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We develop a Galerkin discretization of the electric field integral equation based on a lowest-order
virtual element approximation for surface meshes composed of polygons. This new boundary element
discretization relies on the divergence-conforming virtual element counterparts of the classical Raviart-
Thomas finite elements on simplices and is particularly suited to handle hanging nodes. We prove the
well-posedness of the resulting stabilization-free numerical scheme by establishing the stable-uniform
character of the discrete inf-sup condition in the natural norm for polyhedral surfaces. Moreover, we
demonstrate through an a priori error analysis the quasi-optimal convergence of the scheme, leading to
the same convergence rate as that of the classical Raviart-Thomas boundary element scheme. Finally,
numerical experiments involving scattering problems are presented in order to give more insight into the
behavior of the virtual boundary element scheme in terms of h-convergence and accuracy as a function
of the regularity of solutions and meshes.

Keywords: Virtual elements; Maxwell’s equations; Boundary integral operators; Polygonal meshes.

1. Introduction

With significant advances in matrix compression and preconditioning techniques, the boundary element
method (BEM), based on boundary integral equations, has become a competitive tool to numerically
simulate the scattering or radiation of time-harmonic electromagnetic waves. Applications can be found,
for example, in antenna design (Francavilla et al., 2012; Stutzman and Thiele, 2012; Vipiana et al.,
2010), in Radar Cross Section (RCS) analysis (Collino et al., 2008; Kong and Sheng, 2018; Peng et al.,
2016; Stupfel, 2015) and in ElectroMagnetic Compatibility (EMC) (Li et al., 2014; Solis et al., 2020).
An integral equation widely used in engineering to describe such physical phenomena is the so-known
Electric Field Integral Equation (EFIE). A common discretization of the EFIE on the surface of the
physical body by means of Galerkin methods relies on Raviart-Thomas (RT) divergence-conforming
finite elements (Raviart and Thomas, 1977) (or also known as the Rao-Wilton-Glisson finite elements,
RWG (Rao et al., 1982) in short). The first comprehensive study, dating back to the 80s, of this
conforming approximation for any finite element space order on smooth surfaces was done in Bendali
(1984a,b). In the beginning of the 2000s, various efforts were devoted to extending the theoretical
understanding of the convergence behavior of these Galerkin schemes (also involving other divergence-
conforming spaces, such as the Brezzi-Douglas-Marini ones, BDM (Brezzi et al., 1985) in short) to
general surfaces, including the Lipschitz ones with boundary (Buffa and Christiansen, 2003) as well
as the polyhedral ones with either planar faces (Buffa et al., 2002a; Hiptmair and Schwab, 2002) or
curvilinear faces (Buffa and Hiptmair, 2003). However, all these studies are confined to the standard
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finite element setting which prohibits the presence of hanging nodes within the mesh of the body
surface. This means that mesh elements can intersect either in a common vertex or along a common
side which, in turn, cannot contain any additional nodes that are not element vertices. These hanging
nodes may appear in many situations, as for instance during local refinement/coarsening of the mesh
within design and optimization processes. Nevertheless, in real-life electromagnetic problems it can
be convenient to handle a nonmatching mesh, which can be built by independently partitioning each
part of the domain into elements whose size is adapted to capture the local electromagnetic features.
This would avoid generating an oversized conventional mesh (without hanging nodes) with eventually
narrow elements, leading to the solution of an overly large and potentially ill-conditioned linear system,
originating from the EFIE discretization (the reader can refer to Adrian et al. (2021) for a recent review
and discussion on discretization-related ill-conditioning sources for the EFIE).

To overcome this defect, nonconforming approximations such as the Discontinous Galerkin (DG)
methods, which enforce only weakly the solution continuity across the element’s boundaries, have
been successfully devised in the partial differential equations (PDE) community (Cockburn et al., 2000;
Hesthaven and Warburton, 2008; Houston et al., 2005; Melenk et al., 2013). Some works about DG
approximations of boundary integral equations for (quasi-)elliptic scalar problems have been proposed
in (Heuer and Karkulik, 2017; Heuer and Meddahi, 2013; Heuer and Salmerón, 2017). In the realm of
electromagnetism, a first extension of the DG formalism to boundary integral equations, resulting in
an interior penalty variational formulation, has recently been studied in Peng et al. (2013). Compared
to the conventional divergence-conforming approximation of the EFIE, this DG formulation involves
two additional terms, namely a consistency-type term and an interior penalty stabilization term. In a
subsequent study (Peng et al., 2016), the authors have further investigated these typical terms coming
up with an antisymmetric variant of the previous DG formulation. While good accuracy has been
observed through the several numerical experiments performed on both academic and more general
geometries (see, e.g., (Echeverri Bautista et al., 2015; Peng et al., 2016, 2013) and references therein),
these DG schemes present two main drawbacks. First, the practical interest of employing discontinuous
polynomial basis functions within DG spaces results in doubling the unknowns at the boundaries of
each mesh element, which leads to an increase in the linear system size. Afterwards, although the
stabilization term is necessary for the well-posedness of the discrete problem, this term can negatively
impact the conditioning of the linear system and the convergence of the numerical method. And the
optimal choice of such a term cannot be obtained through theoretical analysis. For example, in the
nonsymmetric formulation (Peng et al., 2016), authors have chosen a stabilization term on the basis
of numerical experiments that is proportional to log(h), with h denoting the mesh-size, in order to
ensure the scheme’s optimal convergence. Moreover, as far as we known, a complete mathematical
analysis of this DG discretization of the EFIE is still missing. A first step toward a theoretical analysis
of the interior penalty DG formulations of boundary integral equation for the Helmholtz problem was
made in (Heuer and Salmerón, 2017; Messai and Pernet, 2020). Finally, there also are other Galerkin
discretization schemes for the boundary integral equations that handle simplicial surface meshes with
hanging nodes worth mentioning (Bendali et al., 2012; Martin et al., 2023).

Recently, a new conforming approximation paradigm called the virtual element method (VEM),
firstly introduced in Beirão da Veiga et al. (2013), has considerably attracted the engineering
community’s attention for solving PDE. The VEM owns a great success as, being a generalization of
the standard finite element variational setting, the method supports very general meshes with elements
having an almost arbitrary shape; in this framework indeed, any hanging node is simply interpreted
as a vertex of degenerate elements (say, e.g., a triangle with five nodes on its boundary is considered
as a polygon with five edges). Roughly speaking, the main idea behind the VEM is that, on each
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mesh element, the approximation space is spanned by virtual basis functions that are not explicitly
known. These functions consist of polynomials up to a certain degree ensuring the desired accuracy
plus other general functions being solution to local PDE. The use of some local projection operators,
only defined through the knowledge of the degrees of freedom, associated to the virtual basis functions,
allows to compute the discrete bilinear forms with the required accuracy and hence, to build the whole
algebraic problem up to stabilization. An explicit stabilization term is then generally included in the
weak formulation to make the underlying discrete scalar product equivalent to the continuous one.
Many contributions are available in the literature (Beirão da Veiga et al., 2013, 2018, 2017, 2022;
Beirão da Veiga and Mascotto, 2022) including the extension of VEM to curvilinear mesh elements
(Beirão da Veiga et al., 2019; Dassi et al., 2022). In electromagnetism, few works exist (Barnafi et al.,
2023; Beirão da Veiga et al., 2018; Beirão Da Veiga et al., 2018; Beirão da Veiga et al., 2022) (these
lists are not exhaustive).

In this work, we propose for the first time to extend the principle of the VEM to the approximation
of boundary integral operators used in the EFIE. This aims at providing the new boundary element
discretization, which involves the natural virtual element counterparts of the classical lowest-order RT
elements, with robustness in respect of the hanging nodes and hence, with flexibility in handling more
general mesh elements than simplices. A feature that can help address the structural and geometrical
complexities of the scattering or radiating bodies. Our purpose in the present work is to theoretically
study and numerically analyze a novel Galerkin boundary element method based on a virtual element
approximation space (termed here V-BEM, short for virtual boundary element method) for discretizing
the EFIE on nonsmooth surfaces. We particularly focus on the scattering of electromagnetic plane
waves by a perfectly conducting body, which is assumed, in this paper, to be a polyhedron whose
boundary consists of a finite number of planar faces. This analysis may be clearly extended to both
curvilinear piecewise polyhedral surfaces, by employing particular Lipschitz-isomorphisms from the
approximated surface to the physical one (see, e.g., Section 3.5 of Christiansen (2003)), and open
surfaces, by considering the suitable functional framework (Buffa and Christiansen, 2003).

The strongly non-local variational setting of the EFIE (involving, e.g., pseudo-differential operators,
non-local norms) does not allow the direct application of the standard VEM approach for discretization,
which would require the introduction of a local projector defined with respect to the operators used in
the boundary integral formulations. A natural solution we opt for to address this problem is to go a little
beyond the VEM framework by simply considering a L2-projector from the literature. This however
results in a perturbed discrete weak formulation of the EFIE, whose analysis (i.e. well-posedness and
convergence) cannot be carried out on the basis of existing theoretical results in this field (see, e.g.,
(Buffa and Hiptmair, 2003; Christiansen, 2003; Hiptmair and Schwab, 2002)). We devise the new
EFIE discretization by making use of two key components, coming both from the VEM literature: the
divergence-conforming lowest-order virtual element space (the serendipity variant) (Beirão da Veiga
and Mascotto, 2022), along with the element-wise L2-orthogonal projection (Beirão da Veiga et al.,
2018). We point out that the proposed weak formulation gets rid of the typical stabilization term
of the VEM. Our choice for this approximation setting is motivated by the fact that, according to
Beirão da Veiga et al. (2017), such a virtual space allows for the extension of the lowest-order RT space
on polygonal elements. And as a result, the proposed V-BEM can be interpreted as a discretization
scheme combining the virtual element approximation on (degenerate) polygons with the classical RT
approximation whenever the elements are triangles.

The main contribution of this work is twofold: on the one hand, we prove a uniform discrete inf-sup
condition of the new stabilization-free V-BEM formulation and establish an a priori error estimate for
the resulting scheme in the natural norm, i.e. theH−1/2 (divΓ,Γ)-norm. On the other hand, we provide
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a broader understanding of the scheme behavior through a numerical analysis of the h-convergence on
surface currents and RCS for both smooth and nonsmooth scattering bodies.

The outline of the paper is the following. In section 2, we recall some notations and important
functional spaces, as well as the mesh regularity assumptions. The EFIE model problem is detailed in
section 3, wherein we introduce the new Galerkin discretization by the divergence-conforming virtual
elements. In section 4, we summarize the main theoretical results of the paper, such as the h-uniform
discrete inf-sup condition and the a priori error estimate. Section 5 gathers all the proofs and technical
tools needed to prove the results of the previous section. Section 6 is dedicated to numerical experiments
aiming at comparing the h-convergence of the proposed V-BEM with the classical BEM approach based
on the RT approximation space. Finally, we draw some conclusions in section 7.

Let us point out, from the very beginning, that to keep the paper understandable we only investigate
lowest-order RT and virtual approximation spaces on planar elements, any generalization to higher
order spaces being straightforward. Furthermore, in the present paper, we do no describe any issues
related to either the implementation or the solution of the induced linear system. All these questions
will be the subject of a future article.

Nota Bene: In the rest of the article, we denote a . b (or a & b) if ∃C > 0, such that a ≤ Cb
(a ≥ Cb, respectively), where a and b are comparable objects and C is independent of discretization,
but can vary with the problem parameters (body geometry, wavenumber, etc.).

2. Notation and functional spaces

Let us recall standard definitions and main properties for Hilbert and Sobolev spaces which allow
to correctly define trace and integral operators in the context of polyhedral domains. Some basic
assumptions on the surface meshes used for partitioning the domain are stated as well. To begin with,
let Ω be a closed polyhedron in R3 whose boundary Γ := ∂Ω is assumed to be split intoNΓ planar faces
(Γi)i=1,··· ,NΓ , and let n ∈ L∞(Γ) be the unit normal vector field on the boundary pointing outward of
Ω.

2.1. Functional spaces

At each of these faces Γi, we associate a 2D local Cartesian representation using a local orthonormal
coordinate system (Oi, τ

i
1, τ

i
2). A point x ∈ Γi can be represented in two ways by using either its

classical Cartesian variables (x1, x2, x3) or the local coordinate system, i.e. x2D = (x1, x2). We also
define the orthogonal variable associated to x2D by x2D,⊥ := (−x2, x1). In two dimensions, let v be a
vector and q a scalar, we denote the divergence operator and the curl operators as

∇ · v =
∂v1

∂x1
+
∂v2

∂x2
, curlv =

∂v2

∂x1
− ∂v1

∂x2
, curlq =

(
∂q

∂x2
,− ∂q

∂x1

)
. (2.1)

On the other hand, if v is a three-dimensional vector field (v1, v2, v3), we consider

∇ · v =
∂v1

∂x1
+
∂v2

∂x2
+
∂v3

∂x3
, curlv =

(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
. (2.2)

In doing so, there will be no ambiguity in the paper when using 2D and 3D operators. It is now possible
to recall the standard definitions of some Hilbert and Sobolev spaces. With s ≥ 0, we make use of
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the Sobolev spaces Hs
loc (Ω) with L2 ≡ H0 ≡ H , where the loc sub-fix implies that the space lives

on any compact of Ω. Of course, Hilbert spaces Hs (Ω) appear when the sub-fix is dropped. These
spaces are equipped with the norms ‖·‖Hs(Ω). It is worth noting that spaces written here in bold letters
denote spaces involving vectors, whereas spaces in normal letters involve scalars like the Hilbert space
Hs (Ω). Furthermore, with A a first-order differential operator, we use the definitions of the spaces
given in Buffa and Hiptmair (2003):

Hs
loc (A,Ω) = {v ∈Hs

loc (Ω) | Av ∈ Hs
loc (Ω)} , (2.3)

Hs (A,Ω) = {v ∈Hs (Ω) | Av ∈ Hs (Ω)} , (2.4)

Hs
loc (A0,Ω) = {v ∈Hs

loc (Ω) | Av = 0} , (2.5)

Hs (A0,Ω) = {v ∈Hs (Ω) | Av = 0} . (2.6)

Some trace operators are used, especially the tangential trace and the tangential component, which are
defined for a sufficiently smooth function v : Ω → C3, by γtv = n × v|Γ and πtv = γtv × n,
respectively. In particular, these operators are well-defined for all functions in the spaces Hs+1/2 (Ω)
for 0 < s < 1 due to the continuity results of the standard trace operator in Lipschitz domain (see
theorem 3.38 in McLean and McLean (2000)). Consequently, for s ∈ (0, 1), applying the tangential
trace or the tangential component operators on Hilbert spaces allows us to get the following tangential
spaces:

Hs
⊥ (Γ) := γt

(
Hs+1/2 (Ω)

)
, Hs

‖ (Γ) := πt

(
Hs+1/2 (Ω)

)
, (2.7)

where Hs
⊥ (Γ) ,Hs

‖ (Γ) ⊂ L2
t (Γ), with L2

t (Γ) being the tangential space defined as {v ∈(
L2 (Γ)

)3 | u · n = 0}. The dual spaces of Hs
⊥ (Γ) and Hs

‖ (Γ) are H−s⊥ (Γ) and H−s‖ (Γ) with
respect to the L2

t (Γ) pivot space for s ∈ (0, 1), respectively, and the related duality pairings are
denoted 〈·, ·〉⊥,s,−s and 〈·, ·〉‖,s,−s (Hiptmair and Schwab, 2002). In order to make the notation clearer
in throughout the paper, we will improperly shorten the sub-fix of these duality pairings for s = 1/2,
which, for instance, for the vector and scalar cases read

if a ∈ H1/2 (Γ) , b ∈ H−1/2 (Γ) then 〈a, b〉1/2,−1/2 is written as 〈a, b〉 , (2.8)

if a ∈H1/2
‖ (Γ) , b ∈H−1/2

‖ (Γ) then 〈a, b〉‖,1/2,−1/2 is written as 〈a, b〉‖ . (2.9)

Whenever ambiguity arises, the full notation of the duality pairings is used. Since Ω is assumed to be a
polyhedron, the tangential gradient can be defined face by face: let v : Ω→ C be a sufficiently smooth
function,

∇Γv(x) = ∇Γiv(x) = πt (∇v) (x), if x ∈ Γi. (2.10)

By using the local orthonormal coordinate system (Oi, τ
i
1, τ

i
2), ∇Γi can be equivalently defined as 2D

gradient applied to the function v2D(x1, x2) := v(Oi + x1τ
i
1 + x2τ

i
2), i.e.

∇Γiv = ∇v2D =

(
∂v2D

∂x1
,
∂v2D

∂x2

)T
. (2.11)

In the same way, the vectorial tangential curl operator is defined as

curlΓv(x) = curlΓiv(x) = γt (∇v) (x) = curlv2D(x2D), if x ∈ Γi. (2.12)
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These two tangential operators can be extended as a linear continuous mapping from H3/2(Γ) to
H

1/2
‖ (Γ) andH1/2

⊥ (Γ), respectively (Buffa and Ciarlet, 2001a,b). By duality, we define the tangential
operators∇Γ· and curlΓ as the adjoint operators of −∇Γ and curlΓ, respectively:

∇Γ· : H−1/2
‖ (Γ)→ H−3/2(Γ) defined by 〈∇Γ · v, ϕ〉−3/2,3/2 := −〈v,∇Γϕ〉‖ , (2.13)

curlΓ : H
−1/2
⊥ (Γ)→ H−3/2(Γ) defined by 〈curlΓv, ϕ〉−3/2,3/2 := 〈v, curlΓϕ〉⊥,1/2,−1/2 . (2.14)

In the context of sufficiently smooth tangential vector fields, the 2D representation face by face of the
operators∇Γ· and curlΓ can be also used:

∇Γi · v = ∇ · v2D, curlΓiv = curlv2D, (2.15)

where v2D(x1, x2) :=
(
v(Oi + x1τ

i
1 + x2τ

i
2) · τ i1 , v(Oi + x1τ

i
1 + x2τ

i
2) · τ i2

)T
. With the tan-

gential operators ∇Γ· and curlΓ, we recall the following tangential spaces, especially H−1/2 (divΓ,Γ)
that will be used intensively throughout the article:

H−1/2 (divΓ,Γ) :=
{
v ∈H−1/2

‖ (Γ) | ∇Γ · v ∈ H−1/2 (Γ)
}
, (2.16)

H−1/2 (curlΓ,Γ) :=
{
v ∈H−1/2

⊥ (Γ) | curlΓv ∈ H−1/2 (Γ)
}
. (2.17)

Their associated norms are defined as

‖v‖2H−1/2(divΓ,Γ) := ‖v‖2
H
−1/2

‖ (Γ)
+ ‖∇Γ · v‖2H−1/2(Γ) , (2.18)

‖v‖2H−1/2(curlΓ,Γ) := ‖v‖2
H
−1/2
⊥ (Γ)

+ ‖curlΓv‖2H−1/2(Γ) , (2.19)

where theH−1/2
‖ (Γ)- andH1/2

‖ (Γ)-norms are:

‖v‖
H
−1/2

‖ (Γ)
:= sup

w∈H1/2

‖ (Γ)

∣∣∣〈w,v〉‖∣∣∣
‖w‖

H
1/2

‖ (Γ)

, (2.20)

‖v‖
H

1/2

‖ (Γ)
:= inf

w∈H1/2(Γ)

{
‖w‖H1/2(Γ) | πtw = v

}
. (2.21)

Now, we can give two fundamental results about γt and πt (see Buffa and Ciarlet (2001a,b); Buffa et al.
(2002b)): these operators can be extended as continuous mapping fromH (curl,Ω) toH−1/2 (divΓ,Γ)

andH−1/2 (curlΓ,Γ), respectively.
Finally, we introduce spaces with local extra-regularity in order to reveal the h-convergence rate of

corollary 4.6. The spaceHσ(divΓ,Γ) is defined as follows

Hσ(divΓ,Γ) =
{
v ∈Hσ

−(Γ) : divΓ (v) ∈ Hσ(Γ)
}
, (2.22)

withHσ
−(Γ) :=

{
v ∈ L2

t (Γ) : ∀i = 1, · · · , NΓ, v|Γi ∈H
σ
t (Γi)

}
and

‖v‖2Hσ(divΓ,Γ) := ‖v‖2Hσ
−(Γ) + ‖∇Γ · v‖2Hσ(Γ) , (2.23)

with ‖v‖2Hσ
−(Γ) =

∑NΓ

j=1 ‖v‖
2
Hσ
t (Γj)

and Hσ
t (Γj) being the space of tangential vector fields of

regularity σ ≥ 0 on the plane surface Γj .
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2.2. Mesh regularity properties

Henceforth, let (Th)h>0 be a family of meshes constituted of NTh polygonal elements that provides an
approximate surface corresponding exactly to Γ. For each element K of a given Th, its set of edges
is EK , its diameter is hK , being the maximum distance between two vertices of K, and at each edge
e ∈ EK of length he is associated the unit normal vector nKe pointing outward the elementK and living
on its plane. The center of mass of an element K is denoted xK . We also denote by nK the restriction of
n toK and by hminK the minimum distance between two vertices ofK. In the rest of the manuscript, we
adopt from the virtual element literature the following standard regularity assumptions for polygonal
meshes (for more details see, e.g., (Beirão da Veiga et al., 2022) and section 2 of Beirão da Veiga and
Mascotto (2022)): ∀h > 0, ∃γ ∈ (0, 1) independent of h such that

• every polygonal element K ∈ Th is star-shaped with respect to a ball of diameter γhK ,
• for every element K ∈ Th, for each edge e ∈ EK , γhK ≤ he.

3. Continuous and discrete problems

In this section, the well-known EFIE used to model the scattering of time-harmonic waves by a perfectly
conducting body in homogeneous medium and its classical RT finite element approximation are first
recalled. Next, we devise a new discretization of the EFIE by using a divergence-conforming virtual
element space of lowest order, which we simply term V-BEM.

3.1. From the continuous model to its classical discrete formulation

We consider the first-order Maxwell equations in time-harmonic domain (with time dependence of
e−ιωt): {

curlE − ικZ0H = 0, in R3 \ Ω,

curlH + ικZ−1
0 E = 0, in R3 \ Ω,

(3.1)

whereE andH are complex-valued vectorial functions corresponding to the total electric and magnetic
fields, respectively, Z0 =

√
µ0/ε0, with ε0 and µ0 being the electric permittivity and magnetic

permeability in the vacuum respectively, and κ = ω/c0 > 0 is the wavenumber, with c0 = 1/
√
ε0µ0

being the speed of light. The perfectly conducting nature of the scattering body occupying Ω is taken
into account by imposing a Perfect Electric Conductor (PEC) boundary condition:

E × n = 0 on Γ. (3.2)

Finally, the problem is closed by using the so-called Silver-Müller radiation condition at infinity which
consists in selecting only outgoing waves:

lim
|x|→+∞

|x|
(
Z0(H −HI)(x)× x

|x|
− (E −EI)(x)

)
= 0, (3.3)

where (EI , HI) is an incident plane wave solution of (3.1) in the entire domain R3.
The solution (E, H) of this problem can be parametrized by the electric J = γtH and magnetic

M = −γtE currents corresponding to complex-valued tangential vector fields living on 2−manifold
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Γ. For that, the Stratton-Chu representation formulae (Monk, 2003; Stratton and Chu, 1939) are used:{
E (x) = EI (x) + ικZ0(T J)(x) + (KM)(x), x ∈ R3 \ Ω,

H(x) = HI(x) + ικZ−1
0 (TM)(x)− (KJ)(x), x ∈ R3 \ Ω,

(3.4)

where the potential operators are defined as

T : H−1/2 (divΓ,Γ) −→ H loc

(
curl2,R3 \ Γ

)
∩H loc

(
div0,R3 \ Γ

)
J (x) 7−→

(
1

κ2
∇∇ ·+1

)∫
Γ

Gκ(x− y)J(y)dγy
, (3.5)

K : H−1/2 (divΓ,Γ) −→ H loc

(
curl2,R3 \ Γ

)
∩H loc

(
div0,R3 \ Γ

)
J (x) 7−→ −∇×

∫
Γ

Gκ(x− y)J(y)dγy
, (3.6)

with Gκ being the Green function associated to the radiating solutions of the 3-D Helmholtz equation:

Gκ(x) =
eικ|x|

4π|x|
, x 6= 0. (3.7)

In this paper, we only work with the EFIE that is obtained by computing the tangential component of
the first equation of (3.4) and by using the PEC boundary conditionM = 0:

πtE (x) = πtE
I (x) + ικZ0πt(T J)(x)⇒ πtE

I (x) + ικZ0πt(T J)(x) = 0, for x ∈ Γ. (3.8)

The tangential component of T is a boundary integral operator which induces the following weak
formulation of (3.8)

Find J ∈H−1/2 (divΓ,Γ) such that, ∀J ′ ∈H−1/2 (divΓ,Γ) ,

a
(
J ,J ′

)
= f

(
J ′) . (3.9)

Here, a is the sesquilinear form defined as follows

a :
(
H−1/2 (divΓ,Γ)

)2

−→ C(
J ,J ′

)
7−→

〈
VkJ ,J

′〉
‖ −

1

κ2

〈
Vk∇Γ · J ,∇Γ · J ′

〉 , (3.10)

where, according to Buffa and Hiptmair (2003):

V k : H
−1/2
‖ (Γ) −→H

1/2
‖ (Γ) ,〈

VkJ ,J
′〉
‖ =

∫
Γ

∫
Γ

Gκ(x− y)J(y) · J ′(x)dγydγx, (3.11)

Vk : H−1/2 (Γ) −→ H1/2 (Γ) ,〈
Vk∇Γ · J ,∇Γ · J ′

〉
=

∫
Γ

∫
Γ

Gκ(x− y)∇Γ · J(y)∇Γ · J ′(x)dγydγx. (3.12)
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The right-hand side of the EFIE (3.9) has the following form

f
(
J ′
)

= − 1

ικZ0

〈
πtE

I ,J ′
〉
‖
. (3.13)

It is well known that this continuous problem is well-posed except for a discrete number of
wavenumbers corresponding to resonance frequencies of the enlightened body (Buffa and Hiptmair,
2003). In this paper, we assume to be far from those frequencies in order to discretize the problem.
The classical approach of Galerkin discretization for this equation is to use a boundary element method
based on the lowest-order RT finite element space (Raviart and Thomas, 1977) defined on a simplicial
mesh Th (i.e. composed of triangles):

RT 0
h =

{
vh ∈H (divΓ,Γ) | ∀K ∈ Th,v2D

h|K
∈ RT 0 (K)

}
, (3.14)

RT 0 (K) =
{

(P0 (K))
2 ⊕ x2D

G P0 (K)
}
, (3.15)

where ∀x ∈ K, x2D
G = x2D − x2D

K and Ps(X) denotes the space of polynomials of total degree
≤ s defined over X . By looking for solutions on this RT finite dimensional space, the discrete weak
formulation of (3.9) can be then written as

Find Jh ∈ RT 0
h such that, ∀J ′h ∈ RT

0
h,

a
(
Jh,J

′
h

)
= f

(
J ′h
)
. (3.16)

As an approximation of a Fredholm-type equation, the problem (3.16) is well-posed for sufficiently
fine meshes (Buffa and Hiptmair, 2003) and it will be used to numerically evaluate the performance of
the new numerical scheme based on the natural virtual element counterpart of the above RT elements
devised in the next subsection.

3.2. A Virtual Boundary Element Method (V-BEM) for the EFIE

From now on, the mesh Th is assumed to be composed of polygonal elements and satisfies the regularity
properties stated in section 2.2. We emphasize that, here, the term polygon also refers to any triangular-
(or quadrangular-) shaped element with more than three (four, respectively) vertices, some of which
may be collinear. The standard construction of a VEM is based on two main ingredients:

• A local finite dimensional space on each polygon K whose virtual functions are implicitly defined
as solutions to PDE respecting the nature of the global continuity of the physical solution.

• An operator of projection from the local virtual space onto a suited polynomial space that can be
explicitly computed from the only knowledge of the degrees of freedom associated to the virtual
functions. A stabilization term is generally included as a complement to the projection in order to
correct the rank deficiency introduced in the discrete setting.

In the context of the EFIE, we propose a Galerkin discretization that relies on the divergence-
conforming serendipity virtual space (Beirão da Veiga et al., 2018; Beirão da Veiga and Mascotto,
2022, (3.14)): for each polygon K the local virtual space reads

Ve0 (K) =
{
v2D : K → C2 | ∀e ∈ EK , v2D

|e · n
K
e ∈ P0 (e) , ∇ · v2D ∈ P0 (K) ,

curlv2D ∈ P0 (K) ,

∫
K

v2D · x2D,⊥
G dγ = 0

}
. (3.17)



10 ALEXIS TOUZALIN ET AL.

Remark 3.1 The integral constraint inside Ve0 is used as a fixed degree of freedom to help compute
the local projection operator (see (3.24)).

The dimension of this space is dim (Ve0) = card (EK) and each edge of K is associated to a degree
of freedom that corresponds to an edge flux defined as follows

v 7→ ΛKe (v) :=

∫
e

(
v · nKe

)
p0ds, ∀p0 ∈ P0 (e) . (3.18)

This virtual element
(
ΛKe , K, Ve0

)
is thus unisolvant (Beirão da Veiga et al., 2018) in the sense of

Ciarlet (Ciarlet, 2002) and the associated local basis functions are: let e ∈ EK ,

ϕKe ∈ Ve0(K), ∀ẽ ∈ EK , ΛKẽ (ϕKe ) = δeẽ. (3.19)

We remark that this space verifies an important (polynomial) consistency property:RT 0 (K) ⊂ Ve0 (K)
(Beirão da Veiga et al., 2018, Section 3). A particular case is when K is a triangle: RT 0 (K) =
Ve0 (K); in other words, we obtain exactly the RT approximation previously presented (and the degrees
of freedom of both spaces coincide).

For a general polygon, the basis functions are non-polynomial and are only (implicitly) charac-
terized by the four constraints used in (3.17). Nevertheless, some fundamental informations can be
exactly computed from the only knowledge of the degrees of freedom (3.18): let v : K → C3 such that
v · nK = 0 and v2D ∈ Ve0(K),

• the tangential divergence of v:

∇Γ · v =
1

|K|

∫
K

∇ · v2Ddγ =
1

|K|

∫
∂K

(
v2D · nKe

)
|∂K

ds =
1

|K|
∑
e∈EK

ΛKe
(
v2D

)
, (3.20)

where the property∇Γ · v ∈ P0 (K) is used,
• the L2-orthogonal projection on P1,t (K) :=

{
p ∈ (P1 (K))

3
: p · nK = 0

}
: Π0

Kv ∈ P1,t (K)

is defined by

Π0
Kv = (Π0,2D

K v2D)1τ 1 + (Π0,2D
K v2D)2τ 2 where Π0,2D

K : Ve0 (K)→ (P1 (K))
2 (3.21)∫

K

Π0,2D
K v2D · pdγ =

∫
K

v2D · pdγ, ∀p ∈ (P1 (K))
2
. (3.22)

By using the following well-known decomposition of the polynomial space (P1 (K))
2:

(P1 (K))
2

= ∇P2 (K)⊕ x2D,⊥
K P0 (K) , (3.23)

the right-hand side of (3.22) can be exactly computed in a same way as in Beirão da Veiga et al.
(2018, (3.15)): let p ∈ (P1 (K))

2 such that p = ∇p2 + p0 x
2D,⊥
K ,
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K

v2D · pdγ = −
∫
K

∇ · v2Dp2dγ +

∫
∂K

(
v2D · nKe

)
|∂K

p2ds+

∫
K

v2D · x2D,⊥
K p0dγ,

= −
∫
K

∇ · v2Dp2dγ +

∫
∂K

(
v2D · nKe

)
|∂K

p2ds,

= −

(∑
e∈EK

ΛKe
(
v2D

)) 1

|K|

∫
K

p2dγ +
∑
e∈EK

ΛKe
(
v2D

) ∫
e

p2ds. (3.24)

With all these local ingredients, we can define the divergence-conforming global virtual space as follows

Vh =
{
v ∈H (divΓ,Γ) | v2D

|K ∈ V
e
0 (K) , ∀K ∈ Th

}
. (3.25)

The L2-projection Π0
h of a virtual function vh ∈ Vh onto the polynomial space

P1,t (Th) :=
{
p : Γ→ C3 : ∀K ∈ Th, p|K ∈ P1,t (K)

}
, (3.26)

is obviously defined element-wise: ∀K ∈ Th,
(
Π0
hvh

)
|K = Π0

K

(
v|K

)
.

We note that the dimension of Vh is equal to the number of all element edges within the mesh Th
and the virtual basis functions are defined in the canonical way: for all edges e = K ∩ T with K and T
two adjacent elements of Th,

ϕe :=


ϕKe in K,

−ϕTe in T,

0 otherwise.

(3.27)

Remark 3.2 The position of the sign − in (3.27) is purely arbitrary.

From the global virtual space and the associated L2-projection, we introduce two virtual boundary
element discretizations of the EFIE. The first one corresponds to the practical numerical scheme (in what
follows, we refer to it as V-BEM) and uses the above L2-projection operator in order to compute the
term in the sesquilinear and linear forms, which are not computable due to the non-explicit knowledge
of the virtual basis functions:

Find Jh ∈ Vh such that ∀J ′h ∈ Vh,

ah
(
Jh,J

′
h

)
= fh

(
J ′h
)
. (3.28)

with

ah
(
Jh,J

′
h

)
:=
〈
V KΠ0

hJh,Π
0
hJ
′
h

〉
‖ −

1

κ2

〈
Vk∇Γ · Jh,∇Γ · J ′h

〉
, (3.29)

fh
(
J ′h
)

:= − 1

ικZ0

〈
πtE

I ,Π0
hJ
′
h

〉
‖
. (3.30)

The second one is purely theoretical (we thus refer to it as ideal V-BEM that alludes to discretization
we would derive in an ideal world in which the basis functions are explicitly known) and it will be used
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to analyze the former formulation:

Find Jh ∈ Vh such that ∀J ′h ∈ Vh,

a
(
Jh,J

′
h

)
= f

(
J ′h
)
. (3.31)

Remark 3.3 If the surface mesh is only composed of triangles, these two formulations are identical
and correspond to the classical lowest-order RT discretization of the EFIE. Moreover, on hybrid meshes
composed of simplices and polygons, the new V-BEM turns out to be an inherent coupling between the
classical RT approximation on triangles and the virtual element approximation.

Remark 3.4 As common in the standard VEM approach, a stabilization term is necessary in order to
balance the lost of information due to the use of the projection, whereas in our situation the stabilization
term is not mandatory. Indeed, as we will see in section 4, the weak formulation V-BEM (3.28) does not
include any typical VEM stabilization while being well-posed and leading to a quasi-optimal numerical
scheme.

With all the aforementioned tools and formulations, we are ready to carry out the error analysis of
the virtual element approximation of the EFIE.

4. Main theoretical results: well-posedness and error analysis

In this section, we present the main results associated to the theoretical analysis of the V-BEM approach
(3.28) proposed to discretize the EFIE. This mainly concerns the well-posedness of the new discrete
formulation and the a priori error estimate, as well as some necessary intermediate results. To begin
with, the following lemma provides the continuity property exhibited by the sesquilinear form ah.

Lemma 4.1 (Continuity) The sesquilinear form ah is uniformly bounded on Vh × Vh.

The following proposition establishes the asymptotic consistency of the V-BEM.

Proposition 4.2 (Asymptotic consistency) Let (Th)h>0 be a family of surface polygonal meshes
satisfying the regularity properties of section 2.2 and let Ph be a quasi-optimal projector from
H−1/2 (divΓ,Γ) to Vh, i.e. Ph : H−1/2 (divΓ,Γ) −→ Vh, such that ∀J ∈ H−1/2 (divΓ,Γ), the
following error estimate holds:

‖J − PhJ‖H−1/2(divΓ,Γ) . inf
Jh∈Vh

‖J − Jh‖H−1/2(divΓ,Γ) . (4.1)

Then for J ∈H−1/2 (divΓ,Γ) ∩H−1/2+ε
‖ (Γ) for ε > 0, the consistency error Rh (J) defined by

Rh (J) = sup
J ′h∈Vh

∣∣fh (J ′h)− ah (PhJ ,J ′h)∣∣∥∥J ′h∥∥H−1/2(divΓ,Γ)

, (4.2)

tends to 0 when h→ 0+.

The discrete inf-sup condition, uniform in mesh-size, on ah is then provided by the following
theorem.
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Theorem 4.3 (h-Uniform discrete inf-sup condition) Let (Th)h>0 be a family of surface polygonal
meshes satisfying the regularity properties of section 2.2. Then, there exist C̃ > 0 and h0 > 0 such that
∀h ∈ (0, h0), the discrete inf-sup condition holds:

inf
Jh∈Vh

sup
J ′h∈Vh

∣∣ah(Jh,J
′
h)
∣∣

‖Jh‖H−1/2(divΓ,Γ)

∥∥J ′h∥∥H−1/2(divΓ,Γ)

≥ C̃. (4.3)

In particular, this inf-sup condition is h-uniform in the interval (0, h0).

Remark 4.4 Theorem 4.3 implies that the new V-BEM formulation (3.28) is well-posed.

With all above results, we can state an a priori error estimate theorem.

Theorem 4.5 (A priori error estimate) Let (Th)h>0 be a family of surface polygonal meshes satisfying
the regularity properties of section 2.2. Then the V-BEM scheme (3.28) verifies the following error
estimate,

‖J − Jh‖H−1/2(divΓ,Γ) .
1

C̃
Rh (J) + inf

J̃h∈Vh

∥∥∥J − J̃h∥∥∥
H−1/2(divΓ,Γ)

, (4.4)

where J is the solution of the EFIE formulation (3.9) and C̃ is the uniform inf-sup discrete constant
(see theorem 4.3). In particular, if J ∈H−1/2 (divΓ,Γ) ∩H−1/2+ε

‖ (Γ) for ε > 0,

lim
h→0+

‖J − Jh‖H−1/2(divΓ,Γ) = 0. (4.5)

In order to explicit the h-convergence rate of the solutions of the discretized problem (3.28) toward
the continuous solution of the EFIE (3.9), we need to consider sufficiently smooth solutions and data.
More precisely, from the classical regularity results (see theorem 9 of Buffa et al. (2002a)) of the EFIE
solution on nonsmooth domains and for a source f corresponding to the tangential component of a
regular field like the one related to the incident plane wave considered in this paper, we can consider
that J ∈Hσ(divΓ,Γ) for a certain regularity parameter σ ∈ [0, 1/2).

Corollary 4.6 (Convergence rate) Under the hypothesis of theorem 4.5, if J ∈ Hσ(divΓ,Γ) for
σ ∈ (0, 1/2) such that V kJ ∈Hσ+1

− (Γ), then the following a priori error estimate holds

‖J − Jh‖H−1/2(divΓ,Γ) . h
1/2+σ

(
‖f‖H2

−(Γ) + ‖V kJ‖Hσ+1
− (Γ) + ‖J‖Hσ(divΓ,Γ)

)
. (4.6)

Remark 4.7 The estimate (4.6) shows that the V-BEM exhibits the same convergence rate as the
classical lowest-order RT element scheme (see Buffa and Christiansen (2003) or Buffa and Hiptmair
(2003)), but in the context of polygonal meshes.

Remark 4.8 These results can be extended to smooth surfaces by introducing Lipschitz-isomorphisms
from the polyhedral approximate surface Γh to the exact one Γ. In this case, the estimate (4.6) is
expected to lead to an optimal convergence rate, i.e. h3/2, like the lowest-order RT discretization (see
Christiansen (2003)).
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5. Proofs

In this section, we are going to prove all aforementioned theoretical results concerning the new V-BEM
formulation. To this aim, the section is outlined into 4 parts, each of which provides comprehensive
proofs and is requisite for the next part. In the rest of this section, for the sake of clarity, we use the
notation W = H−1/2 (divΓ,Γ) and assume that (Th)h>0 is a family of surface polygonal meshes
satisfying the regularity properties of section 2.2.

5.1. Some technical results associated to the virtual element space Vh
The following lemma gives an h-inverse estimate in the finite-dimensional virtual space Vh. This allows
us to establish a fundamental h-absorption property (in the sense that a given quantity f is h-absorbable
with respect to quantity g if and only if f = o(g) as h → 0+) associated to the L2-projection operator
(3.24) for−1/2 Sobolev norm: lemma 5.2 and corollary 5.3. Finally, a partial de Rham diagram is given
in lemma 5.4.

Lemma 5.1 (Inverse estimate) Let (Th)h>0 be a family of meshes, then the following inverse estimate
holds:

∀Jh ∈ Vh, ‖Jh‖0 . h
−1/2 ‖Jh‖H−1/2

‖ (Γ)
. (5.1)

Proof. Step 1: We begin by proving the following result: let Jh ∈ Vh and K ∈ Th,

‖Jh‖0,K ≤ h
−1/2
K ‖Jh‖H−1/2

‖ (K)
. (5.2)

To this end, we use the inverse estimate ‖Jh‖0,K . h−1
K ‖Jh‖H−1

‖ (K) that is proved in lemma 5.3
of Beirão da Veiga and Mascotto (2022) in a 2D context. Let us recall that for a planar element K,
H−1
‖ (K) = H−1

⊥ (K) = H−1
t (K). Next, by invoking a Sobolev space interpolation argument (see

appendix B of McLean and McLean (2000)) associated to the interpolation property H−1/2
‖ (Γ) =[

H−1
‖ (Γ) ,L2

t (Γ)
]

1
2

, we immediately obtain the result.

Step 2: By summing (5.2) over all elements:

‖Jh‖20 =
∑
K∈Th

∥∥Jh|K∥∥2

0,K
. h−1

∑
K∈Th

∥∥Jh|K∥∥2

H
−1/2

‖ (K)
. (5.3)

Finally, by using the estimate
∑
K∈Th

∥∥Jh|K∥∥2

H
−1/2

‖ (K)
≤ ‖Jh‖2H−1/2

‖ (Γ)
, the estimate (5.1) is obtained.

Lemma 5.1 �

Lemma 5.2 ∃βh −→
h→0+

0 such that

sup
J̃h∈Vh

∥∥∥(Id−Π0
h

)
J̃h

∥∥∥
H
−1/2

‖ (Γ)∥∥∥J̃h∥∥∥
H
−1/2

‖ (Γ)

≤ βh. (5.4)
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Proof. From the definition of the dual norm, we have:

∥∥∥(Id−Π0
h

)
J̃h

∥∥∥
H
−1/2

‖ (Γ)
= sup
Ĵ∈H1/2

‖ (Γ)

〈(
Id−Π0

h

)
J̃h, Ĵ

〉
‖,−1/2,1/2∥∥∥Ĵ∥∥∥

H
1/2

‖ (Γ)

. (5.5)

Since
(
Id−Π0

h

)
J̃h ∈ L2

t (Γ) and Ĵ ∈H1/2
‖ (Γ) ⊂ L2

t (Γ), the duality pairing of (5.5) can be written
as the L2-scalar product:

∥∥∥(Id−Π0
h

)
J̃h

∥∥∥
H
−1/2

‖ (Γ)
= sup
Ĵ∈H1/2

‖ (Γ)

((
Id−Π0

h

)
J̃h, Ĵ

)
0∥∥∥Ĵ∥∥∥

H
1/2

‖ (Γ)

. (5.6)

Furthermore, from the definition of the projection operator Π0
h, we have that((

Id−Π0
h

)
J̃h, q

)
0

= 0 ∀q ∈ P1,t (Th) , (5.7)

which implies that ∀q ∈ P1,t (Th):

∥∥∥(Id−Π0
h

)
J̃h

∥∥∥
H
−1/2

‖ (Γ)
= sup
Ĵ∈H1/2

‖ (Γ)

((
Id−Π0

h

)
J̃h, Ĵ − q

)
0∥∥∥Ĵ∥∥∥

H
1/2

‖ (Γ)

. (5.8)

In particular, by taking q = Π0
hĴ :

∥∥∥(Id−Π0
h

)
J̃h

∥∥∥
H
−1/2

‖ (Γ)
= sup
Ĵ∈H1/2

‖ (Γ)

((
Id−Π0

h

)
J̃h,

(
Id−Π0

h

)
Ĵ
)

0∥∥∥Ĵ∥∥∥
H

1/2

‖ (Γ)

. (5.9)

Then, using Cauchy-Schwarz inequality (CS) yields

∥∥∥(Id−Π0
h

)
J̃h

∥∥∥
H
−1/2

‖ (Γ)
≤
∥∥∥(Id−Π0

h

)
J̃h

∥∥∥
0

sup
Ĵ∈H1/2

‖ (Γ)

∥∥∥(Id−Π0
h

)
Ĵ
∥∥∥

0∥∥∥Ĵ∥∥∥
H

1/2

‖ (Γ)

. (5.10)

Besides, if Ĵ ∈H1
‖ (Γ), then the projection’s error is upper bounded:∥∥∥(Id−Π0

h

)
Ĵ
∥∥∥

0
. h

∥∥∥Ĵ∥∥∥
H1
‖(Γ)

, (5.11)

and by using an interpolation argument associated toH1/2
‖ (Γ) :=

[
L2
t (Γ) ,H1

‖ (Γ)
]

1/2
, we obtain the

following error estimate for Ĵ ∈H1/2
‖ (Γ):∥∥∥(Id−Π0

h

)
Ĵ
∥∥∥

0
. h1/2

∥∥∥Ĵ∥∥∥
H

1/2

‖ (Γ)
, (5.12)
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By inserting (5.12) into (5.10), we get the inequality:∥∥∥(Id−Π0
h

)
J̃h

∥∥∥
H
−1/2

‖ (Γ)
. h1/2

∥∥∥(Id−Π0
h

)
J̃h

∥∥∥
0
, (5.13)

which means that

sup
J̃h∈Vh

∥∥∥(Id−Π0
h

)
J̃h

∥∥∥
H
−1/2

‖ (Γ)∥∥∥J̃h∥∥∥
H
−1/2

‖ (Γ)

. h1/2 sup
J̃h∈Vh

∥∥∥(Id−Π0
h

)
J̃h

∥∥∥
0∥∥∥J̃h∥∥∥

H
−1/2

‖ (Γ)

. (5.14)

By using the inverse estimate from lemma 5.1, we have that

h1/2∥∥∥J̃h∥∥∥
H
−1/2

‖ (Γ)

.
1∥∥∥J̃h∥∥∥

0

, (5.15)

thus:

sup
J̃h∈Vh

∥∥∥(Id−Π0
h

)
J̃h

∥∥∥
H
−1/2

‖ (Γ)∥∥∥J̃h∥∥∥
H
−1/2

‖ (Γ)

. sup
J̃h∈Vh

∥∥∥(Id−Π0
h

)
J̃h

∥∥∥
0∥∥∥J̃h∥∥∥

0︸ ︷︷ ︸
≤|||Id−Π0

h||| −→
h→0+

0

. (5.16)

Then, ∃βh −→
h→0+

0 such that

sup
J̃h∈Vh

∥∥∥(Id−Π0
h

)
J̃h

∥∥∥
H
−1/2

‖ (Γ)∥∥∥J̃h∥∥∥
H
−1/2

‖ (Γ)

≤ βh. (5.17)

Lemma 5.2 �
Therefore, we can deduce the following corollary.

Corollary 5.3 ∃βh −→
h→0+

0 such that ∀Jh ∈ Vh,∥∥(Id−Π0
h

)
Jh
∥∥
H
−1/2

‖ (Γ)
≤ βh ‖Jh‖H−1/2

‖ (Γ)
. (5.18)

Proof. With lemma 5.2, ∃βh −→
h→0+

0 such that

∥∥(Id−Π0
h

)
Jh
∥∥
H
−1/2

‖ (Γ)

‖Jh‖H−1/2

‖ (Γ)

≤ sup
J̃h∈Vh

∥∥∥(Id−Π0
h

)
J̃h

∥∥∥
H
−1/2

‖ (Γ)∥∥∥J̃h∥∥∥
H
−1/2

‖ (Γ)

≤ βh, (5.19)

⇒
∥∥(Id−Π0

h

)
Jh
∥∥
H
−1/2

‖ (Γ)
≤ βh ‖Jh‖H−1/2

‖ (Γ)
. (5.20)

Corollary 5.3 �
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The next lemma provides the commuting diagram property of the VEM interpolation operator.

Lemma 5.4 Let PXh and Qh be the VEM interpolation operator on Vh and the L2-projection into
Qh = P0 (Th), respectively. Then the diagram 1 is commuting, i.e. ∀v ∈ H (divΓ,Γ), ∇Γ ·

(
PXh v

)
=

Qh (∇Γ · v).

H (divΓ,Γ) L2 (Γ)

Vh Qh
∇Γ·

∇Γ·

PXh Qh

FIG. 1. Commuting diagram.

Proof. It is sufficient to locally prove the commuting property on each element K ∈ Th. Let v ∈
H (divΓ,Γ), the VEM interpolation is defined on the basis of the degrees of freedom:

PXh v|K =
∑
e∈EK

(∫
e

v|K · n
K
e ds

)
ϕKe . (5.21)

The local characterization of the basis functions immediately leads to

∇Γ ·
(
PXh v|K

)
=
∑
e∈EK

(∫
e

v|K · n
K
e ds

)
∇Γ ·ϕKe , (5.22)

=
1

|K|
∑
e∈EK

(∫
e

v|K · n
K
e ds

)
. (5.23)

Thus, we have that ∇Γ ·
(
PXh v|K

)
∈ P0 (Th). Now, from the definition of the L2-projection Qh, we

have: ∫
K

Qh (∇Γ · v) dγ =

∫
K

∇Γ · vdγ, (5.24)

⇒ |K|Qh (∇Γ · v)|K =

∫
∂K

v|K · n∂Kds, (5.25)

⇒ Qh (∇Γ · v)|K =
1

|K|
∑
e∈EK

(∫
e

v|K · n
K
e ds

)
. (5.26)

Therefore,
∇Γ ·

(
PXh v|K

)
= Qh (∇Γ · v)|K . (5.27)

Lemma 5.4 �
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5.2. Discrete inf-sup condition of the ideal V-BEM

In this part, we establish the discrete inf-sup condition of the ideal V-BEM (3.31), which does not
involve any VEM projection operator. To this aim, we follow the methodology proposed in Buffa and
Hiptmair (2003) in the context of boundary element discretization of the EFIE by RT finite elements.
Let us recall that the weak formulation of the EFIE (3.9) can be split into a coercive form and a compact
one. In particular, from a Helmholtz-type decomposition of any tangential vector field J ∈ W , i.e.
J = ∇Γϕ + n × ∇Γψ =: RΓ(J) + ZΓ(J), we can define a test-function J ′ = (χΓ + T )J , where
χΓJ := RΓ(J) − ZΓ(J) and T : W −→ W is a compact operator, with J being the complex
conjugate of J , such that, ∃α > 0,

∀J ∈W ,

∣∣a(J ,J ′)
∣∣

‖J‖W
≥ α

∥∥J ′∥∥
W
. (5.28)

The analysis of the discrete formulation involving RT discretization (Buffa and Hiptmair, 2003) is
carried out by mimicking the proof of the above continuous inf-sup condition, i.e. making use of a
discrete Helmholtz-type decomposition, J ′h =

(
PXh ◦ χΓ + PTh ◦ T

)
Jh where PXh is the local RT

interpolation operator and PTh is the W -orthogonal projector. Now, when it comes to applying this
methodology to the ideal V-BEM scheme, PXh is instead intended to be the VEM interpolation operator.
The next two lemmas give h-absorption fundamental results associated to both operators T and χΓ in
the virtual element setting.

Lemma 5.5 (h-Absorption for T ) ∃ εh > 0 such that, lim
h→0+

εh = 0, ∀J ∈W ,∥∥(Id− PTh
)
◦ T (J)

∥∥
W
≤ εh ‖J‖W . (5.29)

Proof. The proof is the same as for the equation (66) of Buffa and Hiptmair (2003), which comes from
corollary 10.5 of Kress (2014). Lemma 5.5 �

Lemma 5.6 (h-Absorption for χΓ) For all Jh ∈ Vh, the following estimate holds:∣∣a (Jh, (Id− PXh
)
◦ χΓ

(
Jh
))∣∣ . h1/2 ‖Jh‖2W . (5.30)

Proof. Since
(
Id− PXh

)
◦ χΓ

(
Jh
)

=
(
Id− PXh

)
◦ χΓ (Jh) and from the continuity of the

sesquilinear form a, we have that∣∣a (Jh, (Id− PXh
)
◦ χΓ

(
Jh
))∣∣ . ‖Jh‖W ∥∥(Id− PXh

)
◦ χΓ (Jh)

∥∥
W
. (5.31)

From the commuting diagram 5.4 and the property∇Γ · χΓ (Jh) = ∇Γ · Jh, we can derive:

∇Γ ·
(
Id− PXh

)
◦ RΓ (Jh) = ∇Γ · RΓ (Jh)−Qh ◦ ∇Γ ·

(
RΓ (Jh)

)
, (5.32)

= ∇Γ · Jh −Qh ◦ ∇Γ · (Jh) = 0. (5.33)

That implies: ∥∥(Id− PXh
)
◦ χΓ (Jh)

∥∥
W

=
∥∥(Id− PXh

)
◦ RΓ (Jh)

∥∥
H
−1/2

‖ (Γ)
. (5.34)
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Since RΓ (Jh) ∈ H1/2
‖ (Γ) and ∇Γ · RΓ (Jh) ∈ Qh, from a straightforward extension of lemma 16

and a direct application of lemma 2 of Buffa and Hiptmair (2003), we have:∥∥(Id− PXh
)
◦ RΓ (Jh)

∥∥
L2
t (Γ)
. h1/2

∥∥RΓ (Jh)
∥∥
H

1/2

‖ (Γ)
, (5.35)

. h1/2 ‖∇Γ · Jh‖H−1/2(Γ) . (5.36)

By using (5.36) in (5.34) and theW -norm, (5.34) leads to∥∥(Id− PXh
)
◦ χΓ (Jh)

∥∥
W
. h1/2 ‖∇Γ · Jh‖H−1/2(Γ) , (5.37)

. h1/2 ‖Jh‖W . (5.38)

Finally, combining (5.31) and (5.38), we get the result. Lemma 5.6 �
Now, we can prove the discrete inf-sup condition on the sesquilinear form a in (3.31).

Theorem 5.7 (h-Uniform discrete inf-sup condition of the ideal V-BEM) Let (Th)h>0 be a family of
surface polygonal meshes. Then, it exists C > 0 and h0 > 0 such that ∀h ∈ (0, h0),

inf
Jh∈Vh

sup
J ′h∈Vh

∣∣a (Jh,J ′h)∣∣
‖Jh‖W

∥∥J ′h∥∥W ≥ C. (5.39)

In particular, this inf-sup condition is h-uniform in the interval (0, h0).

Proof. On the basis of the methodology of Buffa and Hiptmair (2003), we choose as a test-function the
following candidate:

J ′h = PXh ◦ χΓ

(
Jh
)

+ PTh ◦ T
(
Jh
)
. (5.40)

Therefore, we can write that∣∣a (Jh,J ′h)∣∣ =
∣∣a (Jh,PXh ◦ χΓ

(
Jh
)

+ PTh ◦ T
(
Jh
))∣∣ ,

=
∣∣a (Jh, (χΓ + T )

(
Jh
))∣∣

−
∣∣a (Jh, ((Id− PXh

)
◦ χΓ +

(
Id− PTh

)
◦ T
) (
Jh
))∣∣ . (5.41)

By using lemma 10 from Buffa and Hiptmair (2003) and the continuity of a, ∃CG > 0 and ∃C̃ > 0
such that∣∣a (Jh,PXh ◦ χΓ

(
Jh
)

+ PTh ◦ T
(
Jh
))∣∣ ≥ CG ‖Jh‖2W − ∣∣a (Jh, (Id− PXh

)
◦ χΓ

(
Jh
))∣∣

− C̃ ‖Jh‖W
∥∥(Id− PTh

)
◦ T

(
Jh
)∥∥
W
.

(5.42)

Combining lemmas 5.5 and 5.6 in (5.42) yields: ∃C > 0 (independent of h),∣∣a (Jh,PXh ◦ χΓ

(
Jh
)

+ PTh ◦ T
(
Jh
))∣∣ ≥ CG ‖Jh‖2W − Ch1/2 ‖Jh‖2W − C̃εh ‖Jh‖

2
W . (5.43)

Thus, ∃h0 > 0 such that ∀h < h0, − 1

CG

(
C̃εh + Ch1/2

)
> 1/2, and the following estimate holds:

∣∣a (Jh,PXh ◦ χΓ

(
Jh
)

+ PTh ◦ T
(
Jh
))∣∣ ≥ CG

2
‖Jh‖2W . (5.44)

Finally, by using the estimate
∥∥J ′h∥∥W . ‖Jh‖W , (5.44) leads to the result. Theorem. 5.7 �
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5.3. Discrete inf-sup condition of the V-BEM

In order to prove a h-uniform discrete inf-sup condition on the perturbed sesquilinear form ah related
to the V-BEM (3.28), we rely on both the methodology from Buffa and Hiptmair (2003), (i.e. (5.40))
and the stability result for the ideal V-BEM (see theorem 5.7).

To begin with, we need to derive a technical lemma by using the tools from section 5.1 that provides
a h-absorption result on the difference of the sesquilinear form a (3.31) and its perturbation ah (3.28)
with respect to theW -norm.

Lemma 5.8 ∃εh −→
h→0+

0 such that, ∀Jh ∈ Vh,

Eh = sup
J̃h∈Vh

∣∣∣a(Jh, J̃h)− ah (Jh, J̃h)∣∣∣∥∥∥J̃h∥∥∥
W

≤ εh ‖Jh‖W , (5.45)

Proof. Since the difference of the divergence terms vanishes and by the characterization of W -norm,
the following estimate holds:

Eh = sup
J̃h∈Vh

∣∣∣a(Jh, J̃h)− ah (Jh, J̃h)∣∣∣∥∥∥J̃h∥∥∥
W

(5.46)

= sup
J̃h∈Vh

∣∣∣∣〈V kJh, J̃h

〉
‖
−
〈
V kΠ0

hJh,Π
0
hJ̃h

〉
‖

∣∣∣∣∥∥∥J̃h∥∥∥
W

,

= sup
J̃h∈Vh

∣∣∣∣〈V k

((
Id−Π0

h

)
Jh
)
, J̃h

〉
‖

+
〈
V kΠ0

hJh,
((
Id−Π0

h

)
J̃h

)〉
‖

∣∣∣∣∥∥∥J̃h∥∥∥
W

,

≤ sup
J̃h∈Vh

∣∣∣∣∣∣∣
A1︷ ︸︸ ︷〈

V k

((
Id−Π0

h

)
Jh
)
, J̃h

〉
‖

+

A2︷ ︸︸ ︷〈
V kΠ0

hJh,
((
Id−Π0

h

)
J̃h

)〉
‖

∣∣∣∣∣∣∣∥∥∥J̃h∥∥∥
H
−1/2

‖ (Γ)

. (5.47)

Since V k is continuous from H
−1/2
‖ (Γ) to H1/2

‖ (Γ) (corollary 3 of Buffa and Hiptmair (2003)), the
terms A1 and A2 of (5.47) can be upper bounded as follows:

A1 .
∥∥V k

((
Id−Π0

h

)
Jh
)∥∥
H

1/2

‖ (Γ)

∥∥∥J̃h∥∥∥
H
−1/2

‖ (Γ)

.
∥∥(Id−Π0

h

)
Jh
∥∥
H
−1/2

‖ (Γ)

∥∥∥J̃h∥∥∥
H
−1/2

‖ (Γ)
, (5.48)
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A2 .
∥∥V k

(
Π0
hJh

)∥∥
H

1/2

‖ (Γ)

∥∥∥(Id−Π0
h

)
J̃h

∥∥∥
H
−1/2

‖ (Γ)

.
∥∥Π0

hJh
∥∥
H
−1/2

‖ (Γ)

∥∥∥(Id−Π0
h

)
J̃h

∥∥∥
H
−1/2

‖ (Γ)
. (5.49)

Therefore, (5.47) can be written as

Eh .
∥∥(Id−Π0

h

)
Jh
∥∥
H
−1/2

‖ (Γ)
+
∥∥Π0

hJh
∥∥
H
−1/2

‖ (Γ)
sup
J̃h∈Vh

∥∥∥(Id−Π0
h

)
J̃h

∥∥∥
H
−1/2

‖ (Γ)∥∥∥J̃h∥∥∥
H
−1/2

‖ (Γ)

. (5.50)

The right-hand side of (5.50) can be estimated by using corollary 5.3 for the first term and lemma 5.2
for the second term: ∃βh −→

h→0+
0 such that

Eh . βh
(
‖Jh‖H−1/2

‖ (Γ)
+
∥∥Π0

hJh
∥∥
H
−1/2

‖ (Γ)

)
. (5.51)

Now, by making use again of corollary 5.3, the second term on the right-hand side of (5.51) can be
bounded from above:∥∥Π0

hJh
∥∥
H
−1/2

‖ (Γ)
≤ ‖Jh‖H−1/2

‖ (Γ)
+
∥∥(Id−Π0

h

)
Jh
∥∥
H
−1/2

‖ (Γ)
, (5.52)

≤ ‖Jh‖H−1/2

‖ (Γ)
+ βh ‖Jh‖H−1/2

‖ (Γ)
, (5.53)

≤ (1 + βh) ‖Jh‖H−1/2

‖ (Γ)
. (5.54)

By inserting (5.54) into (5.51) and by definition of theW -norm, we get

Eh . εh ‖Jh‖W , (5.55)

where εh = βh (2 + βh) −→
h→0+

0. Lemma 5.8 �

With all these technical tools, we are in a position to prove theorem 4.3.

Proof of theorem 4.3 (h-uniform discrete inf-sup condition of V-BEM). Firstly, by adding and subtrac-
ting the sesquilinear form a in the inf-sup condition’s argument, we get∣∣ah (Jh,J ′h)− a (Jh,J ′h)+ a

(
Jh,J

′
h

)∣∣
‖Jh‖W

∥∥J ′h∥∥W ≥
∣∣a (Jh,J ′h)∣∣− ∣∣a (Jh,J ′h)− ah (Jh,J ′h)∣∣

‖Jh‖W
∥∥J ′h∥∥W . (5.56)

By considering the test-function J ′h (5.40) as in the proof of theorem 5.7, we immediately obtain (5.39):
∃C > 0 such that, ∀Jh ∈ Vh, ∣∣a (Jh,J ′h)∣∣

‖Jh‖W
∥∥J ′h∥∥W ≥ C. (5.57)

By inserting (5.57) into (5.56), we get∣∣ah (Jh,J ′h)∣∣
‖Jh‖W

∥∥J ′h∥∥W ≥ C − sup
J̃h∈Vh

∣∣∣a(Jh, J̃h)− ah (Jh, J̃h)∣∣∣
‖Jh‖W

∥∥∥J̃h∥∥∥
W

. (5.58)
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From lemma 5.8, (5.58) becomes ∣∣ah (Jh,J ′h)∣∣
‖Jh‖W

∥∥J ′h∥∥W ≥ (C − C1εh) , (5.59)

with C1 > 0 and εh −→
h→0+

0.

To conclude, ∃h0 > 0 such that, ∀h < h0, (C − C1εh) > C/2 > 0 and ∀Jh ∈ Vh,

sup
J̃h∈Vh

∣∣∣ah (Jh, J̃h)∣∣∣
‖Jh‖W

∥∥∥J̃h∥∥∥
W

≥
∣∣ah (Jh,J ′h)∣∣
‖Jh‖W

∥∥J ′h∥∥W ≥ C

2
> 0. (5.60)

Theorem. 4.3 �

5.4. A priori error estimates

We are here left with the a priori error analysis of the V-BEM scheme. To this end, we need to establish
two intermediate results in order to prove theorem 4.5: the continuity and the asymptotic consistency of
the perturbated sesquilinear form ah .

Proof of lemma 4.1 (Continuity). Firstly, by making use of the triangular and the CS inequalities and
the continuity of V k and Vk (corollary 3 of Buffa and Hiptmair (2003)), we develop ah as follows

∣∣ah (Jh,J ′h)∣∣ =

∣∣∣∣〈V kΠ0
hJh,Π

0
hJ
′
h

〉
‖ −

1

κ2

〈
Vk∇Γ · Jh,∇Γ · J ′h

〉∣∣∣∣ , (5.61)

≤
∣∣∣〈V kΠ0

hJh,Π
0
hJ
′
h

〉
‖

∣∣∣+
1

κ2

∣∣∣ 〈Vk∇Γ · Jh,∇Γ · J ′h
〉 ∣∣∣, (5.62)

≤
∥∥V kΠ0

hJh
∥∥
H

1/2

‖ (Γ)

∥∥Π0
hJ
′
h

∥∥
H
−1/2

‖ (Γ)

+
1

κ2
‖Vk∇Γ · Jh‖H1/2(Γ)

∥∥∇Γ · J ′h
∥∥
H−1/2(Γ)

,
(5.63)

.
∥∥Π0

hJh
∥∥
H
−1/2

‖ (Γ)

∥∥Π0
hJ
′
h

∥∥
H
−1/2

‖ (Γ)

+
1

κ2
‖∇Γ · Jh‖H−1/2(Γ)

∥∥∇Γ · J ′h
∥∥
H−1/2(Γ)

.
(5.64)

By using the estimate (5.54) from the proof of the inf-sup condition, we get the continuity of ah, with
βh −→

h→0+
0,

∣∣ah (Jh,J ′h)∣∣ . (1 + βh)
2 ‖Jh‖W

∥∥J ′h∥∥W +
1

κ2
‖∇Γ · Jh‖H−1/2(Γ)

∥∥∇Γ · J ′h
∥∥
H−1/2(Γ)

,

.

(
(1 + βh)

2
+

1

κ2

)
‖Jh‖W

∥∥J ′h∥∥W . (5.65)

Lemma 4.1 �
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Proof of proposition 4.2 (Asymptotic consistency). Firstly, by adding and subtracting the sesquilinear
form a, as well as the right-hand side f in the sup’s argument in (4.2), we have that

Rh (J) ≤ sup
J ′h∈Vh

∣∣fh (J ′h)− f (J ′h)∣∣+

=0︷ ︸︸ ︷∣∣f (J ′h)− a (J ,J ′h)∣∣+ ∣∣a (J ,J ′h)− ah (PhJ ,J ′h)∣∣∥∥J ′h∥∥W ,

≤ sup
J ′h∈Vh

(∣∣fh (J ′h)− f (J ′h)∣∣+
∣∣a (J ,J ′h)− a (PhJ ,J ′h)∣∣∥∥J ′h∥∥W

+

∣∣a (PhJ ,J ′h)− ah (PhJ ,J ′h)∣∣∥∥J ′h∥∥W
)

(5.66)

By using the following property associated to the L2-projector:

∀f , g ∈ L2
t (Γ),

∫
Γ

f ·Π0
hg dγ =

∫
Γ

Π0
hf · g dγ, (5.67)

and the continuity of the sesquilinear form a, the first two terms in (5.66) can be upper bounded as
follows

∣∣fh (J ′h)− f (J ′h)∣∣ ≤ ∥∥(Id−Π0
h

)
f
∥∥

0

∥∥J ′h∥∥0
, (5.68)∣∣a (J ,J ′h)− a (PhJ ,J ′h)∣∣ =

∣∣a (J − PhJ ,J ′h)∣∣ , (5.69)

. ‖J − PhJ‖W
∥∥J ′h∥∥W . (5.70)

We remark that in (5.68), f identifies the Riesz representation of the right-hand side f . Moreover, since
the difference of the divergence terms vanishes in the last term of (5.66), we can write, by using again
(5.67), the following estimate

Rh (J) ≤ sup
J ′h∈Vh

∥∥(Id−Π0
h

)
f
∥∥

0

∥∥J ′h∥∥0
+ ‖J − PhJ‖W

∥∥J ′h∥∥W∥∥J ′h∥∥W
+ sup
J ′h∈Vh

∣∣∣〈V kPhJ ,J ′h
〉
‖ −

〈
V kΠ0

hPhJ ,Π0
hJ
′
h

〉
‖

∣∣∣∥∥J ′h∥∥W , (5.71)

≤ sup
J ′h∈Vh

∥∥(Id−Π0
h

)
f
∥∥

0

∥∥J ′h∥∥0
+ ‖J − PhJ‖W

∥∥J ′h∥∥W∥∥J ′h∥∥W
+ sup
J ′h∈Vh

∣∣∣〈V kPhJ −Π0
hV kΠ0

hPhJ ,J
′
h

〉
‖

∣∣∣∥∥J ′h∥∥W . (5.72)
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By using the inverse estimate 5.1 betweenH−1/2
‖ (Γ) and L2

t (Γ), (5.72) becomes:

Rh (J) .h−1/2
∥∥(Id−Π0

h

)
f
∥∥

0
+ ‖J − PhJ‖W

+ sup
J ′h∈Vh

A1︷ ︸︸ ︷∣∣∣〈V kPhJ −Π0
hV kΠ0

hPhJ ,J
′
h

〉
‖

∣∣∣∥∥J ′h∥∥W . (5.73)

By rewritting A1 in terms of some L2-projection errors, we get:

A1 =
∣∣∣〈(Id−Π0

h

)
V kJ +

(
Id−Π0

h

)
V k (PhJ − J) + Π0

hV k

(
Id−Π0

h

)
PhJ ,J ′h

〉
‖

∣∣∣
≤
(∥∥(Id−Π0

h

)
V kJ

∥∥
0

+
∥∥(Id−Π0

h

)
V k (PhJ − J)

∥∥
0

+
∥∥Π0

hV k

(
Id−Π0

h

)
PhJ

∥∥
0

)∥∥J ′h∥∥0
. (5.74)

So, from the inverse estimate 5.1, we obtain a new upper-bound of Rh:

Rh (J) . h−1/2
(∥∥(Id−Π0

h

)
f
∥∥

0
+
∥∥(Id−Π0

h

)
V kJ

∥∥
0

+
∥∥(Id−Π0

h

)
V k (PhJ − J)

∥∥
0

+
∥∥Π0

hV k

(
Id−Π0

h

)
PhJ

∥∥
0

)
+ ‖J − PhJ‖W . (5.75)

Now, by using the projection error from (5.12), the continuity properties of V k, the L2-stability of Π0
h

i.e
∥∥Π0

hu
∥∥

0
≤ ‖u‖0 and the projection error estimate∥∥(Id−Π0

h

)
PhJ

∥∥
H−1
‖ (Γ)

. h1/2
∥∥(Id−Π0

h

)
PhJ

∥∥
H
−1/2

‖ (Γ)
,

obtained by the standard duality argument (5.72) leads to:

Rh (J) . h−1/2

(∥∥(Id−Π0
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)
f
∥∥

0
+
∥∥(Id−Π0
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)
V kJ
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1/2

‖ (Γ)
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∥∥V k

(
Id−Π0

h

)
PhJ

∥∥
0

)
+ ‖J − PhJ‖W , (5.76)

. h−1/2
(∥∥(Id−Π0

h

)
f
∥∥

0
+
∥∥(Id−Π0

h

)
V kJ

∥∥
0

+
∥∥(Id−Π0

h

)
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∥∥
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‖ (Γ)

)
+ ‖J − PhJ‖W + ‖(PhJ − J)‖

H
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, (5.77)
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(∥∥(Id−Π0
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0
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∥∥(Id−Π0

h

)
V kJ

∥∥
0

+ h1/2
∥∥(Id−Π0

h

)
PhJ

∥∥
H
−1/2

‖ (Γ)

)
+ ‖J − PhJ‖W . (5.78)
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Finally, from corollary 5.3 and theW -stability of Ph, ∃βh −→
h→0+

0, such that

Rh (J) . h−1/2
(∥∥(Id−Π0

h

)
f
∥∥

0
+
∥∥(Id−Π0

h

)
V kJ

∥∥
0

)
+ βh ‖J‖W + ‖J − PhJ‖W , (5.79)

and we get the result by using the extra-regularity assumption, i.e. J ∈ W ∩H−1/2+ε
‖ (Γ), and the

regularity of the right-hand side f that is the (smooth) tangential component of a plane wave.
Prop. 4.2 �

Now, we are able to give some results about the h-convergence of the V-BEM.

Proof of theorem 4.5 (A priori error estimate). The estimate (4.4) is obtained from theorem 2.24 of Ern
and Guermond (2004) by using the continuity (lemma 4.1) and the asymptotic consistency (proposition
4.2) results as well as the uniform discrete inf-sup condition (theorem 4.3). The convergence of the
scheme is ensured by the approximability property of Vh, which is induced by the local RT polynomial
consistency of the virtual element approximation. Theorem. 4.5 �

As a consequence, we can establish the convergence rate of the V-BEM from some extra-regularity
assumptions. To that end, we need two intermediate lemmas for proving corollary 4.6.

Lemma 5.9 (Convergence rate of consistency error) Let J ∈Hσ(divΓ,Γ) for σ ∈ [0, 1/2) such that
V kJ ∈Hσ+1

− (Γ). The following estimate of the consistency error holds:

Rh (J) . h1/2+σ
(
‖f‖H2

−(Γ) + ‖V kJ‖Hσ+1
− (Γ) + ‖J‖Hσ

−(Γ)

)
. (5.80)

Proof. From the regularity assumptions, J ∈ L2
t (Γ) and the consistency error can be defined by taking

Ph = Id. Consequently, (5.76) gives the simplified estimate:

Rh (J) . h−1/2
(∥∥(Id−Π0

h

)
f
∥∥

0
+
∥∥(Id−Π0

h

)
V kJ

∥∥
0

+
∥∥V k

(
Id−Π0

h

)
J
∥∥

0

)
. (5.81)

We now estimate each term of the right-hand side of (5.81) :

• f ∈H2
−(Γ) because it is a tangential component of a plane wave. So, the error estimate associated

to the L2-projection Π0
h immediately gives∥∥(Id−Π0

h

)
f
∥∥

0
≤ Ch2 ‖f‖H2

−(Γ) ⇒ h−1/2
∥∥(Id−Π0

h

)
f
∥∥

0
. h3/2 ‖f‖H2

−(Γ) . (5.82)

• Again, from the properties of Π0
h and the assumption V kJ ∈Hσ+1

− (Γ), we get

∥∥(Id−Π0
h

)
V kJ

∥∥
0
≤ Chσ+1 ‖V kJ‖Hσ+1

− (Γ) , (5.83)

⇒ h−1/2
∥∥(Id−Π0

h

)
V kJ

∥∥
0
. hσ+1/2 ‖V kJ‖Hσ+1

− (Γ) . (5.84)

• Finally, from the continuity of V k from H−1
‖ (Γ) to L2

t (Γ) (Buffa et al. (2003, th. 3.8), Heuer and
Meddahi (2013, (4.1))) and a standard duality argument for Π0

h, we obtain the last estimate:
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∥∥V k

(
Id−Π0

h

)
J
∥∥

0
.
∥∥(Id−Π0

h

)
J
∥∥
H−1
‖ (Γ)

, (5.85)

. h
∥∥(Id−Π0

h

)
J
∥∥

0
,

. h1+σ ‖J‖Hσ
−(Γ) ,

⇒ h−1/2
∥∥V k

(
Id−Π0

h

)
J
∥∥

0
. h1/2+σ ‖J‖Hσ

−(Γ) . (5.86)

Hence, by combining (5.82), (5.84) and (5.86), we obtain the result. Lemma 5.9 �

Lemma 5.10 Let J ∈ Hσ(divΓ,Γ) for σ ∈ (0, 1/2). The optimal approximation error can be
estimated by

inf
ξh∈Vh

‖J − ξh‖W . h
1/2+σ ‖J‖Hσ(divΓ,Γ) . (5.87)

Proof. The proof is straithforward by using Proposition 4.6 in Buffa and Christiansen (2003). In fact,
the VEM interpolation operator PXh satisfies the same properties as its lowest-order RT finite element
counterparts:

• the virtual degrees of freedom are the edge fluxes,
• the a priori error estimate : ∀u ∈W such that ∀j ∈ [[1, NΓ]], u|Γj ∈H

s (divΓ,Γj) with s > 0,

∥∥u− PXh u
∥∥
H0(divΓ,Γ)

. hs
NΓ∑
j=1

∥∥u|Γj∥∥Hs(divΓ,Γj)
. (5.88)

The estimate (5.88) is directly obtained from both the local VEM error estimates (theorem A.1,
proposition 3.2 and corollary 3.3 of Beirão da Veiga and Mascotto (2022)) and the results of Ern and
Guermond (2021) (chapters 16 and 17). Lemma 5.10 �

Proof of corollary 4.6 (Convergence rate). The corollary holds by using lemmas 5.9 and 5.10 on the
error estimate of theorem 4.5. Corollary 4.6 �

6. Numerical results

In this section, we present numerical experiments in order to analyze the behavior in terms of h-
convergence and accuracy of the proposed virtual boundary element scheme through the comparison
with the BEM approach based on the conventional lowest-order triangular RT elements. The symmetric
indefinite non-Hermitian linear systems originating from the EFIE discretization on the basis of both V-
BEM and BEM are solved using a direct method, with fully distribute memory (MPI-type) parallelism,
which relies on LU factorization algorithms from LAPACK library. All numerical simulations were run
on the CEA’s high-performance computing architectures.

For this study, two representative electromagnetic scattering test cases involving solutions with
different regularities are considered:

• A smooth geometry corresponding to a metallic sphere, of radius 1 m, illuminated by a linearly-
polarized incident plane wave of frequency 500 MHz whose wave vector is in the opposite direction
of z-axis (i.e. (0◦, 0◦) in spherical coordinates, see figure 2). In this case, the analytical solution has
C∞-regularity and is available through Mie series (Monk, 2003; Nedelec, 2001).
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• A nonsmooth geometry corresponding to a metallic cube, of 1 m of side, illuminated by a linearly-
polarized incident plane wave of frequency 800 MHz whose wave vector has (45◦, 45◦) direction
in spherical coordinates (or rather, points along the body diagonal from the cube top, see figure 2).
In this case, the geometrical singularities (edges and corners) induce low-regularity electric currents
and, as the analytical solution is not explicitly known, we replace it by a reference solution (referred
to as J , by abusing of notation) computed on a sufficiently fine simplicial mesh.

The quantities of interest for the study are the following:

• The relative error on J in theH0 (divΓ,Γ)-type norm defined as

er(Jh) :=

√
‖J −Π0

hJh‖
2

0
+ 1

κ2 ‖∇Γ · J −∇Γ · Jh‖20√
‖J‖20 + 1

κ2 ‖∇Γ · J‖20
, (6.1)

where Jh is replaced by Π0
hJh in the first part of the norm due to the implicit definition of virtual

functions. Note that we chose to evaluate the solution error in the above stronger norm with respect to
theH−1/2 (divΓ,Γ)-norm, as the latter is difficult to compute mainly due to its non-local character.

triang ad-hoc random

FIG. 2. Example of three types of meshes of the sphere and the cube surface with an equivalent hmean (see (6.6)): the maximum
number of edges within a polygon for the sphere and cube meshes is 6 (ad-hoc) and 11 (random), respectively.



28 ALEXIS TOUZALIN ET AL.

• The monostatic and bistatic RCS errors are defined as, respectively,

EmRCS =
∣∣∣σ (−ξ̂I ,J)− σ (−ξ̂I ,Π0

hJh

)∣∣∣ , (6.2)

EbRCS

(
ξ̂s

)
=
∣∣∣σ (ξ̂s,J)− σ (ξ̂s,Π0

hJh

)∣∣∣2 , (6.3)

where ξ̂I and ξ̂s are the unit vectors associated to the directions of the incident wave and the
scattered wave, respectively, and σ is related to the scattering amplitude (Nedelec, 2001) and is
defined as

σ
(
ξ̂s,v

)
=
−ικ√

4π

∫
Γ or Γh

eικ(x·ξ̂s)
(
v (x)− ξ̂s

(
v (x) · ξ̂s

))
· êrdγx, (6.4)

with êr being the direction of the scattered wave’s polarization.
• The bistatic RCS, being a relevant observable in radar applications, characterizes the ability of a

body to send back the incident electromagnetic wave energy into different directions and is defined,
with v being J or Π0

hJh, as

RCS
(
ξ̂s

)
=
∣∣∣σ (ξ̂s,v)∣∣∣2 . (6.5)

Remark 6.1 We highlight the fact that Π0
hJh = Jh on triangular RT elements, hence the above

quantity definitions are modified accordingly.

Remark 6.2 For the sake of conciseness, only numerical results associated to a given linear
polarization for both incident and scattered electromagnetic fields are presented. Nevertheless, we get
the same conclusion for the other polarization.

For the experiments, we consider two types of polygonal surface meshes in order to test the V-BEM
approach. The first type of mesh consists of triangles and n-sided regular polygons (n > 3), which
is constructed from a simple post-treatment of meshes made of triangles or/and quadrangles generated
through Gmsh mesher (Geuzaine and Remacle, 2009). We refer to this mesh type as ad-hoc (examples
of such a mesh for both sphere and cube are shown in figure 2). The second type of mesh fully consists
of convex arbitrary-shape polygons generated through Voro++ library (Rycroft, 2009). As a result,
this approach leads to less regular mesh than the previous one, in the sense that an important local
heterogeneity between edges lengths can appear. (see, table 1). This type of mesh is instead identified

TABLE 1 Median and maximum of hr = hK/h
min
K for a representative subset of sphere meshes (left)

and all cube surface meshes considered in figure 5 (right).
Sphere Cube

triang ad-hoc random triang ad-hoc random
hmedr hmaxr hmedr hmaxr hmedr hmaxr hmedr hmaxr hmedr hmaxr hmedr hmaxr

1.04 2.44 1.07 9.61 10.13 560.80 1.001 1.431 1.831 3.442 8.434 19.959
1.04 2.72 1.05 3.54 9.92 4815.31 1.001 1.431 1.327 3.331 8.524 19.995
1.03 1.76 1.05 3.79 10.74 51031.05 1.001 1.431 1.234 3.875 8.566 19.999
1.02 2.57 1.04 4.28 10.60 31520.29 1.001 1.431 1.064 3.795 8.722 20.000
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with the keyword random (examples of such a mesh are shown in figure 2). Let us point out that
the techniques of construction employed ensure the planarity of each element within meshes. For the
results comparison, we further consider classical triangular meshes, which we refer to them as triang
(examples of such a mesh are shown in figure 2) for all BEM-based simulations. Moreover, we can
define an average mesh-size hmean for each mesh as follows

hmean (Th) =
1

NTh

∑
K∈Th

hK . (6.6)

Remark 6.3 We point out that, contrary to the polyhedral geometries considered in the above
theoretical sections, the planar surface meshes of the sphere induce approximate surfaces, Γh. As
a consequence, a difficulty appears when computing (6.1) since the analytical and discrete solutions
have different definition domains. To overcome this issue, in the sphere case, we project the analytical
solution onto Γh as follows:

∀xh ∈ Γh, J̃(xh) := J(x), where x = arg min
z∈Γ

|xh − z| , (6.7)

and hence, we substitute J by the projected analytical solution J̃ in (6.1).

First, we investigate the convergence rates obtained with V-BEM in both sphere and cube cases. To
this aim, we consider a family of successively refined meshes for each triang, ad-hoc and random
configuration. The characteristics of a representative subset of such meshes are given in table 1. We can
remark in figure 3 and in figure 5 that both V-BEM and BEM approaches convergence with same rates
in terms of relative electric current and monostatic RCS errors, regardless the mesh regularity, whether
for the sphere or the cube.

Looking at the accuracy, we note that for a given mesh-size, the bistatic RCS results, shown in
figure 6, obtained using the V-BEM have the same trends as those of the BEM approach for both the
sphere and the cube. We point out that despite the important edge heterogeneity in random meshes,
the RCS errors EbRCS are of the same order. Particularly, for the spherical geometry, the error related

10 102
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1

1

1/hmean

e r

triang (BEM)

ad-hoc (V-BEM)

random (V-BEM)

102

2 × 10−1

1

0.45

1/hmean

e r

FIG. 3. Relative errors er on J as a function of the mesh-size hmean (in m) for the sphere (left) and the cube (right).
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FIG. 4. Distribution of the real part of the x-component of Jh (in A·m−1) on triang (BEM) and random (V-BEM) meshes
of the sphere (top). Module of the real part of Jh (in A·m−1) on triang (BEM) and ad-hoc (V-BEM) meshes of the cube
surface (bottom).

to random meshes is globally better because of the higher number of dofs (162k) in comparison with
those associated to triang (72k dofs) and ad-hoc (61k dofs) meshes. On the other hand, we observe
that the ad-hoc result is as accurate as the triang one. As for the scattering by the cube, being the
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C
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ad-hoc (V-BEM)

random (V-BEM)
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1.75

1/hmean

E
m R
C
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FIG. 5. Monostatic RCS errors Em
RCS as a function of the mesh-size hmean (in m) for the sphere (left) and the cube (right).
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FIG. 6. Bistatic RCS (in dB·m−2) and bistatic RCS error EbRCS as a function of the observation angle (in degree) representing
the angular variation of the scattered-field vector ξ̂s with respect to the incident one ξ̂I , for the sphere (left) and the cube (right)
for a given hmean corresponding to: the 5th triang and ad-hoc meshes, the 4th random mesh in figure 5 (sphere), and the
finest meshes in figure 5 (cube).

number of dofs similar in the three mesh types (i.e. 395k for triang, 392k for ad-hoc and 372k for
random), the three simulations lead to equivalent bistatic RCS errors. Finally, figure 4 shows the same
qualitative behavior of the electric current on the sphere and on the cube surface obtained from V-BEM
and BEM calculations.

7. Conclusions

In this paper, we designed a boundary element method relying on a lowest-order virtual element
approximation for the solution of the electric field integral equation on surface meshes composed
of polygons or classical elements (e.g., triangles and quadrangles) within which hanging nodes may
appear. We established the well-posedness of the new 1stabilization-free discrete weak formulation
by proving the h-uniform inf-sup condition in the natural norm for polyhedral surfaces. Through an
a priori error analysis, we then demonstrated that the resulting scheme convergences quasi-optimally
and, more specifically at the same rate as that of the classical lowest-order RT boundary element scheme
on simplicial meshes when considering sufficiently smooth solutions. Finally, numerical simulations of
scattering phenomena, involving solutions of different regularities, showed that the proposed scheme
behaves, in terms of h-convergence and accuracy, as its RT discretization counterpart on simplicial
meshes while handling surface meshes that combine a broad range of elements, from, e.g., triangles to
convex polygons eventually featuring important edge heterogeneity.
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