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A TWO-LANE BIDIRECTIONAL NONLOCAL TRAFFIC MODEL

H. D. CONTRERAS, P. GOATIN, AND L. M. VILLADA

Abstract. We propose and study a nonlocal system of balance laws, which models the traffic

dynamics on a two-lane and two-way road where drivers have a preferred lane (the lane on their

right) and the other one is used only for overtaking. In this model, the convective part is intended

to describe the intralane dynamics of vehicles: the flux function includes local and nonlocal terms,

namely, the velocity function in each lane depends locally on the density of the class of vehicles

traveling on their preferred lane and in a nonlocal form on the density of the class of vehicles

overtaking in the opposite direction. The source terms are intended to describe the coupling between

the two lanes: the overtaking and return criteria depend on weighted means of the downstream

traffic density of the class of vehicles traveling in their preferred lane and of the class of vehicles

traveling in the opposite direction on the same lane. We construct approximate solutions using a

finite volume scheme and we prove existence of weak solutions by means of compactness estimates.

We also show some numerical simulations to describe the behaviour of the numerical solutions in

different situations and to illustrate some features of model.

1. Introduction

1.1. Motivation. Our main objective is to model vehicular traffic flow on a two-lane and two-way

road where drivers have a preferred lane, the lane on their right, and the left one is used only for

overtaking slower vehicles, see Figure 1. Lanes are labeled as lane 1 and lane 2 and we denote by

ρ1 := ρ1(t, x) and ρ2 := ρ2(t, x) the density of cars traveling from the left to right on the lane 1

and lane 2, respectively; by ρ̃1 := ρ̃1(t, x) and ρ̃2 := ρ̃2(t, x) the density of cars traveling from the

right to left on the lane 2 and lane 1, respectively; ρ1 is the preferred class of vehicle on the lane

1 and ρ̃1 is the preferred class on the lane 2. In order to extend the classical LWR (Lighthill -

Whitham [17] and Richards [18]) traffic model over a two-lane two-way road where overtaking of

cars is allowed, we assume that the velocity in each lane depends not only on the density of the

priority class of vehicles, but also on the density of the class travelling in the opposite direction,

eventually overtaking, which leads the following model
∂tρ1 + ∂x (ρ1v1 (ρ1 + (ρmax − ρ1)Hε(ρ̃2 ∗ ωη))) = 0,

∂tρ2 + ∂x (ρ2v2 (ρ2 + (ρmax − ρ2)Hε(ρ̃1 ∗ ωη))) = 0,

∂tρ̃1 − ∂x (ρ̃1v1 (ρ̃1 + (ρmax − ρ̃1)Hε(ρ2 ∗ ω̃η))) = 0,

∂tρ̃2 − ∂x (ρ̃2v2 (ρ̃2 + (ρmax − ρ̃2)Hε(ρ1 ∗ ω̃η))) = 0,

(1.1)

where the minus signs in the third and fourth equations in (1.1) indicate that classes ρ̃1 and ρ̃2

travel in opposite direction to ρ2 and ρ1, respectively. Above, vi(·), i = 1, 2, is the velocity of

vehicles, which we assume depends locally on the density of vehicles of the preferential class ρi and

in a nonlocal form on the downstream density of vehicles of the class coming in opposite direction on

the same lane. This nonlocal dependence is introduced to avoid collisions with downstream vehicles

traveling in opposite direction on the same lane and is given via the convolution terms ρ̃i ∗ ωη and
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ρi ∗ ω̃η, for i = 1, 2, [1, 8, 10] which will be defined later. Likewise, Hε(·) is a regularization of the

Heaviside function H(·), which keeps the flux smooth to avoid flux discontinuities in the unknown

ρ. Indeed, without regularization, if v(ρ1, ρ̃2) := v1(ρ1 + (ρmax − ρ1)H(ρ̃2 ∗ ωη))), then we have

v(ρ1, 0) = v1(ρ1) > 0 and v(ρ1, ρ̃2) = v1(ρmax) = 0 for ρ̃2 > 0.

We notice that, if ρ̃i = 0, we recover the local LWR model in the first and second equations in (1.1);

the same happens in the third and fourth equations as ρi = 0.

In addition, we endow to (1.1) with source terms to model overtaking and returning maneuvers.

We impose the following rules allowing vehicles to overtake: at the position x, a vehicle can overtake

if and only if

(C1) the local velocity vi(ρi) is greater than the velocity of the average of cars in front of it;

(C2) there are no vehicles traveling in the opposite direction neither on the other lane nor on the

same lane (overtaking from the other lane);

which is expressed mathematically as follows (see e.g. [11, 15]),

SO(ρ,R1,R2)=K1(ρmax − ρ2)ρ1[v1(ρ1)− v1(R1)]+(1−Hε(R2,1 +R2,2))(1.2)

Above, ρ = (ρ1, ρ2), R2 = (R2,1,R2,2), K1 > 0 is a constant, [s]+ = max{s, 0} and the nonlocal

terms R1(ρ1) = ω1
η ∗ρ1, R2,i = ω2

δ ∗ ρ̃i for i = 1, 2, describe a weighted mean of the cars traveling in

the same direction, in front of the drivers on the lane 1, and a weighted mean of the cars traveling in

opposite direction, respectively; we also assume that δ > η. Furthermore, we enforce the following

rule so that overtaking vehicles return to the preferential lane:

(C3) Lane 2 is only for overtaking, so that the vehicles in lane 2 have to return to lane 1 propor-

tionally to the capacity of it. It means that we can define the return term to lane 1, SR, as

follow

SR(ρ) = K2(ρmax − ρ1)ρ2,(1.3)

where K2 > 0 is a constant.

Likewise, we define the terms S̃O(ρ̃, R̃1, R̃2) and S̃R(ρ̃) for the class of vehicle traveling from right

to left, as follows

S̃O(ρ̃, R̃1, R̃2)=K1(ρmax − ρ̃2)ρ̃1[v1(ρ̃1)− v1(R̃1)]+
(

1−Hε(R̃2,1+R̃2,2)
)
,(1.4)

S̃R(ρ̃) = K2(ρmax − ρ̃1)ρ̃2,(1.5)

where the nonlocal terms R̃1 = ω̂1
η ∗ ρ̃1 and R̃2,i = ω̂2

δ ∗ ρi, i = 1, 2, describe the average of cars, in

the same direction, in front of the drivers on the lane 2, and average of cars traveling in opposite

direction, respectively; here we put ω̂1
η(·) := ω1

η(− ·) and ω̂2
δ (·) := ω2

δ (− ·).

1.2. Related Work. Macroscopic models of vehicular traffic flow with nonlocal fluxes have been

extensively studied recently, see e.g. [1, 13, 4, 5, 7, 8, 12, 16]. In this kind of models, the velocity

function depends on an integral evaluation of downstream traffic states. In this way, they allow to

describe traffic flow dynamics in which drivers adapt their velocity to downstream traffic. Most of

works present in the literature consider a one-directional road with one class of vehicles. To model

more realistic situations, nonlocal models have been extended to multi-class and multilane settings,

for example, in [8] is studied a system of nonlocal conservation laws modeling multi-class traffic
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Lane 2

Lane 1

Figure 1. Illustration of the model setting. The red car overtake a slower vehicle,

the bus, using the lane 2 and then return to their preferred lane, the lane 1.

flow, providing existence of weak solutions for small times. Concerning multilane flows, Holden

and Risebro, [15] proposed a (local) system of balance laws coupled in the source term. In that

model, it is assumed that the tendency of drivers to change to a neighboring lane is proportional

to the difference in velocity between lanes; the authors proved some bounds for the solutions of

the model and show that solutions convergence to a weak solution. This approach was extended

in [11] considering nonlocal balance laws where the nonlocal source term was used to describe

the lane change rate. More recently, in [9] it has been introduced a system of conservation laws

with nonlocal fluxes, coupled in the velocity functions, to describe two classes moving in opposite

directions, proving existence of weak solutions for sufficiently small times.

1.3. Outline of the paper. This work is organized as follows: In Section 2, we summarize the

proposed mathematical model and all the related assumptions. Afterwards, in Section 3, we in-

troduce a Hilliges-Weidlich (HW)-type numerical scheme, as in [5], and we prove fundamental

properties such as positivity of approximate solutions, L∞− and L1− bounds and BV estimates,

which ensure the convergence of approximate solutions to a weak solution of the proposed model.

In Section 4, we present numerical examples illustrating the behavior of the solutions of our model.

2. Mathematical model

The main goal of this work is to study the well-posedness of the nonlocal system of equations

(2.1)


∂tρ1 + ∂x(ρ1v1(ρ1 + (ρmax − ρ1)Hε(ρ̃2 ∗ ωη))) = −SO(ρ,R1,R2) + SR(ρ)

∂tρ2 + ∂x(ρ2v2(ρ2 + (ρmax − ρ2)Hε(ρ̃1 ∗ ωη))) = SO(ρ,R1,R2)− SR(ρ)

∂tρ̃1 − ∂x(ρ̃1v1(ρ̃1 + (ρmax − ρ̃1)Hε(ρ2 ∗ ω̃η))) = −S̃O(ρ̃, R̃1, R̃2) + S̃R(ρ̃)

∂tρ̃2 − ∂x(ρ̃2v2(ρ̃2 + (ρmax − ρ̃2)Hε(ρ1 ∗ ω̃η))) = S̃O(ρ̃, R̃1, R̃2)− S̃R(ρ̃),

where ρ and ρ̃, take values in the set

Ω =
{
ρ, ρ̃ ∈ R2 : 0 ≤ ρi ≤ ρmax, 0 ≤ ρ̃i ≤ ρmax, i = 1, 2

}
,

and the convolution terms in the fluxes are defined as

ρ̃i ∗ ωη :=

∫ x+η

x
ωη(y − x)ρ̃i(t, y)dy, ρi ∗ ω̃η :=

∫ x

x−η
ω̃η(y − x)ρi(t, y)dy,

for i = 1, 2, where ω̃η(x) = ωη(−x). The initial conditions satisfy

(2.2)
ρ1(x, 0) = ρ0

1(x) ∈ (L1 ∩BV)(R; [0, ρmax]), ρ2(x, 0) = 0,

ρ̃1(x, 0) = ρ̃0
1(x) ∈ (L1 ∩BV)(R; [0, ρmax]), ρ̃2(x, 0) = 0,

where the initial conditions ρ2(x, 0) = ρ̃2(x, 0) = 0 means that there is no overtaking initially.

In addition, we consider the following assumptions.
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Assumptions 2.1. The system of nonlocal balance laws (2.1) is studied under the following as-

sumptions:

(i) v1, v2 ∈ C1([0, ρmax];R+), with v′1(ρ) ≤ 0, v′2(ρ) ≤ 0, ρ ∈ [0, ρmax];

(ii) ωη ∈ C1([0, η];R+) with ω′η(x) ≤ 0,
∫ η

0 ωη(x)dx = 1, ∀η > 0.

(iii) ω1
η ∈ C1([0, η];R+) with (ω1

η)
′(x) ≤ 0,

∫ η
0 ω

1
η(x)dx = 1, ∀η > 0;

(iv) ω2
δ ∈ C1([0, δ];R+) with (ω2

δ )
′(x) ≤ 0,

∫ δ
0 ω

2
δ (x)dx = 1, ∀δ > 0;

(v) supp(ω1
η) ⊂ supp(ω2

δ ), i.e, δ > η.

Solutions for (2.1)-(2.2) are intended in the following weak sense:

Definition 2.1 (Weak solution). Let ρ0
i , ρ̃

0
i ∈

(
L1 ∩BV

)
(R; [0, ρmax]) satisfying (2.2) for i =

1, 2. We say that ρi, ρ̃i ∈ C0
(
[0, T ]; L1(R; [0, ρmax])

)
, with (ρi(t, ·), ρ̃i(t, ·)) ∈ (BV (R; [0, ρmax]))2

for t ∈ [0, T ] and i = 1, 2, are weak solutions to (2.1)-(2.2) if, for any ϕ ∈ C1
c ([0, T [×R;R), it holds∫ T

0

∫
R

(
ρ1

ρ2

)
ϕt dxdt+

∫ T

0

∫
R

(
ρ1v1(ρ1 + (ρmax − ρ1)Hε(ρ̃2 ∗ ωη))
ρ2v2(ρ2 + (ρmax − ρ2)Hε(ρ̃1 ∗ ωη))

)
ϕx dxdt

+

∫ T

0

∫
R

(
− (SO − SR)

SO − SR

)
ϕ dxdt+

∫
R
ϕ(0, x)

(
ρ1(0, x)

ρ2(0, x)

)
dx =

(
0

0

)
,

and ∫ T

0

∫
R

(
ρ̃1

ρ̃2

)
ϕt dxdt−

∫ T

0

∫
R

(
ρ̃1v2(ρ̃1 + (ρmax − ρ̃1)Hε(ρ2 ∗ ω̃η))
ρ̃2v2(ρ̃2 + (ρmax − ρ̃2)Hε(ρ1 ∗ ω̃η))

)
ϕx dxdt

+

∫ T

0

∫
R

 −(S̃O − S̃R

)
S̃O − S̃R

ϕ dxdt+

∫
R
ϕ(0, x)

(
ρ̃1(0, x)

ρ̃2(0, x)

)
dx =

(
0

0

)
.

Our main result is given by the following theorem, which states the existence of solutions to

problem (2.1) - (2.2).

Theorem 2.1. Let ρ0
i , ρ̃

0
i ∈ (L∞ ∩BV) (R;R+) satisfying (2.2) for i = 1, 2 and Assumptions 2.1

hold. Then, for all T > 0, the Cauchy problem (2.1)-(2.2) admits a weak solution on [0, T ]× R in

the sense of the Definition 2.1.

To prove Theorem 2.1, we propose a finite volume numerical scheme with operator splitting and

we derive some important properties of the approximate solutions, as well as compactness estimates

that will allow us to conclude by Helly’s Compactness Theorem.

3. Numerical scheme

3.1. Discretization of model (2.1)-(2.2): We take a uniform space step ∆x and a time step ∆t

subject to a Courant-Friedrichs-Levy (CFL) condition, which will be specified later. For any j ∈ Z,

let xj+1/2 = (j + 1/2)∆x be the cell interfaces and xj = j∆x be the cell centers. We fix T > 0,
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and set NT ∈ N such that NT∆t ≤ T < (NT + 1)∆t and define the time mesh as tn = n∆t, for

n = 0, . . . , NT . The initial data are approximated, for j ∈ Z and i = 1, 2 as

ρ0
i,j =

1

∆x

∫ xj+1/2

xj−1/2

ρ0
i (x)dx and ρ̃0

i,j =
1

∆x

∫ xj+1/2

xj−1/2

ρ̃0
i (x)dx.

We denote, for k = 0, . . . , N − 1,

ωkη :=

∫ (k+1)∆x

k∆x
ωη(y)dy, ω̃kη :=

∫ −k∆x

(−k−1)∆x
ω̃η(y)dy

and set the convolution term, for i = 1, 2,

R̃[i](xj+1/2, t
n) := (ωη ∗ ρ̃[i],j)(xj+1/2, t

n) ≈
N−1∑
k=0

ωkη ρ̃
n
[i],j+k+1,

Ri(xj+1/2, t
n) := (ω̃η ∗ ρi,j)(xj+1/2, t

n) ≈
N−1∑
k=0

ω̃kηρ
n
i,j−k,

where the notation [·], means [1] = 2 and [2] = 1. Likewise, we define a piecewise constant

approximate solution

ρ∆(t, x) = (ρ∆
1 (t, x), ρ∆

2 (t, x)) and ρ̃∆(t, x) = (ρ̃∆
1 (t, x), ρ̃∆

2 (t, x)),

as follows, for i = 1, 2

(3.1) ρ∆
i (t, x) = ρni,j and ρ̃∆

i (t, x) = ρ̃ni,j , (t, x) ∈ [tn, tn+1[×]xj−1/2, xj+1/2].

The convective terms in (2.1) are obtained via a Hilliges-Weidlich (HW)-type scheme, [3, 2, 14, 6]

defined by

Fi,j+1/2 := ρni,jv1(ρni,j+1 + (ρmax − ρni,j+1)Hε(R̃
n
[i],j+1/2)),(3.2)

G[i],j+1/2 := ρ̃n[i],j+1v2(ρ̃n[i],j + (ρmax − ρ̃n[i],j)Hε(R
n
i,j+1/2)),(3.3)

where the discretizations of convolution terms in the fluxes are given by the expressions

R̃[i],j+1/2 :=
N−1∑
k=0

ωkη ρ̃
n
[i],j+k+1, Ri,j+1/2 :=

N−1∑
k=0

ω̃kηρ
n
i,j−k.

Then, we set F n
j+1/2 = [Fn1,j+1/2, F

n
2,j+1/2] and Gn

j+1/2 = [Gn1,j+1/2, G
n
2,j+1/2].

In order to compute the source terms in (2.1), we first introduce the following notations for the con-

volutions terms; for kernel functions ω1
η ∈ C1

c([0, η]), ω̂1
η ∈ C1

c([−η, 0]) satisfying Assumptions 2.1

for some N1 ∈ N such that η = ∆xN1 and any piecewise constant function u∆

Rn1,j := (ω1
η ∗ u∆)(xj , t

n) =

∫ xj+η

xj

ω1
η(y − xj)u∆(t, y)dy ≈

N1∑
k=0

γku
n
j+k,

with coefficients

γ0 =

∫ ∆x/2

0
ω1
η(y)dy, γk =

∫ (k+1/2)∆x

(k−1/2)∆x
ω1
η(y)dy, k = 1, . . . , N1 − 1;

γN1 =

∫ η

η−∆x/2
ω1
η(y)dy.

(3.4)

We also define

R̃n1,j := (ω̂1
η ∗ u∆)(xj , t

n) =

∫ xj

xj−η
ω̂1
η(xj − y)u∆(t, y)dy ≈

N1∑
k=0

γ̃ku
n
j+k,



6 H. D. CONTRERAS, P. GOATIN, AND L. M. VILLADA

with coefficients

γ̃0 =

∫ 0

−∆x/2
ω̂1
η(y)dy, γ̃i =

∫ −(k−1/2)∆x

−(k+1/2)∆x
ω̂1
η(y)dy, k = 1, . . . , N1 − 1;

γ̃N1 =

∫ −(η−∆x/2)

−η
ω̂1
η(y)dy.

(3.5)

Similarly, for ω2
δ ∈ C1

c([0, δ]) and ω̂2
δ ∈ C1

c([−δ, 0]) satisfying Assumptions 2.1 for some N2 ∈ N
such that δ = ∆xN2, for i = 1, 2

Rn2,i,j := (ω2
δ ∗ u∆)(xj , t

n) =

∫ xj+δ

xj

ω2
δ (y − xj)u∆(t, y)dy ≈

N2∑
k=0

ζku
n
j+k,

with coefficients ζk as in (3.4), and likewise we define

R̃n2,i,j := (ω̂2
δ ∗ u∆)(xj , t

n) =

∫ xj

xj−δ
ω̂2
δ (xj − y)u∆(t, y)dy ≈

N2∑
k=0

ζ̂ku
n
j+k,

with coefficients ζ̂k as in (3.5). Finally, for j ∈ Z and n ∈ N, we can compute the source terms

(1.2) and (1.3) as

SO(ρnj ,Rn1,j ,Rn
2,j) = K1(ρmax − ρn2,j)ρn1,j [v1(ρn1,j)− v1(Rn1,j)]+

×
(
1−Hε(Rn2,1,j +Rn2,2,j)

)
,

SR(ρnj ) = K2(ρmax − ρn1,j)ρn2,j
In the same way, we can compute the source terms (1.4) and (1.5) as follows

S̃O(ρ̃nj , R̃n1,j , R̃
n
2,j) = K1(ρmax − ρ̃n2,j)ρ̃n1,j [v2(ρ̃n1,j)− v2(R̃n1,j)]+

×
(

1−Hε(R̃n2,1,j + R̃n2,2,j)
)

S̃R(ρ̃nj ) = K2(ρmax − ρ̃n1,j)ρ̃n2,j

The values ρnj = (ρn1,j , ρ
n
2,j) and ρ̃nj = (ρ̃n1,j , ρ̃

n
2,j) are update by using Algorithm 3.1 below, composed

of the HW type scheme with operator splitting, to account for the source terms.

Algorithm 3.1.

Input: approximate solution vectors ρnj = (ρn1,j , ρ
n
2,j) and ρ̃nj = (ρ̃n1,j , ρ̃

n
2,j) for j ∈ Z and

t = tn

do j ∈ Z,

ρ
n+1/2
j ← ρnj − λ

(
F n
j+1/2 − F

n
j−1/2

)
, using (3.2)(3.6)

ρ̃
n+1/2
j ← ρ̃nj + λ

(
Gn
j+1/2 −G

n
j−1/2

)
, using (3.3).

enddo

do j ∈ Z,

S
n+1/2
j ← SO

(
ρ
n+1/2
j ,Rn+1/2

1,j ,Rn+1/2
2,j

)
j
− SR

(
ρ
n+1/2
j

)
,

S̃
n+1/2
j ← S̃O

(
ρ̃
n+1/2
j , R̃n+1/2

1,j , R̃n+1/2
2,j

)
− S̃R

(
ρ̃j
n+1/2

)
,

ρn+1
j ← ρ

n+1/2
j + ∆t[−Sn+1/2

j , S
n+1/2
j ],(3.7)
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ρ̃n+1
j ← ρ̃

n+1/2
j + ∆t[−S̃n+1/2

j , S̃
n+1/2
j ].

enddo

Output: approximate solution vectors ρn+1
j = (ρn+1

1,j , ρ
n+1
2,j ) and ρ̃n+1

j = (ρ̃n+1
1,j , ρ̃

n+1
2,j ) for

j ∈ Z and t = tn+1 = tn + ∆t.

Notation: In the following, we will set for simplicity:

SnO,j := SO

(
ρnj ,Rn1,j ,Rn

2,j

)
, SnR,j := SR

(
ρnj
)
, S̃nO,j := S̃O

(
ρ̃nj , R̃n1,j , R̃

n
2,j

)
,

S̃nR,j := S̃R

(
ρ̃nj
)
.

In order to prove the existence of solutions of model (2.1), in the next lemmas we will show some

properties of the approximate solutions computed by means of Algorithm 3.1. We start by proving

positivity of approximate solutions. From now on, if not stated otherwise, ‖·‖ defines for simplicity

the L∞ norm over the underlying space, e.g., ‖v‖L∞([0,ρmax]) := ‖v‖.

Lemma 3.1 (Maximum principle). Let Assumptions 2.1 hold. Then under following CFL

condition

∆t ≤ min

{
∆x

C +D
,

1

K

}
,(3.8)

the approximate solutions computed by means Algorithm 3.1 satisfies

0 ≤ ρn+1
i,j , ρ̃n+1

i,j ≤ ρmax, for all j ∈ Z, i = 1, 2. Here, C = max{‖v1‖, ‖v2‖},
D = max{ρmax‖v′1‖, ρmax‖v′2‖}, and K = ρmax max{K1,K2}.

Proof. We assume that 0 ≤ ρni,j , ρ̃
n
i,j ≤ ρmax for all j ∈ Z, for i = 1, 2, then for the convective part

we first have

ρ
n+1/2
i,j =

(
1− λv1(ρni,j+1 + (ρmax − ρni,j+1)Hε(R̃

n
[i],j+1/2))

)
ρni,j

+ρni,j−1v1(ρni,j−1 + (ρmax − ρni,j−1)Hε(R̃
n
[i],j−1/2))

≥ 0,

and similarly we can obtain ρ̃
n+1/2
i,j ≥ 0. Now, to prove that ρn+1

i,j , ρ̃n+1
i,j ≥ 0, we need to show first

that ρ
n+1/2
i,j , ρ̃

n+1/2
i,j ≤ ρmax. To this end, we will simplify the notation, denoting

F (u,w, R̃) = u vi(w + (ρmax − w)Hε(R̃)),

for i = 1, 2, and observe that

F (u, ρmax, R̃) = u vi(ρmax + (ρmax − ρmax)Hε(R̃)) = 0

and also note that the partial derivatives of F with respect to each argument satisfy the mono-

tonicity conditions

(3.9)

∂1F = vi

(
w + (ρmax − w)Hε(R̃)

)
≥ 0,

∂2F = u v′i

(
w + (ρmax − w)Hε(R̃)

)(
1−Hε(R̃)

)
≤ 0,

∂3F = u v′i

(
w + (ρmax − w)Hε(R̃)

)
(ρmax − w)H ′ε(R̃) ≤ 0.

With this notation, we can write (3.6) as follows

ρ
n+1/2
i,j = ρni,j − λ

[
F (ρni,j , ρ

n
i,j+1, R̃[i],j+1/2)− F (ρni,j−1, ρ

n
i,j , R̃[i],j−1/2)

]
.(3.10)
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By the CFL condition (3.8), we get

ρ
n+1/2
i,j ≤ ρni,j + λ

[
F (ρmax, ρ

n
i,j , R̃[i],j−1/2)− F (ρni,j , ρ

n
i,j+1, R̃[i],j+1/2)

]
≤ ρni,j + λF (ρmax, ρ

n
i,j , R̃[i],j−1/2)

= ρni,j + λ
[
F (ρmax, ρ

n
i,j , R̃[i],j−1/2)− F (ρmax, ρmax, R̃[i],j−1/2)

]
= ρni,j + λ

[
−∂2F (νnj+1/2)(ρmax − ρni,j)

]
=

(
1− λ(−∂2F (νnj+1/2))

)
ρni,j − λ∂2F (νnj+1/2)ρmax

≤ ρmax,

where νnj+1/2 ∈ I
(

(ρmax, ρ
n
i,j , R̃[i],j−1/2), (ρmax, ρmax, R̃[i],j−1/2)

)
. In the same way we can compute

ρ̃
n+1/2
i,j ≤

(
1− λ(−∂2F (ν̃nj+1/2))

)
ρ̃ni,j − λ∂2F (ν̃nj+1/2)ρmax

≤ ρmax,

where νnj+1/2 ∈ I
(

(ρmax, ρ̃
n
i,j , Ri,j+1/2), (ρmax, ρmax, Ri,j+1/2)

)
. Now for the reactive term (3.7), we

have the following estimates:

ρn+1
1,j = ρ

n+1/2
1,j −∆t

(
SnO,j − SnR,j

)
≤ ρ

n+1/2
1,j + ∆tSnR,j

= ρ
n+1/2
1,j + ∆tK2(ρmax − ρn+1/2

1,j )ρ
n+1/2
2,j

=
(

1−∆tK2ρ
n+1/2
2,j

)
ρ
n+1/2
1,j + ∆tK2ρmaxρ

n+1/2
2,j

≤
(

1−∆tK2ρ
n+1/2
2,j

)
ρmax + ∆tK2ρmaxρ

n+1/2
2,j

= ρmax

and also

ρn+1
1,j ≥ ρ

n+1/2
1,j −∆tSnO,j

= ρ
n+1/2
1,j −∆tK1(ρmax − ρn+1/2

2,j )ρ
n+1/2
1,j [v1(ρnj )− v1(Rn+1/2

1,j )]+
(

1−Hε(Rn+1/2
2,1,j +Rn+1/2

2,2,j )
)

=

(
1−∆tK1(ρmax − ρn+1/2

2,j )[v1(ρnj )− v1(Rn+1/2
1,j )]+

(
1−Hε(Rn+1/2

2,1,j +Rn+1/2
2,2,j )

))
ρ
n+1/2
1,j

≥ 0.

In the same way,

ρn+1
2,j = ρ

n+1/2
2,j + ∆t

(
SnO,j − SnR,j

)
≤ ρn+1/2

2,j + ∆tSnO,j

= ρ
n+1/2
2,j + ∆tK1(ρmax − ρn+1/2

2,j )ρ
n+1/2
1,j [v1(ρnj )− v1(Rn+1/2

1,j )]+
(

1−Hε(Rn+1/2
2,1,j +Rn+1/2

2,2,j )
)

=
(

1−∆tK1ρ
n+1/2
1,j [v1(ρnj )− v1(Rn+1/2

1,j )]+
(

1−Hε(Rn+1/2
2,1,j +Rn+1/2

2,2,j )
))

ρ
n+1/2
2,j

+ ∆tK1ρmaxρ
n+1/2
1,j [v1(ρnj )− v1(Rn+1/2

1,j )]+
(

1−Hε(Rn+1/2
2,1,j +Rn+1/2

2,2,j )
)

=
(

1−∆tK1ρ
n+1/2
1,j [v1(ρnj )− v1(Rn+1/2

1,j )]+
(

1−Hε(Rn+1/2
2,1,j +Rn+1/2

2,2,j )
))

ρmax

+ ∆tK1ρmaxρ
n+1/2
1,j [v1(ρnj )− v1(Rn+1/2

1,j )]+
(

1−Hε(Rn+1/2
2,1,j +Rn+1/2

2,2,j )
)
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≤ ρmax,

and

ρn+1
2,j ≥ ρ

n+1/2
2,j −∆tSnR,j

= ρ
n+1/2
2,j −∆tK2(ρmax − ρn+1/2

1,j )ρ
n+1/2
2,j

=
(

1−∆tK2(ρmax − ρn+1/2
1,j )

)
ρ
n+1/2
2,j

≥ 0.

Following a similar procedure we get 0 ≤ ρ̃n+1
i,j ≤ ρmax. �

Lemma 3.2 (L1−bounds). Let ρ0
i , ρ̃

0
i ∈ L1(R; [0, ρmax]) satisfying (2.2) for i = 1, 2 and let As-

sumptions 2.1 hold. Under the CFL condition (3.8), the approximate solutions ρ∆, ρ̃∆ constructed

by means of Algorithm 3.1 satisfy∥∥ρ∆(t, ·)
∥∥

L1(R)
:=
∥∥ρ∆

1 (t, ·)
∥∥

L1(R)
+
∥∥ρ∆

2 (t, ·)
∥∥

L1(R)
=
∥∥ρ0

1

∥∥
L1(R)

+
∥∥ρ0

2

∥∥
L1(R)

.

Proof. The proof is done by induction. Observe that by conservation and since ρn1,j ≥ 0 and ρn2,j ≥ 0

we get ∥∥∥ρn+1/2
1

∥∥∥
L1(R)

= ‖ρn1‖L1(R) =
∥∥ρ0

1

∥∥
L1(R)

,∥∥∥ρn+1/2
2

∥∥∥
L1(R)

= ‖ρn2‖L1(R) =
∥∥ρ0

2

∥∥
L1(R)

,

and therefore ∥∥∥ρn+1/2
1

∥∥∥
L1(R)

+
∥∥∥ρn+1/2

2

∥∥∥
L1(R)

=
∥∥ρ0

1

∥∥
L1(R)

+
∥∥ρ0

2

∥∥
L1(R)

.

Now let us consider the reactive terms (3.7). Note the fact that when we compute ρn+1
1,j + ρn+1

2,j the

source terms sum up to 0, for which we get again by positivity∥∥ρn+1
1

∥∥
L1(R)

+
∥∥ρn+1

2

∥∥
L1(R)

=
∥∥∥ρn+1/2

1

∥∥∥
L1(R)

+
∥∥∥ρn+1/2

2

∥∥∥
L1(R)

=
∥∥ρ0

1

∥∥
L1(R)

+
∥∥ρ0

2

∥∥
L1(R)

.

In the same way we get∥∥ρ̃n+1
1

∥∥
L1(R)

+
∥∥ρ̃n+1

2

∥∥
L1(R)

= ‖ρ̃n1‖L1(R) + ‖ρ̃n2‖L1(R) =
∥∥ρ̃0

1

∥∥
L1(R)

+
∥∥ρ̃0

2

∥∥
L1(R)

.

�

The next lemma is an important property that will allow us to prove the BV estimates later.

Lemma 3.3. The maps SO, SR, S̃O, S̃R defined in (1.2), (1.3) and (1.4), (1.5), respectively, are

Lipschitz continuous in each of their arguments, more precisely,

|SO,j+1 − SO,j |+ |SR,j+1 − SR,j |

≤ K (|ρ1,j+1 − ρ1,j |+ |ρ2,j+1 − ρ2,j |+ |R1,j+1 −R1,j |+ |R2,1,j+1 −R2,1,j |

+ |R2,2,j+1 −R2,2,j |) ,(3.11)

∣∣∣S̃O,j+1 − S̃O,j

∣∣∣+
∣∣∣S̃R,j+1 − S̃R,j

∣∣∣
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≤ K
(
|ρ̃1,j+1 − ρ̃1,j |+ |ρ̃2,j+1 − ρ̃2,j |+

∣∣∣R̃1,j+1 − R̃1,j

∣∣∣+
∣∣∣R̃2,1,j+1 − R̃2,1,j

∣∣∣
+
∣∣∣R̃2,2,j+1 − R̃2,2,j

∣∣∣) ,(3.12)

for some constant K > 0, depending on K1, K2 and ρmax.

Proof. For proving this lemma we will show that maps, SO, SR, S̃O, S̃R, are continuous and their

partial derivative with respect to each argument are bounded.

Clearly the maps SO, SR, S̃O, S̃R, are continuous. Now on the one hand, for derivatives of SO we

get the following estimate,

|∂1SO| ≤
∣∣∣∣K1(ρmax − ρ2)[v1(ρ1)− v1(R1)]+ (1−Hε(R2,1 +R2,2))

∣∣∣∣
+

∣∣∣∣K1(ρmax − ρ2)ρ1 (1−Hε(R2,1 +R2,2)) v′1(ρ1)

∣∣∣∣
≤ K1ρmax‖v1‖+K1ρ

2
max‖v′1‖,

|∂2SO| =
∣∣−K1ρ1[v1(ρ1)− v1(R1)]+ (1−Hε(R2,1 +R2,2))

∣∣
≤ K1ρmax‖v1‖,

|∂3SO| ≤
∣∣K1(ρmax − ρ2)ρ1 (1−Hε(R2,1 +R2,2)) ‖v′1(R1)‖

∣∣
≤ K1ρ

2
max‖v′1‖,

|∂4SO| =
∣∣−K1(ρmax − ρ2)ρ1[v1(ρ1)− v1(R1)]+H ′ε(R2,1 +R2,2)

∣∣
≤ K1ρ

2
max‖v1‖‖H ′ε‖,

|∂5SO| =
∣∣−K1(ρmax − ρ2)ρ1[v1(ρ1)− v1(R1)]+H ′ε(R2,1 +R2,2)

∣∣
≤ K1ρ

2
max‖v1‖‖H ′ε‖.

On the other hand, for the derivatives of SR we get the following estimates

|∂1SR| = |−K2ρ2| ≤ K2ρmax,

|∂2SR| = |K2(ρmax − ρ1)| ≤ K2ρmax.

The previous facts ensure the Lipschitz continuity of the source terms SO and SR with respect to

each of their arguments and at the same time allows us to obtain the estimate (3.11). The estimate

(3.12) is obtained by means of a similar procedure. �

Remark 3.1. Let us consider Rj =

N∑
k=0

γkuj+k as any of the convolution terms in the source terms,

then, following [11, Lemma 3.1], the following estimate holds∑
j∈Z
|Rj+1 −Rj | ≤

∑
j∈Z
|uj+1 − uj | .(3.13)

3.2. BV estimates.

Proposition 3.1 (BV estimates in space). Let ρ0
j , ρ̃

0
j ∈ (L∞ ∩BV) (R;R+) satisfying (2.2),

let Assumptions 2.1 and the CFL condition (3.8) hold. Then, for all T > 0, there exist positive
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constants H and G such that ρ∆, ρ̃∆ constructed through Algorithm 3.1 satisfy the following

estimate: for all n = 0, . . . , NT ,

2∑
i=1

(
TV(ρni ) + TV(ρ̃n[i])

)
≤ eT (5K+H)

(
2∑
i=1

(
TV(ρ0

i ) + TV(ρ̃0
[i])
)

+ 2TG

)
.

Proof. Taking into account (3.10), we can write

ρ
n+1/2
i,j+1 = ρni,j+1 − λ

[
F (ρni,j+1, ρ

n
i,j+2, R̃[i],j+3/2)− F (ρni,j , ρ

n
i,j+1, R̃[i],j+1/2)

]
.

Setting ∆
n+1/2
i,j+1/2 = ρ

n+1/2
i,j+1 − ρ

n+1/2
i,j , for all i = 1, 2 we compute the following estimates

∆
n+1/2
i,j+1/2 =

[
1−λ

(
∂1F (ξnj+1/2)− ∂2F (ξnj−1/2)

)]
∆n
j+1/2 − λ∂2F (ξnj+1/2)∆n

i,j+3/2

+λ∂1F (ξnj−1/2)∆n
j−1/2 − λ∂3F (ξnj+1/2)

(
R̃n[i],j+3/2 − R̃

n
[i],j+1/2

)
+λ∂3F (ξnj−1/2)

(
R̃n[i],j+1/2 − R̃

n
[i],j−1/2

)
±λ∂3F (ξnj−1/2)

(
R̃n[i],j+3/2 − R̃

n
[i],j+1/2

)
=
[
1−λ

(
∂1F (ξnj+1/2)− ∂2F (ξnj−1/2)

)]
∆n
j+1/2

−λ∂2F (ξnj+1/2)∆n
i,j+3/2 + λ∂1F (ξnj−1/2)∆n

j−1/2

+λ∂3F (ξnj−1/2)
[(
R̃n[i],j+1/2 − R̃

n
[i],j−1/2

)
−
(
R̃n[i],j+3/2 − R̃

n
[i],j+1/2

)]
+λ
[
∂3F (ξnj−1/2)− ∂3F (ξnj+1/2)

] (
R̃n[i],j+3/2 − R̃

n
[i],j+1/2

)
,

where

ξnj+1/2 =
(
unj+1/2, w

n
j+1/2, σ̃

n
j+1/2

)
∈ I

(
(ρni,j , ρ

n
i,j+1, R̃

n
[i],j+1/2), (ρni,j+1, ρ

n
i,j+2, R̃

n
[i],j+3/2)

)
.

Observe that the coefficient of the first term in the above equality is positive because of the

monotonicity properties of F in (3.9) and CFL condition (3.8), so taking absolute values in the

above equality we get∣∣∣∆n+1/2
i,j+1/2

∣∣∣ ≤ [
1− λ

(
∂1F (ξnj+1/2)− ∂2F (ξnj−1/2)

)] ∣∣∣∆n
j+1/2

∣∣∣
−λ∂2F (ξnj+1/2)

∣∣∣∆n
i,j+3/2

∣∣∣+ λ∂1F (ξnj−1/2)
∣∣∣∆n

j−1/2

∣∣∣
+λ‖∂3F‖

∣∣∣R̃n[i],j+3/2 − 2R̃n[i],j+1/2 + R̃n[i],j−1/2

∣∣∣(3.14)

+λ
∣∣∣∂3F (ξnj−1/2)− ∂3F (ξnj+1/2)

∣∣∣ ∣∣∣R̃n[i],j+3/2 − R̃
n
[i],j+1/2

∣∣∣ .(3.15)

Next, the term (3.14) can be estimated as follow∣∣∣(R̃n[i],j+3/2 − R̃
n
[i],j+1/2

)
−
(
R̃n[i],j+1/2 − R̃

n
[i],j−1/2

)∣∣∣
=

∣∣∣∣∣
(
N−1∑
k=0

ωkη ρ̃
n
[i],j+k+2 −

N−1∑
k=0

ωkη ρ̃
n
[i],j+k+1

)

−

(
N−1∑
k=0

ωkη ρ̃
n
[i],j+k+1 −

N−1∑
k=0

ωkη ρ̃
n
[i],j+k

)∣∣∣∣∣
=

∣∣∣∣∣
N−1∑
k=0

ωkη

(
ρ̃n[i],j+k+2 − ρ̃

n
[i],j+k+1

)
−
N−1∑
k=0

ωkη

(
ρ̃n[i],j+k+1 − ρ̃

n
[i],j+k

)∣∣∣∣∣
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=

∣∣∣∣∣
N∑
k=1

ωk−1
η

(
ρ̃n[i],j+k+1 − ρ̃

n
[i],j+k

)
−
N−1∑
k=0

ωkη

(
ρ̃n[i],j+k+1 − ρ̃

n
[i],j+k

)∣∣∣∣∣
=

∣∣∣∣∣
N∑
k=1

(
ωk−1
η − ωkη

)(
ρ̃n[i],j+k+1 − ρ̃

n
[i],j+k

)
− ω0

η

(
ρ̃n[i],j+1 − ρ̃

n
[i],j

)∣∣∣∣∣
≤

N∑
k=1

(
ωk−1
η − ωkη

) ∣∣∣ρ̃n[i],j+k+1 − ρ̃
n
[i],j+k

∣∣∣+ ω0
η

∣∣∣ρ̃n[i],j+1 − ρ̃
n
[i],j

∣∣∣ ,
and summing over all j ∈ Z we get∑

j∈Z

∣∣∣(R̃n[i],j+3/2 − R̃
n
[i],j+1/2

)
−
(
R̃n[i],j+1/2 − R̃

n
[i],j−1/2

)∣∣∣
≤

N∑
k=1

(
ωk−1
η − ωkη

)
TV

(
ρ̃n[i]

)
+ ω0

ηTV
(
ρ̃n[i]

)
= 2∆xωη(0)TV

(
ρ̃n[i]

)
.

Now, for (3.15) we have the following estimates, on the one hand,∣∣∣R̃n[i],j+3/2 − R̃
n
[i],j+1/2

∣∣∣ =

∣∣∣∣∣
N−1∑
k=0

ωkη ρ̃
n
[i],j+k+2 −

N−1∑
k=0

ωkη ρ̃
n
[i],j+k+1

∣∣∣∣∣
=

∣∣∣∣∣
N∑
k=1

(
ωk−1
η − ωkη

)
ρ̃n[i],j+k+1 − ω

0
η ρ̃
n
[i],j+1

∣∣∣∣∣
≤

N∑
k=1

(
ωk−1
η − ωkη

)
ρ̃n[i],j+k+1 + ω0

η ρ̃
n
[i],j+1

≤ 2ω0
ηρmax

≤ 2∆xωη(0)ρmax,

and on the other hand,∣∣∣∂3F (ξnj−1/2)− ∂3F (ξnj+1/2)
∣∣∣ ≤ ‖∇∂3F‖

∣∣∣ξnj+1/2 − ξ
n
j−1/2

∣∣∣ ,
and by the choice of ξnj+1/2, the term

∣∣∣ξnj+1/2 − ξ
n
j−1/2

∣∣∣ can be decomposed as follows∣∣∣ξnj+1/2 − ξ
n
j−1/2

∣∣∣ =
∣∣θρni,j+1 + (1− θ)ρni,j − µρni,j + (1− µ)ρni,j−1

∣∣(3.16)

+
∣∣θρni,j+2 + (1− θ)ρni,j+1 − µρni,j+1 + (1− µ)ρni,j

∣∣(3.17)

+
∣∣∣θR̃n[i],j+3/2 + (1− θ)R̃n[i],j+1/2 − µR̃

n
[i],j+1/2

−(1− µ)R̃n[i],j−1/2

∣∣∣ ,(3.18)

so, for (3.16) we obtain ∣∣θρni,j+1 + (1− θ)ρni,j − µρni,j + (1− µ)ρni,j−1

∣∣
=
∣∣θ(ρni,j+1 − ρni,j) + (1− µ)(ρni,j − ρni,j−1)

∣∣
≤
∣∣ρni,j+1 − ρni,j

∣∣+
∣∣ρni,j − ρni,j−1

∣∣ .
Similarly, for (3.17) we have∣∣θρni,j+2 + (1− θ)ρni,j+1 − µρni,j+1 + (1− µ)ρni,j

∣∣ ≤ ∣∣ρni,j+2 − ρni,j+1

∣∣
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+
∣∣ρni,j+1 − ρni,j

∣∣ ,
and finally, for (3.18) we get∣∣∣θR̃n[i],j+3/2 + (1− θ)R̃n[i],j+1/2 − µR̃

n
[i],j+1/2 − (1− µ)R̃n[i],j−1/2

∣∣∣
=

∣∣∣∣∣
N∑
k=1

{
θ
(
ωk−1
η − ωkη

)
+ (1− µ)

(
ωkη − ωk+1

η

)}
ρ̃n[i],j+k+1

−
(
θω0

η + (1− µ)ω1
η

)
ρ̃n[i],j+1 + (1− µ)ω0

η

(
ρ̃n[i],j+1 − ρ̃

n
[i],j

) ∣∣∣∣∣
≤

N∑
k=1

{
θ
(
ωk−1
η − ωkη

)
+ (1− µ)

(
ωkη − ωk+1

η

)}
ρ̃n[i],j+k+1

+
(
θω0

η + (1− µ)ω1
η

)
ρ̃n[i],j+1 + (1− µ)ω0

η

∣∣∣ρ̃n[i],j+1 − ρ̃
n
[i],j

∣∣∣ ,
thus, ∑

j∈Z

∣∣∣θR̃n[i],j+3/2 + (1− θ)R̃n[i],j+1/2 − µR̃
n
[i],j+1/2 − (1− µ)R̃n[i],j−1/2

∣∣∣
≤
∑
j∈Z

ρ̃n[i],j

(
N∑
k=1

(
ωk−1
η − ωk+1

η

))
+ 2ω0

η

∑
j∈Z

ρ̃n[i],j + ω0
η

∑
j∈Z

∣∣∣ρ̃n[i],j+1 − ρ̃
n
[i],j

∣∣∣
≤ 4ωη(0)‖ρ̃n[i]‖L1(R) + ∆xωη(0)TV

(
ρ̃n[i]

)
.

Therefore, taking into account all the above estimates, we get∑
j∈Z

∣∣∣∆n+1/2
i,j+1/2

∣∣∣ ≤ (1 + ∆tH1) TV (ρni ) + ∆tH2TV(ρ̃n[i]) + ∆tH3,

where

H1 = 8ω0
η‖∇∂3F‖ρmax,

H2 = 2
(
‖∂3F‖ωη(0) + ∆x(ωη(0))2‖∇∂3F‖ρmax

)
,

H3 = 8(ωη(0))2‖ρ̃n[i]‖L1(R)‖∇∂3F‖ρmax.

Likewise, we can estimate∑
j∈Z

∣∣∣∆̃n+1/2
[i],j+1/2

∣∣∣ ≤ (
1 + ∆tH̃1

)
TV

(
ρ̃[i]

n
)

+ ∆tH̃2TV(ρni ) + ∆tH̃3,

with

H̃1 = 8ω̂η(0)‖∇∂3F‖ρmax,

H̃2 = 2
(
‖∂3F‖ω̂η(0) + ∆x(ω̂η(0))2‖∇∂3F‖ρmax

)
,

H̃3 = 8(ω̂η(0))2‖ρni ‖L1(R)‖∇∂3F‖ρmax.

Thus we get, for i = 1, 2∑
j∈Z

(∣∣∣∆n+1/2
i,j+1/2

∣∣∣+
∣∣∣∆̃n+1/2

[i],j+1/2

∣∣∣) = (1 + ∆tH1) TV (ρni ) + ∆tH2TV(ρ̃n[i])

+ ∆tH3 +
(

1 + ∆tH̃1

)
TV

(
ρ̃[i]

n
)

+ ∆tH̃2TV(ρni ) + ∆tH̃3



14 H. D. CONTRERAS, P. GOATIN, AND L. M. VILLADA

=
(

1 + ∆t
(
H1 + H̃2

))
TV(ρni )

+
(

1 + ∆t
(
H2 + H̃1

))
TV

(
ρ̃[i]

n
)

+ ∆t
(
H3 + H̃3

)
≤ (1 + ∆tH)

(
TV(ρni ) + TV

(
ρ̃n[i]

))
+ ∆tG,

where H = max{H1 + H̃2,H2 + H̃1} and G = H3 + H̃3. If we sum the two lanes, we get

2∑
i=1

(
TV(ρ

n+1/2
i ) + TV(ρ̃

n+1/2
[i] )

)
≤ (1 + ∆tH)

2∑
i=1

(
TV(ρni ) + TV

(
ρ̃n[i]

))
+ 2∆tG.(3.19)

Let us now compute the contribution of the reactive step (3.7)

∆n+1
1,j+1/2 = ∆

n+1/2
1,j+1/2 −∆t ((SO,j+1 − SO,j)− (SR,j+1 − SR,j)) ,

∆n+1
2,j+1/2 = ∆

n+1/2
2,j+1/2 + ∆t ((SO,j+1 − SO,j)− (SR,j+1 − SR,j)) .

Now applying absolute value, using the estimates given in Lemma 3.3 on the source terms, and

summing over all j ∈ Z, we get for i = 1, 2∑
j∈Z

∣∣∣∆n+1
i,j+1/2

∣∣∣ ≤ (1 + ∆tK)
∑
j∈Z

∣∣∣∆n+1/2
i,j+1/2

∣∣∣
+ ∆tK

∑
j∈Z

( ∣∣∣∆n+1/2
[i],j+1/2

∣∣∣+
∣∣∣Rn+1/2

1,j+1 −R
n+1/2
1,j

∣∣∣
+
∣∣∣Rn+1/2

2,1,j+1 −R
n+1/2
2,1,j

∣∣∣+
∣∣∣Rn+1/2

2,2,j+1 −R
n+1/2
2,2,j

∣∣∣ ),
and by means of (3.13) in Remark 3.1 we get∑

j∈Z

∣∣∣∆n+1
i,j+1/2

∣∣∣ ≤ (1 + 2∆tK)
∑
j∈Z

∣∣∣∆n+1/2
i,j+1/2

∣∣∣
+ ∆tK

∑
j∈Z

( ∣∣∣∆n+1/2
[i],j+1/2

∣∣∣+
∣∣∣∆̃n+1/2

i,j+1/2

∣∣∣+
∣∣∣∆̃n+1/2

[i],j+1/2

∣∣∣ ),(3.20)

In a similar way for the other class of vehicles we get,∑
j∈Z

∣∣∣∆̃n+1
[i],j+1/2

∣∣∣ ≤ (1 + 2∆tK)
∑
j∈Z

∣∣∣∆̃n+1/2
[i],j+1/2

∣∣∣
+ ∆tK

∑
j∈Z

( ∣∣∣∆̃n+1/2
i,j+1/2

∣∣∣+
∣∣∣∆n+1/2

i,j+1/2

∣∣∣+
∣∣∣∆n+1/2

[i],j+1/2

∣∣∣ ),(3.21)

then summing term by term (3.20) and (3.21) we obtain the following estimate∑
j∈Z

(∣∣∣∆n+1
i,j+1/2

∣∣∣+
∣∣∣∆̃n+1

[i],j+1/2

∣∣∣) ≤ (1 + 3∆tK)
∑
j∈Z

(∣∣∣∆n+1/2
i,j+1/2

∣∣∣+
∣∣∣∆̃n+1/2

[i],j+1/2

∣∣∣)
+ 2∆tK

∑
j∈Z

(∣∣∣∆n+1/2
[i],j+1/2

∣∣∣+
∣∣∣∆̃n+1/2

i,j+1/2

∣∣∣) ,
summing the two lanes and by (3.19) we get

2∑
i=1

(
TV(ρn+1

i ) + TV(ρ̃n+1
[i] )

)
≤ (1 + 5∆tK)

2∑
i=1

(
TV(ρ

n+1/2
i ) + TV(ρ̃

n+1/2
[i] )

)
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≤ (1 + 5∆tK)

(
(1 + ∆tH)

2∑
i=1

(
TV(ρni ) + TV(ρ̃n[i])

)
+ 2∆tG

)

= (1 + 5∆tK)(1 + ∆tH)
2∑
i=1

(
TV(ρni ) + TV(ρ̃n[i])

)
+ (1 + 5∆tK)2∆tG

≤ e∆t(5K+H)

(
2∑
i=1

(
TV(ρni ) + TV(ρ̃n[i])

)
+ 2∆tG

)
,

then applying an iterative process we get

2∑
i=1

(
TV(ρni ) + TV(ρ̃n[i])

)
≤ eT (5K+H)

(
2∑
i=1

(
TV(ρ0

i ) + TV(ρ̃0
[i])
)

+ 2TG

)
.

�

Corollary 3.1 (BV estimates in space and time). Let

ρ0
j , ρ̃

0
j ∈ (L∞ ∩BV) (R;R+) satisfying (2.2), let Assumptions 2.1 and the CFL condition (3.8)

hold. Then, for all T > 0, ρ∆, ρ̃∆ constructed through Algorithm 3.1 satisfy the following estimate:

for all n = 1, . . . , NT ,

NT−1∑
n=0

2∑
i=1

∑
j∈Z

∆t
∣∣ρni,j+1 − ρni,j

∣∣+ (T −NT∆t)

2∑
i=1

∑
j∈Z

∣∣∣ρNT
i,j+1 − ρ

NT
i,j

∣∣∣
+

NT−1∑
n=0

2∑
i=1

∑
j∈Z

∆x
∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣
≤ TeT (5K+H) (1 + 2L)

(
2∑
i=1

(
TV(ρ0

i ) + TV(ρ̃0
[i])
)

+ 2TG

)

+2TS
(∥∥ρ0

i

∥∥
L1(R)

+
∥∥∥ρ0

[i]

∥∥∥
L1(R)

)
,

where S = max {‖∂1SO‖ , ‖∂2SR‖}

Proof. By means of the BV estimate in space in Proposition 3.1, we have

NT−1∑
n=0

2∑
i=1

∑
j∈Z

∆t
∣∣ρni,j+1 − ρni,j

∣∣+ (T −NT∆t)
2∑
i=1

∑
j∈Z

∣∣∣ρNT
i,j+1 − ρ

NT
i,j

∣∣∣
≤ TeT (5K+H)

(
2∑
i=1

(
TV(ρ0

i ) + TV(ρ̃0
[i])
)

+ 2TG

)
.(3.22)

On the other hand, observe that∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣ ≤ ∣∣∣ρn+1
i,j − ρ

n+1/2
i,j

∣∣∣+
∣∣∣ρn+1/2
i,j − ρni,j

∣∣∣ .(3.23)

Now we estimate each term on right hand side of the inequality (3.23), beginning with the first

term. Observe that SO(0, ·, ·, ·, ·) = 0 and SR(·, 0) = 0, then by (3.7) in Algorithm 3.1 we have∣∣∣ρn+1
i,j − ρ

n+1/2
i,j

∣∣∣ ≤ ∆t
∣∣∣SOρ

n+1/2
1,j , ρ

n+1/2
2,j ,Rn+1/2

1,j ,Rn+1/2
2,1,j ,Rn+1/2

2,2,j )− SR(ρ
n+1/2
1,j , ρ

n+1/2
2,j )

∣∣∣
≤ ∆t

[∣∣∣∣SO(ρ
n+1/2
1,j , ρ

n+1/2
2,j ,Rn+1/2

1,j ,Rn+1/2
2,1,j ,Rn+1/2

2,2,j )



16 H. D. CONTRERAS, P. GOATIN, AND L. M. VILLADA

− SO(0, ρ
n+1/2
2,j ,Rn+1/2

1,j ,Rn+1/2
2,1,j ,Rn+1/2

2,2,j )

∣∣∣∣
+
∣∣∣SR(ρ

n+1/2
1,j , 0)− SR(ρ

n+1/2
1,j , ρ

n+1/2
2,j )

∣∣∣ ]
≤ ∆t

[ ∣∣∣∂1SO(θ
n+1/2
1,j , ρ

n+1/2
2,j ,Rn+1/2

1,j ,Rn+1/2
2,1,j ,Rn+1/2

2,2,j )ρ
n+1/2
1

∣∣∣
+
∣∣∣∂2SR(ρ

n+1/2
1,j , θ

n+1/2
2,j )ρ

n+1/2
2,j

∣∣∣ ]
≤ ∆tS

(
ρ
n+1/2
i,j + ρ

n+1/2
[i],j

)
,

where θ
n+1/2
1,j ∈ (0, ρ

n+1/2
1,j ) and θ

n+1/2
2,j ∈ (0, ρ

n+1/2
2,j ). Then, multiplying by ∆x and summing over

all j ∈ Z,

∆x
∑
j∈Z

∣∣∣ρn+1
i,j − ρ

n+1/2
i,j

∣∣∣
≤ ∆tS

(∥∥∥ρn+1/2
i

∥∥∥
L1(R)

+
∥∥∥ρn+1/2

[i]

∥∥∥
L1(R)

)
.(3.24)

Now we analyze the second term on the right hand side of (3.23). Since the numerical flux defined in

(3.2) is Lipschitz continuous in all its arguments with Lipschitz constant L = max{‖∂1F‖ , ‖∂2F‖ , ‖∂3F‖},
we get ∣∣∣ρn+1/2

i,j − ρni,j
∣∣∣ =

∣∣∣λ(F (ρnj , ρ
n
j+1, R̃

n
[i],j+1/2)− F (ρnj−1, ρ

n
j , R̃

n
[i],j−1/2)

)∣∣∣
≤ λL

(∣∣ρni,j − ρni,j−1

∣∣+
∣∣ρni,j+1 − ρni,j

∣∣+
∣∣∣R̃n[i],j+1/2 − R̃

n
[i],j−1/2

∣∣∣) .
Then, multiplying by ∆x and summing over all j ∈ Z, we have

∆x
∑
j∈Z

∣∣∣ρn+1/2
i,j − ρni,j

∣∣∣ ≤ ∆tL

∑
j∈Z

∣∣ρni,j − ρni,j−1

∣∣+
∑
j∈Z

∣∣ρni,j+1 − ρni,j
∣∣

+
∑
j∈Z

∣∣∣R̃n[i],j+1/2 − R̃
n
[i],j−1/2

∣∣∣
 ,

and computing an upper bound for the last term in the right hand above

∑
j∈Z

∣∣∣R̃n[i],j+1/2 − R̃
n
[i],j−1/2

∣∣∣ =
∑
j∈Z

∣∣∣∣∣
N−1∑
k=0

ωkη ρ̃[i],j+k+1 −
N−1∑
k=0

ωkη ρ̃[i],j+k

∣∣∣∣∣
=

∑
j∈Z

∣∣∣∣∣
N−1∑
k=0

ωkη
(
ρ̃[i],j+k+1 − ρ̃[i],j+k

)∣∣∣∣∣
≤

∑
j∈Z

N−1∑
k=0

ωkη
∣∣ρ̃[i],j+k+1 − ρ̃[i],j+k

∣∣
=

N−1∑
k=0

ωkη
∑
j∈Z

∣∣ρ̃[i],j+k+1 − ρ̃[i],j+k

∣∣
= TV

(
ρ̃n[i]

)N−1∑
k=0

ωkη = TV
(
ρ̃n[i]

)
,
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we get the following estimate

∆x
∑
j∈Z

∣∣∣ρn+1/2
i,j − ρni,j

∣∣∣ ≤ 2∆tL
(

TV(ρni ) + TV(ρ̃n[i])
)
.(3.25)

Collecting together (3.24), (3.25) and summing for i = 1, 2 we obtain

∆x

2∑
i=1

∑
j∈Z

∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣ ≤ 2∆tS
(
‖ρni ‖L1(R) +

∥∥∥ρn[i]∥∥∥
L1(R)

)

+ 2∆tL
2∑
i=1

(
TV(ρni ) + TV(ρ̃n[i])

)
,

by using Lemma 3.2 and Proposition 3.1 we get

∆x
2∑
i=1

∑
j∈Z

∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣
≤ 2∆tS

(∥∥ρ0
i

∥∥
L1(R)

+
∥∥∥ρ0

[i]

∥∥∥
L1(R)

)
+2∆tLeT (5K+H)

(
2∑
i=1

(
TV(ρ0

i ) + TV(ρ̃0
[i])
)

+ 2TG

)
.(3.26)

Finally, collecting together (3.22), (3.26) and summing for n from 0 until NT−1 we get the following

BV bound in space and time

NT−1∑
n=0

2∑
i=1

∑
j∈Z

∆t
∣∣ρni,j+1 − ρni,j

∣∣+ (T −NT∆t)
2∑
i=1

∑
j∈Z

∣∣∣ρNT
i,j+1 − ρ

NT
i,j

∣∣∣
+∆x

2∑
i=1

∑
j∈Z

∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣
≤ TeT (5K+H) (1 + 2L)

(
2∑
i=1

(
TV(ρ0

i ) + TV(ρ̃0
[i])
)

+ 2TG

)

+2TS
(∥∥ρ0

i

∥∥
L1(R)

+
∥∥∥ρ0

[i]

∥∥∥
L1(R)

)
.

�

3.3. Proof of Theorem 2.1. The convergence of the approximate solutions constructed by Algo-

rithm 3.1 towards the weak solution can be proven by applying Helly’s compactness theorem. The

latter can be applied due to Lemma 3.1 and Corollary 3.1 and states that there exists a sub-sequence

of approximate solutions ρ∆ and ρ̃∆ that converges in L1 to functions ρ, ρ̃ ∈ L∞ ([0, T ]× R;R+),

respectively.

Now we need to prove that this limit function is indeed a weak solution to (2.1), in the sense of

Definition 2.1.

Lemma 3.4. Let ρ0
j , ρ̃

0
j ∈ BV (R;R+) satisfying (2.2), and Assumptions 2.1 and the CFL con-

dition (3.8) hold. Then the piecewise constant approximate solutions ρ∆, ρ̃∆ resulting from the

Algorithm 3.1 converge, as ∆x→ 0, towards an weak solution of (2.1).
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Proof. Let ϕ ∈ C1
c ([0, T ];R+) for some T > 0. Multiplying first (3.6) by ∆xϕ(tn, xj) and summing

over j ∈ Z and over n = 0, . . . , NT yields

∆x
∑
j∈Z

NT∑
n=0

(
ρ
n+1/2
j − ρnj

)
ϕ(tn, xj)︸ ︷︷ ︸

I1

+ ∆t
∑
j∈Z

NT∑
n=0

(
Fn
j+1/2 − F

n
j−1/2

)
ϕ(tn, xj)︸ ︷︷ ︸

I2

= 0.

We first consider I1,

I1 = −∆t∆x
∑
j∈Z

NT∑
n=0

ρ
n+1/2
j

(
ϕ(tn+1/2, xj)− ϕ(tn, xj)

)
∆t

−∆t
∑
j∈Z

ρ0
jϕ(0, xj),

and by the the Dominate Convergence Theorem, we get for i = 1, 2

I1 → −
∫ T

0

∫
R
ρi(t, x)∂tϕ(t, x)dxdt−

∫
R
ρ0
jϕ(0, x)dx.

We now study I2, this term can be rewritten as

I2 = −∆t∆x
∑
j∈Z

NT∑
n=0

Fn
j+1/2

(
ϕ(tn, xj+1)− ϕ(tn, xj)

∆x

)
,

and again by Dominate Convergence Theorem we get

I2 → −
∫ t

0

∫
R
F ∂xϕ(t, x)dxdt,

where F = ρivi(ρi + (ρmax − ρi)Hε(ρ̃[i] ∗ ωη)) for i = 1, 2, thus

I1 + I2 → −
∫ T

0

∫
R
ρi(t, x)∂xϕ(t, x)dxdt−

∫
R
ρ0
jϕ(0, x)dx−

∫ t

0

∫
R
F ∂xϕ(t, x)dxdt.

Now, the next step in the proof is to multiply (3.7) by ∆xϕ(tn, xj) and summing over j ∈ Z and

over n = 0, . . . , NT yields

∆x
∑
j∈Z

NT∑
n=0

(
ρn+1
j − ρn+1/2

j

)
ϕ(tn, xj)−∆x∆t

∑
j∈Z

NT∑
n=0

(
−Sn+1/2

j ,S
n+1/2
j

)
ϕ(tn, xj) = 0,(3.27)

then, by replacing ρ
n+1/2
j of (3.6) in (3.27) we get

I1 + I2 + I3 = 0,

where

I3 = −∆x∆t
∑
j∈Z

NT∑
n=0

(
−Sn+1/2

j ,S
n+1/2
j

)
ϕ(tn, xj),

from which we can derive

I3 → −
∫ T

0

∫
R

(− (SO − SR) ,SO − SR)ϕ(t, x)dxdt.

Therefore, ∫ T

0

∫
R
ρi(t, x)∂xϕ(t, x)dxdt+

∫ t

0

∫
R
F ∂xϕ(t, x)dxdt

+

∫ T

0

∫
R

(− (SO − SR) ,SO − SR)ϕ(t, x)dxdt+

∫
R
ρ0
jϕ(0, x)dx = 0.

�



A TWO-LANE BIDIRECTIONAL NONLOCAL TRAFFIC MODEL 19

4. Numerical Examples

In the following numerical tests, we will solve (2.1) numerically for x ∈ [0, 5], by using Algorithm

3.1, where we set ∆t satisfying CFL condition (3.8). From Example 1 to Example 4 we consider the

velocity functions as vi(ρ) = Vmax(ρmax − ρ), i = 1, 2 with maximum speed Vmax = 1 and maximal

density ρmax = 1. We consider kernel functions

ωη(x) =
1

η
, ω1

η(x) = 2
η − x
η2

ω2
δ (x) =

1

δ

with length support η = 0.1, and δ = 0.5. Regarding the terms K1 and K2 in the right hand

side (1.2), (1.3), (1.4) and (1.5) we consider K2 = 2K1, and K1 = 10 in order to get a faster

return to the preferred lane of the overtaking vehicles class. Additionally, we consider the following

regularization for the indicator function

Hε(z) =


0, if z < 0

exp(−50( z−εε )2), if 0 ≤ z ≤ ε
1, if z > ε,

with ε = 0.1. Finally we consider periodic boundary conditions at x = 0 and x = 5 for all examples.

4.1. Example 1. Overtaking Dynamics only for ρ1. In this example we consider only vehicles

of the class ρ1 in its preferential road, more specifically we take initial conditions,

ρ0
1(x) =

{
0.5, if 0.2 < x < 0.6,

0.9, if 1 < x < 2,
, ρ0

2(x) = ρ̃0
1(x) = ρ̃0

2(x) = 0, x ∈ [0, 5].

In Figure 2 we display a heat map of ρ∆(·, t) = [ρ1(·, t), ρ2(·, t)] for t ∈ [0, 2.5] computed with

∆x = 1/160. Initially there are two platoons of vehicles in lane 1, the upstream one with medium

density and the downstream one with high density, where platoon one is shorter than the second.

As time progresses, we can observe that in the head of downstream platoon, a rarefaction wave

is formed, which causes the local velocity at each point to be lower than the average velocity of

the cars in front, so no produce overtaking vehicles. Only the effect of the overtaking vehicles is

observed in the back of downstream platoon and in the upstream platoon, which is due the local

velocity is lower in these points. After a short time it is observed that The vehicles rejoin the

preferential way again.

4.2. Example 2: No collisions. This example shows an extreme case in which the class of

vehicles ρ1 travels on lane 1 and there is a lane invasion by the class of vehicles traveling in the

opposite direction, i.e., ρ̃2 is non zero close to ρ1 on lane 1. The main aim of this example is to

show that the proposed model (2.1) doesn’t allow crashes among vehicles. As initial conditions for

x ∈ [0, 5] we consider

ρ0
1(x) =

{
0.9, 0.5 < x < 1.5,

0, Otherwise,
ρ̃0

2(x) =

{
0.9, 2.5 < x < 3.5

0, Otherwise,

ρ̃0
1 = ρ0

2 = 0.

In Figure 3, we display density profile of approximate solutions at three different simulation times,

t = 0, t = 0.3 and t = 1. At t = 0 we can observe an initial platoon for ρ1 in the preferred

lane, and in opposite direction an initial platoon of vehicles of class ρ̃2 are invading the lane 1. At

t = 0.3 we can observe in lane 1 the rarefaction wave formed for the vehicles of class ρ1 in the
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Figure 2. Example 1: heat map of ρ∆(·, t) for t ∈ [0, 2.5]. Overtaking Dynamics

only for ρ1. Bottom: dynamics of traffic for ρ1 in Lane 1. Top: Dynamics of

vehicles ρ2 overtaking in Lane 2.

head of platoon, and some vehicles at the back of the platoon move to lane 2 overtaking others

vehicles, and becoming part of the class ρ2. Meanwhile invading vehicles of class ρ̃2 return back to

preferential lane 2 becoming part of the class ρ̃1. At t = 1 we can observe in lane 1, at the head of

the rarefaction wave an increasing in the density of ρ1, which is due to the fact that on the horizon

there are vehicles of class ρ̃2 invading the lane, these vehicles wait for those coming in the opposite

direction to return to their preferred lane. In lane 2, we can observe a rarefaction wave formed by

vehicles of class ρ̃1, moreover we observe that density ρ̃2 has decreased over time, due to them have

moved to preferential lane 2 increasing the density of ρ̃1 over time.

On the other hand, in Figure 4, we display a heat map of ρ∆(·, t) = [ρ1(·, t), ρ2(·, t)] and ρ̃∆(·, t) =

[ρ̃1(·, t), ρ̃2(·, t)], t ∈ [0, 2.5]. Initially, we can observe the dynamics vehicles in lane 1 which is

affected at t = 0.5 close to x = 2 increasing the density due to the fact that on the horizon

there are vehicles travelling in opposite direction, subsequently continue its trajectory. On the

other hand, vehicles invading lane 1, return quickly to its preferential lane, then they continue its

trajectory. Finally we can observe the dynamics of vehicles in lane 2 overtaking other vehicles, and

how its trajectory after t = 1.4 is affected by vehicles traveling in opposite directions, moreover we

observe that there are not vehicles try to overtake after this time due to the lane 2 is not empty.
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Figure 3. Example 2: numerical solutions of system (2.1) at t = 0, t = 0.3 and

t = 1. Profile of numerical solution for (Left-top) ρ2, (Left-Bottom) ρ1, (Right-top)

ρ̃1, (Right-Bottom) ρ̃2
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Figure 4. Example 2, heat map of ρ∆(·, t) = [ρ1(·, t), ρ2(·, t)] and

ρ̃∆(·, t) = [ρ̃1(·, t), ρ̃2(·, t)], t ∈ [0, 2.5]. Dynamics of numerical solution for

(Left-top) ρ2 (Left-Bottom) ρ12 (Right-top) ρ̃1 (Right-Bottom) ρ̃2

4.3. Example 3: Convergence Test. With this example, we illustrate the convergence of the

approach obtained with Algorithm 3.1. To this end, we consider the same parameters as in Example

2 at time t = 2.5. In Figure 5, we can see several approximate solutions computed by means of

Algorithm 3.1 for ∆x = 1/20, 1/40, 1/80, 1/160 and a reference solution corresponding to ∆x =

1/640 computed by means of the same algorithm. As expected, as ∆x diminishes, the numerical

solutions approach the reference solution, as reported in Table 1, in which the total error, and the
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Experimental Order of Convergence (E.O.C.) in L1 norm are shown. The total error is computed

as

e∆x(u) = e∆x(ρ1) + e∆x(ρ2) + e∆x(ρ̃1) + e∆x(ρ̃2),

where e∆x(ρ) = ‖ρRef − ρ‖1 and ρRef is the reference solution.
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Figure 5. Example 3. Bottom: Convergence of a sequence of approximate

solutions ρ∆
1 to the reference solution. Top: Convergence of a sequence of

approximate solutions ρ̃∆
1 to the reference solution.

Table 1. Example 3: Total L1-error e∆x(u).

T = 2.5

1/∆x Total e∆x E.O.C.

20 0.2173 - - -

40 0.1199 0.8

80 0.0628 0.9

160 0.02978 1.0

4.4. Example 4: Invariant Region. The aim of this example is to show numerically that the

numerical approach obtained with Algorithm 3.1 preserve a invariant region

Ω̃ := {(ρi, ρ̃[i]) ∈ R2 : ρi + ρ̃[i] ≤ 1, for i = 1, 2}.

For this example we consider the initial data given by

ρ0
1(x) =

{
0.9 if 0.5 < x < 2.5,

0.1 if 2.5 < x < 4.5,
ρ̃0

2(x) =

{
0.1 if 0.5 < x < 2.5,

0.75 if 2.5 < x < 4.5,
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and ρ0
2 = ρ̃0

1 = 0, i.e., there are vehicles of two classes traveling in opposite directions and occupying

the same cells. In Figure 6 we can see that from x = 2.5 the total density in lane 1 decreases, while

the total density of lane 2 increases. Similarly, for x ∈ [0.5, 2.5] the total density in lane 1 increases,

but in lane 2 decreases, remaining less than ρmax, i.e., sum of densities in each lane remains less

than 1 over time.
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Figure 6. Example 4. Top: Sum of densities on lane 2. Bottom: Sum of densities

on lane 1.

5. Conclusions and discussion

In this work, we introduced a system of nonlocal balance laws which describes vehicular traffic

flow in a two way and two lane road. Our model allows for vehicles overtaking using the adjacent

lane, and returning to the preferred lane, namely, the right lane. We distinguish four classes

of vehicles, labeled ρ1, ρ2, ρ̃1, ρ̃2, according to the direction of travel and the lane used. We

provided compactness estimates that allowed us to apply the Helly’s Compactness Theorem to

prove convergence and existence of weak solutions, in particular, we were able to prove a maximum

principle for each class of vehicles considered in the model. Additionally, we show some numerical

experiments in which some features of the model are displayed, e.g., no crashes between vehicles

traveling in opposite direction in a same lane, the overtaking and returning maneuvers, etc.
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