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Abstract

Kazantzis-Kravaris/Luenberger (KKL) or Nonlinear Luenberger observers are powerful theoretical tools used to estimate the
state of a very large class of nonlinear systems. Such observers rely on the existence of an injective transformation towards new
coordinates in which the original system dynamics becomes an exponentially stable linear filter of the output, and thus easy
to estimate. The injectivity of the transformation enables to use its left inverse in order to recover the original system state
estimate in the original coordinates. The existence of such an injective transformation may be guaranteed under a backward-
distinguishability assumption of the original system.

The present paper proposes an interval observer, i.e. a lower and an upper bound of the actual state, based on the KKL
principle, for a discrete-time time-varying nonlinear system subject to additive bounded disturbances and measurement noise.
The design of this observer mainly relies on the existence of uniform Lipschitz backward distinguishability assumption enabling
to bound the state regarding the uncertainties using an interval observer for the linear filter in the new coordinates. In the
original coordinates, the inclusion of the system state into the estimated interval and the boundedness of the errors are
guaranteed after a finite time. Some practical considerations regarding implementation of a such observer are addressed and
a numerical example illustrates the resulting performances.

Key words: State estimation, uncertain nonlinear system, nonlinear observer, interval observer, set-membership.

1 Introduction

State estimation is a crucial step in the design and im-
plementation of model-based control laws and diagnostic
processes. Usually, this step is achieved using observers
that compute some reliable estimations on the basis of
known inputs and measurements. Many methods have
been developed to solve this problem, with for instance
the well known Kalman filters [11] and Luenberger ob-
servers [16] initially developed for linear systems in the
60s. Since then, numerous works have been carried out
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to handle more and more complex systems that take
into account nonlinearities and uncertainties. Among
the well established techniques that can be found in the
literature, the most famous ones are the H∞ filtering,
the extended and unscented Kalman filters [26], sliding
mode observers, high-gain observers [14]. Another im-
portant framework that emerged in the late 60s is the
set-membership framework which assumes bounded er-
rors and aims to compute an estimated set that is guar-
antee to contain the unknown system state [25]. Several
types of set can be considered but the most common in
the literature are based on ellipsoids [7], zonotopes [5]
or intervals. The latter will be of interest for this work.
One of the pioneer article regarding interval observers
has been proposed by Gouzé [10] in the early 2000s. It
consists in computing a minimal and a maximal bounds
that enclose the state of the system using Luenberger
like observers. Such observers are designed under the as-
sumption of unknown but bounded uncertainties. Their
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design relies on the monotone systems theory [27] which
allows to obtain the cooperativity (or nonnegativity) of
the interval estimation errors dynamics by a proper de-
sign [8] [15]. In practice, it is difficult to find suitable
observer gains that ensure at the same time the stabil-
ity of the interval observer and the cooperativity of the
estimation errors. However this issue has been overcome
for Linear Time Invariant (LTI), Linear Time Varying
(LTV), Linear Parameter Varying (LPV) systems, as
well as some particular classes of nonlinear systems using
a change of coordinates that can be either time-varying
or not [23] [6]. Indeed, such transformation allows to
change a stable dynamics into a stable and cooperative
one. Even though the problem of interval observers de-
sign for nonlinear systems has been studied over the last
years [19][21][23][13][20], it still remains a challenge for
several reasons but especially because of the lack of a
generic method. However a trend emerges from the men-
tioned articles which is to find bounding functions for
the nonlinearity assuming its Lipschitzness. For instance
in [21] and [13], a mixed-monotone decomposition of the
nonlinearity, which requires its Lipschitzness, is used and
an example of bounding functions is given in [21] based
on the Lipschitz constant. In [19], the trajectory of the
system is assumed bounded such that the Müller’s The-
orem proves the existence of bounding functions and a
rule based on the monotonicity is given to find them.
In [23], bounding functions for the nonlinearity are di-
rectly assumed. However they used the interesting idea
to transform the original nonlinear system, assumed lo-
cally observable, into a system linearized by an output
injection term. This technique reminds of the approach
introduced in the late 90s by Kazantzis and Kravaris
[12] for state estimation of nonlinear systems. The so
called Kazantzis-Kravaris/Luenberger (KKL) observers,
or nonlinear observers, rely on a powerful theory based
on a transformation that changes the nonlinear dynam-
ics (of dimension nx) into an exponentially stable linear
filter of the output in some new coordinates (of dimen-
sion nz ≥ nx). In this way, a simple Luenberger observer
is able to estimate the state in the new coordinates and
an inverse transformation could allow to recover the es-
timation in the original base. However, in order to be
able to inverse the transformation, it needs to be injec-
tive. The existence of such an injective transformation
is shown in [2] under a backward distinguishability as-
sumption, i.e. given two different state values at a cer-
tain time, there exists a time in the past where their
respective outputs were different. In this case, the fil-
ter must be complex-valued of dimension nx + 1 and
almost any choice of distinct complex eigenvalues are
suitable. A closed form of the transformation can be
computed at each time based on the nonlinear func-
tions that describe the system and the observer matri-
ces. KKL observers position themselves as an alternative
to the extensions of Kalman filters to nonlinear systems,
with the advantage to guarantee (semi-)global asymp-
totic stability contrary to the local convergence pro-
vided by the extended/unscented Kalman filter. More-

over, some stronger injectivity results have then been
obtained [1] [3] and one in particular is about the exis-
tence of a uniform Lipschitz injectivite transformation
which is obtained under uniform Lipschitz backward dis-
tinguishability [28], i.e. the backward distinguishability
maps are uniformly Lipschitz injective. Such a design of-
fers two main features which are an arbitrarily fast con-
vergence and an input-to-state (ISS) stability of the es-
timation error. Thus, it can be seen as a discrete-time
counterpart of high-gain observers. The robustness re-
garding the additive disturbances of the arbitrarily fast
KKL observer, or in other words the boundedness of the
estimation error, gives an opportunity for some adapta-
tions to the set-membership framework.
We introduce here an Interval KKL (IKKL) observer de-
sign which is a new type of interval observer approach for
discrete uncertain nonlinear systems. A specific transfor-
mation is used to obtain a linear filter in some new coor-
dinates. An interval observer is then designed in the new
coordinates to enclose the linear filter dynamics while
taking into account the uncertainties bounds. Then, in
order to recover the estimated interval in the original co-
ordinates, some bounding functions of the inverse trans-
formation are given based on its Lipschitzness. The pro-
posed IKKL brings several innovations compared to the
nonlinear interval observers of the literature. First, the
design is relatively generic and may be applied to a large
class of discrete uncertain nonlinear systems that re-
spect the uniform Lipschitz backward distinguishability
assumption. This assumption could seem restrictive but
is actually satisfied by many real systems with appro-
priate measurements. Second, instead of directly look-
ing for bounding functions of the nonlinearities, our ap-
proach uses the Lipschitzness of the direct and inverse
transformations to enclose the system state. Third, it
will be shown that a knowledge about the initial condi-
tions may be dispensed.The paper is structured as fol-
lows. Section 2 presents the preliminaries that introduce
some material required to design IKKL Observer. Then,
the problem statement is established in Section 3. The
new IKKL Observer is presented in Section 4. In Section
5, some practical considerations are detailed to ease the
implementation of an IKKL Observer. Finally, Section
6 illustrates the theoretical design through simulation
examples on LTV and nonlinear systems.

Notations

The set of real and natural numbers are respectively de-
noted R and N. Consider also R≥0 = [0,+∞), R>0 =
(0,+∞) andN>0 = N\{0}. The set of real matrices with
n × p elements is denoted by Mn,p(R). In ∈ Mn,n(R)
(I when there is no ambiguity) denotes the identity ma-
trix. 1 is a vector of ones with appropriate dimensions.
0n,p ∈ Mn,p(R) (0 when there is no ambiguity) de-
notes the null matrix with n rows and p columns. For
any matrix A ∈ Mn,m(R), let set A+ = max{0, A}
and A− = A+ − A (such that A = A+ − A−, with
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A+ ≥ 0 and A− ≥ 0). The operators ≤, ≥, < and >
are understood component wise for vectors and matri-
ces. For any finite set of matrices (Ai)i=1...m ⊂ Mn,p(R)
(resp any finite set of vectors (vi)i=1...m ⊂ Rp), the min
and max operators, mini=1...m{Ai} and maxi=1...m{Ai}
(resp. mini=1...m{vi} and maxi=1...m{vi}), are under-
stood component-wise. The operator diag applied to a
vector returns a diagonal matrix where the components
of the vector are on the main diagonal. For matrices
(Ai)i=1...m, diag(A1, . . . , Am) returns a block diagonal
matrix whose diagonal blocks are the matrices Ai. For
a vector norm |.|, the induced matrix norm is denoted
∥.∥. ℓ∞ denotes the set of bounded inputs x such that
|x| < ∞. The composition of two functions f and g is
f ◦ g provided that it is well defined, i.e for all x in the
domain of g, g(x) is in the domain of f .

2 Preliminaries

This section presents some material required to design
interval KKL observers. It is divided in two parts as
follows. Subsection 2.1 introduces Lipschitz functions
and the concept of mixed monotone decomposition for
such functions. Then, Subsection 2.2 recalls the design
methodology of interval observers for discrete linear sys-
tems.

2.1 Lipschitzness and mixed monotone decomposition

The Lipschitz continuity is a type of uniform conti-
nuity for functions. Intuitively, a Lipschitz function is
bounded in its variation. A globally Lipschtiz function
is defined as follows.

Definition 1 (Globally Lipschitz function). A function
f : Rn → Rq is globally Lipschitz with respect to x if

∀(xa, xb) ∈ Rn × Rn, |f(xa)− f(xb)| ≤ L|xa − xb|,

where L ∈ R>0 is called the Lipschitz constant of f .

Those functions can be decomposed in a sum of two
monotone Lipschitz functions using the following mixed-
monotone decomposition property which is recall from
[21, Properties 3 and 4].

Property 1 (Mixed monotone decomposition [21]).
Consider a differentiable global Lipschitz function
f(x) : Rn → Rq with Lipschitz constant c. Then, the
following properties hold :

(1) f can be written as the difference of two differen-
tiable global Lipschitz functions α and β which are
increasing functions of x.

f(x) = α(x)− β(x)

The newly introduced functions can be given by
α(x) = c

∑n
i=1 xi1 and β(x) = α(x)− f(x).

(2) There exists a differentiable global Lipschitz func-

tion f̃(xa, xb) : Rn × Rn → Rq such that

• f̃(x, x) = f(x)

• [ ∂f̃
∂xa

] ≥ 0 and [ ∂f̃
∂xb

] ≤ 0

Such a mapping f̃ can be written as:

f̃(xa, xb) = α(xa)− β(xb).

(3) Using the notations introduced in items 1 and 2,
then for all (x, x) ∈ Rn × Rn such that x ≤ x ≤ x,

f̃(x, x) ≤ f(x) ≤ f̃(x, x).

This property will be used in Theorem 3 proof to recover
the inclusion property of the proposed observer in the
original coordinates from the linear filter coordinates.

2.2 Interval observer for discrete-time linear systems

Interval observers provide an upper and a lower bound
for the state of an uncertain systems. Their design re-
lies on the monotone system theory and on the concept
of cooperativity (or nonnegativity) of the estimation
errors dynamics. This guarantees the inclusion of the
system state in the estimated bounds [8]. The main
ideas to design an interval observer for discrete time
linear systems are presented thereafter.
First, the following Lemma gives a fundamental interval
order relation, obtained from interval arithmetic, that
allows to compute the bounds of the product between a
matrix and an interval vector.

Lemma 1 (Order Relation [9]). Let x ∈ Rn be a vector
such that x ∈ [x, x] with x, x ∈ Rn and A be a matrix
with appropriate dimensions. Then,

A+x−A−x ≤ Ax ≤ A+x−A−x.

Consider a discrete-time uncertain linear system such as

xk+1 = Axk + vk, yk = Cxk + wk, (1)

where xk ∈ Rnx and yk ∈ Rny are the state and output
vectors, vk ∈ Rnx and wk ∈ Rny are respectively the
additive disturbances and measurement noise. The pair
(A,C) ∈ Mnx,nx

(R)×Mny,nx
(R) is observable.

A standard assumption in the set-membership frame-
work is that the uncertainties are assumed unknown
but bounded by known values. Thus, consider x0, x0 ∈
Rnx and consider also, for all k ∈ N, vk, vk ∈ ℓnx

∞ and
wk, wk ∈ ℓ

ny
∞ such that

x0 ≤ x0 ≤ x0, vk ≤ vk ≤ vk, wk ≤ wk ≤ wk (2)
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Then the following theorem based on the bounded un-
certainties assumption recalls the design of an interval
observer for discrete-time linear systems.

Theorem 1 (Discrete-Time Interval Observer [23]).
Consider system (1) with x ∈ lnx

∞ and let (2) holds. As-
suming that there exists a matrix L such that A− LC is
Schur and nonnegative, the system{

xk+1 = (A− LC)xk + Lyk − (L+wk − L−wk) + vk

xk+1 = (A− LC)xk + Lyk − (L+wk − L−wk) + vk
(3)

is an interval observer for (1) and satisfies the inclusion
property

∀k ∈ N, xk ≤ xk ≤ xk. (4)

Moreover, x, x ∈ ℓnx
∞ provided that A − LC is Schur

stable.

As a reminder, in discrete-time, a matrix is called Schur
stable if all its eigenvalues have absolute value less than
one, and is called cooperative (or nonnegative) if all its
elements are nonnegative.

Remark 1. The proof of Theorem 1 consists in showing
the stability and the cooperativity of the error dynamics,
which hold provided that A − LC is Schur and nonneg-
ative. It is usually difficult to find a gain L such that
(A−LC) satisfies this both properties. A solution to over-
come this issue is to find a gain L that guarantees the
stability and to use a linear change of coordinates that
will ensure the cooperativity in the new base [23][5].

3 Problem Statement

Consider the discrete-time time-varying uncertain non-
linear system {

xk+1 = fk(xk) + vk
yk = hk(xk) + wk

(5)

where fk : Rnx → Rnx and hk : Rnx → Rny are the
dynamics and output maps, xk ∈ Rnx and yk ∈ Rny

are the state and output vectors at discrete time k ∈ N,
vk ∈ Rnx and wk ∈ Rny are respectively the additive
disturbances and measurement noise.

Remark 2. The following results also hold for non-
autonomous systems of the form{

xk+1 = fk(xk, uk) + vk
yk = hk(xk, uk) + wk

(6)

where (uk)k∈N is a known sequence of inputs and the
following assumptions hold uniformly with respect to the
inputs.

A point-wise estimation of the state of system (5) can
be computed using an arbitrarily fast KKL observer
as presented in [28]. It relies on the uniform Lipschitz
backward distinguishability of the system (5) defined as
follows.

Definition 2 (Uniform Lipschitz Backward Distin-
guishability [28]). The system (5) is uniformly Lipschitz
backward distinguishable on a set X if for each output
yi, i ∈ {1, 2, . . . , ny}, there exists mi ∈ N>0 such that
for all k ≥ m := maxi mi, the sequence of backward
distinguishability maps (Obw

k )k∈N defined as

Obw
k (x) = (Obw

1,k(x),Obw
2,k(x), . . . ,Obw

ny,k(x))

where Obw
i,k(x) ∈ Rmi is given by

Obw
i,k(x) =


(hi,k−1 ◦ f−1

k−1)(x)

(hi,k−2 ◦ f−1
k−2 ◦ f

−1
k−1)(x)

...

(hi,k−mi ◦ f−1
k−mi

◦ . . . ◦ f−1
k−1)(x)


is uniformly Lipschitz injective onX , i.e., there exist c0 ∈
R>0 such that for all k ≥ m and for all (xa, xb) ∈ X ×X ,

|Obw
k (xa)−Obw

k (xb)| ≥ c0|xa − xb|.

The observer design requires the following assumption.

Assumption 1.

(1) The solutions of interest of (5), initialized in a set
X0, remain in a compact set X ⊇ X0 in positive
time.

(2) For all k ∈ N, fk is invertible and both the sequences
(f−1

k )k∈N and (hk)k∈N are uniformly Lipschitz, i.e
there exist cf , ch ∈ R+ such that for all k ∈ N and
for all (xa, xb) ∈ Rnx × Rnx ,

|f−1
k (xa)− f−1

k (xb)| ≤ cf |xa − xb|,
|hk(xa)− hk(xb)| ≤ ch|xa − xb|.

(3) The system (5) is uniformly Lipschitz backward
distinguishable on X for some mi ∈ N>0, i ∈
{1, 2, . . . , ny}.

Lemma 2 and Theorem 2 recall the results obtained in
[28, Theorems 1-4] for the design of an arbitrarily fast
KKL observer.

Lemma 2 ([28]). Let be A ∈ Mnz,nz (R) and B ∈
Mnz,ny

(R). Under Assumption 1, given any T0 : Rnx 7→
Rnz , the sequence (Tk)k∈N such that each Tk : Rnx 7→ Rnz
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is given by

Tk(x) = Ak(T0 ◦ f−1
0 ◦ f−1

1 ◦ . . . ◦ f−1
k−1)(x)+

k−1∑
j=0

Ak−j−1B(hj ◦ f−1
j ◦ f−1

j+1 ◦ . . . ◦ f
−1
k−1)(x), (7)

verifies the following equation for all k ∈ N and x ∈ X :

Tk+1(fk(x)) = ATk(x) +Bhk(x). (8)

Theorem 2 (Arbitrarily fast KKL Observer [28]).
Consider system (5). Under Assumption 1, define
nz =

∑ny

i=1 mi. Then, there exists a γ⋆ ∈ R>0 such that
for any 0 < γ < γ⋆, there exists k⋆ ∈ N such that the se-
quence (Tk)k∈N defined by (7), initialized with a globally
Lipschitz map T0 and with

A = γÃ = γ diag(Ã1, Ã2, . . . , Ãny ) ∈ Mnz,nz (R),

(9a)

B = diag(B̃1, B̃2, . . . , B̃ny
) ∈ Mnz,ny

(R), (9b)

where for each i ∈ {1, 2, . . . , ny}, (Ãi, B̃i) ∈ Mmi,mi
(R)×

Rmi is a controllable pair with Ãi Schur stable, is uni-
formly Lipschitz injective on X for all k ≥ k⋆.
Moreover, there exists a sequence of left inverse (T ∗

k )k≥k⋆

with T ∗
k : Rnz → Rnx such that the observer

ẑk+1 = Aẑk +Byk, x̂k = T ∗
k (ẑk), (10)

initialized at ẑ0 ∈ T0(X ), is an arbitrarily fast observer
of (5) that provides an exponentially stable estimation
error. Thus, there exist positive scalars c̄, c̄v and c̄w such
that for all k ≥ k⋆,

|xk − x̂k| ≤
c̄(γ∥Ã∥)k

γm̄−1
|x0 − x̂0|

+
1

γm̄−1

k−1∑
j=0

(γ⋆∥Ã∥)k−j−1(c̄vvj + c̄wwj). (11)

The upper bound of the high-gain parameter is given by

γ⋆ = min

{
1

maxi max | eig(Ãi)|
,

1

maxi ∥Ãi∥cf
,

ccco

maxi ∥Ãi∥cfccco +maxi ∥B̃i∥chcf maxi((∥Ãi∥cf )mi)

}
.

(12)

The number of steps required to obtain the uniform in-

jectivity of the sequence (Tk)k∈N is given by

k⋆ =


m̄, if cT = 0,

max

(
m̄, ⌊ (m̄− 1) ln γ + ln c̃− ln cT

ln γ + ln (maxi ∥Ãi∥cf )
+ 1⌋

)
,

otherwise.
(13)

where c̃ = ccco − maxi ∥B̃i∥chcf γ maxi(∥Ãi∥cf )mi )

1−γ maxi ∥Ãi∥cf
,

cc ∈ R>0 is such that ||Ci|| ≥ cc > 0 for all
i ∈ {1, . . . , ny} with Ci is the controllability matrix of
the pair (Ai, Bi).

Remark 3. This result is closely related to a high-gain
result in discrete time where γ plays the role of the
high-gain parameter [14]. Thus, γ should be taken suffi-
ciently small to guarantee uniform Lipschitz injectivity
of (Tk)k∈N and increasing the convergence speed. How-
ever, it will worsen the sensitivity to the disturbances
and measurement noise and the peaking phenomenon
will appear.

Within this framework, the aim is to design an interval
observer for the system (5) assuming that the uncer-
tainties are bounded as follows.

Assumption 2. There exist known bounds v, v ∈ ℓnx
∞ ,

w,w ∈ ℓ
ny
∞ , and for all k ∈ N, vk, vk ∈ ℓnx

∞ and wk, wk ∈
ℓ
ny
∞ such that

v ≤ vk ≤ vk ≤ vk ≤ v, v ≤ wk ≤ wk ≤ wk ≤ w.
(14)

However, instead of designing and interval observer
directly in the original x-coordinates, an enclosure of
the state of the system is first designed in the filter
z-coordinates where the dynamics is linear (and thus,
similarly to Theorem 1). The obtained enclosure is then
recovered in the x-coordinates.

4 Main Results

The following theorem states the design of an Interval
KKL observer for the uncertain nonlinear system (5).

Theorem 3 (Interval KKLObserver). Let Assumptions
1 and 2 hold. Define nz =

∑ny

i=1 mi. Consider ny con-

trollable pairs (Ãi, B̃i) ∈ Mmi,mi
× Rmi with Ãi Schur

stable and nonnegative and define the pair (A,B) as in
(9). Consider γ⋆ given in (12), and for any 0 < γ < γ⋆,
consider k⋆ given in (13). Then, the sequence (Tk)k∈N
defined in (7) and initialized with a globally Lipschitz
T0 is uniformly Lipschitz injective on X for all k ≥ k⋆,
and admits a uniformly Lipschitz sequence of left inverse
that can be extended in a uniformly Lipschtz sequence
(T ∗

k )k≥k⋆ , with T ∗
k : Rnz → Rnx . Moreover, the system
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defined by{
zk+1 = Azk +Byk − (B+wk −B−wk) + cLVk1

zk+1 = Azk +Byk − (B+wk −B−wk)− cLVk1,
(15)

and initialized by any z0 and z0 satisfying T0(X0) ⊆
[z0, z0], with cL ∈ R>0 the uniform Lipschitz constant of
(Tk)k∈N and Vk = max{|vk|, |vk|} ∈ R>0, satisfies:

∀k ∈ N, zk ≤ zk ≤ zk, (16)

where zk = Tk(xk). Besides, the system defined by{
xk = T̃ ∗

k (zk, zk)

xk = T̃ ∗
k (zk, zk),

(17)

with for all k ≥ k⋆, T̃ ∗
k : Rnz × Rnz → Rnx is defined by

T̃ ∗
k (za, zb) = cL∗

nz∑
i=1

(za,i − zb,i)1+ T ∗
k (zb), (18)

where cL∗ ∈ R>0 is the uniform Lipschitz constant of
(T ∗

k )k≥k⋆ , is an interval observer for system (5) for all
k ≥ k⋆, i.e. the following inclusion properties hold

∀k ≥ k⋆, xk ≤ xk ≤ xk, (19)

Finally, the total interval estimation error ek = ek − ek
in the x-coordinates is bounded.

Few remarks are drawn here :

Remark 4.

(1) The major distinctions of Theorem 3 compared to
Theorem 2 is that instead of a point-wise estimation,
an enclosure for the system state is obtained for
some know bounds on the uncertainties. Moreover,
the matrices Ãi must be taken nonnegative to ensure
this enclosure, but its not a restriction as they can
be freely chosen.

(2) The sequence (T ∗
k )k≥k⋆ is an extension on Rnz of

the sequence of left inverse (T−1
k )k≥k⋆ defined on

Tk(X ). The existence of such an extension with the
same Lipschitz constant is ensured according to [18]
(see also Theorem 3 proof).

(3) By taking T0 identically null, and z0 = z0 = 0,
the assumption on the bounded initial conditions
T0(X0) ⊆ [z0, z0] holds whatever X0. Thus, with
such a choice, the knowledge of initial conditions
can actually be dispensed, which is very benefit, as
this knowledge (which is required for nearly every
cooperative interval observers) is not always easy to
obtain in practical situations.

(4) According with Theorem statement the state esti-
mation is guaranteed only after k⋆ steps which is

a limitation. However, as it can be seen in the ex-
pression of k⋆ in (13), if T0 is taken identically null
(as advised in the previous item), k⋆ = m, which
is usually quite small (as it will be illustrated on an
example in Section 5).

The following Lemmas, used in the proof of Theorem 2,
deals with the Lipschitzness of the sequences (Tk)k∈N
and (T ∗

k )k≥k⋆ , and gives the expressions of the associ-
ated Lipschitz constants (cL and cL∗) whose knowledge
is necessary for a practical use of the proposed interval
observer (the proofs are given in Appendix).

Lemma 3. Let Assumption 1 holds, and let consider
the sequence (Tk)k∈N defined in Theorem 3. Consider
(cf,k)k∈N, (ch,k)k∈N the sequences of Lipschitz constants

of respectively f−1
k and hk (in particular, for all k ∈ N,

cf,k ≤ cf and ch,k ≤ ch). Then, for any k ∈ N, Tk is a
globally Lipschitz function with a Lipschitz constant

cL,k = cT (γmax
i

∥Ãi∥cf,k)k

+max
i

∥B̃i∥ch,kcf,k
1− (γmaxi ∥Ãi∥cf,k)k

1− γmaxi ∥Ãi∥cf,k
,

(20)

where cT is the Lipschitz constant of T0. Moreover, the
sequence (Tk)k∈N is uniformly Lipschitz with a uniform
Lipschitz constant

cL = cT +
maxi ∥B̃i∥chcf

1− γmaxi ∥Ãi∥cf
, (21)

and in particular, for all k ∈ N, cL,k ≤ cL.

Lemma 4. Let Assumption 1 holds, and let consider the
sequence (Tk)k∈N and the integer k⋆ as defined in Theo-
rem 3. Let consider the same notations as in Lemma 3
and let consider (co,k)k∈N the sequence of injectivity coef-
ficients ofObw

k (that follows fromDefinition 2) (in partic-
ular for all k ∈ N, co,k ≥ co). Then, the sequence (Tk)k∈N
is uniformly Lipschitz injective on X for all k ≥ k⋆, and
admits a uniformly Lipschitz sequence of left inverse that
can be extended on Rnz in a uniformly Lipschtz sequence
(T ∗

k )k≥k⋆ . More precisely, for any k ≥ k⋆, T ∗
k is a glob-

ally Lipschitz function with a Lipschitz-constant

c∗L,k =
1

ckγm̄−1
(22)

where ck = cN (ccco,k − cR,k − cI,k),

with cR,k = maxi ∥B̃i∥ch,kcf,k γ maxi((∥Ãi∥cf,k)mi )

1−γ maxi ∥Ãi∥cf,k
(1 −

(mini(γ∥Ãi∥cf,k)k−mi)),

cI,k = cT γ
k−m̄−1(maxi ∥Ãi∥cf,k)k, and cN ∈ R>0 a
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constant depending on the chosen norm (more on this
in Subsection 5.3). Moreover, the uniform Lipschitz
constant of the sequence (T ∗

k )k≥k⋆ is given by

cL∗ =
1

cγm̄−1
, (23)

where c = cN

(
ccco − maxi ∥B̃i∥chcf γ maxi(∥Ãi∥cf )mi )

1−γ maxi ∥Ãi∥cf

)
.

In particular, for all k ∈ N, cL,k ≤ cL.

Proof of Theorem 3. The proof is divided in two parts.
In the first one, it will be proven that (15) is an interval
observer for system (5) by proving the cooperativity and
boundedness of the upper and lower estimation errors
dynamics in the z-coordinates. Then, the second part
will show that the same properties can be recovered in
the x-coordinates.
First, using Lemma 2 and equation 8, the dynamics of
(5) in the z-coordinates is written as

zk+1 = Tk+1(xk+1)

= Tk+1(fk(xk) + vk)

= Tk+1(fk(xk)) + Tk+1(fk(xk) + vk)

− Tk+1(fk(xk))

= Azk +Bhk(xk) + Tk+1(fk(xk) + vk)

− Tk+1(fk(xk))

= Azk +Byk −Bwk + Tk+1(fk(xk) + vk)

− Tk+1(fk(xk)).

Define the upper error in the z-coordinates as εk = zk−
zk, and let prove by induction that εk ≥ 0 for any k ∈ N.
According to Theorem’s hypothesis, it comes that z0 =
T0(x0) ∈ T0(X0) ⊂ [z0, z0], and thus ε0 = z0 − z0 ≥ 0.
Then, let assume that εk ≥ 0 and let prove that εk+1 ≥
0. The following dynamics holds:

εk+1 = zk+1 − zk+1

= Azk +Byk − (B+wk −B−wk) + cLVk1

−
(
Azk +Byk −Bwk + Tk+1(fk(xk) + vk)

− Tk+1(fk(xk))
)

= Aεk − (B+wk −B−wk) +Bwk

+ cLVk1+ Tk+1(fk(xk))− Tk+1(fk(xk) + vk).

Note that, according to Lemma 3 (Tk)k∈N is uniformly
Lipschitz with Lipschitz constant cL for all k ∈ N, thus
|Tk(xa)− Tk(xb)| ≤ cL|xa − xb| for all (xa, xb) ∈ Rnx ×
Rnx . Note also that under Assumption 2, |vk| ≤ Vk =
max{|vk|, |vk|}. Therefore, for all k ∈ N :

Tk+1(fk(xk) + vk)− Tk+1(fk(xk))

≤ |(Tk+1(fk(xk) + vk)− Tk+1(fk(xk)))|1
≤ cL|vk|1
≤ cLVk1.

Thus, cLVk1− (Tk+1(fk(xk) + vk)− Tk+1(fk(xk))) ≥ 0
for all k ∈ N. Moreover, according to Assumption 2 and
Lemma 1, −(B+wk − B−wk) + Bwk ≥ 0 for all k ∈
N. Then, A being nonegative, it comes that εk+1 ≥ 0.
Hence, it has been proven that for all k ∈ N, εk ≥ 0. The
same reasoning applied to the lower error εk = zk − zk
results in εk ≥ 0 for all k ∈ N and proves the inclusion
property (16) in the z-coordinates.
Moreover, from the expression of εk+1 one gets that for
all k ∈ N>0,

εk = Akε0 +

k−1∑
j=0

Ak−j−1
(
− (B+wj −B−wj) +Bwj

+ cLVj1− (Tj+1(fj(xj) + vj)− Tj+1(fj(xj)))
)
.

Therefore, for all k ∈ N>0,

|εk| =
∣∣∣Akε0 +

k−1∑
j=0

Ak−j−1
(
− (B+wj −B−wj) +Bwj

+ cLVj1− (Tj+1(fj(xj) + vj)− Tj+1(fj(xj)))
)∣∣∣

≤ (γ∥Ã∥)k|ε0|+
k−1∑
j=0

(γ∥Ã∥)k−j−1
(
∥B∥|wj − wj |

+ (c′N + 1)cLVj

)
,

(24)

where c′N ∈ R>0 depends on the chosen norm (more on
this in Subsection 5.3).
Thus, as A is Schur stable, εk is bounded for all k ∈ N.
The same arguments allow to conclude that εk is also
bounded for all k ∈ N and the bounding term is the same
except that ε0 is replaced by ε0.
Hence, this proves that the interval estimation errors in
the z-coordinates are bounded for all k ∈ N.
Now, let consider a real 0 < γ < γ⋆, and the asso-
ciated value k⋆ given by (13). The fact that the se-
quence (Tk)k≥k⋆ is uniformly Lipschitz injective with a
left inverse that and can be extended on Rnz in a uni-
formly Lipschitz sequence (T ∗

k )k≥k⋆ directly results from
Lemma 4.
Consider now the upper error in the x-coordinates de-
fined as

ek = xk − xk = T̃ ∗
k (zk, zk)− T ∗

k (zk),

with T̃ ∗
k defined in (18). Note that the expression of T̃ ∗

k
results from applying the second item of Property 1 to
T ∗
k which is globally Lipschitz for all k ≥ k⋆. Therefore,

from the third item of Property 1, it immediately comes
that ek ≥ 0. In the same way, it is proved that ek ≥ 0
for all k ≥ k⋆. which proves the inclusion property (19)
in the x-coordinates.
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Moreover, for all k ≥ k⋆,

|ek| = |T̃ ∗
k (zk, zk)− T ∗

k (zk)|

= |cL∗

nz∑
i=1

(zk,i + zk,i)1+ T ∗
k (zk)− T ∗

k (zk)|

= |cL∗

nz∑
i=1

(εk,i + εk,i)1+ T ∗
k (zk)− T ∗

k (zk)|

≤ c′′NcL∗

nz∑
i=1

(εk,i + εk,i) + |T ∗
k (zk)− T ∗

k (zk)|

≤ c′′NcL∗

nz∑
i=1

(εk,i + εk,i) + cL∗ |zk − zk|

= c′′NcL∗

nz∑
i=1

(εk,i + εk,i) + cL∗ |εk|

= cL∗

(
c′′N

nz∑
i=1

(εk,i + εk,i) + |εk|

)
,

where c′′N is a constant that depends on the chosen norm.
As shown before, εk and εk are bounded for all k ∈ N,
thus it comes that ek is also bounded but for all k ≥ k⋆.
The same reasoning applies to ek. Therefore, the interval
estimation errors in the x-coordinates are bounded for
all k ≥ k⋆.

The following remarks are added :

Remark 5.
(1) From (24), it can be noticed that the convergence

speed of the errors in the z-coordinates can be made
arbitrarily fast by picking γ closer to zero. However,
it can be shown that this can increase the pessimism
of the estimated intervals. Thus, the issue of pick-
ing an optimal γ that leads to minimal estimation
errors in the x-coordinates is raised. This problem
is addressed in Subsection 5.2.

(2) The choice of the eigenvalues spacing for A and the
coefficients of B are also important as it acts on
the filter dynamics and its error. This issue is let to
future researches.

5 Practical considerations

Even though KKL observers relies on a powerful theory,
their main issue is their difficulty of implementation. In-
deed, it is usually very challenging to find analytically
the inverse transformations, but fortunately they can be
approximated. Moreover, the tuning of such observers
(particularly by the choice of an appropriate value for γ)
is generally difficult and suffers from the lack of generic
methods. Finally, in the set-membership framework, the
conservatism must be reduced in order to obtain more
precise information about the state. This section ad-
dresses these issues.

5.1 Approximation of the inverse transformations

In practice, it is usually difficult to obtain an exact ex-
pression for the sequence of the inverse transformations
(T ∗

k )k≥k⋆. There exist several ways to handle this issue.
A simple way is to solve an optimization problem [1]
such that, for k ∈ N and given a zk ∈ Rnz :

min
xk

|zk − Tk(xk)|2

s.t. xk ∈ X
(25)

Other numerical approximation approaches are given in
[17]. Recently, new methods based on neural networks
have been developed to learn a model of the transforma-
tions [24] [22] [4].
In the following, the influence of the approximation of
the inverse transformations is studied. Consider T̂ ∗

k be-
ing an approximation of T ∗

k , i.e there exist δ such that

for all k ≥ k⋆ and for all z ∈ Rnz , |T̂ ∗
k (z) − T ∗

k (z)| ≤ δ.
Then, the upper estimation error becomes

|ek| ≤ c′′NcL∗

nz∑
i=1

(εk,i + εk,i) + |T̂ ∗
k (zk)− T ∗

k (zk)|

≤ c′′NcL∗

nz∑
i=1

(εk,i + εk,i) + |T ∗
k (zk)− T ∗

k (zk)|+ δ

≤ cL∗

(
c′′N

nz∑
i=1

(εk,i + εk,i) + |εk|

)
+ δ.

Thus, it can be conclude that the estimation errors are
robust with respect to the approximation error of the
inverse transformations, as soon as this approximation
error is uniformly bounded (here by δ).

5.2 Choice of γ

The section deals with the way to choose γ for a given
pair (A,B). As explained in the first of Remark 5, there
exists a trade-off between the convergence speed and
the steady state error of the estimated interval in the x-
coordinates. This trade-off can be tuned by γ which is
thus no longer only a high-gain parameter but also what
can be called a conservatism parameter. In this section,
a method to find an optimal γ̃ that minimizes the steady
state estimation error is proposed.
According to Assumption 2 and to the expression of the
estimation errors in the z-coordinates given in the proof,
the upper and lower steady state values ε∞ = ε∞ = ε±∞
are bounded by

|ε±∞| ≤ 1

1− γ∥Ã∥

(
∥B̃∥|w − w|+ (c′N + 1)cLV

)
(26)

where V = max{|V |, |V |}.
Therefore, following the expression of the estimation er-
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rors in the x-coordinates, the upper and lower steady
state values e∞ = e∞ = e±∞ are bounded by

|e±∞| ≤ c∗L(2c
′′
Nnz + 1)|ε±∞|

≤ c∗L(2c
′′
Nnz + 1)

1− γ∥Ã∥

(
∥B̃∥|w − w|+ (c′N + 1)cLV

)
(27)

Recalling that c∗L and cL depends also on γ, see Equa-
tions (21) and (23), one is able to find an optimal γ̃ that
minimizes the steady state estimation errors.
One simple way to obtain a numerical value is to con-
sider the following optimization problem :

min
γ

|e±∞(γ)|2

s.t. 0 < γ < γ⋆
(28)

Remark 6. Instead of considering the steady state er-
ror, it is also possible but much more computationally
expensive to consider the bounds of the estimation errors
at each step k. The conservatism would be reduced but a
minimization problem has to be solved at each time lead-
ing to an optimal sequence (γ̃k)k∈N.

5.3 Type of norm

The results presented in this paper hold for any norm
of vector and induced matrix norm as all the norm are
equivalent on a finite dimension vector space. The norms
quantify themagnitude of vectors ormatrices in different
ways. The most commonly used are the L1, L2 and L∞.
Among the possibilities, theL∞ norm is advised because
its deals with the worst case scenario. Thus, the choice of
γ as described in Section 5.2 will lead to reduce the value
of the largest error. In this case, the norm depending
constants are cN = c′N = c′′N = 1.

5.4 Non-uniform values

Another way to reduce the conservatism of the esti-
mated interval is to consider the non-uniform constants
given in Lemmas 3 and 4 when implementing the ob-
server. Then, as the non-uniform constants are less
conservative than the uniform ones, replacing cL and
c∗L by cL,k and c∗L,k given respectively by (15) and (18)
reduces the pessimism of the estimated intervals.

Remark 7.

(1) The expressions of c∗L in (23) or c∗L,k in (22) results
on valid Lipschitz constants of T ∗

k only for k ≥ k⋆.
However, they still can be used before because, in
any case, the inclusion of the system state and the
boundedness of the errors are not guaranteed until
k⋆. One could also set their value to zero before k⋆.

(2) Note that this approach can also be used to find the
optimal sequence (γ̃k)k∈N.

6 Illustrative example

Consider the Lipschitz nonlinear system adapted from
[29] and represented by (5) with

fk(xk) =

[
akx1,k + x2,k + 1

− 5
4 tanh(x1,k) + bk + 1

]
,

hk(xk) =
[
−1 2.5

]
xk,

(29)

where ak = −0.42 + 0.01 cos(ωkTd) and bk = −1.6 −
0.01 cos(ωkTd) where ω = 10π rad/s and Td = 0.001 s is
the sampling time. The measurement noise is generated
as a uniform distribution such that wk = −wk = 0.1.
Some small additive state disturbances are considered,
also uniformly distributed and such that vk = −vk =
0.005. This is relevant as when the nonlinear dynamics is
known, usually the modeling errors are low. The initial
condition is set as x0 = [0.5;−1].
Before designing the IKKL observer, the requirements of
Assumptions 1 and 2 must be checked. The first step is
to compute the inverse dynamics f−1

k , which is given by

f−1
k (xk) =

[
arctanh(− 4

5 (x2,k − bk − 1))

x1,k − ak arctanh(− 4
5 (x2,k − bk − 1))− 1

]
.

Then, the following bullets show that Assumption 1
holds :

• The sets X0 = [−0.3, 0.6] × [−1.5, 0] and X =
[−0.79, 1.22]× [−1.66, 0.22] verify Assumption 1.1.

• f−1
k and hk are uniformly Lipschitz on X with con-
stants cf = 2.8480 and ch = 2.6926 respectively, thus
Assumption 1.2 holds. Indeed, one could compute the
derivative of f−1

k with respect to xk and notice that its
norm is upper bounded on X by 2.8480 for all k ∈ N.
Then, the output function is linear time invariant with
respect to xk thus its Lipschitz constant is equal to

the norm of
[
−1 2.5

]
.

• Assumption 1.3 holds for m̄ = 2 as the backward dis-
tinguishability map defined by

Obw
k (x) =

[
(hk−1 ◦ f−1

k−1)(x)

(hk−2 ◦ f−1
k−2 ◦ f

−1
k−1)(x)

]
,

has the norm of its derivative lower bounded by co =
2.5161 on X for all k ≥ 2.

• The uncertainties are bounded and x0 ∈ X0 so As-
sumption 2 holds.

Thus, the sequence (Tk)k∈N can be computed according
to (7) where the observer matrices are taken as A1 =
diag(0.01, 0.1), i.e. Schur stable and nonnegative, and
B1 = [1; 1] such that (A1, B1) is controllable leading to
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a controllability constant cc = 1.1. The initial mapping
T0 is taken as 0, thus we may choose z0 = 0 and z0 = 0.
Because of the difficulty to obtain an analytic expression
of the inverse sequence (T ∗

k ), a numerical approximation
is performed as presented in Section 5.1 using the Mat-
lab function fmincon.
The upper bound of the high-gain parameter is com-
puted according to (12) and results in γ⋆ = 1.9625. The
optimal γ is computed as presented in Section 5.2 lead-
ing to γ̃ = 1.0536.
A comparison is made between the use of uniform and
non-uniform Lipschitz constants of the transformations
(Tk) and (T ∗

k ). In the legends of the following Figures,
the case where the uniform constants are used is denoted
by IKKL (A) whereas IKKL (B) refers to the case where
the non-uniform constants are used. The uniform con-
stants values are cL = 10.9563 and c∗L = 0.5182. The
non-uniform constants are computed at each time step
such as detailed in Section 5.4. In this particular exam-
ple, the difference between both IKKL (A) and (B) will
be mostly visible during the transient state because cf,k
and ch,k are actually constant for all k ∈ N, and co,k
does not change significantly with respect to k. More-
over, note that a sequence γ̃k is not considered here.
The number of steps after which (Tk)k∈N becomes uni-
formly injective and the inclusion property (19) holds is
computed according to (13) and outputs k⋆ = 2.
The simulation duration is set to 100ms (100 time steps).

Fig. 1. The state estimations in the z-coordinates.

Fig. 2. The state estimations in the x-coordinates.

Figure 1 shows the state estimation in the z-coordinates
by the IKKL observers. Note that in those coordinates,
the inclusion of the filter state in the estimated bounds
is guaranteed for all k ∈ N. Next, Figure 2 presents

Fig. 3. The interval width in the z-coordinates (left) and the
x-coordinates (right).

the state estimations for both IKKL observers in the
x-coordinates where the inclusion of the system state
in the estimated bounds is guaranteed for all k ≥ k⋆.
Finally, Figure 3 illustrates the difference in the con-
servatism of the estimated intervals computed by both
of the IKKL observers. The interval width in the z-
coordinates (on the left) and the x-coordinates (on the
right) are shown. As mentioned, the difference between
the two approaches is more noticeable during the tran-
sient state.

7 Conclusions

This work presents a new interval observer for discrete-
time time-varying nonlinear uncertain systems called In-
terval KKL observer. It is based on the KKL frame-
work developed for such systems. The proposed design
requires the uniformly Lipschitz backward distinguisha-
bility of the system and known bounds on the uncertain-
ties. The enclosure of the system state in the estimated
bounds is obtained using the Lipschitzness of both the
direct and the inverse transformations and is thus guar-
anteed only after a certain time. Some practical con-
siderations have been addressed for the implementation
of such a design, covering the approximation methods
of the inverse transformations and solutions to reduce
the pessimism. The proposed Interval KKL observer has
been illustrated through a numerical simulation which
highlights its efficiency.
Further research may focus on fine tuning the design in
order to obtain less pessimism, possibly with another
way to recover the estimated intervals in the original
coordinates. An adaptation to continuous systems may
also be considered.

A Proofs of Lemmas 3 and 4

This appendix gives the proofs of Lemmas 3 and 4.

Proof of Lemma 3. Using (7) and Assumption 1.2, it
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comes for all k ∈ N and for all (xa, xb) ∈ Rnx × Rnx :

|Tk(xa)− Tk(xb)|
≤ cT (γmax

i
∥Ãi∥cf,k)k|xa − xb|

+

k−1∑
j=0

(γmax
i

∥Ãi∥cf,k)k−j−1 max
i

∥B̃i∥ch,kck−j
f,k |xa − xn|

=
(
cT (γmax

i
∥Ãi∥cf,k)k

+max
i

∥B̃i∥ch,kcf,k
1− (γmaxi ∥Ãi∥cf,k)k

1− γmaxi ∥Ãi∥cf,k

)
|xa − xb|

≤
(
cT +

maxi ∥B̃i∥chcf
1− γmaxi ∥Ãi∥cf

)
|xa − xb|.

One could identify the expressions of the non-uniform
Lipschitz constants (20) and the uniform Lipschitz con-
stant (21) of (Tk)k∈N.

Proof of Lemma 4. This proof follows a reasoning close
to the one proposed in [28] for the demonstration of the
uniform Lipschitzness of (Tk)k∈N (needed in Theorem
2 for the existence of the proposed punctual observer).
However, in [28] there is no need of knowing the explicit
expressions of the Lipschitz constants as they are not
used for the punctual observer implementation.
The sequence (Tk)k∈N given by (7) can be decomposed
as

Tk(x) = (T1,k(x), . . . , Ti,k(x), . . . , Tny,k(x)),

where for each i ∈ {1, . . . , ny}, (Ti,k) are defined with

(γÃi, B̃i) instead of (A,B). Then, using the closed form
expression (7), one has for each i ∈ {1, . . . , ny}, for all
k ≥ mi and for all (xa, xb) ∈ Rnx × Rnx ,

Ti,k(xa)− Ti,k(xb) = (Ii,k(xa)− Ii,k(xa))

+ (Ri,k(xa)−Ri,k(xa)) + (Ti,k(xa)− Ti,k(xa)),

where

Ii,k(xa)−Ii,k(xa) = (γÃi)
k
(
(T0◦f−1

0 ◦. . .◦f−1
k−1)(xa)

− (T0 ◦ f−1
0 ◦ . . . ◦ f−1

k−1)(xb)
)
,

Ri,k(xa)−Ri,k(xa)

=

k−mi−1∑
j=0

(γÃi)
k−j−1B̃i

(
(hi,j ◦ f−1

j ◦ . . . ◦ f−1
k−1)(xa)

− (hi,j ◦ f−1
j ◦ . . . ◦ f−1

k−1)(xb)
)
,

Ti,k(xa)− Ti,k(xa)

=

k−1∑
j=k−mi

(γÃi)
k−j−1B̃i

(
(hi,j ◦ f−1

j ◦ . . . ◦ f−1
k−1)(xa)

− (hi,j ◦ f−1
j ◦ . . . ◦ f−1

k−1)(xb)
)
.

The norm of each of these terms is then bounded ex-
ploiting Assumption 1.
Therefore, for all k ≥ mi and for all (xa, xb) ∈ Rnx×Rnx ,

|Ii,k(xa)− Ii,k(xa)| ≤ cT (γ∥Ãi∥cf,k)k|xa − xb|,

where cT is the Lipschitz constant of T0,

|Ri,k(xa)−Ri,k(xa)|

≤
k−mi−1∑

j=0

(γ∥Ãi∥)k−j−1∥B̃i∥ch,kck−j
f,k |xa − xb|

= ∥B̃i∥ch,kcf,k
(γ∥Ãi∥cf,k)mi

1− γ∥Ãi∥cf,k(
1− (γ∥Ãi∥cf,k)k−mi

)
|xa − xb|,

and

|Ti,k(xa)− Ti,k(xa)| ≥ γmi−1cc|Obw
i,k(xa)−Obw

i,k(xb)|,

where cc = mini ∥Ci∥ ∈ R>0 which exists since (Ãi, B̃i) is
controllable with a corresponding controllability matrix
Ci.
Concatenating the results for the ny outputs, it comes
that for all k ≥ m̄ and for all (xa, xb) ∈ Rnx × Rnx ,

|Tk(xa)− Tk(xb)| ≥ |Tk(xa)− Tk(xa)|
− |Rk(xa)−Rk(xa)| − |Ik(xa)− Ik(xa)|

= ckγ
m̄−1|xa − xb|,

where ck is defined as:

ck = cN

(
ccco,k

−max
i

∥B̃i∥ch,kcf,k
γmaxi((∥Ãi∥cf,k)mi)

1− γmaxi ∥Ãi∥cf,k
(1− (min

i
(γ∥Ãi∥cf,k)k−mi))

− cT γ
k−m̄−1(max

i
∥Ãi∥cf,k)k

)
,

with cN ∈ R>0 is a constant that depends on the chosen
norm.
Moreover, one could show that [28, Theorem 3], for all
k ≥ k⋆ with k⋆ given in (13),

ck ≥ c := cN

(
ccco−max

i
∥B̃i∥chcf

γmaxi((∥Ãi∥cf )mi)

1− γmaxi ∥Ãi∥cf

)
.
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As c > 0 for γ < γ⋆, this proves the (uniform) Lipschitz
injectivity of (Tk)k≥k⋆ , which implies the existence and

uniqueness of a left inverse sequence (T−1
k )k≥k⋆ such that

for all k ≥ k⋆, one has for all x ∈ Rnx , T ∗
k (Tk(x)) = x,

and for all za, zb ∈ Tk(X )

|T ∗
k (za)− T ∗

k (zb)| ≤
1

ckγm̄−1
|za − zb| ≤

1

cγm̄−1
|za − zb|,

which corresponds to the (uniform) Lipschitzness of
(T−1

k )k≥k⋆ .

Finally, the extension on Rnz of the sequence (T−1
k )k≥k⋆

in a uniform Lipschitz sequence (T ∗
k )k≥k⋆ with the same

Lipschitz constants is guaranteed by [18, Theorem 1].
From the previous results, one could easily identify the
expressions of the non-uniform Lipschitz constants (22)
and the uniform Lipschitz constant (23) of (T ∗

k )k≥k⋆ .
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