerations �̈�, �̈� and z̈, an approximation for the magnitude of a 6-DOF
cceleration can be expressed as follows:

‖

‖

‖

d2 #  »OP‖‖
‖

2

= (�̈� + 𝑧0�̈�𝑦 − 𝑦0�̈�𝑧)2 + (�̈� + 𝑥0�̈�𝑧 − 𝑧0�̈�𝑥)2 + (�̈� + 𝑦0�̈�𝑥 − 𝑥0�̈�𝑦)2 (33)
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However, it is necessary to rework the time-domain expression presented in Eq. (33) to make it suitable for frequency-domain
nalysis. Furthermore, similar to the formulation of equivalent stress discussed in Section 3.1.1, the PSD of the resultant acceleration
annot be directly obtained from the time-domain formulation (Eq. (33)), due to non-zero mean and non-Gaussian properties.

The introduction of an acceleration vector defined as 𝐚 = (�̈�, �̈�, �̈�, �̈�𝑥, �̈�𝑦, �̈�𝑧)T, leads to a time-domain expression Eq. (33) that can
be redefined using a symmetric 6 × 6 matrix 𝐐𝐚:

‖

‖

‖

‖

‖

d2 #  »OP
d𝑡2

‖

‖

‖

‖

‖

2

= 𝐚T ⋅𝐐𝐚 ⋅ 𝐚 = Trace(𝐐𝐚 ⋅ 𝐚 ⋅ 𝐚T) (34)

The coefficients of 𝐐𝐚 can be identified by equaling Eqs. (33) and (34):

𝐐𝐚 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 𝑧0 −𝑦0
0 1 0 −𝑧0 0 𝑥0
0 0 1 𝑦0 −𝑥0 0
0 −𝑧0 𝑦0 𝑦20 + 𝑧20 −𝑥0.𝑦0 −𝑥0.𝑧0
𝑧0 0 −𝑥0 −𝑥0.𝑦0 𝑥20 + 𝑧20 −𝑦0.𝑧0
−𝑦0 𝑥0 0 −𝑥0.𝑧0 −𝑦0.𝑧0 𝑥20 + 𝑦20

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(35)

With a similar approach as Preumont’s EVMS demonstration [32,38], using the expectation E[.] of Eq. (34) leads to the
ntroduction of a resultant acceleration equivalent PSD:

𝛷�̈�,eq = Trace(𝐐𝐚 ⋅Φ𝐚) (36)

This expression allows for the development of a 6-DOF extreme response spectrum in the frequency domain, a topic that will be
xplored further. Similarly to the equivalent stress formulation, the non-zero off-diagonal parameters of 𝑄𝑎, show that some CSDs
etween angular loads will impact the structure’s response. In addition, Eq. (35) emphasizes that the influence of each angular PSDs
nd CSDs on the response depends on the coordinates of the analyzed point (𝑥0 ; 𝑦0 ; 𝑧0).

.1.3. Multiaxial S-N curve
When a material is exposed to combined loads, the S-N curves for tension and torsion can exhibit differences. Failing to account

or this phenomenon in multiaxial load analysis can lead to inaccurate fatigue damage assessment. In 2001, Susmel and Lazzarin
ntroduced the Modified Wöhler Curve Method (MWCM), which involve adjusting the S-N coefficients 𝑏 and 𝐶 by considering the
elative weighting of tension and torsion S-N curves [39]. This method has been widely discussed and shown to produce accurate
esults in both time and frequency domains [35,40,41]. It has also been defined in the frequency-domain using the equivalent
emaitre stress [38], already described in Eq. (26).

The weighting between the tension and torsion S-N curves is assessed from the load multiaxiality, which is expressed by the
ollowing variable:

𝜆 = 3

√

√

√

√

𝑚0(𝛷ℎ
𝑠 )

𝑚0(𝛷LM
𝑠,eq)

(37)

As described in Eq. (37), 𝜆 is computed from the zero-order spectral moment (Eq. (7)) of the equivalent Lemaitre’ stress 𝛷LM
𝑠,eq

Eq. (26)) and the hydrostatic stress 𝛷ℎ
𝑠 :

𝛷ℎ
𝑠 =

𝛷𝑠𝑥 +𝛷𝑠𝑦 +𝛷𝑠𝑧

9
(38)

The FDmS and ERmS approaches assume that pure tension loads are caused exclusively by translations, and pure torsion loads are
caused by rotations. Consequently, in line with the principles of the Modified Wöhler Curve Method, variations may occur between
the S-N curves for rotational and translational loading conditions for a given structure, as illustrated in Fig. 3. Continuing with this
analogy, it becomes possible to evaluate the system-equivalent S-N curve coefficients 𝑏𝑒𝑞 and 𝐶𝑒𝑞 from the translational S-N curve
coefficients (𝑏𝑡 𝐶𝑡) and their rotational counterpart (𝑏𝑟, 𝐶𝑟). Indeed, as 𝜆 varies (Eq. (37)), the multiaxial S-N curve approaches
either the translational or rotational S-N curve (Eq. (39)). Consequently, a purely rotational load is considered when 𝜆 = 0 and a
strictly translational load is related to 𝜆 = 1.

The exponent 𝑏𝑒𝑞 of the multiaxial system-equivalent S-N curve can be defined as:

𝑏𝑒𝑞 = 𝜆 ⋅ 𝑏𝑡 + (1 − 𝜆) ⋅ 𝑏𝑟 (39a)

along with the multiaxial S-N curve constant:

log(𝐶𝑒𝑞) = 𝜆 ⋅ log(𝐶𝑡) + (1 − 𝜆) ⋅ log(
√

2(1 + 𝜈)
−𝑏𝑟

⋅ 𝐶𝑟) (39b)

The use of these coefficients (Eq. (39)) is a proposal aiming to fine-tune the choice of the S-N curve parameters in the absence of
identification tests and when standard parameters must be set. However, it is important to note that such tests are recommended for
achieving precise estimations. Currently and to the authors’ knowledge, no trial has been conducted to assess the differences between
the S-N curve parameters of a structure exposed to translational or rotational loads. As a result, no value can be recommended for
8

rotational parameters 𝑏𝑟 and 𝐶𝑟, unlike the translational ones that follow the uniaxial recommendations (𝑏𝑡 = 𝑏 ≈ 8 and 𝐶𝑡 = 𝐶 ≈ 1).
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Fig. 3. System-equivalent multiaxial S-N curve.

Fig. 4. Process for generating fatigue damage multi-spectra.

3.2. Fatigue damage multi-spectrum

The development of a fatigue damage multi-spectrum (FDmS) able to take into account the load multiaxiality requires the
implementation of the previously-described MDOF structure, the equivalent stress PSD (Eq. (28)) and eventually the multiaxial S-N
curve (Eq. (39)). Nevertheless, the outline of the FDmS development procedure remains very similar to the uniaxial one (Fig. 4):

Note that due to the change in the stress computation step, the RMS stress value 𝑠𝑅𝑀𝑆 is now assessed using the equivalent
stress PSD 𝛷𝑠,𝑒𝑞 (Eq. (28)), which results in the following re-definition of 𝑠𝑅𝑀𝑆 (Eq. (12)):

𝑠2𝑅𝑀𝑆 = ∫

+∞

0
𝛷𝑠,𝑒𝑞 d𝑓 (40)

The FDmS relies on a similar expression to the FDS one (Eqs. (14) and (41)) but uses the new definition of 𝑠𝑅𝑀𝑆 (Eq. (40)). In
addition, the terms 𝑏 and 𝐶 are substituted by 𝑏𝑒𝑞 and 𝐶𝑒𝑞 to reflect the use of a multiaxial system-equivalent S-N curve:

FDmS𝑁𝐵 = 𝑛+0 ⋅ 𝑇 ⋅
2𝑏𝑒𝑞∕2

𝐶𝑒𝑞
⋅ 𝑠

𝑏𝑒𝑞
𝑅𝑀𝑆 ⋅ 𝛤

(

1 +
𝑏𝑒𝑞
2

)

(41)

Despite the capability of the FDmS procedure to consider up to 6-DOF loads, the applications further discussed are focused on
bi- and tri-axis ones because of the difficulty to illustrate higher-dimensional spaces.

3.3. Extreme response multi-spectrum

As stated in Section 2.3, the ERS and FDS share the same RMS relative displacement response 𝑟𝑅𝑀𝑆 . This response relies on
the strain–stress coefficient 𝐾 to compute the stress (Eq. (14)) and the quantity (2.𝜋.𝑓0)2 to compute the acceleration (Eq. (19)).
However, this solution is not acceptable for the development of FDmS and ERmS since the quantity (2.𝜋.𝑓0)2 is no longer applicable,
given that the resulting response is derived from multiple resonant frequencies. Consequently, the resultant acceleration must be
directly computed from the accelerance FRF of each axis. In addition, a frequency-domain formulation that connects the resultant
acceleration response �̈�(𝑡) to the load’s excitation matrix is introduced with the help of Eq. (36). Indeed, the matrix of the structure’s
acceleration response PSD Φ𝐚 can be substituted from Eq. (36) by using the PSD matrix of the load’s accelerations Φ𝐞 (Eq. (23))
and the diagonal matrix of the accelerance FRF 𝐇𝐚:

𝛷�̈�,𝑒𝑞 = Trace(𝐐𝐚𝐇𝐚Φ𝐞𝐇𝐚
H) (42)

where 𝐇 H is the transposed and conjugated matrix of 𝐇 .
9
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Fig. 5. 3D representation of a biaxial FDmS.

The RMS value of the acceleration response �̈�𝑅𝑀𝑆 used in the uniaxial ERS formulation (Eq. (20)) is therefore substituted to the
equivalent acceleration response �̈�𝑅𝑀𝑆,𝑒𝑞 (Eq. (43)):

�̈�𝑅𝑀𝑆,𝑒𝑞 = ∫

𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛
𝛷�̈�,𝑒𝑞 d𝑓 (43)

As both 𝛷�̈�,𝑒𝑞 and Φ𝐞 describe zero-mean stationary Gaussian processes, Eqs. (17) and (18) from the ERS demonstration remain
applicable as does the reasoning that leads to Eq. (20). Therefore, drawing an analogy with the derivation of the ERS formulation,
the ERmS can be defined as follows:

ERmS = �̈�𝑅𝑀𝑆,𝑒𝑞 ⋅
√

2 log(𝑛+0 𝑇 ) (44)

It should be noted that the ERmS relies on the coordinates of the analyzed point due to the inclusion of angular accelerations
(Eq. (35)). To address this issue, and alike most other parameters used by the presented procedures, it is possible to use standard
values for 𝑥0, 𝑦0 and 𝑧0 as long as they remain consistent throughout the analysis. For instance, a value of 𝑥0 = 𝑦0 = 𝑧0 =

√

2∕2
leads to evenly distributed weights between angular and linear accelerations on the resultant.

Another noteworthy observation relates to the substantial contribution of most angular acceleration CSDs in the ERmS whereas
they have none in the FDmS (Eqs. (35) and (27)). As a result, it may be relevant to use both procedures in combination to
comprehensively describe the excitation load.

4. Numerical case studies: results and discussion

In this section, the proposed procedure is applied to a range of case studies, progressively increasing in complexity, to underscore
its capabilities.

4.1. Simple uncorrelated biaxial loading scenario: the effect of multiaxiality

Biaxial environments lead to the creation of a three-dimensional FDmS comprising two frequency dimensions and a third linked
to the estimated damage (Fig. 5). This tri-spectrum is computed from the equivalent stress response PSD (Eq. (28)) using the Lemaitre
coefficient matrix with 𝜈 = 0.3 (Eq. (27)). Additionally, 𝐾 is set to 1 for each axis, 𝐶 = 1, 𝑏 = 8 and 𝜉 =5%. Given that the loads are
uncorrelated, the phase-shift is not defined, and the coherence between the loads is fixed at 𝜌𝑥𝑦 = 0.

It is also possible to simulate the damage caused by sequentially-applied loads, as outlined in the standards, using the FDmS
method (Section 3.2). This simulation is straightforward since it solely requires adding up the damage multi-spectrum of each load
considered one at a time, while disregarding the others (Fig. 6). This comparison can provide useful insights into the estimated
damage from both methods.

The relative error between the damage estimated by the standard sequential procedure 𝐹𝐷𝑆𝑠𝑡𝑑 (Eq. (16) and Fig. 6) and by the
proposed generalized method 𝐹𝐷𝑚𝑆𝑁𝐵 (Eq. (41) and Fig. 4) is evaluated for each point of the surface using the following equation:

𝜖 = 100 ⋅
FDmS𝑁𝐵 − FDS𝑠𝑡𝑑 (45)
10
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Fig. 6. Method for generating FDmS simulating a sequentially-applied multiaxial load.

Fig. 7. Relative Fatigue damage error map of standard vs proposed methods - (a) to (d) represent measures of FRF on the map.

For comprehension purpose, the first numerical application is conducted on a simple biaxial environment composed of two
uncorrelated translational loads:

𝛷�̈� = 𝛷�̈�(𝑓 ) =

{

1 if 𝑓 ∈ [20, 80] Hz
0 else.

𝛷�̈��̈�(𝑓 ) = 0

(46)

The relative error map (Fig. 7-𝑒) highlights a close proximity between the estimated damage from the standard sequential method
and the proposed multiaxial procedure when the structure’s resonant frequencies are widely separated, resulting in a relative error
close to zero (blue color). However, the error increases as these frequencies get closer, reaching a maximal ratio of 8 between the
two estimations (red color). These results can be inferred from the RMS responses of both axis (Fig. 7-𝑎 to 𝑑). By assuming that the
damage caused by a biaxial load is equivalent to the sum of two sequentially-applied uniaxial loads (Eq. (16)), the standard method
implicitly assumes a linear relationship between damage and load, which is actually exponential.

In this case study, the error between the standard-computed damage and the one estimated by the proposed multiaxial method
is consequently directly linked to the error of assuming that the power of a sum is equal to the sum of the powers. Indeed, the ratio
between both methods can be expressed as follows from Eqs. (14), (16) and (41):

FDmSNB
FDSstd

≈
𝑛+0,multi ⋅ (1 + 𝑠RMS,1∕𝑠RMS,1) 𝑏∕2

𝑛+0,1 + 𝑛+0,2 ⋅ (𝑠RMS,2∕𝑠RMS,1) 𝑏∕2
(47)

where 𝑛+0,multi is the 𝑛+0 value of the multiaxial response.
Two potential scenarios arise from Eq. (47) depending on the amplitude ratio between the two axial responses 𝑠RMS,1 and 𝑠RMS,2:
1. Both axial responses are very different at a given resonant frequency, causing one to be negligible. As a result, the multiaxial

response converges towards a uniaxial one (Fig. 7-𝑏 and 𝑑) which reduce the relative error between the two methods. Furthermore,
11
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Fig. 8. Relative error map of standard vs proposed methods — Extreme response.

given the negligible contribution of one component, 𝑛+0,𝑚𝑢𝑙𝑡𝑖 closely approximates the dominant 𝑛+0 response:
𝑠𝑅𝑀𝑆,2

𝑠𝑅𝑀𝑆,1
≈ 0 ⇒ 𝑛+0,𝑚𝑢𝑙𝑡𝑖 ≈ 𝑛+0,1 (48)

This results in a simplification of the ratio between the standard-computed damage and the multiaxial one (Eq. (47)), by considering
the dominant response only (Eq. (48)):

FDmS𝑁𝐵
FDS𝑠𝑡𝑑

≈
𝑛+0,1
𝑛+0,1

= 1 (49)

2. Both components are equally participating in the multiaxial response at a given resonant frequency (Fig. 7-𝑎 and 𝑐). In that
simple case study, it means that the 𝑛+0 of both components are similar:

𝑠𝑅𝑀𝑆,1 ≈ 𝑠𝑅𝑀𝑆,2 ⇒ 𝑛+0,𝑚𝑢𝑙𝑡𝑖 ≈ 𝑛+0,1 ≈ 𝑛+0,2 (50)

Since no component is negligible, the relative error between the two methods increase (Fig. 7-𝑎 and 𝑐) till reaching the maximum
estimated relative error:

FDmS𝑁𝐵
FDS𝑠𝑡𝑑

≈
𝑛+0,1 ⋅ 2 𝑏∕2

𝑛+0,1 + 𝑛+0,1
= 2 𝑏∕2 −1 (51)

In this situation, an S-N exponent 𝑏 = 8 conducts to a maximal relative error ratio of 8, which is consistent with the simulation
results (Fig. 7-𝑒). In general and for such simple uncorrelated load cases, the maximal error 𝜖 may be estimated from the number
of considered degrees of freedom 𝑛𝐷𝑂𝐹 :

max(𝜖) = 𝑛𝑏∕2 −1
𝐷𝑂𝐹 (52)

For instance, the maximum relative error in the case of a triaxial load would be 3𝑏∕2−1.
A similar trend can be observed in extreme responses when comparing the ERmS of enveloped uniaxial responses to the multiaxial

one. In this particular case, the modal proximity increases the extreme response by a factor of
√

2∕2. The estimated extreme response
gradually converges towards the enveloped extreme response 𝐸𝑅𝑆𝑠𝑡𝑑 (Eq. (21)) as they become farther apart (Fig. 8). This behavior
mirrors that of the FDmS in the case when 𝑏 = 1.

The damage increase caused by a multiaxial loading over sequentially-applied loads has been demonstrated in other experimental
reviews [10,42,43] along with the impact of modal proximity [44]. Therefore, despite this numerical simulation being conducted
on a reference MDOF structure, it provides results that are consistent with the actual behavior of structures.

4.2. Biaxial loading analysis: the contribution of multiaxial S-N curve

When a structure is subjected to both a translational and rotational load, the use of a pure translational or rotational uniaxial S-N
curve may either overestimate or underestimate the damage depending on the contribution of each load. To address this concern,
a multiaxial system-equivalent S-N curve can be introduced, along with the parameters 𝑏𝑒𝑞 and 𝐶𝑒𝑞 (Section 3.1.3).

The contribution of this multiaxial S-N curve is investigated during the following case study by introducing two uncorrelated
translational and rotational loads:

𝛷�̈�(𝑓 ) = 𝛷�̈� (𝑓 ) =
{

1 if 𝑓 ∈ [20; 80] Hz (53)
12

𝑥 0 else.
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Fig. 9. Contribution of the multiaxial S-N curve on FDmS under biaxial translational/rotational loading.

Three FDmS are computed using either the pure rotational S-N curve (with standard values 𝑏𝑟 = 8 and 𝐶𝑟 = 2), the pure
translational S-N curve (with values 𝑏𝑡 = 6 and 𝐶𝑡 = 1) or the multiaxial S-N curve. The damages resulting from these three multi-
spectra are shown in a cross-section of the FDmS created at 𝑓0,𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 = 3 Hz, where multiaxial damage is greatly influenced by
multiaxiality (Fig. 9-𝑏). The FDmS using a system-equivalent multiaxial S-N curve is bounded by the FDmS using the translational
curve and the one reliant on the rotational one. As stated in Section 3.1.3, its proximity to either of them depends on the multiaxiality
coefficient 𝜆 (Fig. 9-𝑏).

The participation of each component on the resultant response explains the behavior of 𝜆 (Fig. 9-𝑐). When both resonant
frequencies are below the excited frequency range, they have equal participation in the response, implying 𝜆 ≈ 0.5 (case (1)
on Fig. 9). Since the translational resonant frequency is fixed at 𝑓0,𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 = 3 Hz, the contribution of each load shifts as the
rotational frequency varies. Specifically, the rotation gradually becomes the damage’s dominant factor over translation, meaning
𝜆 < 0.5 (case (2) on Fig. 9). Finally, the increasing natural frequency of the rotational component will reduce its participation factor
and, consequently, increase the relative influence of the translational load. Initially, this implies that the translational participation
catches up with the rotational one before ultimately surpassing as rotation gradually becomes negligible (cases (3) and (4) on Fig. 9).

4.3. Correlated biaxial loading: the role of CSDs

The distinction between the standard sequential method and the proposed multiaxial procedure extends beyond the proximity of
each DOF response alone. Multiple experiments have showcased the potential influence of the correlation between the components of
multiaxial loads on structural damage [27–29,45]. This case study aims to highlight the FDmS’s capability to account for correlations
between axes. The assessment of load severity involves two correlated translational loads defined as follows:

𝛷�̈�(𝑓 ) = 𝛷�̈�(𝑓 ) =
{

1 if 𝑓 ∈ [20; 80] Hz
0 else. (54)

Various correlations between these components are studied with the help of a scalar criterion denoted as 𝑟𝐷 (Eq. (55)). This
criterion is defined as the frequency mean of the damage ratio between correlated and uncorrelated loads:

𝑟𝐷 = 1
𝛥𝑓

⋅
𝑓𝑚𝑎𝑥
∑

𝑓𝑚𝑖𝑛

FDmS𝑁𝐵, 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑

FDmS𝑁𝐵, 𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑
(55)

This ratio is estimated for various phase-shifts with a 11.25◦ step and for several coherence levels with a 0.25 step. The findings
are visualized using polar charts (Fig. 10) where the radial axis describes the coherence level and the angle depicts the phase-shift.

In this example, the biaxial load is represented by two translational accelerations along both axes 𝑋 and 𝑌 . This can be viewed
as two normal stresses applied to these axes from a material perspective. In that extend, the results presented in Fig. 10 align with
the experimental findings of Papadopoulos, who demonstrated that two out-of-phase normal stresses are more damaging than an
in-phase configuration [46].
13
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Fig. 10. Impact of cross-correlation on estimated damage.

Fig. 11. Influence of modal proximity on cross-correlation severity.

Moreover, at a ±90◦ phase-shift, one signal reaches its peak while the other reaches zero, leading to an alternation of two loads
applied successively on their respective axes. It means that this configuration is quite similar to the sequentially-applied uniaxial
load case. As a result, the loads behave like two uncorrelated signals making the damage independent of the coherence level. This
phenomenon, perceptible on Fig. 10, has also been experimentally observed by other works [27,28] in specimens exposed to flexion
and torsion loads, suggesting its independence from the load configuration.

Another similarity with other studies available in the literature is the fast decrease in correlation severity as resonant frequencies
become more distant (Fig. 11). In fact, the increasing distance between the frequencies on each axes reduces the amplitude of CSD
terms (Eq. (6)), which narrows the gap between correlated and uncorrelated loads [44]. This statement is supported by the works
of Preumont [31] and Vantadori et al. [47] which underscore that the gap between multiaxial and sequentially-applied loads also
decrease. This supports the assertion made in Eq. (45): neglecting CSDs – and by extension cross-correlations or even multiaxiality
itself – when natural frequencies are close enough can lead to significant errors. However, it may be acceptable when dealing with
highly distant modes.

Therefore, the proposed FDmS formulation appears to offer a consistent depiction of multiaxial phenomena experimentally
observed in real-life structures, even though it is a system-oriented procedure with no concern on the actual stress-state accuracy.
It is the very objective of the proposed method to enable the characterization and comparison of various environments in terms
of severity, either independently or in relation to any real-life structure and with the added capability of describing multiaxial
phenomena.

The impact of CSDs on extreme response can also be analyzed using ERmS (Section 3.3) on various biaxial load configurations
(Fig. 12). Despite the absence of any noticeable effect of correlation on biaxial linear accelerations, there is a significant contribution
of CSDs involving angular accelerations, as emphasized by the coefficient matrix 𝐐𝐚 (Eq. (35)) and illustrated in Fig. 12-𝑎. Since
the impact of CSDs depends to the point’s coordinates (𝑥0, 𝑦0, 𝑧0) used (Fig. 12-𝑏), they are set equal to (

√

2∕2,
√

2∕2,
√

2∕2) in this
example. As schematized in Fig. 12-𝑏, whether the correlation has a increasing of decreasing effect on the resultant is also directly
influenced by the direction of the axes.

4.4. Triaxial loading scenario

The preceding sections have illustrated how the proposed multiaxial procedure can effectively consider multiaxiality effects. This
approach enables the characterization of correlated biaxial environments while maintaining a similar workflow to standard FDS and
ERS methodologies.

In this section, the procedures are also applied to an uncorrelated triaxial translation load case to demonstrate their performance
in a more complex configuration. This analysis requires the introduction of new illustrations to ease the comprehension of the results.
In addition and for clarity purpose, the first triaxial study case relies on a load consisting of three uncorrelated PSD components
defined by a broadband white noise signal in the frequency range of [1; 1000] Hz.
14
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Fig. 12. Impact of correlation on biaxial extreme response depending on the loaded axes: extreme response ratio (a) and interpretation of the results (b).

Fig. 13. FDmS illustration of a triaxial load.

Given that the numerical computation of tri-dimensional fatigue damage spectra require significantly more resources compared
to uniaxial ones, the frequency resolution for this analysis is intentionally coarse. To elaborate, calculating FDmSs with 𝑛𝑓 frequency
steps per axis require a total of 𝑛𝑓 𝑛𝐷𝑂𝐹 computational steps, where 𝑛𝐷𝑂𝐹 represents the number of axes analyzed. As a result, the
subsequent spectra are described using 20 logarithmically spaced frequency steps, ranging from 5 Hz to 1000 Hz, in contrast to the
90 steps for the previous biaxial analysis. The tri-dimensional FDmS representation takes the form of a filled volume (Fig. 13-𝑎). To
enhance clarity, a display threshold is introduced to conceal low damage ratio regions (Fig. 13-𝑏, 𝑐, 𝑑).

The insights derived from the examination of biaxial loads are equally applicable to tri-axial loads. Notably, the most significant
discrepancies between the standard, sequentially-applied loads and the multiaxial approach are observed along the diagonals of the
volume’s outer surfaces (Fig. 13-𝑎). On these diagonals, the relative error remains consistently at 700% (equivalent to a ratio of 8 or
2𝑏∕2−1). Raising the display threshold highlights the cube’s diagonal 𝑓 = 𝑓 = 𝑓 . This is the location with the most substantial
15
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Fig. 14. PSDs of the recorded triaxial signal.

relative discrepancies between the two methods, with a constant 2600% error (equivalent to a ratio of 27, or 3𝑏∕2−1 as estimated
by Eq. (52)). When it comes to extreme response, the maximal error between the ERmS and the ERSstd is

√

3.
While encountering a system subjected to three identical superimposed modal responses is highly improbable, the multiaxial

approach estimates damage to be at least twice as significant as the standard method in nearly 80% of the computed volume (Fig. 13).
This suggests that the conventional sequentially-applied load procedure may potentially underestimate damage in a significant
portion of real-life structures. To a lesser extent, a similar conclusion can be drawn regarding the extreme response, which exceeds
the standard method by at least 15% in almost 80% of the computed volume.

4.5. Real-world load case analysis

The numerical comparison between the proposed multiaxial method (Eq. (41)) and the standard sequentially-applied load
approach (Eq. (16)) discussed previously was conducted on simulated loads. In this section, the load is defined by a real data-
set recorded during a package trucking operation. This dataset consists of a 20-minute long signal sampled at 5.1 kHz, offering
information on the 𝑋, 𝑌 and 𝑍 components of the triaxial environment (Fig. 14). These components respectively represents the
travel direction as well as the longitudinal and vertical ones.

4.5.1. Signal processing for procedure compatibility
An almost-stationary and almost-Gaussian section of the full-length data-set has firstly been extracted to allow the use of

specification development procedures. It is important to note that the three axes 𝑋, 𝑌 and 𝑍 must be processed as a unified dataset in
order to preserve the cross-correlation information between the axial components. Consequently, the processing becomes a bit more
complex and identifying signal segments where all axes exhibit simultaneous stationarity and Gaussian distribution characteristics
can be a challenging task.

Even though numerous stationarity and normal tests are available to characterize signals [13], the selected process involves
dividing the signal into 100 11.6 s windows and analyzing five key parameters: mean value, RMS value, auto-correlation, kurtosis
and skew. These parameters are calculated using Python’s scipy.stats module for kurtosis and skewness, and the scipy.signal.correlate
function for auto-correlation. The analysis tracks the convergence of these parameters as windows are progressively added to
characterize the signal’s stationarity and conformity to a Gaussian distribution. The window length was arbitrarily set to 11.6 s
as a compromise between high temporal resolution but noisy results and smooth outcomes with coarser temporal resolution in
Fig. 15-𝑎. It is noteworthy that this value has no impact on any other results whatsoever.

To clarify the process, the RMS value is initially calculated for the first 11.6-second window, followed by the RMS value for
the combined first two windows, and so on, until the RMS value for the entire dataset is computed. Consequently, the Y-axis value
corresponding to time 𝑡 on Fig. 15-𝑎 matches with the value within the recorded time range of [0, 𝑡]. The properties of the entire
signal are subsequently presented at 𝑡 = 1160 s.

Despite this analysis focuses on the 𝑋 component of the signal, the others are processed in a similar manner.
For this analysis, it is recalled that the auto-correlation (Eq. (1)) can be proven equal to the sum of each signal window auto-

correlation. In the case of a perfectly stationary data-set, windows of equal duration should exhibit the same auto-correlation value.
Consequently, there should be a linear relationship between the number of processed windows and the auto-correlation value. In
this study, the auto-correlation value is computed using the correlate function from the Numpy module in Python.

The processing results indicate a zero-mean signal property and a convergence of the RMS value with minimal fluctuations
(Fig. 15-𝑎). In addition, there is a almost linear relationship between the auto-correlation and the number of processed windows
(𝑅2 = 0.993 and 𝑝-value of 3.10−17). These characteristics strongly suggest that the signal can be considered stationary [12,15]. This
assertion is further substantiated by the Augmented Dickey–Fuller test results: with an estimated 𝑝-value of 2.10−22 and a statistic
of −12.1, the non-stationary hypothesis can be rejected at a 99% confidence.

Although the data-set is not perfectly Gaussian (Fig. 15-𝑏), it can still be considered close enough to meet the requirements for
comparison between the standard and multiaxial procedures.
16
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Fig. 15. Statistical properties of the recorded signal.

Fig. 16. CSDs of the recorded triaxial signal.

A noteworthy point relates to the CSDs derived from the spectral processing of the recorded signal (Fig. 16). These CSDs offer
insights into the cross-correlations between multiaxial load components [13,14]. Their illustration clearly demonstrates substantial
variability in the CSD values across frequencies.

With an average coherence of approximately 0.4 for each component and a peak value of 0.9, it becomes evident that neglecting
cross-correlations in the context of multiaxial fatigue analysis in real-world scenarios may not always be justified. This underscores
a potential limitation in the assumptions commonly made by standard procedures.

4.5.2. Sample damage assessment
To enhance clarity, the triaxial load is initially divided into three biaxial loads, as depicted in Fig. 17-𝑎. This decomposition,

while resulting in an underestimation of multiaxial damage due to the omission of certain correlations, simplifies the representation
and analysis of the results without affecting the overall interpretation. A comprehensive discussion of the complete tri-axis load will
follow.

When comparing the damage estimations derived from the sequential procedure and its multiaxial counterpart, significant
inaccuracies become noticeable (Fig. 17-𝑎). This suggests that the true impact of the trucking environment on the monitored package
was likely more severe than the initial estimate provided by the sequential procedure.

Furthermore, the impact of cross-correlations between the environmental components can be evaluated by either incorporating
or omitting the CSDs within the proposed multiaxial procedure. In this specific case study, it is observed that cross-correlations
17
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Fig. 17. Relative error map between standard and proposed methods — FDmS of a real load case.

between the 𝑋− and 𝑌− components account for 5% of the total damage, whereas the 𝑋-𝑍 and 𝑌 -𝑍 cross-correlations contribute
to 10% and 20% respectively (Fig. 17-𝑏).

The contribution of these CSDs on the fatigue damage assessment suggests that neglecting cross-correlations may likely cause
damage under-estimation even in common real-life loads such as road transportation.

When evaluating ERmS, smaller discrepancies are observed, peaking at only 50%. However, these errors are more widely spread
across the entire range of resonant frequencies (Fig. 18). It is worth noting that no analysis was conducted to assess the influence of
cross-correlations on ERmS. This is due to the fact that the time series used in this study case only refer to triaxial linear accelerations,
and their cross-correlations do not impact the extreme response of the structure (Section 3.3).

The analysis of the complete triaxial environment yields comparable outcomes, with CSDs accounting for up to 20% of the total
estimated damage (Fig. 19). To enhance the clarity of the FDmS for the triaxial load, a display threshold of 1000% has been set to
conceal the FDmS areas where the damage ratio between the two methods is less than 11.

5. Conclusion

The proposed spectral methods for characterizing multiaxial vibrations are built upon the uniaxial procedures of the standard
AFNOR NF X50-144. They generalize the widely-used FDS and ERS into a fatigue damage multi-spectrum (FDmS) and extreme re-
sponse multi-spectrum (ERmS) respectively. These spectra are specifically designed to assess the severity of multiaxial environments,
thanks to the implementation of an equivalent stress response PSD and a system-equivalent multiaxial S-N curve. These components
are derived from the Lemaitre equivalent stress PSD and the modified Wöhler curve method, respectively.

The proposed method for generating multiaxial fatigue damage spectra, including bi- and tri-dimensional versions, demonstrates
superior performance compared to standard procedures in numerical case studies. This improvement arises from its capacity
to account for multiaxial influences such as structural modal proximity and environmental cross-correlations. Additionally, the
assessment of fatigue damage and extreme responses using the proposed FDmS and ERmS methods aligns with existing literature
findings.

A key result of this study, based on the parameters used, shows that when axial RMS stress responses contribute equally, there
is a significant increase in fatigue damage. This means that even with widely-spaced natural frequencies, multiaxial loads can still
impact structures while being overlooked by uniaxial procedures. This observation challenges the validity of empirical rules in some
industries that ignore multiaxial effects by relying on modal proximity ratio thresholds.

In addition, The proposed multiaxial procedure highlights the limitations of conventional methods, which underestimate
multiaxial damage by ignoring correlations and cross-axis interactions. This was demonstrated through virtual loads and real-world
data, showing that correlations can contribute up to 20% of estimated fatigue damage (on the basis of the parameters used in that
example). Neglecting load’s cross-correlations may therefore be unjustified in some cases.
18
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Fig. 18. Relative error map between standard and proposed methods — ERmS of a real load case.

Fig. 19. Impact of cross-correlation on real-world triaxial environment.

In conclusion, accurately assessing damage caused by multiaxial loads necessitates procedures capable of accounting for the
multiaxial nature of the environment and the cross-correlations among its components. Otherwise, neglecting these factors may
result in significant underestimations of the structure’s response.
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