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† SONDRA, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France

ABSTRACT

Complex-Valued (CV) Synthetic Aperture Radar (SAR) im-
age generation and augmentation is an important pillar to en-
hance deep learning performance for SAR applications such
as detection, classification, segmentation, super-resolution
etc. Usual transformations (flip, rotation, translation, scal-
ing, etc.) are mostly inapplicable to SAR images due to the
radar characteristics and the processing pipeline. In this pa-
per, we explore the applicability of Wasserstein Generative
Adversarial Networks (WGANs) to SAR data. The latter,
being complex, require CV generator and a discriminator
taking as input a complex-valued signal, to capture the un-
derlying distribution. In particular, we show the applicability
of CV-WGANs for the synthesis of (i) Fourier spectrum of
various MNIST like datasets as toy example and (ii) L-band
UAVSAR dataset.

Index Terms— Synthetic Aperture Radar, Complex Val-
ued Neural Networks, Wasserstein Generative Adversarial
Networks.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) is a moving radar system
using electromagnetic waves to sense Earth’s surface. These
systems are operational in almost all weather and illumination
situations. Modern SAR systems can produce high-resolution
Complex-Valued (CV) images with a sub-meter resolution.
In stripmap SAR mode, many artifacts may appear depend-
ing on the acquisition setup: shadows (as in optical systems),
foreshortening and layover (see [1, Chapter 2]). Therefore,
SAR data cannot be augmented using classical transforma-
tions e.g. rotation, flip, scale, etc. An alternative approach
is to use Generative Adversarial Networks (GANs) in which
the generator should ultimately capture the underlying data
distribution to lure the discriminator.

The original GAN [2] minimizes the Jensen-Shannon di-
vergence between the real data distribution Pr and the gener-
ated data distribution Pθ but is exposed to convergence dif-
ficulties with some common issues such as mode collapse
(where the generated samples lack diversity) as well as dif-
ficulties in quantifying the quality of the generated samples.
Then, the Wasserstein GAN (WGAN) [3] is proposed to be

more resilient to these issues by minimizing the Wasserstein
distance instead. However, these GANs [2–4] are not adapted
to capture the distribution of CV data such as SAR or any data
in Fourier representation. Even though CV features can be
casted into 2D Real Valued (RV) ones, CV Neural Networks
(CVNNs) [5, 6] have the advantage to naturally keep the con-
nection between real and imaginary parts (phase information)
which reduce the number trainable weights to accelerate the
training, prevent overfitting and gain in stability compared to
equivalent RV Neural Networks (RVNNs) [7–11].

In this paper, a new CV-Wasserstein GAN (CV-WGAN)
is proposed with a CVNN discriminator extending the ap-
proach in [12]. In our case, the generator cannot lure the
discriminator without correct phase information whereas the
discriminator is only fed with amplitude in the previous work.
The experiments show stable training phase without conver-
gence and mode collapse issues and the generated images of
MNIST and SAR are convincing. This paper is organized as
follows. Section 2 introduces GAN and CVNN architectures,
the training method and setups used for CV dataset. Section
3 analyzes the performance CV-WGAN in terms of learning
and image synthesis for MNIST and FashionMNIST Fourier
spectrum and SAR dataset following by concluding notes in
section 4. Our inference codes are available online1.

2. COMPLEX-VALUED WASSERSTEIN GAN
2.1. Background on WGANs and CVNNs

The setup of WGAN is similar to GANs by considering a gen-
erator Gθ, parameterized by θ, which maps a latent space Z
to a data space X and a critic 2 Cw which maps the data space
X to a scalar in R. We denote Pz the probability distribu-
tion on the latent space Z . The objective function is given by
equation 1,

W(Pr,Pθ) = Ex∼Pr [Cw(x)]− Ez∼Pz [Cw(Gθ(z))], (1)

which should be maximized by the critic and minimized
by the generator and where the discriminator should be a
K−Lipschitz function for some K ∈ R+. The optimiza-
tion proceeds by alternating several optimization steps for

1https://anonymous.4open.science/r/complex-wgan-DE0B
2The second network is called a critic rather than a discriminator because

it does not seek to perform binary classification anymore

https://anonymous.4open.science/r/complex-wgan-DE0B


the critic followed by one update of the generator. The
authors suggested to clip the parameters to guarantee the ex-
istence of such a Lipschitz constant but the following work
of [13] suggested to use a gradient penalty rather than a
weight clipping to obtain improved quality and convergence
of the WGAN. In this framework, a gradient penalty term
λgp(∥∇wCw(x̂)∥2 − 1)2, where x̂ are a minibatch of inter-
polates between real data x and generated data x̃, is added to
the loss minimized when optimizing the critic.

On the other hand, A CVNN is a map Fω parameterized
by CV weights ω that predicts from inputs XC to outputs YC
where both spaces are complex. The network should follow
complex product rule for fully connected layers and complex
convolution for convolutional layers as defined in [14]. The
activation functions are usually extended from RV ones ac-
cording to [15]. The complex batch normalization forces hid-
den CV representations to be globally centered, unit variance
and circular (null pseudo-covariance) as detailed in [14]. CV
Weights initialization is similar to RV ones but keeping the
independence between real and imaginary parts.

The main difficulty in training CVNNs is that the loss
should remain RV and lower bounded which implies the
training loss non holomorphic. In order to apply complex
backpropagation, Wirtinger derivative is used as in [7, 14]
which require 4 RV gradients or equivalently 2 CV gradients
whereas 1 CV gradients is needed for holomorphic function

f(z) thanks to Cauchy-Riemann condition
∂

∂z∗
f(z) = 0.

One can refer to [16, appendix B.6.2.] for the complex chain
rule applied for feed forward neural networks. Once the CV
gradients are computed, the weights can be updated using any
optimizer strategy, e.g. ADAM, SGD, RMSprop etc.

In the following, we will use λgp = 10, with one genera-
tor update every ncritic = 5 updates of the discriminator. For
both the update of the critic and the generator, the optimizer
is Adam with a learning rate of 3e− 5, β1 = 0.5, β2 = 0.9.

2.2. Complex valued generators and discriminators

As explained in the previous sections, we consider CVNNs
for the WGAN. Up to the knowledge of the authors, this setup
has not been extensively studied. The work of [12] study the
application conditional adversarial training Co-Vegan for the
reconstruction of CV magnetic resonance images. They con-
sider a complex valued U-Net generator and a RVNN critic.
Note that since the critic is real valued, it does not base its
decision on the phase while we will exploit the phase in
our work for discriminating generated from real data. The
loss they optimize is multi-objective, with, in addition to
the WGAN loss, similarity losses between the output of the
generator and the targeted reconstruction. The discriminator
takes as input the modulus of the generated and real recon-
structions, and all of the similarity losses but the content loss
compares the generated reconstruction and the real recon-
struction in the complex domain. In our work, we study a

different problem where we focus on unconditional genera-
tion due to lack of labels in SAR imaging, and we consider a
CV discriminator with an output in R. Contrary to [12], the
proposed discriminator can extract features from the real and
fake data using both modulus and phase information.

In our experiments, we define two neural networks, a gen-
erator Gθ : Z 7→ Cn for synthesizing CV data and a critic:
Cw : Cn 7→ R where w ∈ Cnc and θ ∈ Cng . In the rest
of the paper, we consider two sets of architectures with the
hyperparameters given in table 1 for the critic and table 2 for
the generator. The architecture of the discriminator is a se-
ries of nc

disc blocks Conv - CeLu - ConvDownsampling-
CeLu. The convolutional layers have a kernel size of 3, the
padding is 1 and stride 1 except for the downsampling where
the padding is 0 and the stride 2. Downsampling is obtained
with a strided convolution as a max downsampling is not pos-
sible with complex valued feature maps. The number of ker-
nels of the first convolutional layer is 32 and is doubled at
every downsampling layer but always upper bounded by n∗

c .
The final layers are a global average pooling layer and a linear
layer to compute one single scalar for every input. The final
activation function, of the last linear layer, is the modulus.

MNIST SAR
Number of convolutional layers nc

disc 5 8
Maximal number of channels n∗

c 128 512
Minimal spatial size s 8 4

Table 1. Critics setup for MNIST and SAR experiments

The architecture of the generator starts with a linear layer
from the latent space nz to a representation of size c0×sg×sg
which is reshaped as a 3d volume (c0, sg, sg). Then comes a
serie of nc

gen blocks Conv - CeLu - ConvUpsampling-
CeLu. The ConvUpsampling is an upsample using the
nearest policy followed by a convolution. All the convolu-
tions have a kernel size of 3, the padding is 1 and stride 1. The
number of channels is multiplied by the channel multiplicator
coefficient ck at every upsample. The final layer is a convolu-
tion with a kernel size of 5, a stride 1 and a zero padding of
2. These architectures have been implemented using pytorch
1.12.1 and torchvision 0.13.1 [17].

MNIST SAR
Latent space dimension nz 128 512

Number of convolutional layers nc
gen 4 8

Number of filters c0 64 512
Channel multiplicator ck 1 0.8

Spatial dimension of the first layer sg 4 2

Table 2. Generators setup for MNIST and SAR experiments

3. EXPERIMENTAL RESULTS
3.1. MNIST and FashionMNIST Fourier spectrum gen-
eration

We begin with toy problems synthesizing handwritten digits
or FashionMNIST images in the Fourier space. The real data



are the MNIST digits or FashionMNIST item on which we
apply a 2D-Fourier transform. As a reminder, these datasets
comprise 60.000 samples as 28× 28 grayscale images for the
digits or clothings, the datasets being balanced. There are
also 10.000 samples in a test fold which will be used to com-
pute the validation metrics. To illustrate the applicability of
CV-WGANs, the digits are transformed in the complex do-
main. The pixel values are divided by 255, the images are
zero-padded to 32 × 32 and then transformed by comput-
ing their 2D Fourier transforms leading to CV representation.
The Fourier spectrum is spatially shifted to center the zero
frequency component. Once trained, to better visualize the
performance of the generator, we compute the inverse Fourier
transform on its output, which is certainly easier to qualita-
tively judge than its Fourier counterpart.
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Fig. 1. The Wasserstein distance and gradient penalty terms
during training on the Fourier MNIST dataset.

With the hyperparameters given in tables 1 and 2, the
generator and discriminator have approximately 390.000
trainable parameters each. Training for 2000 epochs on an
NVIDIA GeForce RTX 3090 takes approximately 23 hours
with a batch size of 128.

Fig. 2. From left to right: generated Fourier MNIST spec-
trums in HSV colorspace and the corresponding images by
FFT inverse, generated Fourier FashionMNIST spectrums in
HSV colorspace and the corresponding images by FFT in-
verse.

We ran the experiment for 2000 epochs. The Wasserstein
distance and the gradient penalty terms are shown on figure 1.
For all the runs we tried, the trend of the curves was the same :
an initial low value, ramping up to some maximal value and
then an almost steady decrease with a long tail. The asymp-
totic slope is usually very gentle. Also, the terms computed
on the validation fold fluctuates significantly at the end of the
run. Even if the computed Wasserstein distance is initially
low, the samples generated during these very first epochs are
of bad quality. Sample quality is usually correlated with a

low Wasserstein distance only after some initial training of
the networks, certainly required for the discriminator to ex-
tract meaningful features from the data. The metrics on both
training and validation data are very close which probably in-
dicate that there is no overfiting on the training set. We evalu-
ated the Frechet Inception Distance [18] of the trained gener-
ators by computing the inverse Fourier transform, duplicating
the grayscale channel and resizing the images as suggested
in [19] to have 3 channels 299× 299 images. For the Fourier
MNIST dataset and generator, the FIDs are respectively 209
and 210 on the train and test folds. For the Fourier Fahsion
MNIST dataset, the FIDs are respectively 170 and 171 on the
train and test folds. These are similar but large values al-
though, as we will see, the generated samples are qualitatively
reasonably good. We believe this is related to the fact the in-
ception V3 network used for computed the FID are trained on
ImageNet with features that are probably not well calibrated
for samples such as MNIST or Fourier MNIST.

We now study more qualitatively the structure of the la-
tent space and the performances of the trained generator. Re-
call that the generator is trained to generate representations
as close as possible to a 2D Fourier transform of a digit. We
sampled a grid of 10 × 10 independent random latent vec-
tors zi and computed the output of the generator G(zi). These
outputs are displayed on the left of figure 2. These samples
are shown in the HSV colorspace. For a complex number
ρ exp(iθ), the associated HSV is set to (θ, 0.5+ρ̂/2, ρ̂) where
ρ̂ = log(1 + ρ) normalized over the whole image in [0, 1].
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Fig. 3. The Wasserstein distance and gradient penalty terms
during training on the SAR dataset.

3.2. Synthetic Aperture Radar image generation

For the application of WGANs on SAR data, we make use of
the UAV-SAR data provided by the NASA JPL. We used the
2× 8 SSurge 15305 with HH polarization, west Los Angeles
(CA) for training and 2 × 8 SSurge 12600 with HH polar-
ization, south east Los Angeles (CA), for validation. Con-
figuration 2 × 8 for 3.3m × 4.8m pixel spacing (slant-range
× azimuth). Both the training and validation SLC data were
collected in L-band (1.26 GHz). The flight was on November
20th, 2014. The training SLC stack of shape (6719, 4893)
is randomly cropped into thumbnails of size (256, 256). Ev-
ery complex point z = ρ exp(iθ) has its norm transformed

https://uavsar.jpl.nasa.gov/


Fig. 4. Left: Generated samples by the generator from a grid
of 5 × 5 independent latent vectors. The magnitude and the
phase of the complex outputs are used to display images in
the HSV colorspace. Right: Real SAR images provided for
comparison with a variety of landscapes : urban, sea, sea side.

by applying log(ρ + 10−5) exp(iθ) and then multiplied by
0.4. The latter is an empirically found normalizing factor.
For these data, we define one epoch when 494 patches have
been processed.

With the hyperparameters given in tables 1 and 2, the
generator and discriminator have approximately respectively
8 million and 12 million trainable parameters. Training for
4400 epochs takes 24 hours on a single GPU of an NVIDIA
A100-SXM4-40GB, with a batch size of 25. We ran the ex-
periment for almost 4500 epochs. The Wasserstein distance
and the gradient penalty terms are shown on figure 3. For all
the runs we tried, the trend of the curves was the same and
similar to the training on the Fourier spectrum of MNIST or
FashionMNIST dataset. The Wasserstein distance and gradi-
ent penalty are similar on the training and validation folds al-
though they are much more fluctuating on the SAR data than
on the Fourier spectrum of MNIST or FashionMNIST data
and this for both the validation and training data. Quantita-
tively, the FIDs are respectively 118 and 142 on the train and
validation folds. We believe these values are relatively high
for the same reason than for the toy datasets.

As for the previous experiments, we represent indepen-
dently generated samples on figure 4. The independently
generated samples show a diversity of patterns although the
quality of the generated data are harder to judge than for the
MNIST like databases. The two most recognizable patterns
are the regular lines patterns which seem to be urban like
landscapes and reminds the regular structure of the Los An-
geles neighborhoods where the training data originates. The
second pattern is the uniform bright pattern which is similar
to SAR data over the sea (note the images are normalized
to have a higher contrast in the paper). For easing the inter-
pretability of these generated data, real SAR data are shown
on the right of figure 4. We recognize the various patterns of
urban zones, sea, sea side and also a mountain for the image
on the bottom left of the real SAR images.

Quantitatively from the Wasserstein distance and qualita-
tively from the samples we presented, it seems the genera-
tor is able to generate CV SAR images. Although it is not

always straightforward to appreciate the quality of the gen-
erated images, we do observe some patterns that remind the
ones observed in real data. Also, we note that when patterns
reminding streets are generated, these patterns appear as reg-
ular as in large US cities with the grid pattern. The patterns
are not blurry: they do have high frequency contents such as
the sharp edges of the streets and also some zones that appear
to be of specific types (sea, sea side, city center). Certainly
these details could be better appreciated if we could gener-
ate larger patches. The computational resources required for
training the WGAN precluded the training for larger patches.

4. DISCUSSION

In this paper, we studied complex-valued generative adver-
sarial networks and especially the Wasserstein variant. Our
initial experiments with the original GAN formulation on the
same data has confirmed the difficulties in training vanilla
GANs. Training was easier with the WGAN formulation al-
though it required a long investigation of different network
architectures trying to balance the performance of the gener-
ator and the discriminator.

Given the difficulty of interpretation of the generated SAR
data, we found it interesting to begin the investigation by
training a CV-WGANs on the 2D Fourier spectrum of the
famous MNIST and FashionMNIST datasets. These exper-
iments revealed the ability of training CV discriminator and
CV generator and then the quality of the synthesized samples.
Various interpolation experiments revealed the continuity of
the learned latent encoding. The same experiments carried out
on the SAR data also demonstrated the ability to train a gener-
ator for synthesizing CV SAR images of size 256× 256. Be-
yond the Wasserstein distance which steadily improves during
training, the quality of the samples seems to be relatively good
and these generated samples exhibit diversity with urban like
or sea and sea side like patterns.

These promising results open other perspectives. As indi-
cated in the introduction, data augmentation of SAR data can
be tricky using standard approaches. The ability to generate
fake but realistic SAR images allows to envision the appli-
cation of GANs to data augmentation. The next step would
be studying the training of conditional GANs to be used for
data augmentation for supervised learning (e.g. classification
or segmentation). Beyond data augmentation, conditional
GANs have also demonstrated interesting performances in
image translation (e.g. Pix2Pix [20]) and superresolution.
These are also tasks of interest in the SAR community.
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