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From theoretical to practical transfer learning:
the ADAPT library

Antoine de Mathelin, Francois Deheeger, Mathilde Mougeot, Nicolas Vayatis

Abstract In traditional machine learning, the learner assumes that the training and
testing datasets are drawn according to the same distribution. However, in most prac-
tical scenarios, the two datasets are drawn according to two different distributions,
the source distribution and the target distribution. In this context, the use of clas-
sical machine learning algorithms often fails as models trained on the source data
provide poor performances on the target data. To solve this problem, many transfer
learning techniques have been developed following one of the three main strate-
gies: parameter-based transfer, instance-based transfer and feature-based transfer.
The choice of the appropriate strategy is mainly determined by the nature of the shift
between the source and target distributions. For example, to deal with the problem
of sampling bias, when part of the population is over- or under-represented in the
training set, instance-based approaches are useful to adequately reweight the source
data in the training phase. If the shift is caused by a change in data acquisition, such
as sensor drift, feature-based methods help to correct the shift by learning a common
feature representation for the source and target data. For a real application, it is really
a challenge to choose in advance the best transfer learning strategy and one often
needs to evaluate different models in practice. As the different transfer methods were
introduced by various contributors, no common framework is today available for
a rapid development. To tackle this issue, we propose a Python library for transfer
learning: ADAPT (Awesome Domain Adaptation Python Toolbox), which allows
practitioners to compare the results of many methods on their particular problem.
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ADAPT is an open-source library providing the implementation of several transfer
learning methods. The library is suited for scikit-learn estimator objects (objects
which implement fit and predict methods) and tensorflow models. It allows to evalu-
ate very easily the benefits of transfer learning methods on real data. In this chapter,
we propose to illustrate the different features of the ADAPT library on both synthetic
and real datasets.

1 Introduction

Models of machine learning are often deployed on data distributions different from
the distribution used for training. This scenario is characterized by a distribution
shift that often induces a degradation on model performances. Examples of shift
appear in medical applications such as survival prediction [4] or cancer detection
[27] as well as in industrial applications [30, 40, 41]. To correct this shift, transfer
learning or domain adaptation methods have been developed recently. Their goal is
to transfer information from a source domain where a lot of data are available to
a target domain where few or no data are available [38, 46]. In recent years, these
methods have been widely developed and used in a large number of applications
such as image segmentation and classification [22, 58], sentiment analysis [12] or
speech recognition [63, 68]. At the same time, the interest of the industry for this
type of method is growing and transfer learning has already been used, in this area,
in computer design [30], aircraft design [41] and photovoltaic design [29].

However, the deployment of transfer methods in industry is not obvious. Most of
transfer methods are based on very precise assumptions which are hard to check
in practice. For example, some methods consider the covariate shift hypothesis
which assumes that the labeling functions are the same on both domains [27, 64].
Other methods consider the conditional shift or hidden covariate shift hypothesis
which assumes that the labeling function of both domain are matching after a specific
transformation of the input features [14, 22]. Verifying these assumptions in real use-
cases is an open problem [20, 26, 51]. When practitioners face a new application,
it is then particularly difficult to choose the appropriate method. In practice, one
would like to be able to evaluate different transfer methods in order to select the
method suited for the problem at hand. Therefore, in order to reasonably consider
the deployment of transfer models in industry, it is necessary to facilitate the access
to the different existing methods and the comparison in a common framework.
Moreover, practitioners need to be guided in their choice of transfer method based
on practical considerations derived from the problem at hand.

Some implementations of transfer methods are already publicly available in open
source repositories as MDD [79] ! or WDGRL [62] 2. However, most of the available
implementations have been developed to allow the reproduction of the experiments

1 https://github.com/thuml/MDD
2 https://github.com/RockySJ/WDGRL
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presented in the corresponding research works. Thus, it often requires extra efforts to
use these implementations for other problems with other machine learning models
or other network architectures. Moreover, the different available implementations
use different formalisms and libraries (Scikit-learn [50], Tensorflow [3] or Pytorch
[49]) which makes particularly difficult the comparison of the methods on a common
basis.

To avoid these difficulties, some Python libraries have been developed in order to
group methods under the same formalism. One can find for instance TLIib [28], ADA
[69] or Salad [60]. However, these three repositories propose nowadays only Pytorch
implementations. The most developed repository, TLIlib, proposes essentially deep
learning methods and is intended for Pytorch users.

Facing these challenges, and motivated by real world problems, we propose an open-
source Python library: ADAPT? to facilitate the access to transfer methods for a
large public, including industrial players. For this purpose, we propose in ADAPT
a wide range of methods, compatible with scikit-learn and tensorflow objects. The
methods are implemented with a "fit" and a "predict" functions which can take any
type of dataset and estimator. Moreover, the deep methods have all the advantages
of the Keras models [10]: speed of calculation, large possibility of modifying the
hyper-parameters and monitoring the training, large choice of loss functions which
allows to use the methods for both classification and regression tasks. Finally, a
detailed documentation with a user guide helps to quickly select the appropriate
transfer method based on practical considerations*.

In this work we present the different features of the ADAPT library and show how
they allow to answer a wide range of transfer problems that can be encountered in
the industry. The organization of the paper is as follows: We first recall the transfer
learning framework and the variety of transfer scenario that can be encountered. We
then describe the main guidelines of the ADAPT library and we provide examples
of its installation and usage. We show how it is possible, from a user point of view,
to handle different transfer problems with the ADAPT library. Finally, we present a
benchmark of transfer methods on several transfer learning datasets.

2 Transfer Learning Framework

The transfer learning framework is characterized by the presence of a source domain
(Q, fo) and a target domain (P, fp) where Q, P define two distributions on the input
space and fp, fp are two labeling functions returning the labels for each domain:
y = fo(x)foranyx ~ Q and y = fp(x) forany x ~ P. fp and fp are also denoted in
their probabilistic form fp = Pgl yand fp = Pl’; X The main assumption for transfer
learning is that the source and target marginal distributions differ: P # Q.

3 https://github.com/adapt-python/adapt
4 https://adapt-python.github.io/adapt
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2.1 Main assumptions of domain adaptation

The shift between distributions P # Q can be caused by different factors. For
example, in image processing, the source distribution Q can be the distribution of a
set of images on which it is easy to obtain labels, either because they are synthetically
generated (as GTA images [78]) or because they are in a rich semantics (as Amazon
images [56]). In both cases the images are characterized by a shape close but different
from the one of real target images. The shift can also occurs due to technological
changes, like for example in design space exploration, where the learned models are
applied on unknown design spaces [30]. In the same way, shifts also appear when
one is aiming to generalize a model to different products or places, for example
between images recorded by different traffic cameras [80, 17]... There exist also sub-
population shifts which occur, for example, when one applies a model trained on a
large domain (as Imagenet [18]) on a specific sub-domain [45], or when one tries
to correct existing biases in the training dataset when one class is more represented
than others for example [27, 11, 42]. Finally, the shift can also be the result of a
change in the acquisition of the input data caused by sensor drift for instance [14].

To characterize all previous cases, several theoretical assumptions on the nature of
the domain adaptation shifts are described in the literature and different types of
transfer methods may be then advised.

* Covariate Shift assumes that the target and source labeling functions are the same

(fo = fp); from a probabilistic point of view that the conditional distributions

are similar (P?| x = P5|X)' This assumption is generally made in cases of sub-

population shift or sample bias. In these cases, it is often considered that P and
O have the same support. The correction of the marginal distribution difference
is often proposed through importance weighting [27, 64].

¢ Hidden Covariate Shift [5] or Conditional Shift [76] considers that the labeling
functions matches under a specific transformation of the input features (3 ¢, fo =

fp o ¢) which is related to the conditional shift assumption P}%Y # P;ly and

Pg = Pf; . This kind of hypothesis is mainly considered for shifts between real
and synthetic data [22, 71] or in sensor drift [14].

* Label Shift, Target Shift or class imbalance assumes that P? * P)f’ [76,32]. It
is generally supposed besides that P}%Y = P)I(’IY
problems. The case where an entire class is not present in the target dataset is
referred as partial domain adaptation [8, 7]. In general, target shift problem also
occurs with conditional shift, we then speak of generalized target shift [32].

» Joint Probabilistic Shift considers the cases where shifts exist between both
the marginal and the conditional distributions: P$ # PL and P)% X * P}If‘X.
This assumption is encountered in a large amount of practical applications [23].
Thus, transfer methods which focus on correcting these two shifts, generally
provide improved results over methods correcting only the marginals [36]. One

difficulty encountered by these methods is the estimation of the target conditional

which refers to class imbalance
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distribution P}’,) X Some of the methods need a small labeled target sample to make

this estimation [44, 43, 57, 70] others use pseudo-labels [13, 23, 35, 36, 79].

2.2 Classification of transfer methods based on user needs

One limitation of the definition of transfer problems linked to the previous assump-
tions is the difficulty to evaluate the corresponding hypotheses in real scenarios
[20, 26, 51]. For many cases, it is not obvious for one practitioner to know the nature
of the shift between the training dataset and the data on which the model is applied.
Moreover, in practice, many methods are not strictly limited by their assumptions.
For instance, a transfer strategy dedicated to hidden-covariate shift may still work in
the covariate or the target shift settings. Practitioners have often a different point of
view which mainly relies on the available source or target data. They will prefer to
follow a more practical transfer learning pathway directly linked to the encountered
operational constraints of their problem as follows:

* Source free assumes that the source data are not available. The learner has only
access to a pre-trained source model. This occurs typically when a pre-trained
network trained on Imagenet is reused to get deep features for another task
[9, 45, 33].

*  Multi-source offers source data supposed to belong to several different sources
[39, 25, 54]. For example, the source data can be composed of images from several
cameras watching the traffic [80].

* Homogeneous and Heterogeneous Transfer refer respectively to the cases
where the source and target input feature spaces are the same or not. For instance,
the source and target datasets can be composed of images of same resolution
(homogeneous) or different resolution (heterogeneous).

¢ Supervised, Semi-supervised, Unsupervised Domain Adaptation (SDA, SSDA,
UDA): in the supervised setting, only a few labeled target data are available
[43, 43, 17] and a lot of unlabelled target data in the unsupervised setting
[47, 34, 71, 79]. In the semi-supervised setting, both kind of data are available
[57,70].

Following our experience of the end-users, we design a new presentation of transfer
learning needs as presented in Figure 1. This diagram is built from a user point
of view, where the choice of transfer method is driven by the characteristics of the
available datasets. It should be underlined that it is difficult for a practitioner to
evaluate the presence of target shift in a dataset, but anyone can easily check for the
availability of source and/or target labels.

The classification of transfer methods that we propose in Figure 1 is provided with the
ADAPT documentation to allow the user to quickly identify which type of method
could be used in a specific case. This contributes to the main goal of the ADAPT
library, which is to help the practitioners find the transfer learning method adapted
to their needs.
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The proposed classification does not pretend to exhaust the classification of transfer
learning methods but to highlight the four main categories: Source-Free, SDA, SSDA
and UDA. This corresponds to a data driven classification which is easy to identify
for any transfer problem.

2.3 Transfer learning strategies

As previously mentioned, from a user point of view, the choice of methods is
essentially guided by the access or not to labeled/non-labeled source/target data.
However, for more experimented users, this decision criterion may be completed
with the choice of the appropriate strategy between the instance-based and feature-
based strategies. It should be underlined that, for certain transfer problems, a wrong
choice of strategy can cause negative transfer [17].

* The instance-based strategy consists in correcting the shift between source and
target distribution by reweighting the source instances in the loss during training.
Source data are weighted depending on their relation to the target data. This
strategy is mostly used in covariate-shift problems and often for regression tasks.
Most methods assume that the supports of the marginal distributions are the same
or at least that the target distribution is included in the source distribution (sub-
population shift). These methods are also useful under the target shift assumption
to correct the imbalance between classes.

* The feature-based strategy consists in finding a new representation of the input
features in which the source and target distributions match. This representation can
be obtained with different transformation as optimal transport, feature reduction
or deep encoding. This strategy is often used with the hidden covariate-shift
assumption. Moreover, it is assumed that the transformation needed to match the
distributions is not arbitrary but has a certain regularity. This type of method is
mostly used in classification. It can be used to solve sensor drift problems for
example or when the brightness or the background of images is different from
one domain to another. It is also useful when the source domain is a specific
representation of the target domain, like adaptation cases between simulated data
and real data.

2.4 Hyper-parameters selection

Transfer methods are very popular for image recognition problems [22, 71, 70, 58,
35]. Results are very promising for example on the product classification problem
using Amazon images [22] and similarly in segmentation, excellent performances
are also obtained [58]. These applications show that the performance of a source
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Fig. 2 Illustration of the instance-based (top) and feature-based (bottom) strategies.

model can be really improved on a target domain without the expense of any target
labels.

However, to apply these methods for real deployed applications in industry, one
is facing several challenges. The most promising unsupervised methods (DANN,
CDAN, MDD...) appear to be very sensitive to the hyper-parameters selection and
often lead to negative transfer [55, 17].

The choice of hyper-parameters appears to be particularly crucial for transfer learning
methods because one of the goal is to learn a model on a target domain for which
few or no labels are available. The classical cross-validation methods are then not
suitable because of the difficulty of computing an error on the target domain in
the absence of labels. This problem of hyper-parameters selection is, as far as we
know, little reported in the literature, although some methods and metrics have been
proposed, like the reverse validation [22] or the J-score [64].

3 ADAPT features

The large number of existing methods to deal with domain adaptation and the
variety of shifts that can be encountered in real problems makes it difficult to select
the appropriate transfer method and hyper-parameters. Most of the time, the learner
faces to try several methods to evaluate which one fits best.

The ADAPT library is designed to answer this problem by allowing to evaluate
quickly, in the same framework, several methods. Moreover it proposes unsupervised
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metrics (J-score [64], reverse-validation [22], linear discrepancy [38]...) allowing to
evaluate the capacity of a method to adapt well without using labels in the target
domain. These metrics are particularly useful for the hyper-parameter selection and
early stopping in the unsupervised framework.

3.1 ADAPT Guideline

ADAPT is designed to ease the use of transfer methods on a variety of problems. To
achieve this goal, all transfer tools are implemented in the scikit-learn style with
a fit and predict methods [50]. As scikit-1learn objects, the hyper-parameters
can be given at the instantiation step. Thus, grid-search can be applied with the
GridSearchCV tool of scikit-learn. In a model deployment perspective, the
objects can be duplicated and easily saved, either in the pickle or the tensorflow
format for deep learning methods.

ADAPT is the only transfer library compatible with both scikit-learn and
tensorflow objects. In comparison to other transfer repositories, ADAPT funda-
mentally differs by its "user friendly" approach providing a detailed documentation
with small examples for each method and a high test coverage.

TLIib [28] is, as far as we know, the most developed transfer library which can
be compared to ADAPT. It makes a great work of proposing almost 40 methods
of domain adaptation with their corresponding documentation. However, at the
difference of ADAPT, TLIib is mostly dedicated to researcher and is not designed
thanks to end-user needs:

e TLIib implements only deep learning methods. Many industrial methods often
rely on other types of model as Gaussian Processes [52] or Decision Trees [6] as
industrial problems are often characterized by small sample sizes and needs of
interpretability [74].

e The examples provided in TLIlib present mainly experiments on image datasets
published in research papers. Understanding how to use other datasets and network
architecture than the ones already provided is not straightforward as no minimal
examples are given in the documentation.

* Training the methods from TLIib requires the user to be familiar with pytorch
as the code of the training loop had to be written by the user. In ADAPT, the
practitioner only needs to call the £it method on the desired dataset.

3.2 ADAPT for real applications

To illustrate the use of ADAPT for industrial needs, we consider several real cases
already presented in the literature:
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3.2.1 Transfer between group of patients in falls detection

A floor provider company aims at developing floor sensor to detect falls of elderly
people [42]. They first design a model trained with labeled data recorded from young
people simulating falls in a controlled environment. However, when applied to real
falls, the model fails to generalize. In this case, a small sample of real labeled data
along with the source model (trained on simulated falls) are available. In order to
solve this domain adaptation issue, the User-Guide in Figure 1 advises to use a
source-free method as proposed by Minvielle et al. [42] with an adaptation of the
source-free method TransferTree [61].

3.2.2 Generalization to new lines in tire design

A tire company faces the issue of generalization in design space exploration [40].
They observed that a model trained to predict the tire performances is limited to the
domain defined by the training data and does not generalize well to unseen regions
of the design space. They consider the case where a few labeled data is available
in a target design region of potential innovative products. As the labeled data from
previous developed products are also available, the User-Guide in Figure 1 suggests
using supervised methods (SDA). In this problem, the authors of [40] consider both
UDA and SDA cases, and show improvements with the regression SDA method
TrAdaBoostR2 [48].

3.2.3 Adaptation between houses for non-intrusive load monitoring

A power company aims at monitoring the consumption of their clients [53]. They
want to identify the consumption of one particular item (the washing machine)
knowing the temporal total consumption of one house. This task faces a domain
shift issue between different houses (different habits lead to different consumption
patterns). The company has access to a labeled set for several houses (fully monitored
with sensors) and wants to adapt a model for each house. Following Figure 1 pathway,
as no labels are available for a new house, the problem should be treated with UDA
methods. In these particular cases, Richard et al. [53] consider a hidden covariate-
shift assumption: they suppose that the shift between the consumption of houses is
a kind of translation, they then derive a deep feature-based methods to handle the
problem. Moreover, as the source data set is composed of data from several houses,
they propose a multi-source method.

3.2.4 Unsupervised domain adaptation for predicting stars formation history

In astrophysics, one of the main goal is to model the formation of the universe from
the BigBang to our days based on the observation of stellar radiations which come
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on earth [59]. To find the relationship between the stellar radiations (which can
be observed) and their corresponding star formation histories, one cannot use real
labeled data as no complete star formation can be observed. Thus, astrophysicists use
simulations to produce pairs of simulated radiation and star formation history and
then build machine learning models to learn the relationship between both. However,
to use the model on real stellar radiations, the shift that exists between simulated and
real data should be corrected. This problem is a purely UDA issue. To deal with it
the authors of [59] consider the instance-based UDA approach KLIEP [64] which
choice is motivated by the fact that the support of the target distribution is included
in the support of the source distribution.

3.3 ADAPT installation and usage

As far as we know, the ADAPT library is for now, the only well provided library
of transfer learning available on Pypi [1]. The installation simply consists in run-
ning the following command in a shell: python3 -m pip install adapt orpip
install adapt in an Anaconda environment [2].

To use ADAPT in a Python environment, the library can be imported using: import
adapt. Figure 3 presents an example of usage on a simple case of binary classification
in one dimension proposed in [38]. In this problem, the source and target distributions
are two Gaussians centered respectively in -1 and +1 with a standard deviation of
2. The labeling function is common for both and is equal to 1 in [—1, 1] and -1
elsewhere. We use logistic regression as base estimator. We present in Figure 3 how
to use the Kernel Mean Matching (KMM) method to solve this problem. The result
of this synthetic experiment is given in Figure 4. KMM is a UDA approach for which
hyper-parameters has to be set. Here we show how to select the bandwidth parameter
of the gaussian kernel with a grid-search using the J-score [64] (cf Figure 5).
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# Import standard Librairies
import numpy as np
from sklearn.linear_model import LogisticRegression

# Import KMM method form adapt.instance_based module
from adapt.instance_based import KMM

np.random.seed(®)

# Create source dataset (Xs ~ N(-1, 2))
#ys =1 for ys in [-1, 1] else, ys = @
Xs = np.random.randn(1leee, 1)*2-1

ys = (Xs[:, @] > -1.) & (Xs[:, @] < 1.)

# Create target dataset (Xt ~ N(1, 2)), yt ~ ys
Xt = np.random.randn(1660, 1)*2+1
yt = (Xt[:, 8] > -1.) & (xt[:, @] < 1.)

# Instantiate and fit a source only model for comparison
src_only = LogisticRegression(penalty="none"
src_only.fit(Xs, ys)

# Instantiate a KMM model : estimator and target input

# data Xt are given as parameters with the kernel parameters

adapt_model = KMM(
estimator=LogisticRegression(penalty="none"),

Xt=Xt,

kernel="rbf", # Gaussian kernel
gamma=1. , # Bandwidth of the kernel
verbose=8,

random_state=@

)

# Fit the model.
adapt_model.fit(Xs, ys);

Fig. 3 Example of usage on a 1D synthetic dataset.

0.30
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0.20 = —

0.15 ><

010

Density

0.05

0.00 T T T T T T T T T
-8 -6 -4 -2 o 2 4 6 B

Fig. 4 Plotting results of the synthetic 1D experiment (the Python code used to produce the figure is
given in Appendix). The dotted and dashed lines are respectively the class separation of the "source
only" and KMM models. Note that the predicted positive class is on the right of the dotted line for
the "source only" model but on the left of the dashed line for KMM. The input distributions in blue
and red are smooth approximations of their corresponding empirical distributions. We observe that
the reweighted source distribution is very close to the target distribution which induces a better
target classification of accuracy 57 % instead of 21%.
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# Import standard Librairies

import numpy as np

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV

# Import KMM and the unsupervised metric j_score
from adapt.instance_based import KMM
from adapt.metrics import j_score, make_uda_scorer

np.random.seed(®)
# Instantiate KMM model with a random gamma parameter

adapt_model = KMM(
estimator=LogisticRegression(penalty="none"),

Xt=Xt,

kernel="rbf", # Gaussian kernel
gamma=@. , # Bandwidth of the kernel
verbose=0,

random_state=0

)

# Create a score function from the j_score metric and Xs, Xt
score = make_uda_scorer(j_score, Xs, Xt)

# Launch the gridsearch on three gamma parameters [©.5, 1., 2.]
gs = GridSearchCV(adapt_model, {"gamma": [©.5, 1., 2.]},
scoring=score,
return_train_score=True, cv=5, verbose=8)
gs.fit(Xs, ys)

# Print results (the j_score 1is given in "train_score")
keys = ["params", 'mean_train_score', 'std_train_score']
results = [v for k, v in gs.cv_results_.items() if k in keys]
best = results[1].argmin()
print("Best Params %s -- Score %.3f (%.3f)"%
(str(results[@][best]), results[1][best], results[2][best]))
print("-"*5@)
for p, mu, std in zip(*results):
print("Params %s -- Score %.3f (%.3f)"%(str(p), mu, std))

Best Params {'gamma': 1.0} -- Score -0.821 (©.€03)

Params {'gamma': ©.5} -- Score ©.002 (©.004)
Params {'gamma': 1.8} -- Score -8.821 (©.€83)
Params {'gamma': 2.8} -- Score -8.815 (©.€83)

Fig. 5 Example of grid-search usage on the synthetic dataset with the KMM model. To select the
appropriate bandwidth "gamma" of the kernel used in KMM, the unsupervised metric "J-score" is
computed between the reweighted source distribution and the target distribution for each gamma in
[0.5, 1, 2]. The configuration gamma=1 gives the best J-score.
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4 Application / Illustration

This section presents the use and the results of the different ADAPT methods under
different transfer scenarios: the Supervised Domain Adaptation scenario on the
CityCam dataset [77] and the Unsupervised Domain Adaptation scenario on the
MNIST vs MNIST-M dataset [22] and the Office dataset [56].

4.1 Supervised and Semi-Supervised Domain Adaptation

To compare the transfer methods in the SDA and SSDA setting, we consider the
transfer problem on the CityCam dataset [77] proposed in [17]. In this experiment,
the images from three traffic video cameras from CityCam are used as source data
whereas the images from a fourth camera are used as targets. The task consists
in predicting the number of cars appearing on the image (see Figure 6). A small
number of target labels are available along with the source labeled data and the target
unlabeled data. We follow the settings from [17], considering the same architecture
of neural networks, optimizer and hyper-parameters. We conduct each experiment
5 times to compute standard deviation for the resulting target mean absolute error
(MAE). We conduct four different experiments, each corresponding to one of the
four cameras selected as target; each camera is referenced with a number: 495, 253,
511 or 572. We consider the transfer learning methods: KLIEP, KMM, WANN,
DANN, MDD, ADDA, DeepCORAL and CORAL. The UDA methods are used in
the SSDA setting by adding the target labeled data to the source dataset. The results
are reported in Figure 7.

/ folx) =10 N\ PCA decomposition

® Source
Target
® Target labeled

Fig. 6 Illustration of the CityCam experiment [77]. The two first PCA components of the input
space are represented.

We observe in Figure 7 that the target error is decreasing with the number of labeled
data, particularly for instance-based approaches which outperform the feature-based
methods. In this case, as the learner has access to several target labels, using an
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Fig. 7 Target mean absolute error for the transfer between traffic cameras from CityCam. The
experiments are conducted for different numbers of target labeled data. TgtOnly refers to the model
trained with labeled target data only and NoReweight to the model trained with all labeled data

without transfer.

instance-weight strategy to give more importance to the target labeled data is well

suited.
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4.2 Unsupervised Domain Adaptation

To compare the transfer methods under the unsupervised domain adaptation setting,
we consider two public datasets: MNIST vs MNIST-M [22] and Office [56].

4.3 MINST vs M-MNIST

In the MNIST vs MNIST-M experiment proposed in [22], the task consists in pre-
dicting the value of the digits in the images (see Figure 8). Here, we suppose that no
target labels are available. We use the same network architecture and optimizer than
[22] and 3000 data from each data set. The hyper-parameters used for each transfer
methods are reported in Appendix. The experiments are conducted 5 times to com-
pute standard deviation of the accuracy on the MNIST-M data for each method. The
results are reported in Table 1.

TSNE Input Space

—60 —40 -20 0 20 20 )

Fig. 8 Illustration of the MNIST to MNIST-M experiment. The two first tSNE [73] components of
the input space are represented.

We observe in Table 1 that the feature-base methods outperform the instance-based
ones. In particular, DANN, ADDA and CDAN+E improve substantively the accuracy
on the target domain without using any target labels. In this scenario, indeed, as the
supports of the target and source distribution differ, it is recommended to consider
the feature-based strategies.
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Table 1 Target Accuracy for the transfer from MNIST to MNIST-M. SrcOnly refers to the model
trained without transfer.

SrcOnly MCD MDD CDAN+E CORAL WDGRL
0.334 (0.036) 0.402 (0.011) 0.485(0.017) 0.52(0.026)  0.311 (0.042) 0.457 (0.031)

KMM KLIEP DANN ADDA DeepCORAL
0.297 (0.016) 0.338 (0.038) 0.519 (0.033) 0.593 (0.015) 0.348 (0.059)

4.4 Office

The office dataset [56] is composed of photos of office items (see Figure 9). The data
come from three different domains: amazon, webcam and dslr. In the experiment
conducted here, we look at the adaptation from the amazon domain to the webcam
domain. As the labels are easy to access in the amazon domain (the class of the
item is provided in the description of the object) we consider it as the source domain
whereas webcam is the target domain. We consider the experimental setup from [79]
using a fine-tuned ResNet50 network as encoder [24].

back-pack

?7??

Fig. 9 Illustration of the Office experiment [56]. The two first PCA components of the input space
are represented.

We try several unsupervised domain adaptation models from the ADAPT package:
DANN, ADDA, MDD, DeepCORAL and CDAN; all are feature-based methods. We
compare their results with the ones of the baseline SrcOnly trained with source data
only. The evolution of the target accuracy through the epochs is reported in Figure
10.A along with the evolution of the linear discrepancy [38], an unsupervised metric
which evaluates the similarity between the encoded source and target distributions.
We observe that DANN and WDGRL significantly improve the accuracy on the
target domain compared to the SrcOnly baseline. We also observe that the linear
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discrepancy is very small for these two methods, which shows that unsupervised
metric can help to discriminate between methods. Notice, however, that CDAN has a
small discrepancy but does not improve the target accuracy. This, indeed, can happen
if the encoder learns a wrong pairing between source and target data and projects
target data on source data from the wrong class. Finding a way to avoid this effect is
an open problem in unsupervised domain adaptation.

(A) Evolution of Target Accuracy (B) Evolution of Discrepancy

085

—— sSrconly  —— CDAN
DANN MDD

Discrepancy

Accuracy on Target data

065 —— SrcOnly —— CDAN
DANN MDD 003
—— ADDA —— WDGRL

080
[] 5 50 s 100 us 150 s 0 [] 5 50 s

10
Epochs Epochs

Fig. 10 Results of the Office experiments. Figure (A) presents the evolution of the target accuracy
in function of the number of epochs. Figure (B) presents the evolution of the linear discrepancy
[38] between the encoded source and target domains in function of the number of epochs.

5 Conclusion

This work presents ADAPT, a library which implements, in a pythonic fashion, a
large collection of transfer learning methods. This library helps to compare several
methods on real problems. ADAPT appears to be an efficient tool for practitioners
to find the right transfer method to use for a particular problem. Since its creation,
ADPAT has been used in a large range of fields from tire design [40] to astrophysics
[59].
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Appendix

Table 2 List of the implemented methods in the ADAPT library.

|Meth0d | Cov. Shift | Cond. Shift | Tgt Shift | Mul. Src. | Supervision
FE [16] v v v v SDA
CORAL [65] v UDA
DeepCORAL [66] N UDA
DANN [22] v UDA
ADDA [71] v UDA
2 [MCD [58] v UDA
§ |MDD[79] v UDA
= |CDAN [35] v UDA
WDGRL [62] v UDA
MSDA™ [80] v v UDA
AHD-MSDA" [54] v v UDA
KMM [27] v UDA
8  |KLIEP[64] v UDA
3 |TrB.[15] v v SDA
£ |TrBR2 [48] v v SDA
2Stg-TrBR2 [48] v v SDA
WANN [17] v SDA
g |RTLRI[9] v v v SDA
£ |RTLC[9] v v v SDA
A |RTNN[9, 45] v v v SDA
TTC" [61] V4 v v SDA
TTR" [61] v v v SDA
TTF" [61] v v v SDA

* Methods in development.

Table 3 Hyper-parameters for the MNIST to MNIST-M experiment.

SrcOnly
DANN
ADDA
DeepCORAL
MDD
MCD
WDGRL
CDAN+E
CORAL
KLIEP
KMM

default

A = increasing ; ¥ = 10
default

A1=10
A=0.1;y=1
A1=0.1
A=1;y=0.000001
A=1

A =1000

default

default
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import matplotlib.pyplot as plt
import seaborn as sns

weights = adapt_model.predict_weights()

Xs_weighted = np.random.choice(Xs.ravel(), 1888, p=weights/weights.sum())
limit_noadapt = src_only.intercept_ / src_only.coef_

limit_adapt = adapt_model.estimator_.intercept_ / adapt_model.estimator_.coef_
acc_noadapt = src_only.score(Xt, yt)

acc_adapt = adapt_model.estimator_.score(Xt, yt)

k1l = sns.kdeplot(Xs.ravel(), color="blue", bw_method=6.5, label="Source")
k2 = sns.kdeplot(Xt.ravel(), color="red", bw_method=6.5, label="Target")
k3 = sns.kdeplot(Xs_weighted, color="blue", 1ls="--",

bw_method=8.5, label="Reweighted source")

plt.plot([limit_noadapt[@, @]]*2, [@, 1], 1ls=":", c="k")
plt.plot([limit_adapt[e, ©]]*2, [e, 1], 1ls="--", c="k")
plt.fill_between([-1, 1], [@, @], [1, 1], alpha=@.2, color="k")
plt.fill_between([-9, 9], [@, @], [1, 1], alpha=8.85, color="k")
plt.text(-6, 8.2, "_", fontsize=28)

plt.text(-8.45, ©.24, "+", fontsize=28)

plt.text(5.5, ©.2, "_", fontsize=28)

plt.ylim(e, ©.3); plt.xlim(-9, 9)

plt.text(-8.5, ©.25,
(r"$\cdots$ No adapt : Acc = %.2f"%acc_noadapt + "\n" +
r"--- Adapt : Acc = %.2f"%acc_adapt),
bbox=dict(boxstyle="round', fc="w', ec="gray"))
plt.legend(); plt.show();

Fig. 11 Python code used to generate Figure 4.

Table 4 Hyper-parameters for the CityCam experiment.

Tgt Only default

Unif. Weight. default

WANN C=1.

DANN 1=0.1

ADDA default
DeepCORAL A1=10

MDD A1=0.0001;y=4
MCD 1=0.1

WDGRL A=0.1;vy=0.000001
CDAN+E =1

CORAL A =1000

KLIEP o =0.001

KMM o =0.001
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Table 5 Hyper-parameters for the Office experiment.
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Src Only default

DANN A=1.

ADDA default
DeepCORAL A =100

MDD A=0.1;y=4
WDGRL A=1;y=0.01

CDAN+E A=1




