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On the penalization by the perimeter in shape optimization
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Abstract

This paper is devoted to the understanding of regularisation process in the shape opti-
mization approach to the so-called Dirichlet inverse obstacle problem for elliptic operators.
More precisely, we study two different regularisations of the very classical shape optimization
approach consisting in minimizing a mismatched functional. The first one is an implicit regu-
larisation when working in the class of inclusion having a uniform ε-cone property, a natural
class in shape optimization. As this regularity is not trivial to guarantee numerically, we
discuss the regularisation by perimeter penalization. We show that this second regularisation
provides a stability gain in the minimization process.

Keywords: inverse obstacle problem, Tikhonov regularisation, perimeter penalization, stabil-
ity result, shape optimisation

AMS Classification: 35R30, 35B35, 49Q10

1 Introduction

In this work, we are primarily interested in studying the effect of the penalization by the perimeter,
in the context of shape optimization for the Dirichlet inverse obstacle problem. This regularisation
of Tikhonov type can be seen as an analogous one to the classical inverse Cauchy problem (also
called data reconstruction problem) where the adding term is linked with the norm of the unknown
and permits to obtain existence and convergence results (see [9] and reference therein). Our aim is
to study in details the effect of adding a penalization term using the perimeter when we consider the
inverse problem of recovering an unknown inclusion in a domain from the knowledge of boundary
measurements, in particular to quantify the stability gain, if such gain exists. In other words the
question that guided us are as follows: does the Tikhonov regularisation guarantee, and/or is-it
necessary to guarantee, the existence of minimizers, depending on the class of admissible domains
with which we are working? Does the addition of this term improve the stability of the numerical
reconstruction?

More precisely, we consider a bounded smooth connected open set Ω of Rd (where d ∈ N∗
represents the dimension). In the following, ν denotes the outward normal vector to Ω. Let
(gN, gD) ∈ H−1/2(∂Ω)×H1/2(∂Ω) be a non-trivial given Cauchy pair. The inverse obstacle problem
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we are interested in reads as follows: find ω, a sufficiently smooth domain compactly contained
in Ω, and u ∈ H1(Ω\ω), such that

−∆u+ u = 0 in Ω\ω,
u = gD on ∂Ω,
∂νu = gN on ∂Ω,
u = 0 on ∂ω.

(1.1)

Notice that the regularity of the inclusion ω will be specified and discussed below.

The Dirichlet inverse obstacle problem is the simplest model of geometrical inverse problems,
and contains the two main difficulties inherent in this class of problems: it is non-linear as we
search the geometry, and it is ill-posed, as it might fail to have a solution for some pairs of
Cauchy data. It is actually exponentially ill-posed, even when the geometry is known (i.e. the
problem of reconstructing u from (gN, gD) knowing ω, see [4,5,16]), and therefore highly sensible to
small perturbations on the data. Nevertheless, identifiability holds in the class ω Lipschitz and u
continuous in a neighborhood of ∂ω (and therefore, as a consequence of elliptic regularity, for
inclusions with C1 boundaries): there exits at most one couple (ω, u) satisfying (1.1) (see, among
others, [10, Theorem 5.1] or [6, Theorem 1.1]). Thus, it is reasonable to design algorithm to try
to reconstruct ω and u from the knowledge of a data (gN, gD) possibly affected by some noise.
From now on, we will say that the data (gN, gD) is compatible if (1.1) admits a solution, and is not
compatible otherwise.

The ill-posedness of our problem of interest is noticeable in the very poor stability estimate
one can obtain for compatible data. Indeed, suppose that we have two compatible sets of data
with, for simplicity, the same Neumann condition: (gN, g1) with corresponding solution (ω1, u1),
and (gN, g2) with corresponding solution (ω2, u2). Set A1 = Ω\ω1 and A2 = Ω\ω2. There exists
a modulus of continuity γ with γ(t) ≤ C log(t)η where C and η ∈ (0, 1] depend on Ω such that
(see [3, Theorem 2-1, p.763])

‖g1 − g2‖L2(∂Ω) ≤ ε =⇒ dH(A1, A2) ≤ γ

(
ε

‖gN‖H−1/2(∂Ω)

)
, (1.2)

where dH is the so-called Hausdorff distance. Such stability result is optimal (see [3]), hence the
very poor stability (logarithmic stability) of the Dirichlet inverse problem.

Numerous methods have been developed to tackle this problem (see, e.g., [6,14,17,20,22], and
the references therein). In our study, we focus on the shape optimization approach (used, e.g.,
in [1, 9]), with a very standard misfit function. More precisely, let us define a set of admissible
domains

A := {A = Ω\ω, θ open, ω ⊂ K, ω lipschitz } .

Here, K is a known compact set satisfying the assumption ω ⊂ K ⊂ Ω. It is classically used
to prevent the open sets to be arbitrary close to the boundary of Ω, which would add technical
difficulties. We consider the problem of minimizing the least-squares functional L : A −→ R+

given, for all A ∈ A, by

L(A) =
1

2

∫
∂Ω

|u− gD|2 ,

where u ∈ H1(A) is the solution of the following problem −∆u+ u = 0 in A = Ω\ω,
∂νu = gN on ∂Ω,
u = 0 on ∂ω.

(1.3)

The classical underlying idea of the approach is that if A satisfies L(A) = 0, then ω = Ω\A is indeed
the searched obstacle as (ω, u) satisfies (1.1). Equivalently, if the Dirichlet inverse obstacle problem
admits a solution, then L admits a minimizer A and L(A) = 0. Now, if the data is corrupted by
some noise (which is obviously the case in practical situations), the situation gets complicated:
if the corrupted data is still compatible, L still admits 0 as minimum, but the corresponding
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minimizer might be distant from the correct obstacle due to the very low stability of the problem.
And if the corrupted data is not compatible, the infimum of L may be still zero but it may be that
no minimizer exists.

As expected, the problem of minimizing L is very weakly stable, as one can obtain a logarith-
mic stability similar to (1.2) for compatible data. In practice, when ones considers a numerical
minimization scheme for L, one does not see such poor stability. One could think the stability is
too weak with respect to the numerical errors made in the scheme: when one goes in the itera-
tions of the descent method, the boundary of the reconstructed inclusion oscillates more and more.
Afraites and al have studied this in [1] by a second order shape sensitivity analysis and showed
that the Riesz representative of the shape hessian is compact: the difficulty lays at the continuous
level. This clearly underlines why a regularisation is needed.

Here, we study two types of regularisation. The first one consists in enforcing more regularity
on the admissibles sets ω, by forcing them to satisfy an uniform ε-cone condition. In other word,
we replace the set A by a more demanding set Aε. This alone restores stability in the minimization
problem, but at the same time seems not very practical from a numerical point of view. The second
one is the standard penalization by the perimeter. It consists in replacing the function L by its
penalized version

Lη : A ∈ A 7→ L(A) + ηP(A),

where η ≥ 0 is the regularisation parameter and P(A) is the perimeter of A (relative to Rd) given
by (see, e.g., [18, Definition 2.3.1])

P(A) = sup

{∫
A

divφ; φ ∈ D(Rd), ‖φ‖∞ ≤ 1

}
.

We recall that if A is regular (that is C1), the previous definition coincides with the usual definition

of perimeter: P(A) =

∫
∂A

1 (see, e.g., [18, Proposition 2.3.3]). Notice again that even if it is

a very common choice of regularisation, it is not obvious that it restores well-posedness of the
minimization problem in the class A. It nevertheless has a positive impact in the minimization
process, as in a certain sense, it improves the coerciveness of the functional at a minimizer. We
quantify this improvement, which constitutes the main result of this study.

Outline of the article The papers is organised as follows. We first introduce the possible
optimisation problems related to L and Lη, discussing in particular different admissible spaces of
open sets. This naturally leads to several problems for which we prove existence of minimizers, and
discuss the behavior of these minimizers as the different parameters of regularization go to zero.
Finally we quantify the gain of stability obtained by penalizing the functional with the perimeter,
using the second order shape derivatives of the misfit functional.

2 Several class of admissible sets and several regularisations

2.1 Four minimisation problems

As mentioned above, a natural strategy in order to solve the inverse obstacle problem (1.1) is to
minimize the functional

L(A) =
1

2

∫
∂Ω

|u− gD|2,

where u is the A-dependant solution to (1.3), over the previously defined set

A = {A = Ω\ω, ω open, ω ⊂ K, ω lipschitz } ,

as we know that, by assumption, our target ω belongs to A. In other words, we are interested in
the minimization problem

inf
A∈A
L(A). (P)
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However, as said in the introduction, problem (P) is ill-posed and highly unstable. It is therefore
risky to solve this problem numerically without additional regularisation.

A first method to regularize problem (P) consists in restricting the set of admissible domains.
Very classically in shape optimization, for a positive real parameter ε > 0, we are interested in
open sets satisfying the so-called ε-cone property whose definition is recalled below.

Definition 2.1. A bounded open set Θ of Rd is said to satisfy the ε-cone property if

∀x ∈ ∂Θ, ∃ξx unit vector such that ∀y ∈ Θ ∩ B(x, ε), C(y, ξx, ε) ⊂ Θ,

where C(y, ξ, ε) = {z ∈ R, (z − y, ξ) ≥ cos(ε)|z − y| and 0 < |z − y| < ε} is the cone of vertex y,
of direction ξ and dimension ε.

Having this in mind, we introduce the set Aε of domains having an ε-cone property:

Aε = {A := Ω\ω, ω open, ω ⊂ K, ωc has the ε-cone property} .

Then our first regularized problem of interest consists in minimizing the functional L over the
set Aε, for a fixed positive parameter ε > 0. We denote (Pε0) this second minimization problem:

inf
A∈Aε

L(A). (Pε0)

Let us make two comments on the set Aε. First of all, as any open set having the ε-cone property
for some ε > 0 is Lispchitz (see [18]), we have Aε ⊂ A for all ε > 0. Additionally, for all A ∈ Aε,
problem (1.3) is well-posed. Finally, for any open set ω0 with Lipschitz boundary, there exists
ε0 such that ω0 satisfies the ε-cone property for all ε in (0, ε0) (see [18]). Therefore, as Ω is
by assumption smooth, hence Lipschitz, there exists a positive parameter ε∗ such that for all
ε ∈ (0, ε∗), A ∈ Aε implies A has the ε-cone property. From now on, the parameter ε is supposed
to be in the interval (0, ε∗).

The second method of regularisation that we consider consists in minimising the previously
defined penalized functional Lη for some positive parameter η > 0. Then we have two options:
minimizing Lη over the initial set A, or the restricted set Aε, which gives two new minimization
problem:

inf
A∈A
Lη(A), (P0η)

and
inf
A∈Aε

Lη(A). (Pεη)

In the following, we mainly focus on problems (P), (Pε0) and (Pεη). Problem (P0η) corresponds
to a regularisation of problem (P) by penalization of the perimeter only. It is not clear that such
penalization is sufficient to ensure the well-posedness of problem (P0η). Indeed, in most known
situations arising in shape optimization in which this perimeter penalization ensure the existence of
an optimal design, the obtained minimizer is of finite perimeter but has no regularity whatsoever
(see [8]). Therefore, it seems doubtful that the penalization by the perimeter guarantees the
existence of a minimzer in the class of Lispchitz domains A.

2.2 Well-posedness of problems (Pε0) and (Pεη)

Contrary to the reformulation of the obstacle problem as the minimization problem (P), there
always exists a solution to the regularized minimization problems (Pε0) and (Pεη). Let us empha-
size the crucial assumption of the uniform cone property that insures the existence of a minimizer.
Without it, the homogenization phenomenon may occur leading to nonconvergent minimizing se-
quences.

However, a minimizer can be associated to a positive value of the reconstruction functional L.
Hence, it may not be a solution of the original inverse problem. This occurs, for example, if the
Cauchy data are not compatible. Additionally, we cannot guarantee uniqueness of the minimizer.
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Theorem 2.2. The minimisation problem (Pε0) admits a solution denoted by A∗ ∈ Aε and the
penalised problem (Pεη) admits also a solution denoted by A∗η ∈ A.

Proof. We focus on problem (Pε0). The idea is to prove that the function L is lower semi-continuous
(and even continuous in our case) for one of the Hausdorff, characteristic function, or compact
sets convergence (see [18, Chapter 2.2, Different topologies on domains]). Let (An) ∈ Aε be a
sequence of domains converging to A∗ ∈ Aε for one of these convergences. Let us prove that
lim inf L(An) ≥ L(A∗). Let us consider, for all n ∈ N, the solution un ∈ H1(An) of the following
problem  −∆un + un = 0 in An = Ω\ωn,

∂νun = gN on ∂Ω,
un = 0 on ∂ωn,

and u ∈ H1(A) solution of the same problem with An replaced by A, and ωn replaced by ω. We
extend un by zero in ωn (resp. u by zero in ω), and we still denote un (resp. u) this extension. By
definition, both un for all n and u are H1(Ω) functions, and we now show that the sequence (un)
converges to u in H1(Ω).

Let n ∈ N. We classically have

‖un‖H1(Ω) ≤ ‖gN‖H−1/2(∂Ω) .

Therefore, there exists u∗ ∈ H1(Ω) such that the sequence (un) weakly converges to u∗ in H1(Ω).
We now characterize the limit u∗ through a boundary value problem. Let φ ∈ C∞c (Ω), and for all
n in N, wn = φun. We have ∆wn = ∆φun + 2∇φ · ∇un + φun in An = Ω\ωn,

wn = 0 on ∂Ω,
wn = 0 on ∂ωn.

Denote fn = ∆φun + 2∇φ · ∇un + φun and f = ∆φu∗ + 2∇φ · ∇u∗ + φu∗. Since (un) weakly
converges to u∗ in H1(Ω), (fn) converges strongly in H−1(Ω) to f . From [18, Corollary 3.2.6,
Theorem 3.2.13 and Corollary 3.2.15], we deduce that (wn) converges strongly in H1

0(Ω) to w,
where w ∈ H1

0(Ω) solves  ∆w = f in A∗ = Ω\ω∗,
w = 0 on ∂Ω,
w = 0 on ∂ω.

We notice that w = φu∗ (by uniqueness of the limit). Then, since

∆φu∗ + 2∇φ · ∇u∗ + φu∗ = f = ∆w = ∆φu∗ + 2∇φ · ∇u∗ + φ∆u∗,

for all φ ∈ C∞c (Ω), we have −∆u∗ + u∗ = 0 in Ω\ω∗. Moreover, w = φu∗ = u∗ = 0 on ∂ω∗. It
remains to determine the boundary condition on the fixed boundary ∂Ω. To that end, we choose
φ such that φ = 1 in K and localize in the fixed domain Ω \K. Finally we have

∆((1− φ)un) = ∆(1− φ)un + 2∇(1− φ) · ∇un + (1− φ)un in Ω,

(1 − φ)un = 0 on ∂K, and the weak convergences (1 − φ)un ⇀ (1 − φ)u∗ in H1(Ω\K) and
∆((1− φ)un) ⇀ ∆((1− φ)u∗) in L2(Ω\K). Thus, on ∂Ω, we have

∂ν((1− φ)un) = ∂ν(un) = gN ⇀ ∂ν((1− φ)u∗) = ∂ν(u∗)

weakly in H−1/2(∂Ω), and then ∂νu
∗ = gN. To sum up, u∗ satisfies −∆u∗ + u∗ = 0 in A∗ = Ω\ω∗,
∂νu

∗ = gN on ∂Ω,
u∗ = 0 on ∂ω∗,

which immediately implies u∗ = u by uniqueness of the solution to that problem.
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Let us now prove that the weak convergence un ⇀ u is actually strong in H1(Ω). We have
un = (1 − φ)un + φun. We know that (wn) = (φun) converges strongly in H1

0(Ω) to w = φu.
Moreover, setting hn = (1− φ)un, for all n ∈ N, and h = (1− φ)u, we have

∆hn = un −∆(φun) −→ u−∆(φu) = ∆h,

strongly in H−1(Ω), and ∂νhn = gN = ∂νh on ∂Ω. Thus, there exists a constant c such that hn
strongly converges to h+ c in H1(Ω). As hn weakly converges to h in H1(Ω), the constant is zero.
Finally, we conclude that un = (1− φ)un + φun converges strongly to (1− φ)u+ φu = u in H1(Ω).
Using this convergence, we obtain that L is continuous and then limL(Ank) = L(A∗).

To conclude the proof, let (An) be a minimizing sequence. Then there exists a subsequence (Ank)
which converges to A∗ ∈ A in the sense of Hausdorff, of the characteristic functions and of the
compact sets (see, e.g., [18, Theorem 2.4.10]). Since L is continuous, we have

inf
A∈A
L(A) = limL(Ank) = L(A∗),

which proves that A∗ is a minimizer.

The statement for the penalized criterion follows since the perimeter P is lower semicontinuous
for the convergence of characteristic functions (see, e.g., [18, Proposition 2.3.7]) and since L is
continuous.

Remark 2.3. Let us underline that if we consider −∆u = 0 instead of −∆u + u = 0, we obtain
|un|H1(Ω) ≤ ‖gN‖H−1/2(∂Ω) instead of ‖un‖H1(Ω) ≤ ‖gN‖H−1/2(∂Ω) in the previous proof. Then,
in this case, we have to check that there exists a constant c ≥ 0, independent of n, such that
‖∇un‖L2(Ω) ≥ c ‖un‖H1(Ω) in order to conclude that there exists u∗ ∈ H1(Ω) such that un ⇀ u∗.

2.3 Convergence results

In this section, we prove the principal results of convergence regarding our problems of interest. To
put it simply, we prove below that family of solutions of problems (Pεη) converges to solutions to
corresponding problems (Pε0) when η goes to zero. And if (P) has a minimizer, the same situation
occurs between (Pε0) and (P) as ε goes to zero, which leads, roughly speaking, to the diagram

(Pεη)
η→0−−−→ (Pε0)

ε→0−−−→ (P).

We also show that, for ε small enough, we can go directly from (Pεη) to (P), that is

(Pεη)
η→0−−−→ (P)

Obviously, these diagrams are simplifications, as for example most of convergences are only true
up to subsequences. The precise statements are given in the following propositions.

Proposition 2.4. Let ε > 0 be fixed. For η > 0, let Aη be a minimizer of (Pεη). There exists a
sequence (ηn) of positive parameters converging to zero and A∗ ∈ Aε such that A∗ is a minimizer
of (Pε0) and Aηn converges to A∗ in the Hausdorff, characteristic functions and compact set
topologies.

Proof. As by definition, (Aη)η>0 is a family of elements of Aε, there exits a sequence of positive
real numbers (ηn) that converges to 0 and A∗ in Aε such that Aηn converges to A∗ in the Hausdorff,
characteristic functions and compact set topologies [18, Theorem 2.4.10]. We have already seen

that L(Aηn)
n→0−−−→ L(A∗).

Let A in Aε. We have

L(A∗)
n→∞←−−−− L(Aηn) ≤ Lηn(Aηn) ≤ Lηn(A) = L(A) + ηnP(A)

n→∞−−−−→ L(A).

The result follows.
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Proposition 2.5. Suppose that problem (P) admits a minimizer A∗. There exists ε0 such that A∗

is a minimizer of (Pε0) for all ε in (0, ε0).

Proof. The minimizer A∗ is lipschitz by definition, hence there exists ε0 such that A∗ belongs to Aε
for all ε ∈ (0, ε0). Let ε be in (0, ε0) and Aε be a minimizer of (Pε0). By definition, L(Aε) ≤ L(A∗).
But Aε belongs to A, hence L(A∗) ≤ L(Aε). The results follows.

Corollary 2.6. Suppose that the inverse obstacle problem (1.1) admits a (necessarily unique)
solution. Then

� P admits a unique minimizer A∗, and L(A∗) = 0,

� for ε > 0 and η > 0, let Aεη be a solution of (Pεη). There exists ε0 > 0 such that for
all ε ∈ (0, ε0), there exists a sequence of positive parameters (ηn) such that Aεηn converges
to A∗ in the Hausdorff, characteristic functions and compact set topologies.

Proof. The first point has already been proven in the introduction. Let us therefore focus on the
second point: by Proposition 2.5, there exists ε0 such that A∗ is a minimizer of (Pε0) for all ε
in (0, ε0). Let Aε be another minimizer of (Pε0). We have L(Aε) = L(A∗) = 0, which immediately
implies Aε = A∗ by uniqueness of the solution of (1.1). Then the result is a direct consequence of
Proposition 2.4.

3 A increased stability result for the penalized problem

As seen in the previous section, the penalization of the misfit functional by the perimeter only is a
priori not sufficient to ensure the well-posedness of the minimization problem. At the theoretical
level, we need to work in the regularized set Aε to ensure the existence of minimizers, with or
without the parameter penalization.

Nevertheless, this does not mean that the perimeter regularization is useless in our context.
First of all, the set Aε is not really practical at the numerical level, whereas the penalization by
the perimeter is easily implementable. But more importantly, it turns out the regularization by
the perimeter improves the stability of our problem. We intend to highlight that in the present
section, by giving a quantitative estimate of the stability increase at a minimum.

3.1 Preliminaries and reminders

In order to introduce the main ideas of this section devoted to achieving an increased stability
result, let us first focus on the very classical problem of the minimization of the so-called energy
functional. The energy functional E of Ω is defined by

E(Ω) = inf

{
1

2

∫
Ω

|∇u|2 −
∫

Ω

u; u ∈ H1
0(Ω)

}
.

The energy is homogeneous of degree d+ 2 and a volume constraint is needed to obtain existence
of a minimizer of this energy. It is well known that the minimizer is then the ball and Brasco et
al. have even given in a quantitative version of this inequality while studying the Faber-Krahn
inequality. Precisely, they have shown in [7] that there exists a dimensional constant σ(d) such
that for any open set Ω with finite measure

E(Ω) ≥ E(B1) + σ(d)F(Ω)2, (3.1)

where F is the Fraenkel asymmetry defined as

F(Ω) = inf

{
|Ω4B|
|B|

; B ball such that |B| = |Ω|

}
,
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where the symbol 4 stands just here for the symmetric difference between sets. This a typical
stable situation. Notice that the gap between the value at a generic domain and the value at the
minimizer is express in term of a crude L1 type term. This is typical of the case where no regularity
assumption is made on the deformations. Let us emphasize a point already noticed by Dambrine
and Lamboley in [12]: the local stability statement is directly connected to the regularity of the
class of domains. For exemple, the previous general statement can even be more precise under
additional regularity assumption. If one consider a quasispherical cap Ωh, that is a domain such
that its boundary if the graph over the sphere ∂B of a C2,α function h

∂Ωh =
{
x ∈ Rd, x = (1 + h(y))y, y ∈ ∂B

}
, (3.2)

then there exists δ(d, α) > 0 such that

‖h‖2,α ≤ δ(d, α) ⇒ E(Ωh) ≥ E(B1) +
1

32d2
‖h‖2H1/2(∂B)

as shown in [12]. Notice that, this type of result can be the first step to derive general stability
results by using the selection principle as in [7] or geometric constraint as in [21].

Finally let us consider the regularisation of E by adding a the penalization term ηP(Ω),
where η > 0. Since the ball is the minimizer for both the energy function E and the perime-
ter P, thus the ball is also trivially a minimizer for the penalized energy Eη = E + ηP. The
stability issue is then well-known thanks to the quantitative inequalities. The quantitative isoperi-
metric inequality has been proven by Fusco and al in [15] and states that there exists a dimensional
constant C(d) > 0 such that

P(Ω) ≥ P(B1) + c(d)F(Ω)

holds for any Borel set Ω with finite measure |B1| and with a finite perimeter P (Ω) in the distribu-
tional sense of Caccioppoli-De Giorgi. Combined with (3.1), we obtained the following quantitative
stability estimate:

Eη(Ω) ≥ Eη(B1) + (σ(d) + ηc(d))F(Ω),

that holds for any open set Ω with finite measure |B1| and with a finite perimeter P (Ω) in the
distributional sense of Caccioppoli-De Giorgi. In the previous statement no gain is observed while
it is known from a long time by numericians that adding this penalization by the perimeter permits
to regularize this optimization problem.

The reason of this apparent contradiction lays in the class of domains under consideration. We
aim to justify properly this fact at the continuous level by using the methods of shape sensitivity of
order two. Using the results detailed in [12], we immediately get for spherical caps defined in (3.2):
there exists positive numbers ε and C(d) such that if ‖h‖2,α < ε, then

Eη(Ωh) ≥ Eη(B1) +
1

32d2
‖h‖2H1/2(∂B1) + ηC(d)‖h‖2H1(∂B1).

In other words, the presence of the perimeter terms increases the local stability by passing from a
H1/2-stability to a H1-stability.

3.2 Stability result concerning the inverse obstacle problem

In order to consider the least-squares tracking objective L, we need to consider more general
shapes than balls. To that end, we first recall some basic facts from differential geometry and fix
the notations. We follow in this paragraph the constructions first given in [13] and followed in [12].
We follow step by step the general strategy developed in [12] to prove quantitative stability results
for smooth perturbations.

In the following, we will assume that ω is a smooth (at least C2,α) bounded open set and we
recall that ν denotes the outer unit normal field to ∂ω. There is a non negative real ρ(Ω), such
that the application T∂ω defined by

T∂ω : ∂ω × R −→ Rd
(M,V ) 7−→ M + V ν(M)
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is a local diffeomorphism from ∂ω× (−ρ(ω), ρ(ω)) on an open tubular neighborhood of ∂ω we will
denote T∂ω. This property expresses the fact that any point x in T∂ω has a unique orthogonal
projection p∂ω(x) on ∂ω and that the relation

x = p∂ω(x) + h(x) ν(p∂ω(x)) where |h(x)| = ‖x− p∂ω(x)‖,

holds. Notice that h is uniquely defined and we can defined normal graph on ∂ω, that is ωh such
that

∂ωh = {x+ h(x)ν(x), x ∈ ∂ω} .

Before stating and proving the following theorem, we briefly recall the definition of our main
tool, that is the shape derivatives, and fix some notations. Given a domain A, we first define for
any V ∈ W1,∞(Rd) such that supp(V ) ⊂ K ⊂ Ω and for any shape functional J the function
JA(V ) = J [(I + V )(A)] on a neighborhood of 0 in W1,∞. In particular, the first shape derivative
is DJ(A) · V := J ′A(0), a continuous linear form on W1,∞ (the shape gradient), and the second
order shape derivative is D2J(A) · [V, V ] := J ′′A(0), a continuous symmetric bilinear form on W1,∞

(the shape hessian).

In the following, we assume that the perturbation direction V belongs to C3(∂ω) and, taking
into account the structure theorem of the shape derivatives (see [18, Theorem 5.9.2]), we also
assume that V = (V · ν)ν on ∂ω so that h = V · ν with the previous notations. In that context,
our main result reads:

Theorem 3.1. Let A∗η = Ω\ω∗η be a domain of class C2,α. Then the penalised least-squares
functional Lη is twice Fréchet differentiable on a neighborhood of A∗η for the W1,∞ norm. Moreover,
if A∗η = Ω\ω∗η is a critical shape for Lη stable in the sense that

D2Lη(A∗η) · [V, V ] > 0, ∀V ∈W1,∞(∂ω∗η),

then there exists ξ > 0 and c = c(ξ) > 0 such that

Lη(Ah) ≥ Lη(A∗η) + c ‖h‖2H1(∂ω∗η),

for all Ah = (I + hν) (A∗η) such that ‖h‖C2,α(∂ω∗η) ≤ ξ.

In other words, the presence of the penalization by the perimeter provides a local H1-stability
at a minimum of the functional, therefore making the numerical research of a minimizer slightly
more stable.

Proof. The fact that Lη is twice Fréchet differentiable on a neighborhood of A∗η for the W1,∞

norm is classical and is based on the use of the implicit function theorem (we refer for example
to [18, Chapter 5] or also [2] for details).

Let us now prove the main part of the theorem which is the stability result. We recall that we
consider V ∈ W1,∞(Rd) with V ∈ C2,α(∂ω∗η), supp(V ) ⊂ K ⊂ Ω and with V = hν on ∂ω∗η and
that A∗η = Ω\ω∗η is a stable critical shape for Lη.

Step 1: computation of the first order shape derivative. We know that the shape derivative
u′ ∈ H1(A∗η) solves (see, e.g., [18, Chapter 5] or [2])

−∆u′ + u′ = 0 in A∗η,
∂νu

′ = 0 on ∂Ω,
u′ = −∂νuh on ∂ω∗η .

We introduce the adjoint state w ∈ H1(A), solution to
−∆w + w = 0 in A∗η,

∂νw = u− gD on ∂Ω,
w = 0 on ∂ω∗η .
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We have

DL(A∗η) · V =

∫
∂Ω

u′(u− gD) =

∫
∂Ω

u′∂νw =

∫
A∗η

∆w u′ +

∫
A∗η

∇w · ∇u′ −
∫
∂ω∗η

u′∂νw

=

∫
A∗η

∆u′ w +

∫
A∗η

∇u′ · ∇w −
∫
∂ω∗η

u′∂νw =

∫
∂Ω

w∂νu
′ +

∫
∂ω∗η

w∂νu
′ −
∫
∂ω∗η

u′∂νw.

Thus, using the boundary conditions, we obtain

DL(A∗η) · V =

∫
∂ω∗η

∂νu∂νw h ,

and then, using the classical shape derivative of the perimeter

DLη(A∗η) · V =

∫
∂ω∗η

(∂νu∂νw + ηH) h .

Notice that if A∗η is a critical point, then

∂νu∂νw = −ηH on ∂ω∗η .

Step 2: computation of the second order shape derivative. We know that the second order shape
derivative u′′ ∈ H1(A∗η) solves (see, e.g., [18, Chapter 5] or [2])

−∆u′′ + u′′ = 0 in A∗η,
∂νu

′′ = 0 on ∂Ω,
u′′ = −(∂νu

′ −∇u · ∇τ h )h − ∂νuV · (−∇τ h ) on ∂ω∗η .

Since V = h ν, we obtain that

u′′ = −(∂νu
′ −∇u · ∇τ h )h on ∂ω∗η .

Moreover the shape derivative w′ ∈ H1(A∗η) solves
−∆w′ + w′ = 0 in A∗η,

∂νw
′ = u′ on ∂Ω,

w′ = −∂νw h on ∂ω∗η .

We then have

D2L(A∗η) · [V, V ] =

∫
∂Ω

(
u′′(u− gD) + |u′|2

)
=

∫
∂Ω

u′′∂νw +

∫
∂Ω

u′∂νw
′

=

∫
∂Ω

w∂νu
′′ +

∫
∂ω∗η

w∂νu
′′ −

∫
∂ω∗η

u′′∂νw +

∫
∂Ω

w′∂νu
′ +

∫
∂ω∗η

w′∂νu
′ −
∫
∂ω

u′∂νw
′.

Thus, using the boundary conditions for u′′ the second derivative of the state, we obtain

D2L(A∗η) · [V, V ] =

∫
∂ω∗η

∂νw (∂νu
′ −∇u · ∇τ h ) h −

∫
∂ω∗η

∂νw∂νu
′ h +

∫
∂ω∗η

∂νu∂νw
′ h .

Noticing that u = 0 on the boundary ∂ω∗η of the inclusion and hence ∇τu = 0 on ∂ω and then
∇u · ∇τ h = 0 on ∂ω∗η , we arrive at

D2L(A∗η) · [V, V ] =

∫
∂ω∗η

∂νu∂νw
′ h .

Moreover we know that

D2P(Ω) · V · V =

∫
∂ω∗η

|∇τ h |2 +

∫
∂ω∗η

h 2
(
H2 − Tr

(
t∇τν∇τν

))
,
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where H is the mean curvature of ∂ω∗η , and thus

D2Lη(A∗η) · [V, V ] =

∫
∂ω∗η

∂νu∂νw
′ h + η

(∫
∂ω∗η

|∇τ h |2 +

∫
∂ω

h 2
(
H2 − Tr

(
t∇τν∇τν

)))
.

Step 3: the shape Hessian D2Lη(A∗η) is coercive in H1. We split the shape hessian as

D2Lη(A∗η) · [V, V ] = `r(h , h ) + `m(h , h ),

where we have set

`r(h, h) =

∫
∂ω∗η

∂νu∂νw
′h+ η

∫
∂ω∗η

h2
(
H2 − Tr

(
t∇τν∇τν

))
and

`m(h, h) = η

∫
∂ω∗η

|∇τh|2 .

We check easily that `r is continuous on L2(∂ω∗η) while `m is lower semi-continuous in H1(∂ω∗η)
and moreover satisfies the coercivity property

`m(h, h) > c1 |h|2H1(∂ω∗) ,

for all h ∈ C∞(∂ω∗η). As a consequence, we can apply Lemma 3-1 of [12] and obtain that there
exists a constant C such that

D2Lη(A∗η) · [V, V ] ≥ C |h|2H1(∂ω∗) .

Step 4: Improved Taylor property. We want now to prove that there exist ξ > 0 and a modulus of
continuity m such that for every domain Ah = Ω \ ω = (I + hν) (A∗η) with ‖h‖C3(∂ω∗η) ≤ ξ,∣∣∣∣Lη(Ah)− Lη(A∗η)− 1

2
D2Lη(A∗η) · [h, h]

∣∣∣∣ ≤ m
(
‖h‖C3(∂ω∗η)

)
‖h‖2H1(∂ω∗η) .

We split the functional into the two natural parts. Concerning the perimeter, we have (see [12,
Proposition 4.5])

P(Ah) =

∫
∂ω

1 =

∫
∂ω∗η

j∂ω(h) = P(A∗η)+P ′(A).h+
1

2
P ′′(A∗η)·[h, h]+O

(
‖h‖W1,∞(∂ω∗η) ‖h‖

2
H1(∂ω∗η)

)
,

where j∂ω(h) is the surfacic jacobian.

Concerning the least-squares tracking, we follow the strategy of Dambrine and Lamboley [12,
section 4-2]. As shown in [11,12] the crucial step is to prove an improved continuity property of the
second order shape derivative : namely that there exist η > 0 and a modulus of continuity ω such
that for every domain Ωh with ‖h‖2,α ≤ η, and all t ∈ [0, 1] :

|l′′(t)− l′′(0)| ≤ ω (‖h‖2,α) ‖h‖2Hs

where l : t ∈ [0, 1] 7→ L (At) for the path (At)t∈[0,1] connecting A∗η to Ah, and defined through its
boundary

∂At =
{
x+ th(x)n(x), x ∈ ∂A∗η

}
.

We have to estimate the difference. We claim that:∣∣∣∣∣
∫
∂At

∂νtut∂νtw
′
t h t −

∫
∂A∗η

∂νu∂νw
′ h

∣∣∣∣∣ ≤ ω (‖h‖2,α) ‖h‖2H1/2.

The proof is technical but straightforward by following the various steps of [12]. In particular, we
can use directly the estimates on geometric quantities stated in [12, Lemma 4-8]. The control of
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the variations of the state u and of the adjoint w is a direct application of the sensitivity analysis
of these functions with respect to the deformation fields. That sensitivity follows directly from the
Implicit Function Theorem (see [12, Proof of Theorem 5.7.4], [19]).

Using the Taylor formula with integral remainder:

L (Ah)− L(A∗η) = L′(A∗η).h+
1

2
L′′(A∗η).(h, h) +

∫ 1

0

[l′′(t)− l′′(0)] (1− t)dt

Step 6: conclusion. We apply [12, Theorem 1.1] to prove that A∗η is an H1-stable local minimum
of Lη in a C2,α-neighborhood, that is to say there exists ξ > 0 and c = c(ξ) > 0 such that for all
A = (I + hν) (A∗η) such that ‖h‖C2,α(∂ω∗η) ≤ ξ

Lη(A) ≥ Lη(A∗η) + c‖h‖2H1(∂ω∗η).
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géométrique. [A geometric analysis].

[19] D. Henry. Perturbation of the boundary in boundary-value problems of partial differential
equations. Number 318. Cambridge University Press, 2005.

[20] R. Potthast. A survey on sampling and probe methods for inverse problems. Inverse Probl.,
22(2):r1–r47, 2006.
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