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a b s t r a c t

We give classical saddlepoint approximations for the probability mass functions of two
nonparametric test statistics, the Kendall’s tau coefficient and the Wilcoxon signed-rank
statistic. Then, we provide numerical comparisons, by comparing the exact probabilities
with the saddlepoint approximation, a large deviation local limit theorem, an Edgeworth
expansion and a normal approximation.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we give asymptotic approximations of saddlepoint type for the probability mass function of the statistics
f two nonparametric tests, namely the Kendall’s rank coefficient test (Kendall 1938) and the Wilcoxon signed-rank test
Wilcoxon 1945).

Several works have been dealing specifically with asymptotic approximations for the Wilcoxon signed-rank statistic
like, for example, Fellingham and Stoker 1964, Klotz 1965, Sievers 1969, Chaganty and Sethuraman 1985, Quine 1994
nd Joutard 2020) and the Kendall’s tau coefficient (e.g., David et al. 1951, Sievers 1969, Gatto 2009 and Joutard 2020).
owever, most of these works mainly deal with approximations and numerical comparisons of tail probabilities. David
t al. (1951) and Quine (1994) gave some brief formulas of Edgeworth type for the probability mass functions of
he Kendall’s tau coefficient and of the Wilcoxon signed-rank statistic respectively, but without illustrating them with
umerical studies.
Here, we also carry out numerical comparisons for the probabilities P(Zn = a), where Zn is the test statistic. For different

values of a, these probabilities are compared with the saddlepoint approximation, a large deviation local limit theorem
of Chaganty and Sethuraman (1985), an Edgeworth expansion (see David et al. 1951 for the Kendall’s tau coefficient
and Quine 1994 for the Wilcoxon statistic) and a normal approximation.

Besides the theoretical interest, note that these asymptotic approximations (especially of the saddlepoint and Edge-
worth types) can also be of statistical interest, in particular for the probability mass function of the Kendall’s tau coefficient,
for which most statistical software can compute exact values only for small values of n (for example, for n < 13 in the
case of the software R).

Saddlepoint approximations of densities were first studied by Daniels (1954), see also Barndoff-Nielsen and Cox (1979)
regarding saddlepoint results for some multivariate and conditional densities, and Blackwell and Hodges (1959) for the
particular case of the sample mean with discrete random variables.
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General information about asymptotic approximations (including saddlepoint results) for tail probabilities as well as
or densities, can be found, e.g. in Bhattacharya and Rao (1976), Barndoff-Nielsen and Cox (1989), Butler (2007), Jensen
1995), Kolassa (1994) and Petrov (1995).

The paper is organized as follows. In Sections 2 and 3, we give the saddlepoint results and also present the other
symptotic approximations for the Kendall’s tau coefficient and the Wilcoxon signed-rank statistic, respectively. Finally,
ection 4 is devoted to the numerical comparisons for both test statistics.

. The Kendall’s tau coefficient

Let (X1, Y1), . . . , (Xn, Yn) be a sequence of i.i.d. continuous random couples having distribution function F (x, y) and let
X and FY be the marginal distributions. The Kendall’s tau coefficient Kn can be defined by

Kn = 2
∑

1≤i<j≤n

(I{Xi≥Xj} − I{Xi≤Xj})(I{Yi≥Yj} − I{Yi≤Yj})

n(n − 1)
. (1)

It was first used by Kendall (1938) to test the null hypothesis H0 : F (x, y) = FX (x)FY (y) for all x, y.
Let Tn = nKn. The m.g.f. of Tn under the null hypothesis is given below (see, e.g., Kendall and Stuart 1979 or Van de

Wiel et al. 1999),

φK (t) = E(etnKn ) =
ent

n!

n∏
k=1

e−
4kt
n−1 − 1

e−
4t

n−1 − 1
.

Then, the normalized c.g.f. of Tn is, for t > 0,

κK (t) = n−1 logφK (t)

= t − n−1 log(n!) + n−1
n∑

k=1

log
(
1 − e−

4kt
n−1

)
− log

(
1 − e−

4t
n−1

)
.

enoting un,i(t) = e−
4t

n−1 /(1 − e−
4t

n−1 )i, the first and second derivatives of κK are

κ ′

K (t) = 1 +
4

n(n − 1)

n∑
k=1

kun,1(kt) −
4

n − 1
un,1(t),

κ ′′

K (t) = −
16

n(n − 1)2

n∑
k=1

k2un,2(kt) +
16

(n − 1)2
un,2(t).

he expressions for the third and the fourth derivatives can be found below:

κ
(3)
K (t) = −

64
n(n − 1)3

n∑
k=1

k3
(
un,2(kt) − 2un,3(kt)

)
+

64
(n − 1)3

(
un,2(t) − 2un,3(t)

)
,

κ
(4)
K (t) = −

256
n(n − 1)4

n∑
k=1

k4
(
un,2(kt) + 6e−

4kt
n(n−1) un,4(kt)

)
+

256
(n − 1)4

(
un,2(t)

+6e−
4t

n(n−1) un,4(t)
)
.

Using these derivatives, we can state the saddlepoint approximation in the next section.

2.1. Saddlepoint approximation

In the second application example of their main theorem for lattice-valued random variables, Chaganty and Sethuraman
(1985) gave a large deviation local limit approximation for the mass function of the Kendall’s tau coefficient (this is actually
the same approximation as the one below without the terms of order n−1). Under H0, a ‘‘full’’ saddlepoint approximation
including the terms of order n−1) for the probability mass function of Kn is given below.

heorem 1. Let Kn be defined as in (1). Then for n large enough,

P(Kn = a) =
4

n − 1
exp(−nκ∗

K (a))√
2πnκ ′′

K (τa)

(
1 +

P2K (τa)
n

+ O(n−3/2)
)

(2)

here the saddle point τa is such that κ ′

K (τa) = a. Furthermore, κ∗

K (a) = τaa − κK (τa) and

P2K (x) =
κ
(4)
K (x)
′′ 2 −

5(κ (3)
K (x))2

′′ 3 .

8(κK (x)) 24(κK (x))

2
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roof. In order to prove (2), we will use arguments from proofs of Chaganty and Sethuraman (1985, Theorem 2.2) and Jin
nd Robinson (2003, Theorem 1). First, let us define the tilted variable T ∗

n = nK ∗
n by

P(T ∗

n = na) = e−nκK (τa)+τanaP(Tn = na). (3)

Recall that the moment generating function of T ∗
n is

φK (τa + it)
φK (τa)

= e−nκK (τa)φK (τa + it). (4)

Therefore, by applying the inversion formula (see, e.g., Feller 1966) to the lattice valued random variable T ∗
n with span

4/(n − 1), and using (3) and (4), we have

P(Kn = a) = P(Tn = na) =
4

(n − 1)2π

∫ π (n−1)
4

−
π (n−1)

4

φK (τa + it)e−(τa+it)nadt

Then,

√
n
(
n − 1
4

)
P(Kn = a) =

(
1

2πκ ′′

K (τa)

)1/2

e−nκ∗
K (a)In (5)

where κ∗

K (a) = τaa − κK (τa) and

In =

(
nκ ′′

K (τa)
2π

)1/2 ∫ π (n−1)
4

−
π (n−1)

4

e−nGn(t)dt,

with Gn(t) = −κK (τa + it) + κK (τa) + ita. Choosing a positive constant λ such that λ < 1/2, let

In =

(
nκ ′′

K (τa)
2π

)1/2
[∫

|t|<n−λ

e−nGn(t)dt +

∫
n−λ<|t|< π (n−1)

4

e−nGn(t)dt

]
= In1 + In2. (6)

Using the same arguments as Chaganty and Sethuraman (1985), we can show that there exists a constant α > 0 such
that

|In2| ≤ O(n) exp(−αn1−2λ/4), (7)

which goes exponentially fast to zero since λ < 1/2. In fact, the assumptions (A), (B), (C’), (D’) of Chaganty and Sethuraman
(1985, Theorem 2.2), needed to prove (7), hold for the Kendall’s tau coefficient (see Chaganty and Sethuraman 1985,
Example 3.2). In particular we use the fact that there exists α > 0 such that infn−λ<|t|<π (n−1)/4 Real(Gn(t)) ≥ αn−2λ/4.

For the first term In1, by an expansion of Gn (see, e.g., the proof of Jin and Robinson 2003, Theorem 1) and using the
change of variables v = t

√
nκ ′′

K (τa), we have

In1 =
1

√
2π

∫
|v|<n1/2−λ

√
κ ′′
K (τa)

e−
v2
2

[
1 −

1
√
n

iv3κ
(3)
K (τa)

3!(κ ′′

K (τa))3/2
+

1
√
n

(
v4κ

(4)
K (τa)

4!(κ ′′

K (τa))2

−
v6(κ (3)

K (τa))2

2 × 62(κ ′′

K (τa))3

)
+ |v|

5e
v2
4 O(n−3/2)

]

= 1 +
1
n

(
3κ (4)

K (τa)
24(κ ′′

K (τa))2
−

15(κ (3)
K (τa))2

72(κ ′′

K (τa))3

)
+ O(n−3/2). (8)

Combining (5), (6), (7) and (8), we eventually obtain (2). □

2.2. Normal approximation

Let φG be the standard normal density function, and ΦG the corresponding cumulative distribution function.
Under H0, the expectation and the variance of Kn are

E(Kn) = 0 and V (Kn) =
2(2n + 5)
9n(n − 1)

.

Besides, the span of the lattice-valued random variable Kn is equal to 4/n(n−1). Then, the normal approximation (including
continuity correction) for the mass function of the Kendall’s tau coefficient is given below:

P(Kn = a) ∼ ΦG

(
a + 2/n(n − 1)

√
(2(2n + 5))/(9n(n − 1))

)
− ΦG

(
a − 2/n(n − 1)

√
(2(2n + 5))/(9n(n − 1))

)
, (9)

here ∼ denotes the asymptotic equivalence.
3
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.3. Edgeworth expansion

Let Sn =
∑

1≤i<j≤n(I{Xi≥Xj} − I{Xi≤Xj})(I{Yi≥Yj} − I{Yi≤Yj}). David et al. (1951) gave an Edgeworth expansion with seven
erms for the mass function of Sn. First, denoting by κi the ith cumulant (under H0) of Sn, we have

κ2 =
n(n − 1)(2n + 5)

18
,

κ4 = −
n(6n4

+ 15n3
+ 10n2

− 31)
225

,

κ6 =
8n(6n6

+ 21n5
+ 21n4

− 7n2
− 41)

1323
,

κ8 = −
8n(10n8

+ 45n7
+ 60n6

− 42n4
+ 20n2

− 93)
675

.

Note that the cumulants of odd order are null. Next, let us define the standardized cumulants (under H0) κ̃i of Sn by

κ̃i =
κi

κ
i/2
2

. (10)

sing the fact that the span of the lattice valued random variable Sn = n(n − 1)Kn/2 is 2, the Edgeworth approximation
f David et al. (1951) can therefore be expressed as follows:

P(Sn = k) ∼ 2κ−1/2
2 φG(xk)

(
1 +

κ̃4

24
H4(xk) +

κ̃6

720
H6(xk) +

κ̃2
4

1152
H8(xk)

+
κ̃8

40320
H8(xk) +

κ̃6κ̃4

17280
H10(xk) +

κ̃3
4

82944
H12(xk)

)
(11)

here xk = k/
√

κ2, the standardized cumulants κ̃i are defined in (10) and the Hermite polynomials are defined as follows,

H4(x) = x4 − 6x2 + 3,
H6(x) = x6 − 15x4 + 45x2 − 15,
H8(x) = x8 − 28x6 + 210x4 − 420x2 + 105,
H10(x) = x10 − 45x8 + 630x6 − 3150x4 + 4725x2 − 945

and
H12(x) = 2−6H̃12(x/

√
2)

here

H̃12(x) = 4096x12 − 135168x10 + 1520640x8 − 7096320x6 + 13305600x4 − 7983360x2 + 665280.

3. The Wilcoxon signed-rank statistic

Let X1, . . . , Xn be a sequence of i.i.d. absolutely continuous random variables having distribution function F and let Ri be
he rank of |Xi| among |X1|, . . . , |Xn|. In other words, if one arranges |X1|, |X2|, . . . , |Xn| in increasing order of magnitude,
i denotes the rank of |Xi|. Assume that the random variables Xi are symmetric about their median m. The Wilcoxon
igned-rank statistic Wn is defined as the sum of the quantities Ri corresponding to the positive X ′

i s, that is,

Wn =

n∑
i=1

I{Xi>0}Ri. (12)

he statistic Wn was introduced by Wilcoxon (1945) and is used to test the null hypothesis H0 : m = 0.
Let Tn = Wn/n. Then, under the null hypothesis H0, the moment generating function (m.g.f.) of Tn is given below (see,

.g., Van de Wiel et al. 1999),

φW (t) = E(etWn/n) =

n∏
k=1

exp(tk/n) + 1
2

, t ∈ R.

Next, the normalized cumulant generating function (c.g.f.) of Wn/n is

κW (t) = n−1 logφW (t)

= n−1
n∑

log
(
exp(tk/n) + 1

2

)
.

k=1

4
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he first and second derivatives of κW are

κ ′

W (t) = n−2
n∑

k=1

k exp(tk/n)
exp(tk/n) + 1

and κ ′′

W (t) = n−3
n∑

k=1

k2 exp(tk/n)
(exp(tk/n) + 1)2

.

e will also need the third and the fourth derivatives which can be written as follows after simplification:

κ
(3)
W (t) = n−4

n∑
k=1

k3 exp(tk/n) (1 − exp(tk/n))
(exp(tk/n) + 1)3

and

κ
(4)
W (t) = n−5

n∑
k=1

k4 exp(tk/n)
(exp(tk/n) + 1)2

(
1 −

6 exp(tk/n)
(exp(tk/n) + 1)2

)
.

sing these derivatives, we can present the saddlepoint approximation in the next section.

.1. Saddlepoint approximation

As for the Kendall’s tau coefficient, Chaganty and Sethuraman (1985) gave a large deviation approximation (which is
lso the same approximation as the one below without the terms of order n−1) for the mass function of the Wilcoxon
tatistic in the first application example of their main theorem.
Under H0, we have the following saddlepoint approximation for the mass function of Tn = Wn/n.

heorem 2. Let Tn = Wn/n where Wn is defined in (12). Then for n large enough,

P (Tn = nb) =
exp(−nκ∗

W (b))

n
√
2πnκ ′′

W (τb)

(
1 +

P2W (τb)
n

+ O(n−3/2)
)

(13)

here the saddle point τb is such that κ ′

W (τb) = b. Furthermore, κ∗

W (b) = τbb − κW (τb) and

P2W (x) =
κ
(4)
W (x)

8(κ ′′

W (x))2
−

5(κ (3)
W (x))2

24(κ ′′

W (x))3
.

roof. As for the Kendall’s tau coefficient, we first have to define the tilted variable T ∗
n = W ∗

n /n by

P(T ∗

n = nb) = e−nκW (τb)+τbnbP(Tn = nb).

By applying the inversion formula to the lattice valued random variable T ∗
n with span n−1, we have

P(Wn = n2b) = P (Tn = nb) =
1

2πn

∫ πn

−πn
φW (τb + it)e−(τb+it)nbdt.

The rest of the proof parallels the one in Section 2.1. In particular, the assumptions (A), (B), (C’), (D’) of Chaganty and Sethu-
raman (1985, Theorem 2.2), also hold for the Wilcoxon statistic (see Chaganty and Sethuraman 1985, Example 3.1). □

3.2. Normal approximation

Under H0, the expectation and the variance of Wn are

E(Wn) =
n(n + 1)

4
and V (Wn) =

n(n + 1)(2n + 1)
24

. (14)

hen, the normal approximation (including a continuity correction) for the Wilcoxon signed-rank statistic is given below:

P(Wn = a) ∼ ΦG

⎛⎝a + 1/2 − µW√
σ 2
W

⎞⎠− ΦG

⎛⎝a − 1/2 − µW√
σ 2
W

⎞⎠ , (15)

here µ = E(W ) and σ 2
= V (W ) are given in (14).
W n W n

5
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Table 1
Approximations of P(Kn = a) for the Kendall’s tau coefficient (n = 10).
k 1 3 5 7 11 15 17 19

a 0.0222 0.0667 0.1111 0.1556 0.2444 0.3333 0.3778 0.4222
Exact 0.06910 0.06716 0.06342 0.05817 0.04474 0.03032 0.02371 0.01788
PrNORM 0.07099 0.06876 0.06450 0.05862 0.04398 0.02905 0.02250 0.01688
PrEDG 0.06910 0.06716 0.06342 0.05817 0.04474 0.03031 0.02371 0.01788
PrLD 0.07111 0.06911 0.06526 0.05985 0.04601 0.03116 0.02436 0.01836
PrSAD 0.06919 0.06724 0.06350 0.05824 0.04479 0.03035 0.02374 0.01790

k 21 23 25 27 31 35 39 43

a 0.4667 0.5111 0.5556 0.6000 0.6889 0.7778 0.8667 0.9556
Exact 0.01296 0.00901 0.00597 0.00376 0.00124 0.00029 4.27e−05 2.48e−06
PrNORM 0.01227 0.00864 0.00589 0.00389 0.00154 0.00054 1.65e−04 4.46e−05
PrEDG 0.01296 0.00900 0.00597 0.00376 0.00124 0.00030 3.98e−05 −4.80e−07
PrLD 0.01330 0.00924 0.00612 0.00385 0.00126 0.00030 4.40e−05 2.69e−06
PrSAD 0.01297 0.00901 0.00597 0.00376 0.00124 0.00029 4.27e−05 2.46e−06

Fig. 1. Approximations of P(Kn = a) for the Kendall’s tau coefficient (n = 10).

.3. Edgeworth expansion

Quine (1994) gave an Edgeworth expansion (including a remainder term of order n−7/2) for the mass function of Wn:

P(Wn = a) = φG(xa)
(
1 −

H4(xa)(6n5
+ 15n4

+ 10n3
− n)

5760σ 2
W

)
+ O

(
1

n7/2

)
, (16)

here xa = (a − µW )/
√

σ 2
W , µW = E(Wn) and σ 2

W = V (Wn) are given in (14), and the Hermite polynomial H4 is defined
as H4(x) = x4 − 6x2 + 3.

4. Numerical comparisons

4.1. For the Kendall’s tau coefficient

The numerical comparisons are given in Table 1 and illustrated in Fig. 1 (note that for this last one, we chose a
curve graph for a better visualization of the different approximations). We consider the case n = 10 and compare
he exact probabilities P(Kn = a), where a = 2k/n(n − 1), for different values of k ranging from 1 to 43, with the
ormal approximation (9), the Edgeworth expansion (11) of David et al. (1951), the large deviation local limit result
f Chaganty and Sethuraman (1985) which is obtained from Eq. (2) by excluding the O(1/n) terms, and the ‘‘full’’
addlepoint approximation (2).
Note that for the numerical computations, we used R and the exact tail probabilities were obtained by using the

unction dKendall of the R package SuppDists.
6
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Table 2
Approximations of P(Wn = a) for the Wilcoxon signed-rank statistic (n = 10).
a 1 5 10 15 20 23 26 28

Exact 0.00098 0.00293 0.00977 0.01953 0.03027 0.03516 0.03809 0.03906
PrNORM 0.00106 0.00294 0.00829 0.01806 0.03035 0.03659 0.04017 0.04059
PrEDG 0.00087 0.00297 0.00899 0.01911 0.03043 0.03567 0.03855 0.03888
PrLD 0.00115 0.00337 0.00981 0.02024 0.03182 0.03725 0.04027 0.04062
PrSAD 0.00090 0.00303 0.00918 0.01920 0.03037 0.03563 0.03855 0.03888

a 31 34 38 41 43 46 49 53

Exact 0.03711 0.03223 0.02344 0.01660 0.01270 0.00781 0.00391 0.00098
PrNORM 0.03814 0.03264 0.02294 0.01578 0.01168 0.00688 0.00369 0.00139
PrEDG 0.03693 0.03239 0.02377 0.01685 0.01263 0.00743 0.00383 0.00123
PrLD 0.03857 0.03384 0.02499 0.01793 0.01359 0.00817 0.00431 0.00147
PrSAD 0.03690 0.03233 0.02378 0.01697 0.01280 0.00761 0.00392 0.00123

Fig. 2. Approximations of P(Wn = a) for the Wilcoxon signed-rank statistic (n = 10).

As we have already noticed for the approximation of tail probabilities of Kn in Joutard (2020), the Edgeworth expansion
f David et al. (1951), including all the seven terms, is very accurate here and only fails for the last value (k=43) of our
xample (with a negative probability). It is actually the best approximation for k = 1, . . . , 25 while the saddlepoint
pproximation is slightly better for k = 27, 31, 35. As expected, this last one is accurate everywhere and beats all other
pproximations for k = 27, . . . , 43.
Finally, the normal approximation and the large deviation local limit theorem generally give correct results. PrNORM is

little better than PrLD for values near the center of the distribution (k = 1, 3, 5, 7, 11) and for k = 25 while PrLD beats
the normal approximation for all other values (in particular for extreme ones).

4.2. For the Wilcoxon statistic

The numerical comparisons are given in Table 2 and illustrated in Fig. 2. As in the previous section, we consider the
case n = 10 and compare the exact probabilities P(Wn = a), for different values of a ranging from 1 to 53, with the normal
approximation (15), the Edgeworth expansion (16) of Quine (1994), the large deviation result of Chaganty and Sethuraman
(1985) which is obtained from Eq. (13) by excluding the O(1/n) terms, and the ‘‘full’’ saddlepoint approximation (13) (with
b = a/n2).

Here, the exact tail probabilities were obtained with the R function dsignrank.
Once again, the saddlepoint approximation and the Edgeworth expansion give the best results for most values, but

this time with a slight advantage for the saddlepoint expression. In fact, the most accurate approximation is PrSAD for
a = 1, 15, 23, 26, 34, 46, 49 while PrEDG beats all other approximations for a = 28, 31, 38, 41, 43, 53. The large deviation
result is the sharpest approximation only for a = 10, while the normal approximation does a pretty good job here and
outperforms even all other approximations for a = 5, 20.
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