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Abstract 

 Predicting whether two proteins physically interact is one of the holy grails of 

computational biology, galvanized by rapid advancements in deep learning. AlphaFold2, 

although not developed with this goal, seems promising in this respect. Here, I test the 

prediction capability of AlphaFold2 on a very challenging data set, where proteins are 

structurally compatible, even when they do not interact. AlphaFold2 achieves high 

discrimination between interacting and non-interacting proteins, and the cases of 

misclassifications can either be rescued by revisiting the input sequences or can suggest 

false positives and negatives in the data set. Alphafold2 is thus not impaired by the 

compatibility between protein structures and has the potential to be applied at large scale. 

Introduction 

Prediction of whether proteins interact has profound implications to suggest functions 

for uncharacterized proteins, understand protein activity and regulation at the molecular 

level, and more generally, highlight protein functions in the context of global interactomes. 

Numerous computational methods have been developed to predict whether or not two 

proteins physically interact, based on their sequences and 3D structures, see the following 

references for review 1–6. 
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The formidable capability of AlphaFold2 (AF2) to predict protein 3D structures 7 has 

stimulated the creativity of the scientific community to evaluate what are the application 

range and limits of AF2 predictions 8–20 and extend the tool beyond its initial prediction 

task 18,21–38. Prediction of protein-protein complex structures, a task traditionally addressed 

by protein-protein docking, has rapidly been tackled by modification in the input for the AF2 

monomer pipeline 24. A specific model for protein-protein complexes is now available, with 

breakthrough prediction results 39. Note that in this case, predictions are made with the prior 

knowledge that the proteins physically interact. 

Logically then, the capability of AlphaFold2 to predict whether proteins interact has 

recently been explored, by using the predicted quality of modeled interfaces as prediction 

criterion, with very encouraging discrimination capability 28,35,40–45. 

In this short article, I challenge AF2 on a particular, presumably difficult data set in 

which non-interacting protein pairs are special cases, in which the two (non-interacting) 

proteins are structurally similar to available experimental complexes 46. This feature should 

challenge AF2, since the proteins are compatible in terms of structures. Using the ipTM 

score of AF2, I found that AF2 is very accurate at discriminating interacting from non-

interacting pairs, even in this challenging context, attending an AUC value of 0.93. 

Interestingly, model recycling did not improve the discriminative power. The analysis of the 

few misclassified cases provides suggestions to further improve the discrimination and how 

to use AF2 for pair screening. 

Material and Methods 

Data set 

Protein pairs from S cerevisiae are taken from our previous study 46, details about 

these data set can be found in 46 and are briefly summarized below. 

https://www.zotero.org/google-docs/?XLxoEn
https://www.zotero.org/google-docs/?Td6rED
https://www.zotero.org/google-docs/?a2opcS
https://www.zotero.org/google-docs/?YGcmCa
https://www.zotero.org/google-docs/?HdLeo7
https://www.zotero.org/google-docs/?0HI6av
https://www.zotero.org/google-docs/?oBzMet
https://www.zotero.org/google-docs/?bwwl6k
https://www.zotero.org/google-docs/?0Etvc6
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Interacting protein pairs 

The initial data set of interacting protein pairs was extracted from three sources: high 

confidence physical interactions from BioGrid 47, direct interactions from the KUPS 

resource 48, and high confidence physical interactions detected by yeast-two-hybrid from Ito 

et al 49. 

Non-interacting protein pairs  

The initial negative data set was extracted from three sources : the negative data set 

used by Yu et al which are simply sampled from pairs without experimental evidence of 

interaction 50, pairs of protein from the KUPS resource 48, which have no evidence of 

interaction and also distant GO annotations, and the negative data set built by Trabuco et 

al 51 from the Ito data set, where the yeast-two-hybrid data set is used to select proteins 

pairs that do not physically interact but correctly detected in the experiment . 

In our previous study, those pairs were compared with known structures. We had 

screened homology models of S. cerevisiae proteins against a non-redundant database of 

experimentally known dimers and we had selected pairs where the monomers structurally 

matched with the experimental dimers (TM score >0.8), and, once superimposed on those 

dimers, could form an interface of reasonable size (> 20 residues) and without extensive 

clashes (less than 3 between Cαs). Using these criteria resulted in a data set of 22 non-

interacting and 222 interacting proteins. In this work, I use the data set of 22 non-interacting 

proteins and a random sample of 22 interacting pairs, see Table S1. 

AlphaFold2 Models 

AlphaFold2 (AF2) predictions are computed using 

LocalColabFold (https://github.com/YoshitakaMo/localcolabfold), a local installation of 

ColabFold 39,52. ColabFold replaces the time-consuming step of multiple sequence alignment 

(MSA) creation by an ultra-fast step with MMseqs2 53. The version used is colabfold version 

1.5.2 with model alphafold2_multimer_v3. No templates are used (default); models are not 

https://www.zotero.org/google-docs/?SJjwhu
https://www.zotero.org/google-docs/?9j8m9g
https://www.zotero.org/google-docs/?NKsyGl
https://www.zotero.org/google-docs/?tiPpuP
https://www.zotero.org/google-docs/?sN9MJI
https://www.zotero.org/google-docs/?MdwkVk
https://www.zotero.org/google-docs/?i5fW6X
https://www.zotero.org/google-docs/?qUW8bW
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minimized (default); I tested both with (default)  and without model recycling (--num-recycle 

0), and different modes of sequence pairing for the MSA: unpaired+paired (default), paired 

only (--pair-mode paired), and unpaired only (--pair-mode unpaired). The resulting 5 models 

are ranked according to the ipTM score (interface predicted TM score) computed by AF2. 

The ipTM score was introduced in AlphaFold-Multimer 39.  It is computed in the structure 

module of AF2, by a network that takes as input the pair representation of the MSA 

produced by the Evoformer blocks 7. This network has been trained to predict a non-

symmetric matrix of predicted aligned errors (PAE) values, that captures the error in the 

position of the Cα atom of residue j when the predicted and true structures are aligned using 

the backbone frame of residue i 7. In AlphaFold-Multimer, the ipTM only incorporates the 

PAE values of pairs where residues i and j come from different chains 39. During inference, 

the ipTM is thus predicted only from the MSA information and does not explicitly use the 

predicted interface.  

With the unpaired+paired scoring scheme and no recycling, the prediction took on 

average 8 minutes per pair on a GPU RTX 3080 Lite Hash Rate. 

VoroMQA rescoring 

For comparison purposes, the VoroQMA scoring 54 was also tested for the 

discrimination between interacting and non-interacting pairs. This method was primarily 

developed for quality assessment of monomeric models 55; it is based on knowledge-based 

statistical potentials and Voronoi tessellation to quantify the contact area between atoms. In 

the case of protein-protein complexes, VoroMQA outputs an interface score that is derived 

from the local scores of atoms that participate in inter-chain contacts and an interface energy 

which is the  sum of the interface contact areas multiplied by the corresponding pseudo-

energy values from the statistical potential 56. Both the interface score and the interface 

energy values were considered. 

https://www.zotero.org/google-docs/?Qx2asM
https://www.zotero.org/google-docs/?a5mqPv
https://www.zotero.org/google-docs/?ohXFaB
https://www.zotero.org/google-docs/?xddBxa
https://www.zotero.org/google-docs/?QlxTpE
https://www.zotero.org/google-docs/?S4bMry
https://www.zotero.org/google-docs/?EM3XeU
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Assessing classification performance 

The separation between scores of interacting and non-interacting pairs is measured 

by the AUC value obtained when using the scores to predict whether the proteins interact. 

Two prediction scores are considered:  the AF2 ipTM score and the pDockQ score, recently 

introduced by Bryant et al 40, which is derived from the plDDT scores of interface residues. 

Statistical significance between AUC values is assessed using the non-parametric DeLong’s 

test 57 implemented in the pROC package 58. 

The classification performance is measured by the accuracy, i.e., percentage of correctly 

classified pairs. Statistical difference between accuracies is assessed using the MacNemar 

test 59. 

Comparison with other methods  

 The performance of AF2 to predict whether proteins interact was compared with two 

other methods. The first method, DeepTrio 60, is a deep learning method based on single 

sequences. The sequences were submitted to the DeepTrio server 

(http://bis.zju.edu.cn/deeptrio), and predictions were run with the yeast model. The second 

method is based on explicit co-evolution signal detection. Following the work of Green et 

al 61, the co-evolution signal between proteins was computed using the EVcouplings python 

package (https://github.com/debbiemarkslab/EVcouplings) and the average value of the top-

ten inter protein residue pairs was used as predictor. The prediction took on average 4 hours 

per pair when running on 2 cores on CPU Intel Xeon w5-3423. 

Data availability 

 

All the input sequences, input parameters and resulting models can be found in the 

Zenodo archive https://zenodo.org/doi/10.5281/zenodo.10118918. 

 

 

https://www.zotero.org/google-docs/?bwoicz
https://www.zotero.org/google-docs/?5dQzFD
https://www.zotero.org/google-docs/?zBAAX1
https://www.zotero.org/google-docs/?fNRZMm
https://www.zotero.org/google-docs/?Yrb3f4
http://bis.zju.edu.cn/deeptrio
https://www.zotero.org/google-docs/?ozDX44
https://github.com/debbiemarkslab/EVcouplings


5 

Results  

Although AF2 has recently been used to discriminate interacting from non-interacting 

pairs with promising results 28,35,40,41, it is always worthy of pushing the system to the limits to 

better know its applicability range. Here, I propose to further test AF2 prediction capability in 

extreme conditions. I submitted to AF2 prediction a particularly challenging data set from a 

previous study 46. In this data set, all the pairs are supported by structural data: interacting 

but also non-interacting pairs are compatible in shape, as assessed by their high similarity to 

experimental dimers, as explained in the Methods section. 

Classification performance 

 

Table 1- AUC values obtained with ipTM score used as a predictor, and different Alphafold2 

options. The differences between AUC values are not statistically significant between the 

best models obtained with different MSA pairing and recycling modes (within the last line), or 

between models generated by different networks  (within each column). 

 

  paired+unpaired MSA paired MSA  unpaired MSA 

  With recycling No recycling No recycling No recycling 

AlphaFold 

network 

1 0.9215 0.8905 0.7893 0.9081 

2 0.9298 0.8698 0.8202 0.8812 

3 0.9132 0.906 0.7593 0.8244 

4 0.8967 0.8709 0.7665 0.9514 

5 0.8843 0.9112 0.874 0.9339 

Best 0.8636 0.9256 0.8595 0.9143 

 

 

AlphaFold2 models were predicted for 22 interacting pairs and 22 non-interacting 

pairs, with or without recycling, and various MSA pairing schemes. The ipTM scores were 

then used to predict whether the proteins of a given pair interact.  The results are shown in 

Table 1. As can be seen in Table 1, the discrimination between interacting and non-

interacting pairs is very high, attaining AUC values between 0.86 and 0.93, and accuracy 

https://www.zotero.org/google-docs/?NHBvCf
https://www.zotero.org/google-docs/?miflR6
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values between 80 and 86% (see Table S1). Unfortunately, the limited size of the data set 

does not allow to statistically differentiate those different settings (DeLong test p-

values>0.05). Notably, the model recycling did not significantly improve the prediction, and 

even produced a lower AUC value: 0.92 without recycling versus 0.86 with recycling. 

Effect of model recycling  

In order to explore why the recycling did not improve the prediction, I monitored the 

evolution of the ipTM scores of the models during the recycling process, see Figure 1.  
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Figure 1. Effect of recycling on the ipTM scores (MSA mode paire_unpaired). A: ipTM scores 

of models at each recycling step. B: comparison between ipTM scores at the beginning and 

the end of the recycling. 

 

 

As can be seen in Figure 1A, for a majority of models, the ipTM remains in the same range 

during recycling: many interacting pairs have high ipTM scores from the beginning, and a 

majority of non-interacting pairs have low initial ipTM scores cannot be improved by the 

recycling. 

A small number of protein pairs however, see their ipTM score increasing with 

recycling, but since it is the case for both interacting and non-interacting pairs, this results in 

the decrease of the AUC value. As shown in Figure 1B, two interacting and 8 non-interacting 

protein pairs indeed start with a low ipTM (<0.5) and have a high ipTM (>0.5) score at the 

end of the recycling process. There are also a few cases of models that have slightly lower 

ipTM after recycling, but this is observed mainly for non-interacting pairs, and the changes 

are limited. 

Misclassified protein pairs  

 In this section, I considered models obtained without recycling, and the default MSA 

pairing option. The distribution of ipTM scores of the models is presented in Figure 2 for 

interacting and non-interacting pairs. As said before, this distribution results in an AUC equal 

to 0.93, indicating a good separation between score distributions. However, in order to 

perform a prediction from these scores, a prediction cutoff has to be chosen. Classically, the 

prediction cutoff is derived from the ROC curve, e.g., by maximizing the vertical distance to 

the diagonal or by setting an accepted false positive rate.  In the present situation, the limited 

size of the data set produced a stepped ROC curve, with high variance on estimated 

metrics 62. For this reason, it seemed more reasonable  to choose the prediction cutoff based 

on external reasons instead. Since the cutoff of 0.5 for the TM score has been shown to be 

reliable for protein topology classification 63, this cutoff was chosen for the ipTM score. 

https://www.zotero.org/google-docs/?6h4gwA
https://www.zotero.org/google-docs/?PbuyhT
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Figure 2. Distribution of ipTM scores of AlphaFold2 models of interacting and non-interacting 

pairs (no recycling, default MSA pairing). The vertical dashed line indicates the prediction 

cutoff (0.5). 

 

With an ipTM cutoff set to 0.5, 6 pairs are misclassified, corresponding to an 

accuracy equal to 86%, see Figure 2. The misclassified cases are shown in Figures 3 and 4 

and discussed below.  
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Figure 3. AF2 models of interacting pairs misclassified as non-interacting (ipTM<0.5). A: pair 

formed by the subunits 8 (Q01939, in blue) and 4 (P40327, in grey) of the 26s proteasome. 

B: pair formed by the vacuolar protein sorting-associated protein 21 (P36017 in grey) and 

the GTP-binding protein YPT53 (P36019, in blue). C: pair formed by saccharopepsin 

(P07267, in grey) and its inhibitor (P01094, in blue). D: pair formed by the vacuolar protein 

sorting-associated protein 54 (Q12071, in grey) and the GTP-binding protein YPT6 (Q99260, 

in blue).  

 

Interacting pairs predicted as non-interacting 

 Four interacting pairs are incorrectly classified as non-interacting (ipTM score <0.5). 

The first case is the dimer formed by the regulatory subunit 8 homolog and subunit 4 

homolog (Uniprot ids Q01939 and P40327) of the 26S proteasome, which is an assembly of 
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47 protein chains. The dimer obtains an ipTM score equal to 0.463, close to the prediction 

cutoff, see Figure 3A. The comparison of the AF2 model with the experimental structure of 

the 26S proteasome (PDB id 3JCO) reveals that the AF2 model is structurally similar to the 

dimer formed by the subunits 7 and 4, meaning that AF2 wrongly placed the subunit 8 in 

place of the subunit 7, see Figure S1. This is possible because subunits 8 and 7 are 

structurally similar (TM score = 0.6 between experimental structures). So, in this case, AF2 

prediction was confused by the presence of another interacting chain with similar structure, 

highlighting a type of competition toward the same interface between partners of similar folds 

during the prediction. 

The pair formed by the vacuolar protein sorting-associated protein 21 and the GTP-

binding protein YPT53 (Uniprot ids P36017 and P36019) obtains an ipTM score equal to 

0.458, close to the prediction cutoff. Furthermore, the PAE matrix displays low values 

between the two chains, suggesting a good confidence in the relative orientation of the two 

protein chains. The AF2 model, shown in Figure 3B, has an interface involving the disorder 

C-tail of the GTP protein, which could explain the low score. Interestingly, the model 

obtained with recycling has a good ipTM score (0.616) with a similar configuration but 

without the disordered part at the interface (see Figure S2). However, model recycling 

significantly increases the computation time, which is a limiting factor in the perspective of 

pair screening. Alternatively to model recycling, the prediction can be run with the disordered 

part chopped from the sequence, which produces a model similar to the recycled one, with 

an ipTM score equal to 0.63 (see Figure S2). So, in that case, it is possible to ‘rescue’ the 

prediction by chopping the sequence. 

The pair formed by the saccharopepsin and its inhibitor (Uniprot ids P07267 and 

P01094) obtains an ipTM score equal to 0.429, see Figure 3C. The full-length sequence of 

the saccharopepsin contains an N-terminal propeptide of 75 residues that is cleaved upon 

activation of the enzyme 64. The comparison of the AF2 model with the experimental 

structure (PDB id 3COJ) reveals that the binding cleft where the inhibitor is supposed to bind 

is occluded by the N-terminal region of the enzyme corresponding to the propeptide. Re-

https://www.zotero.org/google-docs/?9U0G9u
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running the prediction after chopping the propeptide sequence results in a model with a good 

ipTM score equal to 0.63 and in good agreement with the experimental structure (see Figure 

S3). So, in this case also, it is possible to rescue the prediction with appropriate sequence 

chopping. 

The pair formed by the vacuolar protein sorting-associated protein 54 and the GTP-

binding protein YPT6 (Uniprot ids Q12071 and Q99260) obtains a very low ipTM score equal 

to 0.184, see Figure 3D. The 5 models are drastically different from each other, with even 

drastic situations where the proteins are not in contact in two of the models (see Figure S4). 

There is evidence of physical interaction between these proteins, as detected by affinity 

purification. However, there is no evidence of direct physical interaction by two-hybrid assay. 

So there is the possibility that this pair is in fact a false positive case. 

 

 

 
 
Figure 4: AF2 models of non-interacting pair misclassified as interacting (ipTM>0.5). A: pair 

formed by the GTP-binding protein GTR1 (Q00582, in grey) and the nucleoporin NUP145 

(P49687, in blue). B: pair formed by cyclin-dependent kinase 1 (P00546, in grey) and the 

CTD kinase subunit beta (P46962, in blue) 
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Non-interacting pairs predicted as interacting 

Two pairs of non-interacting proteins are incorrectly classified as interacting. The pair 

between GTP-binding protein GTR1 and nucleoporin NUP145, a component of the nuclear 

pore complex (Uniprot id Q00582 and P49687) obtains a border line ipTM score equal to 

0.507. The examination of the AF2 model, see Figure 4A, reveals that the nucleoporin has a 

disordered N-terminal region that mediates the interaction with GTR1. After chopping the 

disordered parts of the nucleoporin, the best model obtains an ipTM score equal to 0.23. So 

in this case, the initial ipTM score was meaningless because of the disordered parts, and the 

pair can be excluded by adequate sequence chopping. 

The pair formed by the cyclin-dependent kinase 1 and the CTD kinase subunit beta 

(Uniprot id P00546 and P46962) achieves a very high ipTM score equal to 0.834, see 

Figure 4B. In this case, all models have high ipTM scores (>0.8) and are structurally similar 

(data not shown). Although there is no evidence of direct interaction between these two 

proteins, they are reported as interacting in the STRING resource 65. Notably, a direct 

interaction between homologs in Drosophila was measured by yeast-two-hybrid assay 66. 

This suggests that this case could be a false negative pair. 

In summary, out of 6 misclassified cases, three could be corrected by sequence 

chopping, two can be questioned as false positive/negative, and one highlights a 

phenomenon of confusion between chains in interfaces in a macromolecular assembly. 

Discussion  

In this work, pairs of interacting and non-interacting proteins, all with compatible 

shapes, were submitted to AlphaFold2 to assess its capability to predict whether proteins 

interact, and different options were tested for the AlphaFold2 modeling. Overall, the limited 

size of the data set (44 pairs) did not allow to select the best modeling options, but the 

discrimination was very high, with AUC values between 0.86 and 0.93. This AUC range is 

comparable to the recent result of Bryant et al who obtained an AUC equal to 0.87 using the 

monomer AF2 pipeline to classify pairs of E. coli proteins using the pDockQ score, which is 

https://www.zotero.org/google-docs/?Fbmihp
https://www.zotero.org/google-docs/?ogQTFO
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based on the plDDT scores of interface residues 41.  In the present study, the pairs are 

presumably more challenging to distinguish, because they are all compatible in shape, but 

AlphaFold2 is still able to provide good discrimination. Interestingly, the pDockQ score 

achieved a separation corresponding to AUC values between 0.67 and 0.78 (see Table S3), 

which is significantly lower than the AUC values obtained with the ipTM score (Delong’s test 

p-value=0.011). This suggests that in the case of this particular data set, AlphaFold is able to 

generate models with high plDDT scores at the interface and a reasonable number of 

contacts, even in the case of non-interacting proteins, but the ipTM score is able to 

distinguish them. 

 The role of recycling on this data set was investigated by following the evolution of 

ipTM scores with recycling. Recycling indeed improved the ipTM scores of some pairs, but 

this was observed not only for interacting pairs but also non-interacting pairs. The reasons 

why Alphafold can produce models with high ipTM scores for non-interacting protein pairs 

when using recycling are difficult to investigate. It is important to remember that Alphafold 

was not trained to predict whether proteins interact, but to provide good models for proteins 

and protein complexes that effectively exist. Thus, the recycling procedure will optimize the 

models toward this particular aim. Achieving optimal discrimination with recycling would 

probably require a specific training of the AlphaFold network with interacting versus non-

interacting protein pairs. 

 Since the ipTM score is based on the PAE matrix predicted from the pair MSA 

representation, and thus, does not explicitly take into account the interface structure, it is 

interesting to assess the models produced by AF2 with structure-based scoring function. The 

VoroQMA knowledge-based statistical potential was used for this purpose, see Figure S5. It 

was found that the interface score of VoroQMA achieves a good level of discrimination (AUC 

equal to 0.74), although lower than the ipTM score (Delong’s test p-value=0.04). However, 

the VoroQMA interface energy achieved discrimination on par with the ipTM score (AUC 

equal to 85%, Delong’s test p-value >0.05). This indicates that the structural models 

https://www.zotero.org/google-docs/?broken=iOEIyU
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produced by AlphaFold for non-interacting and non-interacting pairs differ in terms of 

pairwise interface atomic contacts. 

 Lastly, the performance of AlphaFold was compared to other methods that are less 

demanding in terms of computation time. On the one hand, a deep learning online method, 

DeepTrio, achieved very poor discrimination, predicting most of the pairs as interacting (see 

Table S3). On the other hand, a method based on co-evolution signal detection, 

EVcouplings, also achieved poor discrimination but for the opposite reason:  many of the 

interacting protein pairs yielded very low co-evolution signal (see Figure S6).   

Conclusion 

A reduced but challenging data set was submitted to AF2 in order to discriminate interacting 

from non-interacting pairs, resulting in very high prediction accuracy. Several misclassified 

cases could be rescued by appropriate sequence chopping, and some others are suggestive 

of incorrect annotations (false positive or false negative). A potential limitation of AF2 was 

observed in a case where several protein chains with structural similarity form a supra-

molecular assembly. The fact that no recycling is required opens the possibility to apply this 

procedure at large scale. To conclude, AF2 seems a promising technology for predicting 

whether proteins interact, even capable of discriminating interacting from non-interacting 

pairs in presence of confounding structural compatibility.  

Data and Software Availability statement 

The sequences used in that study are listed in Table S1, and the models generated by 

AlphaFold are available under Zenodo https://doi.org/10.5281/zenodo.10118919. 

 

Supporting Information 

Additional extended results : accuracy and AUC values for discrimination by AF2, 3D 

structures of models predicted by AF2, discrimination with other methods and comparison 

with VoroQMA scores. 

https://doi.org/10.5281/zenodo.10118919
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