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ABSTRACT

Controlling the quality of industrial products requires an accurate comprehension of the material behavior
during the several transformation phases. The exact modeling of the heat transfers taking place is crucial for
manipulating rigorously the manufacturing processes. Though, this modeling necessitates the knowledge and
the conform characterization of the material thermophysical properties which are the thermal conductivity,
the specific heat and the specific volume. Currently, these properties are well defined in the solid state,
however they are less mastered in the liquid state (for thermoplastics) and during transformation. The aim
of this paper is to establish an inverse heat transfer method for predicting the variation of the thermophysical
properties during the polymer transformation. This phase change corresponds mainly to the crystallization
of the molten polymer to form a solid with an ordered internal arrangement of molecular chains. The concept
of the inverse method consists in minimizing the difference between the numerical outputs obtained by a
developed finite difference model and the temperature evolution of the material during its transformation. A
hybrid optimization algorithm combining a stochastic algorithm with a deterministic one is adopted and its
robustness is verified by using synthetic noisy data generated by the numerical model. A sensitivity analysis
is conducted in order to test the feasibility of the parameters simultaneous identification. The expected
results will allow to describe the variation of the thermophysical properties function of temperature T and
the relative crystallinity α.
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1. INTRODUCTION

Identifying the thermophysical properties of polymer and composite materials has become an important
matter and holds significant importance in the several industrial applications. They contribute in several
aspects such as the control and the validation of the manufacturing processes, analyses of the thermal
and/or mechanical stresses and shocks, thermal fracture prevention, evaluation of manufactured material
quality. The crystallinity of thermoplastics has a major impact on its thermal behavior. Indeed, the
thermophysical properties are not only dependent on the temperature but also on the solidified fraction.
The conventional characterization methods have been widely used to investigate the variation of these
properties in the amorphous state and in the semi-crystalline state function of temperature [1] [2] [3] [4].
Previous experimental characterization have been conducted in the purpose of evaluating the change of
thermophysical properties function of temperature and the crystallized fraction [5] [6]. Discrete methods
were employed to estimate the properties of the semi-crystalline polymers in their final state with a fixed
percentage of crystallinity and not during their crystallization. Moreover, some authors modeled the effect

*Corresponding Author: rita.moussallem@univ-nantes.fr



of the crystallization on the thermal conductivity with the aid of models describing the conduction through
heterogeneous media like composites. The fiber ratio is substituted by the relative crystallinity and the
spherulites are assimilated to spherical crystallites embedded in amorphous matrix. The classical models
are the Maxwell’s model [7], Rayleigh’s model [8] and Springer’s model [9]. Le Goff et al . [10] compared
the output of these models with the mixing rule and observed a negligible discrepancy due to the weak
contrast between the thermal conductivity of the amorphous and the semi-crystalline phases.
Several apparatuses have been introduced to estimate the variation of the thermoplastics thermal conductivity
function of temperature. The thermal response of the material is measured and implemented in an inverse
model in order to identify the unknown parameters. These studies consisted in optimizing a set of the thermal
conductivity values at predefined temperature levels. In this case, the thermal conductivity dependence of
temperature was described by a piece-wise linear function. Le Goff et al . [11] recorded the evolution of
the temperature at the centre of an injected polypropylene. An inverse method was then applied to compute
the thermal conductivity of the polymer in its solid and liquid state while excluding the crystallization
phase. Tardif et al . [12] estimated the thermal conductivity of a polypropylene by solving an inverse heat
conduction problem. The identification was realized based on the temperatures evolution recorded within
the material while being cooled from a temperature of 210 °C to the ambient at a cooling rate of 1 K/min.
The thermal conductivities were then estimated at different temperature levels outside the crystallization
phase. The results were consistent with the ones found by Le Bot [13], Le Goff [10] and with a hot guarded
plate.
The traditional inverse heat conduction problems aimed to optimize the unknown thermophysical properties
of the material in its final state [14] [15] [16] [17]. Therefore, these estimation methods consisted in
identifying a fixed value of each property and not an evolutionary profile. The originality of this study
resides in the fact that no previous variation rule is imposed to solve the inverse problem. The developed
model will focus on optimizing the unknown parameters while taking into account the temperature variation
and the transformation degree. A numerical model describing the temperature evolution coupled with the
crystallization is developed and the reliability of the estimation technique is validated

2. NUMERICAL MODEL

2.1 Description and resolution of the numerical model A numerical resolution of the thermal
problem was considered for the inverse method. The numerical model corresponds to the cooling of an
injected thermoplastic within a mould of thickness e=4 mm. The one dimensional heat equation modelling
the thermal response of the polymer is coupled with the exothermal heat generation taking place during the
crystallization phase. The heat conduction problem is described by equations 1 and 2:

ρ(α,T )Cp (α,T )
∂T

∂t
= ∂

∂x

(
λ (α, t )

∂T

∂x

)
+ρ(α,T )∆H

∂α

∂t
∀x ∈]0;e[ ∀t > 0 (1)

∂α

∂t
= n ×KN ak (T )× (1−α)[−l n(1−α)]1− 1

n ∀x ∈ [0;e] ∀t > 0 (2)

With ∆H being the crystallization enthalpy, KN ak (T ) the Nakamura coefficient function of temperature and
n the exponent of Avrami. The traditional differential form of Nakamura [18] [19] was simplified to an
equation more natural to implement and to solve numerically. Levy [20] proved the robustness and the
accuracy of writing the crystallization kinetic in the following form:

∂α

∂t
= KN ak (T ).G(α) ∀x ∈ [0;e] ∀t > 0 (3)

With G(α) a function computed over the interval [0,1]. A thermal contact resistance of 10−2 W /m2.K is



considered between the mold and the polymer. This value is based on the previous studies done by Le
Mouellic et al . [21] about the heat transfer taking place during overmoulding processes. The boundary
conditions considering the imperfect contact are written as:

−λ(α,T )
∂T

∂x
=−T −Tmold

R1
f or x = 0 ∀t > 0 (4)

−λ(α,T )
∂T

∂x
= T −Tmold

R2
f or x = e ∀t > 0 (5)

The initial conditions of the thermal problem are:

T (x, t = 0) = 573.15 K ∀x ∈ [0;e] (6)

α(x, t = 0) = 0 ∀x ∈ [0;e] (7)

The heat transfer problem is modelled using the finite difference method. The Crank-Nicolson scheme was
adopted to discretize the one dimensional heat problem. The equations ought to be solved numerically are
the following:

T k+1 = [Ak+1]−1 × (B k+1 ×T k +b) (8)

αk+1 =αk +∆t ×KN ak (T k+ 1
2 )×G(αk+ 1

2 ) (9)

With A and B being a tridiagonal matrices containing the conduction terms and b the crystallization and the
boundary vector. Since the heat equation is coupled with the crystallization kinetic, an iterative calculation is
executed to simulate the thermal behaviour of the polymer. Initially, the values at the time t k+1 is considered
equal to the values at the time t k . Then, the values of the temperature and the relative crystallinity at
t k+1 are computed by solving equations 8 and 9. At each time step, the calculations are repeated until the
temperature and the relative crystallinity difference between two successive iterations is less than 10−3 and
10−6 respectively. The thermal problem was solved using Thomas algorithm since the matrices A and B are
tridiagonal [22].

2.2 Effect of the time and space discretization on the resolution of the numerical model The
finite discretization of the conduction problem in space and time allows the apparition of the term R = ∆t

∆x2 .
The sensitivity of the numerical outputs with respect to the time and space discretization (not shown here
for reasons of space) has shown that the optimal time step is ∆t = 0.1 s and the optimal element length is
∆x = 0.02 mm. In order to guaranty the convergence of the developed numerical model, the inverse of the
Fourier number Fo−1 = ∆x2

a×∆t is computed in the molten and in the solid state. The values are shown in Table
1:

Table 1 Values of the inverse Fourier number.

State Molten (T=400 K; α= 0) Solid (T=293 K; α= 1)
Fo−1 0.0336 0.0512

The value of Fo−1 remains lower than 0.5 when passing from the molten to the solid state proving the
aptitude of the numerical model to solve the coupled heat problem for the adopted discretized scheme.



2.3 Evaluation of the numerical model The numerical model consists in simulating the cooling phase
of the Polyamide 66 after being injected at a temperature of 573.15 K in a steel mold at a temperature of
293 K. The crystallization kinetics of PA 66 was investigated by Faraj [23] as well as the values of the
thermophysical properties. For the sake of validating the developed model, the traditional mixing law was
employed to solve the heat transfer problem [24]. The thermal conductivity and the volumetric specific
heat are described by equations 10 and 11, where “sc” and “a” refer to the semi-crystalline and amorphous
phases respectively.

λ(T,α) =λsc ×α+λa × (1−α) (10)

ρCp (T,α) = ρCp sc ×α+ρCp a × (1−α) (11)

The resolution of the thermal problem will generate the temperature and the relative crystallinity evolution
at different points of the polymer’s thickness. Since the boundary conditions at both extremities are similar
and the polymer is isotropic, the thermal problem is symmetric. The results obtained at the points located
between 0 and e

2 are represented in Figures 1 and 2.
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Fig. 1 Temperature evolution at different points
of the polymer’s thickness
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Fig. 2 Relative crystallinity evolution at differ-
ent points of the polymer’s thickness

The temperature plateau detected in Figure 1 is due to the exothermal heat released during the crystallization
of the polymer. It is noticed that the cooling rate is reduced as the thickness increases leading to a delay
in the crystallization. Consequently, the crystallization occurrence is mostly significant at the center of the
polymer.
In order to evaluate the developed numerical model, its results in pure conduction as well as the results of the
finite element software "Comsol Multiphysics" were compared with an analytical model. A good agreement
was obtained between the numerical and the analytical models and the difference in temperature is less than
0,1 K as shown in Figure 3. It is also noticed that the response of the numerical model is more exact than
the one simulated by Comsol. The results of the numerical model in crystallization were then compared
with Comsol Multiphysics. The backward Euler resolution method is used by the software and the coupling
between the thermal equation and the crystallization is achieved through a specialized library built by Levy
[25]. The same discretization in space and time is adopted for both numerical models. The differences in
temperature and in crystallization kinetics are represented in Figures 4 and 5 respectively. It is observed that
the temperature difference does not exceed 1,2 K while the difference in the crystallization kinetics reaches
a maximum of 0,01. This temperature discrepancy is larger than the experimental measurement noise which



is around 0.025 K . Therefore, the outputs of the developed model are reliable to proceed with the inverse
method.
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Fig. 3 Temperature evolution simulated by the numerical model, an analytical model and Comsol Multi-
physics
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Fig. 4 Temperature difference between the nu-
merical model and Comsol at different points of
the polymer’s thickness
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Fig. 5 Difference in crystallization kinetics be-
tween the numerical model and Comsol at differ-
ent points of the polymer’s thickness

2.4 Sensitivity to the thermophysical properties Prior to identifying the sought thermophysical
properties, it is fundamental to observe the sensitivity of the model outputs with respect to the unknown
parameters. This analysis is required to verify the feasibility of the estimation and to acknowledge for the
possible existing correlations among the properties. Hence, the reduced sensitivity of the temperature with
respect to the thermal conductivity, specific heat and density is computed. It is defined as:

S∗(β, t ) = ∂Y (β, t )

∂β
×β (12)



With β being the parameter to identify and Y the output of the system.
The obtained results are plotted in Figure 6. The similar variation of the sensitivity curves during the overall
exploitation time suggests that the thermophysical properties are correlated. In this case, the alteration of
the model output can be related to any parameter of the thermal problem. Furthermore, the correlation
matrix has been calculated as shown in equation 13. It appears more clearly that the thermal conductivity
and the specific heat are highly correlated. This ascertainment may define the inverse problem as ill-posed
preventing the simultaneous identification of the parameters [26]. Consequently, the study will be conducted
towards identifying only the thermal conductivity of the polymer function of the temperature and the relative
crystallinity.
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Fig. 6 Reduced sensitivity of the temperature with respect to the thermophysical properties.


λ ρ Cp

1 −0.1883 0.9609 λ

1 −0.4458 ρ

1 Cp

 (13)

3. INVERSE HEAT CONDUCTION PROBLEM

3.1 Description of the inverse problem For the current inverse method, optimization is the ultimate
goal for the estimation of the thermophysical properties. The resolution of the inverse problem relies on
minimizing an objective function representing the discrepancy between the experimental/synthetic results
and the numerical results. The concept of the inverse problem is presented in Figure 7 along with a schematic
representation of the measurement points within the injected polymer. The optimization algorithm keeps on
adjusting the values of the thermophysical properties until the cost function satisfies a predefined criterion.
The cost function is described by the following formula:

J =
n∑

i=1

∫ t f

0
(Ti ,E xper i ment al (β)−Ti ,Numer i cal (β))2d t (14)

With n being the number of points where the temperature variation is measured/computed, t f the experiment
time length and β the set of thermophysical properties to identify.



Fig. 7 Algorithm of the inverse problem.

3.2 Unknowns of the thermal problem One of the outputs of the inverse problem is a m ×n matrix
containing the thermal conductivity values corresponding to n predefined temperature levels and m possible
values of the relative crystallinity (ranging between 0 and 1). It is defined as follows.

λ11 λ12 . . . . . . . . . . . . . . . λ1n

λ21 λ22 . . . . . . . . . . . . λ2n−1 λ2n
...

...
... . . . . . . . . . ...

...
λm1 λm2 . . . . . . . . . . . . λmn−1 λmn

 (15)

This matrix will assist in computing the thermal conductivity of the polymer during its crystallization. It is
found by performing a double linear interpolation function of the temperature and the relative crystallinity.
However, the polymer in the molten and in the solid states has a fixed relative crystallinity (α= 0 and α= 1
respectively). Therefore, in these states the thermal conductivity is only dependent of the temperature. The
conductivity of the molten polymer is defined as a set of values corresponding to the possible temperature
levels. Similarly, a different set is assigned for the thermal conductivity of the solid polymer function of
temperature.

3.3 Optimization algorithm The identification of the thermal conductivity values can be achieved by
applying a stochastic optimization algorithm or a deterministic one. Since the actual problem is non-
linear and presents a relatively high number of parameters, the use of a stochastic approach is required to
avoid getting trapped in a local minimum. Among the stochastic approaches, the metaheuristic techniques
are nature inspired and zero-order algorithms. In the current study, the aptitude of the Particle Swarm
Optimization algorithm (PSO) [27] and the Genetic Algorithm (GA) [28] [29] for identifying the unknown
parameters is tested. The stochastic algorithm (PSO or GA) is combined with a deterministic method. The
final estimation values optimized by the stochastic technique will be implemented as initial values to the
gradient based algorithm. The interior point algorithm able to solve non-linear convex problems, is adopted
[30].



3.4 Estimation results The temperature profiles simulated by the developed numerical model are imple-
mented in the inverse method. The estimation technique is selected by comparing the results given by the
particle swarm optimization algorithm and the genetic algorithm, both coupled with a deterministic method
that takes place at the end of the stochastic algorithm. The numerical model simulates the cooling of the
injected PA 66 from a temperature of 400 K to a temperature of 345 K. According to the numerical results,
the crystallization of the considered polymer occurs between 365 K and 385 K. In this manner, the thermal
conductivity is identified in the molten state (T > 385 K and α = 0), during the crystallization phase and
in the solid state (T < 365 K and α = 1). The temperature difference between the unknown values of the
thermal conductivity is 10 K and the difference in relative crystallinity is 0.1.
The objective function corresponds to the temperature differences at three distinct points of the polymer’s
thickness. Since the crystallization is mostly detected at the center of the polymer (Figure 1), the three
measurement points are considered at the center of the polymer and at both sides at a distance of e/4 from
the edges. The identified matrix is compared with the original one calculated with the help of the mixing
rule (equation 10) and used to produce the synthetic results. The relative error of each identified value is
computed in order to compare the accuracy of the algorithms.

Without noise The results computed without synthetic noise are presented in Figures 8 and 9. They are
recapitulated in Table 2 to highlight the maximum relative difference between the estimated results and the
actual values of the thermal conductivity. It is noticed that the results obtained using the Genetic Algorithm
are more accurate than the values found by the Particle Swarm Optimization algorithm.
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Table 2 Maximum absolute relative difference between the estimated values and the actual values of the
thermal conductivity.

State PSO GA
Solid 3.004% 1.107%

During crystallization 20.15% 6.41%
Molten 3.87% 0.196%

With noise Several level of noises are added to the numerical results. Since the GA has proved to be more
effective than PSO, the identification is done using the GA coupled with the interior point algorithm. The



relative errors of the obtained results are shown in Figures 10, 11, 12 and 13. The good agreement between
the estimated and the actual values of the thermal conductivities, even for relatively important level of noises,
verify the feasibility and the accuracy of the estimation strategy. Furthermore, the identified values of the
thermal conductivities with a noise of 0.025 ◦C are more precise than the ones estimated with a noise of
0.01 ◦C . Effectively, the added noise of intensity 0.025 ◦C is generated by a Gaussian distribution based on
the experimental measurements while the other level of noises are created arbitrarily. It is also noted that
the stochastic aspect of the calculations may lead to unsimilar results in each of the presented cases.
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Fig. 11 Relative error of the estimated thermal
conductivity using GA with a noise of 0.025 °C
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conductivity using GA with a noise of 0.3 °C

4. CONCLUSION

An estimation technique of the thermal conductivity function of the temperature and the relative crystallinity
has been investigated in this paper. For this purpose, a numerical model simulating the crystallization of
thermoplastics is established and compared to an analytical model and the software Comsol Multiphysics.



The performances of the Particle Swarm Optimization algorithm and the Genetic Algorithm were compared
and it was found that the genetic algorithm is more compatible with the present thermal problem. This
work constitutes a preliminary step for the experimental identification. Further analysis will be made to
investigate the sensitivity of the thermal problem with respect to the number of increments in temperature
and crystallization. This study will assist in determining the number of identifiable unknowns based on their
correlations. The apparatus developed by Le Mouellic et al . [21] will be used to measure the temperature
evolution at different points of an injected polymer during its cooling phase. Therefore, three K-type
thermocouples of 125 µm diameter are stretched in the moulding cavity. These measurements will be
implemented in the developed identification technique to optimize the thermal conductivity. The identified
values will contribute in visualizing the actual evolutionary profile of the thermal conductivity during the
crystallization phase. An experimental campaign aiming to measure the thermal response of the polymer is
under execution to finalize the inverse method. The next step will consist in applying the innovative inverse
method on a composite material in order to identify the thermal conductivity variation during crystallization.

NOMENCLATURE

λ Thermal conductivity [W /(m.K ) ]
Cp Specific heat [J/(kg .K )]
ρ Density [kg /m3]
T Temperature [K ]
R Thermal resistance of

contact
[m2.K /W ]

α Relative crystallinity [ ]
Fo Fourrier number [ ]
x Thickness [mm]

n Avrami exponent [ ]
KN ak Nakamura coefficient [s−n]
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