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Abstract. We show that relativistic rotation transformations repre-
sent transfer maps between the laboratory system and a local observer
on an observer manifold, rather than an event manifold, in the spirit
of C-equivalence. Rotation is, therefore, not a parameterised motion
on a background space or spacetime, but is determined by a particular
sequence of tetrads related by specific special Lorentz transformations
or boosts. Because such Lorentz boosts do not form a group, these
tetrads represent distinct observers that cannot put together their lo-
cal descriptions into a manifold in the usual sense. The choice of ob-
server manifold depends on the dynamical situation under considera-
tion, and is not solely determined by the kinematics. Three examples
are given: Franklin’s rotation transformation for uniform plane rota-
tion, the Thomas precession of a vector attached to an electron, and
the motion of a charged particle in an electromagnetic field. In each
case, at each point of its trajectory, there is a distinguished tetrad and
a special Lorentz transformation that maps Minkowski space to the
spacetime of the local observer on the curve.
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transformation; rotation; Special Relativity; General Relativity; charged
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1. Introduction

This paper continues a recent work [1], which built upon an elab-
orate discussion of the equivalence principle in the 1960s, initiated in
the Princeton school; see [2, 3, 4, 5]. We showed that a proper axioma-
tisation of these considerations, in the framework of Hilbert’s Sixth
Problem, required an extension of the manifold concept. One should
mathematically distinguish the events that observers measure and the
setups that each observer uses to actually perform measurement. The
setup of an observer is encapsulated in the metric of a Lorentzian man-
ifold. We are interested here in simple situations, which all involve
uniform rotation, in which this identification of events and observers is
not appropriate. In all these cases, the event manifold is a Minkowski
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space, which may be thought of as the system attached to a labora-
tory using a standard measuring apparatus. The event manifold is,
therefore, associated with a distinguished observer: the one actually
recording the positions of various particles, each of which has its own
system. By contrast, other observers will be attached to different points
of the trajectories of particles in motion; it is not feasible to assume that
these observers are attached to a measurement apparatus, let alone a
human observer.
While the successes of General Relativity made it reasonable to give

the set of events the structure of a Lorentzian manifold on which Ein-
stein’s field equations are valid, this event manifold is constructed by a
single observer or, more precisely, by a class of observers whose obser-
vations are coordinated. Therefore, if we postulate that all observers
make measurements in the same way, we should assign to every observer
a different manifold. The equivalence of these manifolds, which holds in
Special Relativity, has no reason to be valid in more-general situations.
The observer manifold is the collection of all these manifolds, together
with axioms specifying their relation to the event manifold. These ob-
servers could also be human observers with a measuring apparatus, but
this is an unrealistic assumption in general.
Therefore, the observer manifold is not a manifold in the usual sense,

but may be thought of as a collection of manifolds, each of which rep-
resents the current state of the system dragged by the particle under
consideration, along its path. This path is observed in the laboratory
system as a sequence of events, which trace out a trajectory. In Spe-
cial Relativity, inertial observers can be identified to one another and
may be viewed as embedded in a Minkowski space ([1], Theorem 1).
However, in other cases, it is necessary to consciously distinguish the
event and observer manifolds. We are interested here in three fairly ex-
plicit examples of observer manifolds that may not be identified with
the event manifold. All the examples in this paper are related to sys-
tems or particles in rotation, since this is one of the simplest sources
of non-inertial behaviour. These three examples, therefore, provide the
beginnings of a mathematical classification of observer manifolds.
The difficulty of the problem of rotation in Relativity stems from

the inadequacy of what would be the natural approach in Newtonian
Mechanics, namely to try and generalise a transformation, in cylindrical
coordinates (r, θ, z, t), of the form r′ = r, θ′ = θ − ωt, z′ = z, where ω
is a constant. Even if it were modified and supplemented by a suitable
transformation of the time variable, such as the one proposed in 1922
by Franklin [6] (see (27) below) or others [7, 8, 9], this would merely
yield a change of coordinates. Now, in Relativity, coordinate changes
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have no physical meaning; this is the basis of the principle of general
covariance [10, 11]. This is similar to the case of surface integrals, in
which reparameterisation of the surface does not change the value of
the integral. Covariance is not a symmetry, and changes of coordinates
are not symmetry transformations, since a Riemannian manifold may
have a trivial group of isometries. There are very few spaces, such as
Euclidean space, in which one may introduce distinguished coordinates
compatible with a global symmetry group.
We begin with background information, reviewing the axiomatics

of the event manifold and of the observer manifold (Section 2). Spe-
cial cases include manifolds in the usual sense, including fibre bundles,
but are not reducible to them. The event manifold may be viewed as
the system attached to a “laboratory”, which may perform measure-
ments according to a “standard” apparatus and records events on a
Lorentzian manifold. On the other hand, the system attached to an
elementary particle will be associated with a sequence of observers,
one for each position of the particle. We then review (Section 3) the
Newtonian treatment of rotation and the difficulties of a straightfor-
ward generalisation of it. Section 4 deals with the reinterpretation of
the relativistic rotation transformation (RRT) introduced by Franklin
and rediscovered many times. Here, the observer manifold is obtained
by attaching a different copy of Minkowski space to every point of ev-
ery circular trajectory. However, the radius r of the trajectory plays
the role of a parameter and not a coordinate. That is why the RRT
is not a change of coordinates in Minkowski space. The applications
of Franklin’s rotation transformation have already been discussed at
length in the literature [12]. We, therefore, focus on its impact on the
definition of the observer manifold in the context of rotation.
Section 5 deals with the motion of a vector attached to a moving

electron, with an application to Thomas precession, and Section 6 with
the motion of charged particles in a constant electromagnetic field. A
few results that also hold for variable fields are given in Section 7. In
both of these examples, the observer manifold is again a collection of
spaces attached to every point of a trajectory. Concluding remarks and
perspectives are given in Section 8.
The main point of this paper is that rotation in Relativity cannot be

represented as a parameterised sequence of motions in a pre-existing
space, but should be viewed as a sequence of manifolds representing
local systems of reference, which form together the observer manifold.
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2. The Evolution of the Manifold Concept as It Was
Applied to Physics: Historical Perspective

The notion of a manifold went through four stages before it was ap-
plied to Relativity. It was first developed for surfaces in ordinary space
by Gauss, then extended to three-dimensional manifolds by Riemann,
without reference to an ambient space. In parallel, it was realised by
Felix Klein that Euclidean geometry and similar ones admitting spaces
of motions could be conveniently studied by direct consideration of
their groups of (global) symmetry. Fourth, the development of tensor
calculus showed that one could define geometric quantities and objects
such as tensors in manifolds without any symmetry. The introduction
of Relativity showed that one needs to axiomatise the way different
observers compute geometric quantities on the basis of a measurement
protocol, which was based on “standard rods and clocks”. As a result,
different observers do not have direct access to each others’ measure-
ment apparatus. We briefly review these stages and write out the
different axiomatics that were developed in this connection.
For a general history of the manifold concept in mathematics, see

[Scholz (1989)]. We limited ourselves to those points relevant to our
considerations.

2.1. Local Differential Geometry and Global Group-Theoretic

Models. The introduction of spherical geometry in ancient Astronomy
could have paved the way for a geometry of curved surfaces. It did not,
because all constructions on the sphere could also be viewed as taking
place in a Euclidean space of dimension three. This way of consider-
ing space remained standard until the Nineteenth Century. Now, in
Euclidean space, there is a distinguished class of coordinates that have
metrical meaning; in rectangular coordinates (x, y, z), for example, the
difference in the z coordinates of two points with the same x and y
coordinates directly gives their distance. These coordinates are not
unique, but there is a limited set of transformations, namely Euclidean
motions, that relate to one another all possible such coordinates with
metrical meaning, within what was viewed as absolute space.
Gauss first showed how to work with coordinates that do not have

direct geometric meaning. In his analysis of surveying, he considered
a surface in Euclidean three-space, in which points are labelled by ar-
bitrary coordinates (u, v). He showed that one could define a measure
of curvature that does not depend on coordinates, namely what we
now call Gaussian curvature. Gauss also defined geometric quantities
that depend on the derivatives of the unit normal to the surface, which
define the “second fundamental form”. But, the main progress for our
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purposes was the introduction of line measurement in arbitrary coordi-
nates and the search for quantities that do not depend on coordinates.
Riemann generalised Gauss’ considerations to three-dimensional space

and, thus, did away with the need to consider an ambient space since
four-dimensional space had not been considered yet. He showed that,
if we have a Riemannian metric in coordinates (u, v, w) and assume all
metric components are smooth, one can define a quantity, which we
now call the Riemann tensor, that must vanish if we are in Euclidean
space. One can then make a change of coordinates to rectangular coor-
dinates (x, y, z), at least locally. Therefore, here too, space is absolute,
and there exists a distinguished class of coordinates. His work, as con-
tinued by Christoffel, Ricci, Levi-Cività, and Élie Cartan, also showed
how to work in spaces in which the Riemann tensor does not vanish,
so that there are no such distinguished coordinates and, in general, no
symmetries at all, as well as no reduction, even in a limited region,
to Euclidean space. Indeed, it is not possible to make the Riemann–
Christoffel connection coefficients Γa

bc vanish in a full neighbourhood of
a point; otherwise, the Riemann tensor would vanish as well and space
would be flat in this neighbourhood. This will have the consequence
that, in General Relativity, even in free fall, the effects of gravity are
measurable at second order. Therefore, when one tried to generalise
inertial systems in General Relativity, it became clear that they could
not be identified with small patches of an event manifold.
Felix Klein took a different view. He showed in his Erlangen Pro-

gram [13] that Euclidean geometry is best defined not by a class of
axioms on lines and points, but by the existence of a group of transfor-
mations that globally transform space into itself, while mapping one set
of rectangular coordinates or, equivalently, an orthonormal triad with
a base point to another. Non-Euclidean geometries were simply the
geometries deduced from different groups. The various models of these
new geometries are merely different ways of realising a set of points
admitting a family of maps that generalise Euclidean motions. This
gives prominence to the group concept, which, however, will turn out
to be too restrictive. Indeed, recall the definition of a group, making
it slightly more explicit than is usually done.

Definition 1 (Definition of a group). A set G is called a group if

(Op) (Operations are always defined.) For any two g and g′ in G,
there is an element of G called gg′, called the composition, or
product of g and g′ (in G).

(Id) (Existence of an identity.) There is an element e ∈ G such that
eg = ge = g for every g ∈ G.
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(Inv) (Existence of an inverse.) For every g ∈ G, there is an element
in G, called g−1, such that gg−1 = g−1g = e.

(As) (Associativity of group law.) For every (g, g′, g′′) ∈ G3, we have
(gg′)g′′ = g(g′g”).

If X is any set, one says that a group G acts on X if the following
three axioms hold:

(Act) (Action is always defined.) To any g in G, one associates a
mapping Fg : X → X.

(Id) (Effect of the identity.) For any (g, x) ∈ G×X, Fe(x) = x.
(Com) (Compatibility with group law.) For every (g, g′, x) ∈ G2 × X,

we have Fgg′(x) = Fg(Fg′(x)).

One key point that will fail in the sequel is the assumption that group
laws or actions are always defined. Two examples of transformations
that do not form a group will be met repeatedly: transfer maps between
observers and special Lorentz transformations. Intuitively, while it
makes sense to assume that all observers may perform the same types of
measurements on a similar apparatus, there is no reason to assume that
they have full access to each other’s measurements, unless we consider
only observers that all coordinate their protocols with a centralised
entity.
There is another feature of Euclidean space that will have to be

relinquished: that it should be possible to establish a correspondence
between remote regions of space. Euclidean motions not only map
points to points, but also vectors to vectors. Indeed, to two points A

and B, one associates a vector
−→
AB, and if C is another point, there

is a fourth point D such that
−→
AB =

−−→
CD. One speaks of equipollence

to represent this equality of vectors. But, two points on a curved
surface generally do not define a vector that would lie on the surface
in any reasonable sense. Parallel transport was introduced to partially

alleviate this difficulty, by replacing
−→
AB by a vector tangent to the

surface at A, but parallel transport requires a curve and a rule for
transport: the equipollence law cannot be determined by the points A
and C alone: one needs to specify a geodesic.
All these difficulties explain that we need to introduce a set of ax-

ioms that does not implicitly assume the existence of distinguished
coordinates or global correspondences between the representations of
observers.

2.2. Axiomatics of the Event Manifold. When Einstein put forth
Special Relativity in 1905, and throughout his elaboration of General
Relativity, it was apparent that he was interested in what observers
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could measure locally. There is no operational way to compare in-
stantly quantities at different points. However, Minkowski pointed
out that Einstein’s 1905 representation of spacetime could be viewed
as the introduction of an indefinite scalar product in a (global) four-
dimensional space, leading to what we now call Minkowski space M4.
Therefore, Special Relativity could be analysed in two ways. The first
is to say, with Einstein, that inertial observers are each associated with
a different Minkowski space, which has only local validity. Lorentz
transformations then express the relations between the representations
of the same events by different observers. Each observer seeks to iden-
tify a local inertial frame in which distinguished coordinates having
direct physical meaning may be introduced. The second view is to as-
sume that the set of events is itself endowed with the structure of a
global Minkowski space, of which parts are detected by individual ob-
servers. As we have shown ([1], Theorem 1), this amounts to identifying
the spacetimes of all observers to a single one. While this is meaningful
in Special Relativity, this is not the case in General Relativity.
There is a further difficulty. The interpretation of measurements,

such as that of the meson’s lifetime, requires one to assign to an el-
ementary particle with nonzero rest mass, such as a meson, a local
inertial observer that travels with it. That is how we account for the
fact that the lifetime of a meson in its inertial system differs from its
lifetime in the laboratory system in which its path is being tracked.
Now, no human observer exists that would, so to speak, “ride along
an elementary particle” and could perform the operations allowed by
the postulates of Special Relativity. The observers of the theory are,
therefore, notional observers, rather than actual observers: the opera-
tions of coordinate assignment and coordinate change are never actually
carried out, except possibly for a “laboratory system”. When several
observers in relative uniform motion meet at a spacetime point, their
notional observers are related by Lorentz transformation, so that there
is for them only one Minkowski space in which all their translational
motions take place, but this identification of notional observers has no
reason to hold for non-uniformmotions. It is possible to circumvent this
difficulty by postulating instead that the de Broglie wave of a particle
includes, through its dynamics, the elements of a local system attached
to it [5]. This wave is a purely material object that is represented in
the theory by the notional observer associated with the particle. The
observers in the sequel are always understood in this sense; they do not
require human intervention and, indeed, such intervention is generally
not feasible.
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In his search for a relativistic theory of gravity, Einstein took over
the existing theory of Riemannian manifolds and tried to introduce into
it a physical content adapted to his vision of the gravitational field. We
currently read his attempts as leading to the following axiomatics of
the event manifold: events accessible to measurement for all observers,
inertial or not, are points on an event manifold with a Lorentzian met-
ric, satisfying Einstein’s field equations; for background material, see
([14], Chapter 6). The standard definition of such a manifold is as
follows.

Definition 2 (Definition of a manifold of dimension n). A (dif-
ferential) manifold M of dimension n and of class Ck, where k ≥ 1 or
k = ∞, is a set equipped with a family (Uα, ϕα)α∈Z , called an atlas,
indexed by an arbitrary set Z such that:

(Cov) (Covering axiom.) For every α ∈ Z, the set Uα is a subset of
M . Furthermore, any point of M belongs to at least one Uα.

(CA) (Coordinate axiom.) Each ϕα(Uα) is an open subset of R
n,

the latter being endowed with its usual topology, and the ϕα

are one-to-one. Therefore, each point P of Uα may be written
P = ϕ−1

α (x1, . . . , xn) for some α, where (x1, . . . , xn) ∈ R
n is

uniquely determined by α. These n numbers are called the local
coordinates of P in the coordinate chart (Uα, ϕα).

(CC) (Axiom on coordinate changes.) If two coordinate charts (Uα, ϕα)
and (Uβ, ϕβ) are such that Uα ∩Uβ 6= ∅, the map ϕβ ◦ ϕ−1

α is of
class Ck on its domain of definition, as so is its inverse ϕα◦ϕ−1

β .

One defines a topology on M by saying that a set X ⊂ M is open if,
for any coordinate chart (Uα, ϕα), the sets ϕα(X ∩Uα) are open in R

n.
Submanifolds are defined in the obvious way.

By construction each map, ϕα is a homeomorphism between Uα and
ϕα(Uα). We shall deal throughout with smooth manifolds (k = ∞)
for simplicity. The definitions of geometric objects, including tensors
and connections, are standard [15, 16], including more-general “geo-
metric objects” such as Lie derivatives ([17] p. 18 sq.). In particular, a
Lorentzian manifold is a manifold endowed with a metric tensor with
signature (3, 1) (with one negative square). As a consequence, coor-
dinates lose all physical meaning. Geometric objects on M are de-
termined by their expressions in the different coordinate patches Uα,
related by specific transformation laws, which form the basis of general
covariance. Thus, general covariance is not a symmetry; it is similar
to a change of variables in an integral, that is simply a change of label,
that does not affect the value of the integral.



S. Kichenassamy, Axioms 2023, 12(12), 1066 9

This provides a convenient framework for the event manifold E of
a fixed observer, which we may call the “laboratory” observer. Each
point represents a spacetime coincidence, and the metric enables this
particular observer to derive coordinate-independent information from
such events. The question is the status of other observers. Einstein’s
1905 operational procedure, still in use, refers to two observers having
access to “standard” rods and clocks. Now, the predictions of Special
Relativity are also found to be correct in situations where such a pro-
cedure cannot be carried out, as in the case of the rest system of an
elementary particle. The accuracy of the predictions of Special Rel-
ativity means that there must be a material structure that performs
the same function as Einstein’s human observers, as well as a mathe-
matical structure to represent it. The de Broglie wave could serve this
purpose [5]. As for the mathematical structure, it must be similar to
the system of the laboratory, since it is a basic axiom that all observers
perform the same types of operations. Every observer A is, therefore,
associated with a different manifold SA with an origin OA. There is
no reason to assume that SA extends beyond a small neighbourhood
of OA; in all the examples of this paper, SA consists of part of a four-
dimensional vector space. The origin OA is tracked by the laboratory L.
Therefore, there is a curve XA on the event manifold E that represents
the positions of OA in E . In addition, for events that are close to XA, A
and L have possibly different representations of them. We call transfer
maps the mappings that connect these representations. Again, they
are locally defined, possibly even only infinitesimally. Also, observer
A is not fully determined by its trajectory—its trace XA, in the sense
of axiom (T) in Definition 3 below—on the event manifold: if another
observer B happens to cross the trajectory of A, the two observers will
remain different, except if they exactly have the same state of motion.
As a result, it is not possible to define a topology on E in such a way
that one can separate XA and XB by non-intersecting neighbourhoods;
these are the same point in E . If we agree that observers are not events,
we, therefore, need fairly general sets of axioms that should encompass
all these possibilities. We give two such sets below.

2.3. First Set of Axioms for the Observer Manifold. Consider
an observer A of which the origin traces a curve XA on the event man-
ifold E , parameterised by proper time s. Thus, in a local chart of E ,
XA : s 7→ (xa(s)). The observer labels events on a different manifold
SA, and the observer manifold is the collection of all these manifolds
SA. The event manifold also represents the events as recorded by an-
other observer, which we called the “laboratory” L, even though it,
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too, may not be human. The issue, therefore, is to understand how
A and L compare their descriptions. In Special Relativity, the com-
parison of these descriptions leads to a complete identification of their
representations [1], up to a Lorentz transformation, if we assume that
they compare their descriptions via local diffeomorphisms, as in the
following definition, taken from that paper.

Definition 3. An event manifold is a (smooth, differential) manifold
E of dimension four and of class C∞. An observer manifold M , over
the event manifold E , is a family (SA)A∈A of manifolds in the sense of
Definition 2, indexed by an arbitrary set A , such that:

(M) (Manifold associated with an observer A.) Each SA is a Lorentzian
manifold (typically, consisting of only one chart) with a distin-
guished origin OA ∈ SA. It represents the events as recorded by
A.

(T) (Trace of an observer on the event manifold.) Each SA has a
trace XA on the event manifold E .

(TE) (Transfer map to the event manifold.) If A is an observer, then
there is an open set VA in SA, related by a diffeomorphism φA

to an open set in E . It is not an isometry in general.
(TO) (Transfer map between observers.) If two observers A and B

can represent some of the same events (W := φA(VA)∩φA(VB) 6=
∅), then the open sets UA := φ−1

A (W ) and UB := φ−1
B (W ), in

SA and SB, respectively, are related by a diffeomorphism φAB,
with φAB(OA) = OB.

The metric on each SA is not assumed to be the pull-back of the metric
on E by φA.

One could make the definition slightly shorter by identifying the
event manifold with the system of the (distinguished) laboratory that
records the events, but it may be best to be more explicit. Indeed,
the observer attached to a state of motion of an elementary particle is
fundamentally different from the laboratory observer: there are neither
human observers nor actual measuring instruments riding on it [5].
The proviso that the maps φA are not necessarily isometries makes

this definition irreducible to the definition of a manifold in the ordinary
sense. Otherwise, one could have viewed the open sets VA as coordinate
patches on the event manifold. The observer manifold is not a fibre
bundle either, in which the SA would be fibres, because every point
on the base of a fibre bundle should have a well-defined fibre. Here,
fibres are defined only over points of the traces XA of actual material
particles. Moreover, if two observers A and B happen to meet at the
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same event X , there would be two of these supposed fibres over it,
namely SA and SB. Another approach to dynamics is to make the
metric of a spacetime dependent on the tangent to the worldline of an
observer, as in Finsler geometry. Recent authors have suggested similar
approaches on a flat background [18]; see also [19] (we have only seen
the former work, the latter one having been pointed out by a referee).
Again, these developments cannot represent several observers meeting
at one point.
For all these reasons, it is necessary to introduce axiomatics that are

as inclusive as possible, to avoid unwittingly ruling out logical possibil-
ities. The transfer maps between observers, like the coordinate changes
in an atlas, do not form a group because their composition is not al-
ways defined. Therefore, Klein’s group-theoretic approach cannot be
generalised either, because coordinate changes are not symmetries.
This definition is still not general enough. It is adequate in the case

observers are in a position to record events in a full neighbourhood
of their origin, as would be the case for human observers, or devices
that include identical physical measuring apparatuses. However, the
apparatus, being itself material, is affected by the local gravitational
field. This will lead to the C-equivalence principle, which needs to be
incorporated into the axiomatics.

2.4. Conformal-Equivalence as a Mathematical Expression of

Einstein’s View of His Equivalence Principle. Einstein’s devel-
opment of General Relativity as recorded in his own account [20] may
be viewed in the light of later developments as an attempt to cast his
physical views into an existing mathematical framework. We suggested
that the mathematical concept of manifolds as developed before Ein-
stein is not sufficient to accurately represent his view—or what has
been ascertained in later experiments as well. Summarising our earlier
analysis ([1], Section 2), the main issue is to understand how the no-
tion of an inertial system should go over to General Relativity. Inertial
systems in Special Relativity are represented by copies of Minkowski
space, with a distinguished time-oriented vector representing the (tan-
gent to the) world-line of the given observer. The fact that rotation
may be detected by local experiments, such as Sagnac’s, shows that
each observer, even non-inertial, should be able to define a local iner-
tial system and to determine geometric quantities by the contraction
of tensors with the vectors of a local orthonormal tetrad (ONT).
The question now is: What is the mathematical object that corre-

sponds to this local inertial system? The simplest answer would be
to take an inertial system to be a small patch on the event manifold
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E . But, this is impossible, because it would mean that one could re-
duce the metric on E to the Minkowski metric. Mathematically, this is
not possible unless the curvature tensor vanishes. However, the metric
on E can be reduced to a sum of squares at one point. This sug-
gests identifying the local inertial system to the tangent space of E at
one event. Because of the assumption that all inertial observers are
equivalent, this tangent space should be identified with the Minkowski
space of a standard inertial observer. But, even this is not sufficient
because the Pound–Rebka experiment showed that the “standard rods
and clocks” posited by the theory are affected by the local gravitational
field. Therefore, if the interpretation of measurements is to give the
observed results, we need to posit that local non-rotating systems are
not identical to Minkowski space, but only conformally equivalent to
it. The isotropy of local descriptions ([1], Sections 2.3 and 2.4) and the
constancy of the speed of light leaves the choice of a conformal factor
as the only freedom. We summarise this as follows.

All local observers are provided with standard measur-
ing devices (identical devices having the same behaviour
at the same point when relatively at rest). Because of
the presence of the field, these devices have a behaviour
that varies from point to point. This may be expressed
by the proportionality of the metrics on the manifold SA

associated with observer A and the metric of an inertial
observer:

(1) (ds2)A = ΛAds
2
,

where the elementary squared interval between two events
is (ds2)A according to an observer located at A, but

would be ds
2
according to an inertial observer. The

quantity ΛA is not accessible to experiment, since ds
2

cannot be measured when a nonzero field is present, but
the ratio ΛA/ΛB comparing the deviations from Special
Relativity at two different points A and B is accessible
to measurement [3, 4].

The local system of reference will be called a pseudo-inertial system.
We shall say that a theory is compatible with C-equivalence if it is

consistent with:

(1) Weak equivalence;
(2) The identity of local descriptions of identical phenomena;
(3) The isotropy of local spacetime;
(4) The pseudo-inertial character of the local system of reference.
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The letter C stands for “conformal” since pseudo-inertial systems are
merely conformally Minkowskian and not Minkowskian. All the usual
verifications of General Relativity can be accounted for in this frame-
work and, indeed, require it since setting the conformal factor to unity
leads to results incompatible with measurements [3, 4, 21].
We now turn to a set of axioms for the observer manifold compatible

with C-equivalence.

2.5. Second Set of Axioms for the Observer Manifold. We con-
sider now a set of axioms adapted to the trajectory of a material par-
ticle. Each point of its trajectory will be assigned a manifold. We,
therefore, associate the various states of motion of the particle with a
different observer.

Definition 4. An event manifold is a (smooth, differential) manifold
E of dimension four and of class C∞. Consider a trajectory on E ,
parameterised by the arc length (for the metric on E ): X : I → E , s 7→
X(s), where I is an interval on the real line. The observer manifold
M for this trajectory, over the event manifold E , is a family (Ms)s∈I
of manifolds in the sense of Definition 2, indexed by s, such that:

(M) (Manifold associated with s.) Each Ms is a Lorentzian mani-
fold (typically, consisting of only one chart) with a distinguished
origin Os ∈ Ms.

(TE’) (Transfer map to the event manifold.) For every s, there is, for
every value of the arc length parameter s, a map ψs from Ms to
the tangent space TX(s)E . Here, ψs(Os) is the origin in TX(s)E .

(CM) (Conformally Minkowskian metric on Ms.) For every s, the
metric on Ms differs from that of an inertial system by a con-
formal factor Λs.

The second definition is wider than the first, because it only requires
the specification of maps from the observers to the laboratory. Just
as before, even if we consider a particle in motion that carries a dis-
tinguished frame, it is not possible to view the observer manifold as a
frame bundle, because there may be different fibres at the same point
and because the transfer maps are not necessarily projections onto the
base. Therefore, observers in different states of motion are represented
by different mathematical objects, even if they pass through the same
point on the event manifold. This requires the introduction of a math-
ematical object of which the points are the observers, as was performed
above.
In intuitive terms, each observer is now identified with a copy of

the tangent space of the event manifold, endowed with a metric that
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depends on the state of the observer. The trajectory X(s) in Defini-
tion 4 corresponds to the trace of an observer A in Definition 3. The
main new element is that different observers are introduced for dif-
ferent points on the trajectory. Thus, the observer manifold contains
observers that only lie along the trajectory of XA. Typically, the con-
formal factor depends on the expression gabu

aub where ua is the unit
tangent to the trajectory of XI in E ; see [3]. One could further gen-
eralise this set of axioms by requiring that the metrics on E and SA

agree to any given order m; Definition 4, then, corresponds to m = 1.
But, this will not be needed for the applications we have in view here.
The introduction of several non-intersecting trajectories is straightfor-
ward, since each trajectory may be handled independently. In the case
of intersecting trajectories, a new axiom similar to TO in Definition 3
could be introduced, but will not be needed in this paper.
We now turn to examples related to uniform rotation. In all these

cases, Definition 4 will be the appropriate one, and the freedom to
associate different observers with different points on the trajectory
will be essential. Since no gravitational field is present, the confor-
mal factor will be equal to unity. However, the other requirements of
C-equivalence will still hold. We begin by recalling the difficulties of
representing uniform rotation in Relativity by generalising the notion
of rigid rotation. We, then, show that the relativistic rotation trans-
formation introduced by Franklin, and found again by Trocheris and,
later, by Takeno, actually represents transfer maps in the sense of the
above definition and not diffeomorphisms or changes of coordinates. In
particular, the radial variable in these transformation is a parameter
and not a variable. We, then, apply similar considerations to Thomas
precession and to the motion of a charged particle.

3. Rotation and Rigidity

We recall some steps in the analysis of rotation, showing how the view
of rotation as a rigid body motion parameterised by a time parame-
ter gradually became untenable, in Newtonian mechanics or Special
Relativity.

3.1. Rotation in Newtonian Spacetime. Let N4 = E3 × R be the
Newtonian spacetime. E3 is a Euclidean space invariant under the six-
parameter orthogonal group SO(3) of translations and rotations, and
R represents the translation invariant absolute time; E3(t) := E3 ×{t}
is the locus of all simultaneous events at an arbitrary time t.
Motion is, then, conceived of as an application of E3(t) into E3(t+dt),

i.e., of E3 into itself:
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(a) Translational motions are time-dependent changes of the spatial
origin:

(xα) 7→ (xα + aα(t))

in a system S of Cartesian coordinates xα = (x, y, z), where α
or any Greek index takes the values 1, 2, and 3.

(b) Rotational motions leaving the origin fixed are time-dependent
Euclidean rotations:

(xα) 7→ (xα
′

= Rα′

β (t)xβ).

The inverse transformation is given by the inverse matrix of
(Rα′

β (t)), denoted by (Rα
β′(t)):

(2) xα = Rα
β′(t)xβ

′

.

Among these motions, uniform translations, defined by ȧα(t) = daα/dt =
const., have the characteristic property of not being detectable by an
experiment internal to the moving reference system S ′ and define an
equivalence class of reference systems, that of inertial systems, hence
the principle of Galilean Relativity consecrating the invariance of Dy-
namics under the Galilean group.
Let the frame S ′ be rotating with respect to S about their common

origin. To determine the relation between the two systems, consider
first a particle P of velocity v with respect to S. The components of
v are, therefore, vα = dxα/dt. With respect to S ′, the same P has a
velocity v′ = (v′α

′

), with components given as follows.

(3) v′α
′

= dxα
′

/dt = Rα′

β v
β + Ṙα′

β x
β.

Therefore, using (2), the expression of this vector v′ in S, namely (v′α)
(with unprimed index), is given by

(4) v′α = Rα
γ′v′γ

′

= vα +Rα
γ′Ṙ

γ′

β x
β.

We now specialise these formulae to the case when particle P is at rest
with respect to S ′—so that v′α = 0. In that case, P has with respect to
S the velocity:

(5) vα = −ωα
βx

β := −Rα
γ′Ṙ

γ′

β x
β .

This equation defines the quantities ωα
β . Differentiating (3) with respect

to absolute time t, we obtain

(6) v̇′α
′

= v̇α
′

+ 2ωα′

γ′ vγ
′

+ (ω̇α′

β′ + ωα′

γ′ω
γ′

β′)x
β′

.

This is the form of the acceleration of a particle with respect to S ′. If
we further assume the particle in rotation satisfies v̇α

′

= 0, we see that
it has nevertheless a nonzero acceleration in S ′, which is the sum of the
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Coriolis and centrifugal accelerations, respectively given by the second
and third terms in the r.h.s. of the above equation. Their detection by
internal effects leads to the so-called “absolute” character of rotation
or, more precisely, the fact that their existence in a system indicates
that this system is not inertial.
Formulae (3)–(6) define the Galilean rotation transformation (GRT).

3.2. Minkowskian Spacetime and Lorentz Transformations. Con-
sider Minkowski spacetime M4, namely a four-dimensional homoge-
neous and isotropic space, with a global system of coordinates {xi},
with i, j, . . . taking values 0, . . . , 3. We first show that rigid motion in
Special Relativity cannot be defined satisfactorily and, then, show that
a uniform translational motion is no longer a time-dependent change
of spatial origin, but a hyperbolic rotation represented by the Lorentz
boost. The intuitive reason for these difficulties is that the mapping
of the space E ′

3 of a moving observer S ′ onto the space E3 of S, unlike
the Newtonian case, is not an element of SO(3) since these two three-
spaces are different and are not endowed with distinguished triads,
which might enable their identification.

3.2.1. Difficulties with Rigidity in Special Relativity. After Ehrenfest
(1909) [22] remarked that a rigid body cannot be set into rotation,
since the perimeter of the circle described by a point of the body would
suffer Lorentz contraction while its radius remains unchanged, the com-
patibility between rigidity and rotation has been continuously debated.
Born [23, 24] generalised the Newtonian concept of a rigid body to that
of a time-like rigid congruence such that the corresponding four-velocity
ua obeys the rigidity criterion:

(7) Pab = ∇aub +∇bua + uau̇b + ubu̇a = 0,

where

u̇a = uc∇cua.

Herglotz (1910) [25] and F. Noether (1910) [26] further investigated
this criterion and showed that those motions have only three degrees
of freedom and that rigid rotation is uniform. See also Pirani and
Williams (1962) [27], Thirring (1993) [28], Trautman (1964) [29], Synge
(1965) [30], Kichenassamy, (1982, 1996) [31, 12], and N. Rosen (1947) [32].
von Laue (1921) [33] gave yet another argument against the existence
of the Newtonian rigid body in Relativity: one can set up an arbitrary
number of non-interacting or independent disturbances for a sufficiently
short interval of time, such disturbances having finite propagation ve-
locity.
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It appears clear that it is impossible to attach a rigid body to a set of
particles without contradictions. The only remaining possibility is to
define observers using orthonormal tetrads. Indeed, in Newtonian Me-
chanics, the position of a rigid body is entirely determined by an origin
and a triad. However, in Special Relativity, tetrads remain meaning-
ful even though rigid bodies are not available. To go further, we need
to briefly recall some facts about the structure of Lorentz transforma-
tions viewed as transformations from one tetrad to another, rather than
transformations internal to M4.
Let (ea) = (e0, . . . , e3) denote an orthonormal tetrad basis of M4

(ON)T (or tetrad for short):

(8) ea = eia∂i,

where (∂i = ∂/∂xi) is the basis of four-vectors deduced from the coor-
dinates, and the determinant of (ea

i) is assumed to be nonzero. The
scalar products of vectors of the tetrad are, therefore, given by

(9) ea · eb = ηab = δab − 2δ0aδ
0
b .

The first vector, e0 = (ei0), may be viewed as the four-velocity of an
observer O or of a particle. As usual, (ei

a) is the inverse (matrix) of
(ea

i). The co-basis (or dual-basis) θa is defined by

(10) θa = dxiei
a, and we have θa(eb) = δba, ea

iei
b = δba;

here, the parentheses stand for evaluation (of the one-form θa on the
vector eb). The physical components (xa) of a vector x = xi∂i are given
by the projections of x on the ONT:

(11) xa = xiei
a.

A change of coordinates (xi 7→ xi
′

) does not affect the tetrad (since
ea = ea

i∂i = ea
i′∂i′), so that physical quantities, and hence, the laws

of Physics, must be generally covariant, that is have the same tensorial
form in every system of coordinates: the physical description cannot
depend on how we label events.
Let us now consider linear, non-singular transformations T of M4:

(12) T : x 7→ X or xi = xaea
i 7→ X i = xaEa

i,

where

(13) Ea
i = eb

iT b
a, det |T a

b| 6= 0,

from which we obtain

(14) ei
a = T a

bEi
b with Ea

iEi
b = δa

b,
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and

(15) X i = Xaea
i, Xa = T a

bx
b = xiEi

a.

It follows that T may be viewed:

(a) Either as a basis transformation (13): (ea) 7→ (Ea = ebT
b
a);

(b) Or as a transformation of physical components (15): (xa) 7→
(Xa = T a

bx
b) with respect to the (fixed) basis (ea).

In the first case, it relates two conceptually different spacetimes; in the
second, it represents a transformation within a single spacetime.
T is called a Lorentz transformation, written L = (Lb

a), when it is
(linear and) orthogonal, that is preserves the metric:

(16) ea 7→ Ea = ebL
b
a; ηab = ea · eb becomes ηab = Ea · Eb,

so that

(17) ηab = ηcdL
c
aL

d
b.

Such transformations form the Lorentz group, a subgroup of the Poincaré
group, where the latter also includes translations.
Lorentz transformations, under mild smoothness assumptions, are

derived from the two physical postulates:

(a) There exists a class of privileged systems of reference, that of
inertial frames, with respect to which a free particle moves with
a rectilinear and uniform motion;

(b) With respect to any inertial frame, light propagates isotropi-
cally with a finite, constant velocity.

Equation X0 = L0
ax

a contains the information that the simultaneity
of distant events is not preserved, i.e., the concepts of space and time
are not absolute.
Even though Lorentz transformations form a group, there are dis-

tinguished transformations between observers, namely special Lorentz
transformations, or boosts, that do not form a group [34]. We begin
with the general properties of boosts (Section 3.2.2) and, then, consider
the compositions of boosts (Section 3.2.3).

3.2.2. Boosts. A special Lorentz transformation or boost is the trans-
formation B(v, u) sending the four-velocity (or first frame vector) u =
e0 of a frame F to v = E0, the first vector of another frame F̄ , while
leaving invariant the plane orthogonal to both u and v; it is also called
a Lorentz transformation without rotation. General Lorentz trans-
formations are obtained from boosts by composing them with spatial
rotations.
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The boost B(v, u) may be obtained by composing two reflections (or
hyperplane symmetries): first, a reflection with respect to the hyper-
plane orthogonal to u, namely δij +2uiuj, followed by a reflection with
respect to the hyperplane orthogonal to u+ v, namely

δij +
(vi + ui)(vj + uj)

1 + γ
,

where γ = −v · u. Carrying out the composition, we obtain the boost

(18) Bi
j = δij +

(vi + ui)(vj + uj)

1 + γ
− 2viuj.

We accordingly introduce the frame F̄ given by Ea
i = Bi

jea
j.

The relative three-velocity βλ = γ−1uλ of F relative to F̄ is deter-
mined by

(19) uλ = uiEi
λ.

We obtain from Equation (18) the B-transforms Eλ of the space axes
eλ of F :

(20) Eλ
i =

[

δλ
σ + (γ − 1)β̂λβ̂σ

]

eσ
i − γβλe0

i, where β̂λ =
βλ

|βσ| .

Equation (20) shows that the three-space spanned by (eiλ)λ=1,2,3 is not
transformed by B into itself, but into the space spanned by (Ei

λ)λ=1,2,3;
this expresses that the three-space is not absolute, i.e., that the hyper-
surfaces of simultaneity are not invariant.
From Equation (18), we also obtain

(21) Eλ · e0 = −E0 · eλ.
This expresses that the three-velocity β̄λ of F̄ with respect to F (namely
γ−1E0

iei
λ) is the opposite of the three-velocity βλ of F with respect to

F̄ (namely, γ−1e0
iEi

λ). Only the physical components of the relative
velocity with respect to F and F̄ are meaningful.
We now turn to the lack of the group property for boosts.

3.2.3. Spatial Triads and Lorentz Cycles. A Lorentz cycle Ln is the
composition of n + 1 boosts such that their product leaves unchanged
the initial time-like unit vector u:

(22) Ln = B(u, vn)B(vn, vn−1) · · ·B(v2, v1)B(v1, u).

Thus, Ln : u 7→ v1 7→ · · · 7→ vn 7→ u. We also choose a tetrad (ea) of
which u is the first vector: e0 = u. Taking n = 2 for simplicity and
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writing v1 = v and v2 = w, the cycle L2 transforms the tetrad (ea) into
a tetrad (Ga) defined by

(23) Ga = B(u, w)B(w, u)B(v, u)ea.

In particular, since the boosts in the cycle map, respectively, u = e0
to v, v to w, and w to u, we have G0 = u = e0. Therefore, the spatial
basis (Gλ) orthogonal to u spans the same three-space as the (eλ); they
are given by

(24) Gλ
i = (δij + Aiwj +Bivj)eλ

j,

with

Ai = ck(v, w)
[

δk
i + ukc

i(u, w)
]

,

Bi =
[

δk
i + ci(w, v)wk + ci(u, v)uhc

h(w, v)wk

]

ck(v, u)− ci(u, v),

where c is defined, for any two four-vectors a and b, by

ci(a, b) :=
ai + bi

1− a · b.

At the lowest order of approximation, in which u ·v = v ·w = w ·u =
−1, Equation (24) reduces to

Gλ
i ≈

[

δij +
1

2
(viwj − wivj)−

1

2
ui(wj − vj)

]

eλ
j,

or

(25) Gλ
i ≈ eλ

i +
1

2
(vσwλ − wσvλ)e

i
σ.

(Gλ
i) are obtained by a spatial rotation of (Gλ

i). Therefore, the mod-
ification of space axes when performing a boost is at the origin of the
spatial rotation appearing in the kinematical approach.
We have now the general tools at hand to tackle the three situations

mentioned in the Introduction. We, therefore, move to the first example
of a non-trivial observer manifold.

4. First Case Study: The Relativistic Rotation
Transformation

An approach avoiding the pitfalls of the Galilean rotation transfor-
mations was proposed as early as 1922 by Franklin [6] and rediscovered
by Trocheris [35] and Takeno [36]. It will, therefore, be referred to
as the FTT approach; its physical meaning is discussed in [12], to-
gether with its applications to models of pulsars and to the covariance
of Maxwell’s equations and references to earlier work. Much of the
early discussion started at a time when the concept of general covari-
ance [10, 11] had just been introduced, and its consequences had not
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all been drawn. For this reason, starting with Langevin [7], it was
believed that the rotation transformation should be a change of co-
ordinates. We now know that changes of coordinates are changes of
labels and have no physical meaning. In particular, what is sometimes
called “Langevin’s metric” is merely Minkowski’s metric expressed in
a different system of coordinates, and therefore, any interpretation of
measurement in which such coordinates play an essential role is nec-
essarily flawed, which was only beginning to be understood. Another
difficulty concerns the definition of the angular velocity parameter. Es-
sentially, in the Galilean approach, the speed v = ωr and the angular
velocity ω are both linearly additive; in the conventional relativistic ap-
proach, the speed v = ωr obeys the relativistic law of the composition
of velocities, but as a consequence, ω is no longer additive, whereas in
the FTT approach, the linear additivity of ω and the relativistic law
of composition of velocities are both preserved, thanks to the relation
v = c tanh(ωr/c).
Trocheris’ 1949 derivation is probably the most convenient to recall

here. He considers “as infinitesimal transformation in the neighbour-
hood of a point P the Lorentz transformation with velocity −→ω × −→r ”,
where −→ω is parallel to the z axis. It is

dr′ = dr, dθ′ = dθ − α dx0,
dz′ = dz, dx0

′

= dx0 − αr dθ, and α = ωr/c.

Since dx0
′

is not a perfect differential, he adds ad hoc to it −2αθ dr, in
order to make the infinitesimal transformation integrable. The gener-
ator of the new transformation is then

(26) Xa = (−r2θ/c, 0,−x0/c, 0)
Integrating it, one obtains the relativistic rotation transformation (RRT):

(27)

{

r′ = r, θ′ = θ coshα− (x0/r) sinhα,
z′ = z, x0

′

= x0 coshα− rθ sinhα with, again, α = ωr/c.

the initial conditions being assumed to be θ = t = 0, r and z be-
ing constant. For c ≈ ∞, the RRT reduces to the Galilean rotation
transformation to leading order in 1/c.
Franklin obtained more directly the RRT (27) as a special Lorentz

transformation in the variables x0, rθ. Note, however, that both deriva-
tions make sense only if r and z are held constant. Therefore, the RRT
should not be interpreted as a change of coordinates or as a diffeomor-
phism in Minkowski space, since it really involves two variables and
two parameters, not four coordinates. Since the RRT is determined
at r = const., and z = const., it is not a global transformation of
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M4, and indeed, it is not a Lorentz transformation in M4. We suggest
that it defines the tetrad of the local rotating observer, which is part
of an observer manifold. The spacetime of the observer is, therefore,
flat, but cannot be identified with M4. Intuitively, it is a four-space
that touches M4 at one point only. The precise treatment relies on the
formulae derived next.

Relativistic Rotational Tetrads. To achieve the correct interpre-
tation of the RRT, we retain from it only the expression of the four-
velocity of the rotating particle and associate with a rotating body the
tetrad adapted to it, namely the one in which the vectors along z and
r do not change, while the other two, corresponding to the x0 and
rθ directions, are modified as in the RRT. This yields the vectors Eh

(h = 0, . . . , 3) with the following components:
(28)
Ea

h = {(coshα, 0, sinhα/r, 0), (0, 1, 0, 0), (sinhα, 0, coshα/r, 0), (0, 0, 0, 1)}
Remark 1. In the coordinates (x0, r, rθ, z),

Xa
1 = (0,−rx0, 0,−rθ),

Xa
2 = (sinhα, 0, coshα, 0) = ba,

Xa
3 = (coshα, 0, sinhα, 0) = ua

determine a Lie algebra, but it is not that of the Lorentz group; its
commutation relations are as follows:

[X1, X2] = −X3, [X2, X3] = 0, [X3, X1] = X2.

It is of Bianchi Type VI.

This suggests the following definition:

Definition 5. Let C denote a trajectory s 7→ xa(s) of a material parti-
cle in uniform rotation about an axis, with unit time-like tangent vector
ua(s) in Minkowski space E :=M4. Here, a unit vector ℓa is chosen. It
generates the timeline of the laboratory observer in M4. The observer
manifold MR relevant to this situation consists of copies of M4, each
attached to a different point of the trajectory, together with the frame
(Eh) given by the formulae (28) above. The transfer map from an ob-
server to the event manifold is the boost sending ua to ℓa. The traces
of the observers on E give the trajectory of the particle. In addition,
there is a transfer map between the observers with proper times s and
s′, namely the (unique) Lorentz transformation sending the frame at s
to the frame at s′.

Writing Maxwell’s equations in this frame restores the covariance
of electrodynamics [12], whereas the Galilean transformation leads to
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paradoxes that ultimately express that the Galilean rotation trans-
formation does not preserve the Minkowskian structure, whereas the
transfer maps on MR do.

5. Second Case Study: Thomas Precession and the
Relativity of Simultaneity

As a relativistic effect yielding even at small velocities the factor
of two needed to account for multiplet structure in atomic spectra,
Thomas precession was a great surprise for the theoretical physicist
of the late 1920s, when Thomas [37, 38] and, less convincingly, J.
Frenkel [39] discovered it, using spin–orbit coupling. Though the nor-
mal multiplet structure could be derived through the Dirac equation,
the semi-classical treatment was revisited from time to time, since, on
the one hand, it provides a physical picture that the quantum treat-
ment is lacking and, on the other hand, the expectation value of the
spin operator has the same time dependence as in its classical equation
of motion in the non-relativistic case.
Usual explanations of this effect are of two types:

(a) The kinematical one, which derives it from the non-commutativity
of boosts (Lorentz transformations without rotation), in coor-
dinate representations or in the spinorial formulation.

(b) The dynamical one, which relies on the covariant generalisation
of the equation of motion of a spinning electron in a homoge-
neous electromagnetic field, the Thomas precession appearing
as a consequence of the orthogonality of the spin-vector and the
four-velocity of the electron.

Here, we trace this precession back to the Relativity of simultaneity,
through the systematic use of tetrad bases, and shed, in particular,
some light on the reciprocity principle, which has been met with some
confusion in the literature.

5.1. The Kinematical Approach. This was initiated by L. H. Thomas,
who clearly connected the effect to the non-
commutativity of boosts; this latter property has been shown to be
reflected in the Lie algebraic structure of the Lorentz group by V.
Lalan [40], although H. Poincaré ([41]; see also [42]) had already noted
it. Again, V. Lalan [34] and R. Garnier [43] connected the spatial ro-
tation appearing in the product of boosts to parallel transport on the
pseudosphere, without mentioning É. Borel’s still earlier work [44] on
the Lobachevsky–Bolyai velocity space in Special Relativity (see also
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V. Fock [45]); these ideas were reformulated in terms of “physical ho-
lonomy” by H. Urbantke [46] and the spatial rotation computed using
Clifford algebra. Iterating the infinitesimal Lorentz transformation, W.
H. Furry [47] derived the Thomas precession at an order next to that
of the Relativity of simultaneity and lower than that corresponding
to the composition of velocities. The kinematical approach has also
been discussed in the spinorial formalism, especially by C. Misner, K.
S. Thorne, and J. A. Wheeler ([48], pp. 175–176, 1118, 1146) and,
more recently, by D. Hestenes [49] and D. Hamilton [50], who states,
“that the usual interpretation is untenable” and advocates the use of
Clifford algebra. Textbooks discussing the kinematical derivation are
many; those of C. Møller ([51], pp. 117–125), J. D. Jackson ([52], 11.8
and 11.11), and Misner, Thorne, and Wheeler [48] are informative.

5.2. The Dynamical Approach. The motion of a spinning particle
in a homogeneous electromagnetic field, first considered by J. Frenkel
and discussed by W. A. Kramers ([53], p. 226), was formulated by
V. Bargmann, L. Michel, and V. L. Telegdi (BMT) [54]. They derived
from the assumed orthogonality of the spin-vector and the four-velocity
of the particle the known propagation of the spin-vector (recognised
earlier as the Fermi–Walker propagation by F.A.E. Pirani [55], in the
case of a spinning particle in a gravitational field). That Thomas’
and BMT’s approach lead to the same result was confirmed by H.
Bacry [56], introducing, however, an additional postulate: “a moving
observer can measure directly the spin-vector in the rest-frame of the
particle”. This, of course, is not satisfactory since this is tantamount
to assuming at the outset that any inertial observer is equivalent to the
observer travelling with the particle.

5.3. The Main Argument. The two ways, (a) and (b) above, of ac-
counting for Thomas precession can be traced back to the Relativity
of simultaneity, through the systematic use of tetrad bases. Indeed,
already at the lowest order in β = v/c, hypersurfaces of simultaneity
are not invariant under a boost, and space axes of two frames related
by it do not remain parallel in Minkowski spacetime; thus, they should
be rotated after a series of boosts, the product of which leaves the
initial time axis invariant. On the other hand, the infinitesimal boost
mapping the tangent to the world-line of a particle to the neighbour-
ing one induces the Fermi–Walker transport of space axes. It, then,
follows that the above explanations of Thomas precession are simply
direct consequences of the lack of a notion of simultaneity common to
all observers on the observer manifold. We, therefore, introduce an
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observer manifold M adapted to this situation. The event manifold E

is Minkowski space.

Definition 6. Let C denote a trajectory s 7→ xa(s) of a material parti-
cle, with unit time-like tangent vector ua(s) in E :=M4. The observer
manifold MT relevant to Thomas precession consists of copies of M4,
each attached to a different point of the trajectory. The traces of the
observers on E give the trajectory of the particle. The transfer map
from an observer to the event manifold is the boost sending ua to a
fixed time-like unit vector ℓa. Here, again, there is also a transfer map
between the observers with proper times s and s′, namely the boost
sending ua(s) to ua(s′).

5.4. Infinitesimal Transformations on the Observer Manifold

and Fermi–Walker Transport. We now consider the infinitesimal
transformation of the transfer map. It is this form that will yield
Thomas precession. We show that it leads to the Fermi–Walker trans-
port of the space triad.

Theorem 1. A vector pi = paea
i(s) moving along the trajectory C (or

comoving vector for short), with the pa constant, evolves according to

(29) ṗi = (uiu̇j − uju̇
i)pj.

In other words, pi is Fermi–Walker-propagated along the curve tangent
to u(s).

Proof. Quite generally, the boost B computed earlier determines an
infinitesimal boost b when v = u + δu, with u · δu = 0 (which ensures
v · v = −1); we have

(30) bij = δij + (uiδuj − ujδu
i),

and the b-transforms Ea
i of ea

i are

(31) Ea
i = ea

i + (uiδuj − ujδu
i)ea

j .

When the four-velocity increment δu is equated with u̇ds, we obtain

(32) δea
i = ėa

ids = (uiu̇j − uju̇
i)ds,

so that, by the boost sending u to u + u̇ds, the space axes (eλ
i) are

Fermi–Walker-propagated along the world-line of the origin of the mov-
ing frame with variable velocity ui(s).
Now, a comoving vector pi = paea

i is transformed into pi + ṗids, so
that

(33) ṗi = (uiu̇j − uju̇
i)pj,
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in other words, pi is Fermi–Walker-propagated along the line tangent
to u(s), as desired.

Let B + Ḃds be the boost sending u+ u̇ds to vi = Bi
ku

k; we have

v̇i = Bi
ku̇

k + Ḃi
ku

k = 0,(34)

Ėλ
i = Ωi

jE
j
λ,(35)

where Ωi
j =

[

Bi
k(u

ku̇h − uhu̇
k) + Ḃi

h

]

(B−1)hj,(36)

so that Ωi
kv

k = 0, by virtue of Equation (34). After substituting the

values of B, Ḃ, and B−1 into Equation (36), we obtain
(37)

Ωi
j =

[

γ̇(viuj − vju
i) + (uiu̇j − uju̇

i)− γ(viu̇j − vj u̇
i)
]

(1 + γ)−1.

The B-transforms P i of pi satisfy

(38) ˙̃P i = pρĖρ
i = Ωi

kP̃
k, where P̃ i = (δik + vivk)P

k,

or

(39) Ṗ λ = Ωλ
σP

σ,

with

(40) Ωρ
σ = Ωi

jEi
ρEσ

j =
γ2

1 + γ
(βρΓσ − βσΓ

ρ),

where we have used the relation uiEi
ρ = γβiEρ

i and have set Γρ :=

β̇iEi
ρ.

It follows that any comoving vector p, whether orthogonal to u or
not, is Fermi–Walker-propagated along the u-line, and its image by the
boost B has its spatial part rotated by Ωρ

σ with respect to (Eλ). This
property is, therefore, not restricted to the spin-vector, as it would
appear from the BMT approach. �

5.5. Covariant Form of the Equations. Consider the motion of
a charged spinning electron in a homogeneous electromagnetic field
F ij. The Bargmann–Wigner polarisation vector si attached to it is
orthogonal to its four-velocity u:

(41) u · s := uasa = 0,

and determines its magnetic moment:

(42) wi = (ge/2m)si,

where g is the Landé factor. With respect to (ea), the Larmor preces-
sion is given by

(43) ṡL
i = −F̃ ijwj, or ṡL

λ = −F̃ λσwσ,
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where F̃ ij = (δik + uiuk)(δ
j
h + ujuh)F

kh. On the other hand, the
accelerated motion of the electron due to the Lorentz force is given by

(44) u̇i = −(e/m)F i
ku

k

and according to Equation (29), the spin-vector is Fermi–Walker-propagated
so that we obtain a contribution to the precession equal to

(45) ṡFW
i = −(e/m)(uiFk

h − F ihuk)uhs
k.

It follows that the total precession is

(46) ṡi = −(e/2m)
[

gF ik + (g − 2)F hkuiuh
]

sk.

Equation (46) is the BMT equation where the additional term respon-
sible for the Thomas precession is now simply accounted for by the
Fermi–Walker propagation of comoving space axes during the motion
of the electron; it is not a consequence of the orthogonality relation (41).

5.6. Evaluation in the Atom’s Rest Frame. In applications to
atomic spectra, one is actually interested in evaluating the precession
in the rest frame of the atomic nucleus ([57], p. 340), which we take as
frame (Ea). With respect to (Ea), the motion of the electron is given
by

(47) u̇iEi
λ = −(e/m)(F λ0 + F λσβσ)

where F ab = F ijEi
aEj

b and ui = γ(E0
i + βσEσ

i).
In terms of Eλ = F λ0 and Bλ = 1

2
ελρσF ρσ, Thomas precession, given

by Equation (40), becomes

(48) Ωλ
ρ = − γ2

1 + γ
ελρσ [(β × E)σ + (β × (β ×B))σ] ,

where (a× b)λ = ελρσaρbσ is the usual vector product.
Hence, the total precession is

ωλρ = −(e/2m)ελρσ [gB
σ − (β × E)σ] /(1 + γ)

+ (g − 2)(e/2m)ελρσ

[

γ2

1 + γ
(β × (β × B))σ + γ(β ×E)σ

]

,(49)

as in the usual approaches.

Remark 2. For the dotted derivative Q̇ of a quantity Q being defined
as ui∂iQ, the time derivative in the rest frame of the atom is obtained
by dividing through by γ: (d/dt)Q = Q̇/γ.

Remark 3. If Cartesian coordinates inM4 are adopted, with ea
i = δa

i,
we recover the usual expression for the Thomas precession.
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6. Third Case Study: Charged Particle in a Constant
Electromagnetic Field

We revisit the motion of a charged particle in an electromagnetic
field and show how to associate with it an observer manifold. In this
case, the particle dynamics determine a special frame attached to the
particle, which naturally defines a splitting of the tangent space into
orthogonal subspaces a two-dimensional Minkowski space and a two-
dimensional space. The observer manifold is here determined by the
dynamics. Let u = ua∂a, with u

a = dxa/ds, be the time-like unit vector
tangent to the world-line (L) of a particle in the spacetimeM4 endowed
with the metric ηab. We relied on an earlier paper [58], to which the
reader is referred for background information; in particular, the Frenet
frame is closely related to the Franklin rotation transformation. The
notation used here also follows this paper.
The dynamics generate a Frenet–Serret tetrad {u,n,b, c} deter-

mined by the integration of the ordinary differential equations:

(50) u̇ = an, ṅ = au+ τb, ḃ = −τn + σc, ċ = −σb,
where the dot denotes d/ds; the components of u are ua and similarly
for the others. These four-vectors are mutually orthogonal and form a
right-handed frame; we have

uaua = −1, nana = baba = caca = 1.

Here, a, τ and σ are, respectively, the curvature, torsion, and third
curvature of (L). The curvature and torsion are nonnegative; we let ε
denote the sign of σ (equal to −1 if σ < 0, +1 otherwise). The Frenet
frame may be thought of as the result of Gram–Schmidt orthonormal-
isation applied to the first four derivatives (with respect to s) of the
position x.
Since the electromagnetic field is constant, so are the generalised

curvatures a, τ , and c. One might, therefore, feel that it suffices to
compute the exponential of a matrix to solve the problem entirely [58,
59, 60]; incidentally, since some authors view such particles as having
uniform acceleration [60], we must point out that this is debatable [61],
even though a full discussion would take us too far. Coming back
to our main concern, while the solutions may be computed in terms
of the arc length parameter s by investigating the eigenvalues of the
matrix S below, the problem has additional structure: the Frenet frame
determines a distinguished tetrad in which the last two vectors are
decorrelated from the first two. It follows that the problem generates
not only a frame, but a distinguished splitting of Minkowski space into
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two planes. We shall use this to obtain a new example of an observer
manifold by taking this tetrad as defining the local observer.
The eigenvalues of the matrix

S := (SA
B) =









0 a 0 0
a 0 τ 0
0 −τ 0 σ
0 0 −σ 0









solve

(51) (λ2 − a2)(λ2 + τ 2 + σ2) + (aτ)2 = 0.

This equation has four roots: ±χ, ±iω, where the nonnegative real
numbers χ and ω are given by

ω2 = −1

2
[a2 − τ 2 − σ2 +∆],(52)

χ2 = −1

2
[a2 − τ 2 − σ2 −∆], with(53)

∆ =
√

(a2 − τ 2 − σ2)2 + 4a2σ2.(54)

The relations on the sum and product of roots of the equation yield

(55) χ2 − ω2 = a2 − τ 2 − σ2; aσ = εωχ.

Note also that
χ2 + ω2 = ∆.

From Equation (51), with λ = χ, it is apparent that χ2 ≤ a2. Equation
(55) then yields ω2 = τ 2+σ2+χ2−a2; hence, ω2 ≤ τ 2+σ2. It, therefore,
makes sense to define two positive numbers Γ and Λ by

(56) Γ2 =
a2 + ω2

χ2 + ω2
; Λ2 =

a2 − χ2

χ2 + ω2
,

so that
Γ2 − Λ2 = 1.

Using these relations, we obtain (Γχ)2 + (Γ2 − 1)ω2 = a2; hence,

(57) a2 = Γ2χ2 + Λ2ω2.

Also, (ΓΛ)2(χ2 + ω2)2 = (a2 + ω2)(a2 − χ2) = (a2 + ω2)(τ 2 + σ2 −
ω2) = (aτ)2. (Equation (51) has been used to obtain the last equality.)
Therefore,

(58) aτ = ΓΛ(χ2 + ω2).

The following relations are also useful.

(χΓ)2(χ2 + ω2) = χ2(ω2 + a2) = a2(σ2 + χ2)(59)

(ωΛ)2(χ2 + ω2) = ω2(a2 − χ2) = a2(ω2 − σ2).(60)
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We assume now that a, τ , and σ are constant. We prove the follow-
ing.

Theorem 2. The vectors:

f0 = Γu+ Λb;(61)

f1 = Λu+ Γb;(62)

f2 = a−1[Γχn+ εΛωc];(63)

f3 = a−1[−εΛωn+ Γχc](64)

form a right-handed orthonormal frame such that

f̈0 − χ2f0 = f̈1 + ω2f1 = 0;(65)

f̈2 − χ2f2 = f̈3 + ω2f3 = 0.(66)

This theorem is proven by direct computation of the derivatives. We
note that the last two relations follow from the first, because one can
check directly that

ḟ0 = χf2; ḟ1 = εωf3.

The vector f0 has the following interpretation. Let

ya = xa + aω−2na.

The,
dy

ds
=

aτ

Λω2
f0.

The vectors fk may also be obtained differently: one has

ü+ ω2u =
aτ

Λ
f0;(67)

ü− χ2u =
aτ

Γ
f1;(68)

n̈+ ω2n =
Γχ

a
(χ2 + ω2)f2 = χ

τ

Λ
f2;(69)

n̈− χ2n = ε
Λω

a
(χ2 + ω2)f3 = εω

τ

Γ
f3.(70)

The properties of the frame (fk) suggest the following definition.

Definition 7. Let C denote a trajectory s 7→ xa(s) of a material parti-
cle in an electromagnetic field, with unit time-like tangent vector ua(s)
in E :=M4. The observer manifold MR relevant to this situation con-
sists of copies ofM4, each attached to a different point of the trajectory,
together with the frame given (f0, f1, f2, f3) defined by the formulae of
Theorem 2. The traces of the observers on E give the trajectory of
the particle. The transfer map from an observer to the event manifold
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is the boost sending ua to a fixed time-like unit vector ℓa. The trans-
fer map from the observers with proper times s and s′ is the (unique)
Lorentz transformation sending the frame at s to the frame at s′.

7. Electromagnetic Field Components

While we have focused on a constant field so far, formulae involving
the Frenet–Serret tetrad and, therefore, the observer frame of Defini-
tion 7, in terms of the field derivatives with respect to the arc length,
using the formulae:

Ḟab = uc∇cFab

and

F̈ab = uduc∇d∇cFab + anc∇cFab.

Higher derivatives could be computed in the same way. We give here
explicit formulae for the electric and magnetic field components, de-
fined by

Ea = F abub

Ba = −
∗
F abu

b, with
∗
F ab =

1

2
ηabcdF

cd,

where, as usual, ηabcd =
√−gεabcd (with, here, −g = 1). In other words,

for every index n,

Bn = −1

2
ηnpqru

pF qr;

hence,

ηabmnumBn =
1

2
εabmnumεnpqru

pF qr

= −1

2
δabmpqr umu

pF qr

= F ab − (uaF bm − ubF am)um.

It follows that F ab may, in turn, be recovered from its electric and
magnetic parts.

(71) F ab = ηabmnumBn + uaEb − ubEa.

In the sequel, E has components Ea, and similarly for B, and expres-
sions such as nF̈u are short for contractions such as naF̈abu

b.

Theorem 3. In any e-m field, if aτ 6= 0,

kE = an and kB = B1n+B2b+B3c
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with k = Q/mc,

B1 =
σ

k
− 1

aτ

[

2acḞn+ cF̈u− ȧB2

]

,

B2 =
1

a
cḞu,

and

B3 =
τ

k
− 1

a
bF̈u.

In a constant field, B2 = 0, B3 = τ/k, and B1 = σ/k.

Proof. Let us write

B = B0u+B1n+B2b+B3c.

First of all, B, like E, is always orthogonal to u. Therefore, B0 = 0.
Next, from the expression of F ab in terms of the fields E and B, we
have, using the definition ηabmn = − 1√

−g
εabmn and the fact that the

Frenet–Serret tetrad is a right-handed frame by the choice of c (this is
why σ has a sign),

caFabb
b = ηabmncabbumBn = B1

naFabc
b = ηabmnnacbumBn = B2

baFabn
b = ηabmnbanbumBn = B3.

By repeated differentiations, we obtain

u̇ = kFu = an

ü = k(aFn+ Ḟu)

= a(au+ τb) + ȧn
...
u = k

[

F(ȧn+ a(au+ τb)) + 2Ḟ(an) + F̈u
]

= (d/ds)
[

a2u+ aτb + ȧn
]

= a3n+ 2aȧu+ aτ(−τn + σc) + d(aτ)/dsb+ än+ ȧ(au+ τb)

= 3aȧu+ (ä+ a3 − aτ 2)n+ (2ȧτ + aτ̇)b+ aτσc.

Projecting on the FS tetrad, we obtain

knFu = a; uFu = bFu = cFu = 0.

The relations involving ü yield, in addition to the known relation
nFu = a/k,

nḞu = ȧ/k

abFn+ bḞu = aτ/k

acFn+ cḞu = 0.
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The second of these equations reads

aB3 + bḞu = aτ/k,

hence the value of B3. Similarly, the third of these relations yields

aB2 = cḞu.

Thus, B2 and B3 may be determined from the field components on the
Frenet–Serret tetrad.
To determine B1, we considered the relations derived by the projec-

tion of the third derivative; the projection on u yields the same in-
formation as the projection of the second derivative; taking the scalar
product with the other three tetrad vectors gives:

k{a2nFu+ aτnFb+ nF̈u} = ä + a(a2 − τ 2)

k{ȧbFn+ a2bFu+ 2abḞn+ bF̈u} = 2ȧτ + aτ̇

k{ȧcFn+ a2cFu+ aτcFb+ 2acḞn+ cF̈u} = aτσ.

These equations simplify to

−aτB3 + nF̈u = [ä− aτ 2]/k

ȧB3 + 2abḞn+ bF̈u = [2ȧτ + aτ̇ ]/k

−ȧB2 + aτB1 + 2acḞn+ cF̈u = aτσ/k.

Rearranging, this may also be written as

nF̈u = ä/k + aτ (B3 − τ/k)

2abḞn+ bF̈u = [ȧτ + aτ̇ ]/k + ȧ(τ/k −B3)

2acḞn+ cF̈u = aτ (σ/k − B1) + ȧB2.

The last of these relations yields B1, since B2 is already known. �

8. Conclusions

The conception of rotational motion as a parameterised set of mo-
tions is strongly rooted in absolute simultaneity. Three alternatives
have been proposed, corresponding to somewhat different setups, lead-
ing to rotational or more-general accelerated motions. In all cases, the
event manifold E is Minkowski space M4. The interpretation of rota-
tion transformations as global transformations from Minkowski space
to a single, possibly curved manifold leads to insuperable difficulties.
We, therefore, suggested that the local observer at every point of the
trajectory of an object in uniform motion is associated with a different
manifold, the collection of which forms an observer manifold. In the
present examples, the local manifold of an observer is a pseudo-inertial
system in the sense of C-equivalence.
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Axioms for the observer manifold were compared and were shown
to include, as special cases, manifolds in the usual sense and frame
and fibre bundles over the event manifold. They are not fibre bundles,
because not every event has a fibre over it, and one point may have
several fibres if several observers in different states of motion happen
to meet at a single event. For this reason, fairly general axiomatics
were proposed, so as to separate clearly the mathematical issue of the
classification of observer manifolds from their physical interpretation
in special cases.
The first example is Franklin’s rotation transformation, rediscovered

by Trocheris and, later, by Takeno. It should be understood as defining
a parameterised family of tetrads in cylindrical coordinates, not as a
diffeomorphism, let alone a change of coordinates. Its usefulness in
pulsar physics has already been established. The observer manifold
consists of a collection of Minkowski spaces, one for each point of the
trajectory, defined by distinguished tetrads.
The second example is the motion of an electron with spin. Here,

the transfer maps are Lorentz boosts, and the observers are determined
by their time-like tangents. Thomas precession is a consequence of
the fact that the observer manifold cannot be reduced to the event
manifold because the transfer maps do not form a group. Indeed, the
composition of two Lorentz boosts is not a boost in general. Fermi–
Walker transport is recovered as the infinitesimal form of transfer maps
between observers.
The third example is the motion of a charged particle in a constant

electromagnetic field. While this also leads to the Franklin transforma-
tion in the case of motion in a plane, under the action of a pure mag-
netic field orthogonal to it, it leads in general to a more-complicated,
but still completely explicit splitting of Minkowski space, adapted to
the geometric structure of the Frenet–Serret tetrad. The transfer maps
are Lorentz transformations between these tetrads.
Thus, the observer manifold is not only made necessary by the diffi-

culties in the representation of uniform rotation, it provides a flexible
mathematical framework for the interpretation of measurements by
different observers, in a form both suitable for calculation and immedi-
ately consistent with the physical requirements of Relativity. It seems
to provide a mathematical formulation for the views of Einstein.
Perspectives include (i) a discussion of further examples in which

the manifolds attached to different observers are curved; (ii) the explo-
ration of further axiomatics; (iii) the classification of observer mani-
folds, including the possible transport rules obtainable as infinitesimal
versions of transfer maps; (iv) the extension to variable electromagnetic
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fields and non-electromagnetic fields, including gravitational fields. For
the latter, the introduction of a conformal factor, in the spirit of C-
equivalence, is the obvious procedure. Thus, the wider mathematical
issue is the classification of observer manifolds on the basis of the struc-
ture of their transfer maps and the comparison of different possible
axiomatics, for which this study provided a first set of examples.
Acknowledgement. The author thanks Jan Peng at MDPI for
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kind comments.

References

[1] Kichenassamy, S. Axiomatics of the Observer Manifold and
Relativity. Axioms 2023, 12, 205. https://doi.org/10.3390/
axioms12020205.

[2] Kichenassamy, S. Sur une tentative d’interprétation physique de la Relativité
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[10] Kretschmann, E. Über den physikalischen Sinn der Relativitätspostulate,
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[25] Herglotz, G. Über den von Standpunkt des Relativitätsprinzips aus als “starr”
zu bezeichnenden Körper. Annalen der Physik 1910, 31, 393–413.

[26] Noether, F. Zur Kinematik des starren Körpers in der Relativitätstheorie.
Annalen der Physik 1910, 31, 919–944.

[27] Pirani, F.A.E.; Williams, G. Rigid motions in a gravitational field. Séminaire
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i atomnogo yadra. Phys. Elem. At. Nucl. 1993, 24, 1319–1325.

[29] Trautman, A. Foundations and current problems of General Relativity. In
Lectures on General Relativity; Deser, S., Ford, K.W., Eds.; Prentice Hall
Inc.: Upper Saddle River, NJ, USA, 1964; pp. 215–224.

[30] Synge, J.L. Relativity: The Special Theory, 2nd ed.; North-Holland: Amster-
dam, The Netherlands, 1965; Appendix G, pp. 438–443.

[31] Kichenassamy, S. The relativistically rigid motion of a surface. J. Phys. Math.
Gen. 1982, 15, 3759–3762.

[32] Rosen, N. Notes on Rotation and Rigid Bodies in Relativity Theory. Phys.
Rev. 1947, 71, 55–58.

[33] von Laue, Max. Relativitätstheorie, 4th ed.; Vieweg: Braunschweig, Germany,
1921; Volume 1, pp. 203–204.

[34] Lalan, V. Sur la rotation spatiale associée à un cycle de Lorentz. Comptes-
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Université, Paris), 14 Cours des Humanités, F-93322 Aubervilliers Cedex,
France

Email address : satyanad.kichenassamy@univ-reims.fr


