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On the Computation of the Gaussian
Rate-Distortion-Perception Function

Giuseppe Serra, Photios A. Stavrou, Senior Member, IEEE, and Marios Kountouris, Fellow, IEEE

Abstract—In this paper, we study the computation of the
rate-distortion-perception function (RDPF) for a multivariate
Gaussian source assuming jointly Gaussian reconstruction un-
der mean squared error (MSE) distortion and, respectively,
Kullback–Leibler divergence, geometric Jensen-Shannon diver-
gence, squared Hellinger distance, and squared Wasserstein-2
distance perception metrics. To this end, we first characterize
the analytical bounds of the scalar Gaussian RDPF for the
aforementioned divergence functions, also providing the RDPF-
achieving forward “test-channel” realization. Focusing on the
multivariate case, assuming jointly Gaussian reconstruction and
tensorizable distortion and perception metrics, we establish that
the optimal solution resides on the vector space spanned by
the eigenvector of the source covariance matrix. Consequently,
the multivariate optimization problem can be expressed as a
function of the scalar Gaussian RDPFs of the source marginals,
constrained by global distortion and perception levels. Leveraging
this characterization, we design an alternating minimization
scheme based on the block nonlinear Gauss–Seidel method, which
optimally solves the problem while identifying the Gaussian
RDPF-achieving realization. Furthermore, the associated algo-
rithmic embodiment is provided, as well as the convergence and
the rate of convergence characterization. Lastly, for the “perfect
realism” regime, the analytical solution for the multivariate
Gaussian RDPF is obtained. We corroborate our results with
numerical simulations and draw connections to existing results.

I. INTRODUCTION

The foundational principles of rate-distortion theory, estab-
lished by Shannon in [1], introduce the idea of a trade-off
between the desired bit rate used for encoding or compressing
source messages and the resulting achievable distortion be-
tween the source message and its reconstructed representation.
This highly relevant problem is shown to have a mathematical
representation given by the rate-distortion function (RDF) and
has set the cornerstone for the development of lossy com-
pression algorithms across various multimedia applications.
Nevertheless, in recent years, a body of research spanning
from machine learning and computer vision to multimedia
applications, see e.g., [2]–[6], has highlighted the limitations of
solely focusing on distortion minimization in the reconstructed
signals. Empirical evaluations of reconstruction quality using
human scoring [7], [8] show that conventional distortion mea-
sures fail to capture human preference and perception, espe-
cially in extreme compression scenarios. Therefore, perceptual
quality, which refers to the property of a sample to appear
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pleasing from a human perspective, cannot be guaranteed by
conventional distortion minimization alone.

Recognizing the need for a comprehensive characterization
of the RDF that encompasses perceptual quality, Blau and
Michaeli in [9] introduced a generalization of the RDF,
which they called rate-distortion-perception function (RDPF).
Around the same time, a similar problem appeared in two com-
panion papers by Matsumoto in [10], [11]. The RDPF extends
the classical single-letter RDF formulation by incorporating
a divergence constraint between the source distribution and
its estimation at the destination. This divergence constraint
serves as a proxy for human perception, measuring the degree
of satisfaction experienced when employing the data. The
same idea of quantifying the deviation from what is referred
to as natural scene statistics has previously been employed
in numerous no-reference image quality metrics, showing
strong correlations with human opinion scores [12], [13].
Furthermore, this principle is the underlying mechanism be-
hind generative adversarial network (GAN)-based image com-
pression and restoration models, where heightened perceptual
quality is achieved by directly minimizing a certain divergence
measure between source samples and their reconstructions [7],
[14], [15]. However, it is worth noting that identifying the
divergence function that most effectively aligns with human
perception remains a field of active research.

On the other hand, the divergence constraint may have
multiple interpretations and can be seen as a semantic quality
metric, measuring the relevance of the reconstructed source
from the observer’s perspective [16]. For example, Katakol
et. al. in [17] compare the performance in the segmentation
task of models trained on traditionally compressed samples
against compressed samples whose perceptual quality has
been enhanced using GAN-based restoration models. The
results show gains in the task quality metric, especially in the
segmentation scores of smaller scene objects, usually more
susceptible to the introduced distortion. Another relevant yet
different setup has recently been introduced in [18], in which
in place of the perception quality, there exists an additional
distortion criterion instead of a divergence.

A. Related Work

In the realm of the rate-distortion-perception framework,
Theis and Wagner in [19] provide a coding theorem for
stochastic variable-length codes in both one-shot and asymp-
totic regimes, assuming infinite common randomness between
the encoder and decoder of the RDP problem, and exploit-
ing properties of the strong functional representation lemma



[20]. Chen et. al. in [21] derive coding theorems for the
asymptotic regime, analyzing the operational meaning of the
RDPF for three distinct cases; when the encoder and the
decoder share or not common randomness, and when both
have private randomness. Li et. al. in [22] study the special
case of the “perfect realism”, that is to say, the extreme
situation where the source distribution is constrained to be
the same as the reconstruction distribution, in the context of
distribution preserving quantization and distribution preserving
RDF. They derived an achievability result for the Gaussian
case. For the “perfect realism” case but in the context of
Gaussian diffusion processes, Theis et. al. in [23] provide a
parametric characterization of RDPF achieving realizations
for a Gaussian source subject to a MSE distortion. In [24],
Wagner provides a coding theorem for the RDPF trade-offs
for the perfect and near-perfect realism cases, when only
finite common randomness between encoder and decoder is
available.

Similar to the classical RDF, the RDPF defined for general
sources does not enjoy any analytical solution. Neverthe-
less, there exist some closed-form expressions for specific
classes of sources, such as binary sources subject to Ham-
ming distortion and total variation distance [9] and scalar
Gaussian sources under mean squared-error (MSE) distortion
and squared Wasserstein-2 distance [25]. In [26] the authors
have recently derived closed-form parametric expressions by
means of a reverse water-filling algorithm for the case of
the multivariate Gaussian source under MSE distortion when
the perception constraint is either the squared Wasserstein-2
distance or the Kullback–Leibler (KL) divergence.

The difficulty in deriving analytical solutions for RDPF
has stimulated the study of computational methods for its
estimation. Toward this end, Serra et al. in [27] characterize
a generalization of the celebrated Blahut-Arimoto algorithm
[28] to compute the RDPF for general discrete sources under
a generic single-letter distortion metric, and a perception con-
straint that belongs to the family of f -divergences (details on
this rich class of divergences can be found for instance in [29]).
Always for discrete sources, Chen et. al. in [30] reformulate
the RDPF problem as a Wasserstein barycenter problem for
specific cases of Wasserstein distances, KL divergence, and
total variation distance and provide a computational method
using a variation of the Sinkhorn algorithm. Alternatives to
these algorithmic approaches for the computation of the RDPF
rely on data-driven solutions, which employ generative adver-
sarial networks minimizing a linear combination of distortion
and perception metrics, see e.g., [9], [25], [31]. Nevertheless,
despite providing a practical framework for data-driven codec
optimization, these methodologies are highly computational
and data-intensive, while lacking generalization capabilities.

B. Our Approach and Contributions

The objective of this work is twofold. First, we aim to derive
analytical expressions of the RDPF under MSE distortion
when the perception constraint belongs to certain well-known
and widely-used divergence, that is, the KL divergence [29],
the geometric Jensen-Shannon divergence [32], the squared

Hellinger distance [29], and the squared Wasserstein-2 dis-
tance [33] for scalar-valued Gaussian sources with jointly
Gaussian reconstruction. Although the assumption of jointly
Gaussian reconstruction generally induces an upper bound to
the RDPF, it can be shown that depending on the specific
perception metric, the bound can become exact, and this ob-
servation extends to multivariate Gaussian sources with jointly
Gaussian reconstructions. The second and most important con-
tribution is the construction of a generic algorithmic approach
for the optimal computation of the RDPF of a multivariate
Gaussian source with jointly Gaussian reconstruction, under
convex and tensorizable distortion and perception metrics,
when an analytical solution of the associated scalar Gaussian
RDPF is available. To summarize, in this paper we derive the
following new results:

• In Section III, we characterize closed-forms expressions
of the scalar Gaussian RDPF for direct or reverse KL di-
vergence, the geometric Jensen-Shannon divergence, the
squared Hellinger distance, and the squared Wasserstein-
2 distance perception constraints.

• In Section IV-A, we prove that, under tensorizable dis-
tortion and divergence constraints, the optimal solution
of the multivariate Gaussian RDPF subject to convex
and tensorizable distortion and perception metrics, can
be found on the space of the eigenvectors of the source
covariance matrix (to obtain this result we make use of
Lemma 2 in Appendix A). In other words, under the as-
sumption of jointly Gaussian reconstruction, the problem
achieves the optimal solution when the involved covari-
ance matrices commute by pairs [34, Section 0.7.7]. The
resulting optimization problem can be solved optimally
using an alternating minimization approach, by means
of the block nonlinear Gauss–Seidel method [35], for
which we also develop its algorithmic embodiment (see
Alg. 1). For the specific algorithm, we show convergence
(Theorem 5) and provide an upper bound on the worst-
case convergence rate (Theorem 6).

• In Section IV-B, we provide, as an application example,
the implementation of Algorithm 1 for the MSE distor-
tion and squared Wasserstein-2 divergence constraints.
Although only the solution of one of the subproblems
of Algorithm 1 is available in closed-form (Theorems 7),
the complementary subproblem can be solved optimally
through numerical methods (Theorem 8). We note that
similar implementations can be derived for the other
divergence constraints that are used in this paper via the
results summarized in Table I.

• In Section IV-C, we leverage the analytical results ob-
tained from the alternating minimization approach that
led to Algorithm 1, to characterize the closed-form so-
lution of the multivariate Gaussian RDPF in the regime
of perfect realism (Corollary 3). Specifically, this result
provides the optimal stagewise distortion allocation, i.e.,
the distortion introduced on each dimension of the Gaus-
sian reconstruction, according to which can be interpreted
as an adaptive water-level (see Fig. 4). In fact, unlike
the reverse water-filling solution in the classical RDF



problem, the obtained solution presents dependency on
the stagewise second-order moment of the source.

We highlight that for the KL divergence and the squared
Wasserstein-2 distance in the scalar case, we solve the problem
differently from [25], [26] in a way that allows to also find the
optimal linear encoder and decoder that achieve the specific
closed-form expression (i.e., the optimal forward test-channel
realization). When it comes to the vector Gaussian case,
we note that the reverse water-filling parametric solutions in
[26] are only applicable to specific problems. In contrast,
our alternating minimization approach and the corresponding
algorithmic embodiment obtained here can be applied to any
Gaussian RDPF problem with MSE distortion, as long as the
scalar Gaussian RDPF admits a characterization. In addition,
our approach provides, similar to the scalar case, the optimal
linear encoder and decoder pair that achieves the Gaussian
RDPF as a result of the optimization procedure.

C. Notation

Given a Polish space X , we denote by (X ,B(X )) the
Borel measurable space induced by the metric, with P(X )
denoting the set of probability measures defined thereon.
Given p, q ∈ P(X ), we denote with p ≪ q the absolute
continuity of p with respect to q, meaning that given a set
A ∈ B(X ), q(A) = 0 =⇒ p(A) = 0. For a random
variable X defined on (X ,B(X )), we denote with pX ∈ P(X )
its probability measure and with µX and ΣX its mean and
covariance matrix, respectively. Given two random variables
X and Y , X ⊥ Y indicates their statistical independence. The
identity matrix on RN×N is denoted by I . Given a matrix
A ∈ RN×N , we will indicate with sA = [sA,i]i=1:N the
vector of its singular values and, if A is diagonalizable, with
λA = [λA,i]i=1:N the vector of its eigenvalues. However, in the
cases where the notation sA or λA is inadequate, we indicate
the eigenvalues and singular values as operators λ[A] and s[A],
respectively.

Furthermore, we introduce the notations λ↓[·] or s↓[·]
and λ↑[·] or s↑[·], respectively, for the vectors whose
coordinates are the eigenvalues or singular values arranged
in a decreasing order or in an increasing order. We indicate
positive definiteness (resp. positive semi-definiteness) with
the notation A ≻ 0 (resp. A ⪰ 0). The trace operator will be
denoted by Tr[·], while || · ||1, || · ||F , and ⟨·, ·⟩F indicate,
respectively, Schatten-1 norm [36, Section 4.2], Frobenius
norm and Frobenius inner product [34, Equation 5.2.7]. A
closed interval on the set of integers N is indicated by a : b,
where a, b are the endpoints of the set. For any set S ⊆ Rn,
we define its complement set by Sc ≜ {x ∈ Rn : x /∈ S}. The
identity function is denoted as id(·). The Lambert W function
[37] is denoted by W(·), whereas its primary and secondary
branch are denoted as W0(·) and W−1(·), respectively. Given
a real function (x, y) −→ f(x, y) with x ∈ Rn, y ∈ Rm, we
indicate with ∇f the gradient of the function f(x, y) and
with ∇xf (or ∇yf ) the gradient with respect to the specific
variable.

II. PRELIMINARIES ON RDPF AND CERTAIN
DIVERGENCES

In this section, we first give some preliminary results on
RDPF, following the works of [9], [19], [21]. Subsequently,
we discuss the divergence metrics used in the paper.

A. RPDF

We start with the definition of the RDPF defined for general
alphabets.

Definition 1. (RDPF) Let a source X be a random variable
on (X ,B(X )) distributed according to the probability measure
pX ∈ P(X ). Then, the RDPF for a source X ∼ pX under
the distortion measure ∆ : X 2 → R+

0 and divergence function
d : P(X )× P(X )→ R+

0 is defined as follows:

R(D,P ) ≜ min
PX̂|X

I(X, X̂) (1)

s.t. E
[
∆(X, X̂)

]
≤ D (2)

d(pX ||pX̂) ≤ P (3)

where the minimization is among all conditional distributions
PX̂|X : X → P(X̂ ).

The RDPF generalizes the rate-distortion (RD) function,
complementing the inherited single letter distortion constraint
(2) with a divergence constraint (3) between the source distri-
bution pX and the reconstruction induced distribution pX̂ .

Remark 1. (On Definition 1) Following [9], it can be shown
that (1) has some useful functional properties, under mild
regularity conditions. In particular, [9, Theorem 1] shows that
R(D,P ) is (i) monotonically non-increasing function in both
D ∈ [Dmin, Dmax] ⊂ [0,∞) and P ∈ [Pmin, Pmax] ⊂ [0,∞);
(ii) convex if the divergence d(·||·) is convex in its second
argument.

In the following, we provide known results on the op-
erational meaning of the RDPF, linking the RDPF to the
fundamental compression limit of a source under suitable
distortion and perception constraints. Throughout the paper,
we assume that we are given an i. i.d. sequence of N -length
random variables XN with Xi ∼ pX ∈ P(X ), and proceed
to define the notions of {encoder, decoder, code} functions
following [19].

Definition 2. For an arbitrary set X , a (possibly stochastic)
encoder is defined as any function belonging to FE = {fE :
XN × R → M}, where M is a message set with finite
cardinality. Similarly, a (possibly stochastic) decoder is a
function in FD = {fD :M× R → XN}. A code is defined
as an element of FE ×FD.

We can now introduce the definition of achievability and
that of the infimum of all achievable rates.

Definition 3. (Achievability) Given a distortion level D ≥
0 and a perception constraint P ≥ 0, a rate R is said to
be (D,P )-achievable if, for sufficiently large N , there exist



a common random variable U on R and a stochastic lossy
source code in FE ×FD such that:

M = fE(X
N , U) X̂N = fD(M,U)

satisfying:

1

N
H(M |U) ≤ R

1

N

N∑
i=1

E
[
∆(Xi, X̂i)

]
≤ D

d(pXi
||pX̂i

) ≤ P i ∈ 1 : N. (4)

Furthermore, assuming the previous conditions to be satisfied,
we define the operational rates as Rcr(D,P ) ≡ inf{R :
(R,D,P ) is achievable}.

Theis and Wagner in [19, Theorem 3], provided a coding
theorem that links the operational definition of Rcr(D,P ) with
the information definition of R(D,P ). This is stated next.

Theorem 1. For D ≥ 0, P ≥ 0, we obtain

Rcr(D,P ) = R(D,P ). (5)

Recently, Chen et al. in [21, Remark 3] stressed that
provided Remark 1, (ii) holds for the definition of RDPF,
the results of Theorem 1 remain valid even if the per-letter
perception constraints (4) are weakened to

1

N

N∑
i=1

d(pXi ||pX̂i
) or d

(
pX

∣∣∣∣∣
∣∣∣∣∣ 1N

N∑
i=1

pX̂i

)
.

B. Preliminaries on Certain Classes of Divergence Functions

In what follows, we provide an introduction to the diver-
gences that will be used throughout the paper.

Kullback–Leibler (KL) divergence (DKL). The KL diver-
gence is defined as follows:

DKL(pX ||pX̂)≜
∫
X
pX(du) log

(
pX(du)

pX̂(du)

)
pX , pX̂ ∈ P(X )

where DKL(pX ||pX̂) is finite if and only if pX ≪ pX̂ , i.e. the
Radon–Nikodym derivative pX(du)

pX̂(du) is well defined. It should
be remarked that, in general, DKL(pX ||pY ) ̸= DKL(pY ||pX)
[29, Remark 20]. For this reason, in the sequel, we distinguish
between the two cases by addressing as direct the function
DKL(pX ||·) and as reverse the function DKL(·||pX), depend-
ing on the placement of the source distribution pX .

Geometric Jensen-Shannon (GJS) divergence (DGJS).
Following [32, Theorem 2], next we give the definition of
GJS divergence.

Definition 4 (GJS Divergence). Given the induced distribu-
tions of the random variables X ∼ pX and X̂ ∼ pX̂ , the GJS
is defined as follows:

DGJS(pX ||pX̂)≜
1

2
DKL(pX ||pg) +

1

2
DKL(pX̂ ||pg) (6)

where pg is the geometric mean between pX and pX̂ defined as
pg = 1

Z (pX)
1
2 (pX̂)

1
2 , with Z =

∫ +∞
−∞ du(pX(u))

1
2 (pX̂(u))

1
2 .

If pX ∼ N (µX ,ΣX) and pX̂ ∼ N (µX̂ ,ΣX̂), then pg is a

Gaussian distribution whose mean µg and covariance Σg are
given by

Σg =

(
1

2
Σ−1

X +
1

2
Σ−1

X̂

)−1

(7)

µg = Σg

(
1

2
Σ−1

X µX +
1

2
Σ−1

X̂
µX̂

)
. (8)

It should be noted that the GJS divergence in Definition
4 is a close relative of the classical Jensen-Shannon (JS)
divergence (see, e.g., [29]), and deviates from the latter in
that the symmetrization of the KL divergence is induced by a
geometric mean instead of an arithmetic mean. This difference
allows the GJS divergence to admit a closed-form expression
for Gaussian distributions, as opposed to the classical JS
divergence.

Squared Hellinger distance H2. Following [29], the H2

distance is defined as:

H2(pX , pX̂)≜
1

2

∫
u∈X

(√
pX(du)−

√
pX̂(du)

)2

, (9)

i.e., the Hellinger distance is the ℓ2 norm between
√
pX and√

pX̂ , therefore respecting the following upper bound

H2(pX , pX̂) ≤ ||√pX ||22 + ||
√
pX̂ ||

2
2 = 2.

Squared Wasserstein-2 distance W2
2. Squared Wasserstein

distance was originally introduced in [33] and is known to have
strong connections to the optimal transport problem (see, e.g.,
[38, Chapter 7]). In particular, squared Wasserstein-2 distance
is defined as follows:

W2
2(pX , pX̂)≜min

Π
E
[
||X − X̂||2

]
(10)

where Π is the set of all joint distributions p(X,X̂) with given
marginals pX and pX̂ .

III. RDPF FOR SCALAR-VALUED GAUSSIAN SOURCES

In this section, we derive closed-form expressions of the
RDPF for a scalar-valued Gaussian source assuming jointly
Gaussian reconstruction, under MSE distortion constraint and
various perception constraints. The considered class of per-
ception constraints consists of direct or reverse DKL, DGJS,
H2, and W2

2 perception constraints1, respectively. Moreover,
on top of the closed-form expressions of Gaussian RDPF for
the previous class of perception constraints, our methodology
completely specifies the design variables of the optimal linear
realization (i.e., the optimal selection of encoder and decoder
policies) that achieve the obtained Gaussian RDPF bounds for
each perception constraint. In what follows, we characterize
(1) for jointly Gaussian random variables and MSE distortion
constraint.
Problem 1. Given a Gaussian source X ∼ N (µX , σ2

X),
σ2
X > 0, assume that the reconstructed message X̂ is chosen

such that the joint tuple (X, X̂) is also Gaussian. Then, the
reconstructed message admits a linear (forward) realization
of the form X̂ = aX +W , where a ∈ R, W ∼ N (µW , σ2

W ),

1For the squared Wasserstein-2 divergence, the same closed-form solution
is derived using a different methodology in [25, Theorem 1].



W ⊥ X and σ2
W ≥ 0, such that µX̂ = aµX + µW

and σ2
X̂

= a2σ2
X + σ2

W . By considering the case where

µX = µX̂ (by setting µW = (1−a)µX ), and E
[
∆(X, X̂)

]
≡

E
[
(X − X̂)2

]
, we can cast (1)-(3) as follows:

R(D,P ) ≤ RG(D,P ) = min
a∈R,σ2

W≥0

1

2
log

(
1 + a2

σ2
X

σ2
W

)
s.t. (1− a)2σ2

X + σ2
W ≤ D

d(pX ||pX̂) ≤ P
(11)

where RG(D,P ) indicates the Gaussian RDPF (assuming
jointly Gaussian reconstruction) and d(·||·) depends on the
specific choice of perception constraint.

We point out the following technical remarks on Problem
1.

Remark 2. (On Problem 1) If in Problem 1 the choice of the
perception constraint is restricted to W2

2(·, ·) or the reverse
DKL(·||·), it can be shown that their respective minimizing
distribution is itself Gaussian, (see e.g., [39] and [25, Ap-
pendix A]). This guarantees that (11) in these two cases
provides an exact characterization of the Gaussian RDPF,
i.e., R(D,P ) = RG(D,P ). Alas, the same property does
not hold, in general, for many divergences such as the cases
of direct-DKL(·||·), DGJS(·||·) or H2(·, ·). In such cases, the
characterization in (11) serves as an upper bound to the
optimal solution.

Remark 3. (Mean Matching) The assumption µX = µX̂

does not hinder the generality of the derivation, which can be
proved to be optimal. In fact, matching the mean of the source
X and the reconstruction X̂ does not affect their mutual
information I(X, X̂) when minimizing the MSE distortion
metric. Moreover, all the considered divergence functions
d(·||·) are minimized by matching the first moment of the
involved distributions (for more details, see Lemma 4 in
Appendix B).

In the following theorem, we compute in closed-form the
characterization of the Gaussian RDPF defined in Problem 1,
when d(·||·) corresponds to the direct DKL(pX ||pX̂).

Theorem 2 (RDPF under direct DKL(·||·)). Consider the
characterization in Problem 1 with d(·||·) ≡ DKL(·||·).
Then the solution of the Gaussian RDPF in (11) is obtained
analytically, as follows:

RG(D,P ) =
max

{
1
2 log

(
σ2
X

D

)
, 0
}

if (D,P ) ∈ Sc

1
2 log

1 +
σ2
X

(
1− D

σ2
X

−g(P )

)2

4D−σ2
X

(
1+ D

σ2
X

+g(P )

)2

 if (D,P ) ∈ S

(12)

where

g(P ) =
1

W−1

(
−e−(2P+1)

) (13)

S =

{
(D,P ) :

|σ2
X −D|
σ2
X

≤ −g(P )

}
. (14)

Moreover, the solution in (12) is achieved by a linear realiza-
tion X̂ = aX+W such that the design variables (a, σ2

W ) are
obtained in closed-form as follows:

a =

max
{
1− D

σ2
X
, 0
}

if (D,P )∈Sc

1
2

(
1− D

σ2
X
− g(P )

)
if (D,P ) ∈ S

(15)

σ2
W = min{D, (1− g(P ))σ2

X} − (1− a)
2
σ2
X . (16)

Proof: See Appendix C.
Next, we use Theorem 2 to obtain a similar result when the

perception constraint of the upper bound characterization in
(11) is the reverse KL divergence, which corresponds to a case
where the upper bound is an exact solution of the R(D,P ) (see
Remark 2). Our derivation extends [26] providing, on top of a
closed-form solution to the problem, the design of the optimal
(forward) realization that achieves the optimal solution. This
is reported in the following corollary.

Corollary 1 (RDPF under reverse DKL(·||·)). Consider the
characterization in Problem 1 with d(·||·) ≡ DKL(pX̂ ||pX).
Then, the exact solution of (11) corresponds to R(D,P ) =
RG(D,P ) = (12), where in place of (13) we now have
g(P ) = W0

(
−e−(2P+1)

)
. Moreover, the optimal realization

X̂ = aX + W that achieves R(D,P ) corresponds to the
choice of the design variables (a, σ2

W ) given by (15) and (16),
with the updated form of g(P ) given above.

Proof: The proof follows almost verbatim to the proof of
Theorem 2 hence we omit it.

In the next lemma, we provide an alternative derivation to a
closed-form result first obtained by Zhang et al. in [25, The-
orem 1]. This result corresponds to the exact computation of
R(D,P ) in (11) because we consider d(·||·) ≡W2

2(pX , pX̂).
As in Corollary 1, we note that our methodology reveals on
top of the closed-form solution to this problem, the design
of the optimal (forward) realization that achieves the optimal
solution. These results are reported in the following lemma.

Lemma 1. Consider the characterization in Problem 1 with
d(·||·) ≡W 2

2 (·, ·). Then the optimal solution of R(D,P) in (11)
is obtained analytically as follows:

R(D,P ) = RG(D,P )

=


max

{
1
2 log

(
σ2
X

D

)
, 0
}

if (D,P ) ∈ Sc

1
2 log

(
1 +

σ2
X+[(σX−

√
P )2−D]

2

(D−P )[(2σX−
√
P )2−D]

)
if (D,P ) ∈ S

(17)

where S =
{
(D,P ) :

√
P ≤ σX −

√
|σ2

X −D|
}

. Moreover,

the solution in (12) is achieved by a linear realization X̂ =
aX +W such that the design variables (a, σ2

W ) are obtained
in closed-form as follows:

a =

max
{
1− D

σ2
X
, 0
}

if (D,P ) ∈ Sc

1
2

σ2
X+(σX−

√
P)

2−D

σ2
X

if (D,P ) ∈ S

σ2
W = min{D,σ2

X + (σX −
√
P )2} − (1− a)

2
σ2
X .

(18)



Proof: The proof follows similar arguments to Theorem
2, hence it is omitted. For completeness, the proof is provided
in the supplementary material.

In the next theorem, we derive the closed-form solution of
(11) when the perception constraint is the DGJS divergence.

Theorem 3 (RDPF under DGJS(·||·)). Consider the charac-
terization in Problem 1 with d(·||·) ≡ DGJS(·||·). Then, the
solution of RG(D,P ) in (11) corresponds to the following
analytical expression:

RG(D,P ) =

max
{

1
2 log

(
σ2
X

D

)
, 0
}

if (D,P ) ∈ Sc

1
2 log

(
1 +

σ2
Xυ2

D−σ2
X(1+υ)2

)
if (D,P ) ∈ S

(19)

where υ = D
2σ2

X
− g(P )

4 +

√
g(P )(g(P )−4)

4 with

g(P ) = −2W−1

(
−2e−(4P+2)

)
fL(P ) =

1

2
σ2
X

(
−
√
g(P )(g(P )− 4)− (2− g(P ))

)
fU (P ) =

1

2
σ2
X

(√
g(P )(g(P )− 4)− (2− g(P ))

)
Sc =

{
(D,P ) : fL(P ) ≤ |σ2

X −D| ≤ fU (P )
}
.

Moreover, the solution in (19) is achieved by a linear realiza-
tion X̂ = aX+W such that the design variables (a, σ2

W ) are
obtained in closed-form as follows:

a =

max
{
1− D

σ2
X
, 0
}

if (D,P ) ∈ Sc

1
2

(
1− D−fL(P )

σ2
X

)
if (D,P ) ∈ S

σ2
W = min{D,σ2

X + fL(P )} − (1− a)
2
σ2
X .

(20)

Proof: The proof follows similar arguments to Theorem
2, hence it is omitted. For completeness, the proof is provided
in the supplementary material.

Our last result in this section provides the closed-form
solution of RG(D,P ) in (11) when the perception constraint
is the H2 distance.

Theorem 4 (RDPF under H2(·, ·)). Consider the characteri-
zation in Problem 1 with d(·||·) ≡ H2(·, ·). Then, the solution
of RG(D,P ) in (11) corresponds to the following analytical
expression:

RG(D,P ) =
max

{
1
2 log

(
σ2
X

D

)
, 0
}

if (D,P ) ∈ Sc

1
2 log

1 +
σ2
X

(
g(P )− D

2σ2
X

)2

D−σ2
X

(
1−g(P )+ D

2σ2
X

)2

 if (D,P ) ∈ S

(21)

where

g(P ) =
1−

√
1− (1− P

2 )
4

(1− P
2 )

4

S =

{
(D,P ) : 1− g(P ) ≤ D

2σ2
X

≤ g(P )

}
.

Moreover, the solution in (21) is achieved by a linear realiza-
tion X̂ = aX+W such that the design variables (a, σ2

W ) are
obtained in closed-form as follows:

a =

max
{
1− D

σ2
X
, 0
}

if (D,P ) ∈ Sc

g(P )− D
2σ2

X
if (D,P ) ∈ S

σ2
W = min{D, 2σ2

Xg(P )} − (1− a)
2
σ2
X .

(22)

Proof: The proof follows similar arguments to Theorem
2, hence it is omitted. For completeness, the proof is provided
in the supplementary material.

IV. RDPF FOR VECTOR-VALUED GAUSSIAN SOURCES

In this section, our goal is twofold. First, we derive (under
certain conditions) a generic alternating minimization ap-
proach and its algorithmic embodiment, which allows the com-
putation of any RDPF for multidimensional Gaussian sources
with jointly Gaussian reconstruction. Second, we apply this
algorithm when having an MSE distortion constraint and the
class of perception constraints studied in Section III, namely
DKL, DGJS, H2, W2

2.

A. A Generic Alternating Minimization Approach

We start with the generalization of Problem 1 to vector-
valued Gaussian sources. In contrast to Problem 1 we do not
specify the type of fidelity constraints that will be utilized.
This is because we aim to first provide a general approach
along with its algorithmic embodiment, able to tackle any
vector-valued jointly Gaussian problems for RDPF with jointly
Gaussian reconstruction.

Problem 2. Given a Gaussian source X ∼ N (µX ,ΣX),
ΣX ≻ 0, assume that the reconstructed random vector
X̂ ∈ RN is chosen such that the joint tuple (X, X̂) is jointly
Gaussian. Then, the reconstructed message admits a linear
(forward) realization of the form X̂ = AX + W , where
A ∈ RN×N , W ∼ N (µW ,ΣW ), W ⊥ X and ΣW ⪰ 0,
such that µX̂ = AµX + µW and ΣX̂ = AΣXAT +ΣW .

Moreover, we can cast (1)-(3) as follows:

R(D,P ) ≤ RG(D,P )

= min
A∈RN×N ,ΣW⪰0

1

2
log

(
|AΣXAT +ΣW |

|ΣW |

)
s.t. E

[
∆(X, X̂)

]
≤ D, d(pX ||pX̂) ≤ P

(23)

where the specific form of the fidelity constraints E[∆(·, ·)]
and d(·||·) are not yet specified.

Assuming that also the fidelity constraints E[∆(·, ·)] and
d(·||·) are tensorizable, i.e.,

E
[
∆(X, X̂)

]
≥

N∑
i=1

g
(
E
[
∆(Xi, X̂i)

])
d(pX ||pX̂) ≥

N∑
i=1

h
(
d(pXi

||pX̂i
)
)



with g(·) and h(·) convex functions, then applying [Appendix
A, Lemma 2] in (23) leads to the following lower bound:

RG(D,P )
(⋆)

≥ min
λA,i,λΣW ,i

N∑
i=1

1

2
log

(
1 +

λA,i
2λX,i

λW,i

)

s.t.
N∑
i=1

g
(
E
[
∆(Xi, X̂i)

])
≤ D

N∑
i=1

h
(
d(pXi

||pX̂i
)
)
≤ P

(24)

where (⋆) holds with equality if the triplet (A,ΣW ,ΣX)
commute by pairs [34, Section 0.7.7]. In fact, for jointly
Gaussian random vectors (X, X̂), the sufficient condition that
achieves the lower bound in (24) can easily be realized, since
the matrices (A,ΣW ) are design variables and can be chosen
such that they have the same eigenvectors as ΣX

2, hence one
can replace inequality with equality without loss of generality.
We note that the inequality in (24) does not hold with equality,
in general, beyond i. i.d. random vectors.

Proposed alternating minimization method: To solve
(24), we first introduce the (vector) optimization variables
D = [Di]i∈1:N and P = [Pi]i∈1:N such that

Di = E
[
∆(X, X̂i)

]
, Pi = d(pXi

||pX̂i
) ∀i ∈ 1 : N.

Once the slack variables above are substituted in (24), we
yield:

RG(D,P ) = min
D,P

N∑
i=1

RG
i (Di, Pi)

s.t.
N∑
i=1

g(Di) ≤ D,

N∑
i=1

h(Pi) ≤ P

(25)

where RG
i (Di, Pi) corresponds to the stagewise RDPF given

by

RG
i (Di, Pi) = min

λA,i,λΣW ,i

1

2
log

(
1 +

λA,i
2λX,i

λW,i

)
s.t. Di = E

[
∆(Xi, X̂i)

]
, Pi = d(pXi

||pX̂i
)

(26)

Note that in (25) we have three distinct “rate region” cases,
which combined, result in the complete computation of the
Gaussian RDPF. Particularly, we may have only the distortion
constraint to be active (hereinafter referred to as Case I), only
the perception constraint to be active (hereinafter referred to as
Case II), or both constraints to be active (hereinafter referred
to as Case III). We note that only Case III is interesting
as the computation of the other two cases follows from the
computation of that case.

To find the optimal pair (D∗,P∗) in (25) we resort to an
application of an alternating minimization technique. Specifi-
cally, we define the following two subproblems of (25):

• For fixed P, (25) simplifies to

min
D

N∑
i=1

RG
i (Di, Pi) s.t.

N∑
i=1

g(Di) ≤ D. (27)

2For details see, e.g., [40, Proposition 1].

• For fixed D, (25) simplifies to

min
P

N∑
i=1

RG
i (Di, Pi) s.t.

N∑
i=1

h(Pi) ≤ P. (28)

It should be noted that solving the optimization problems
of (27) and (28) is of primary interest because the solution
of these two problems forms the basis of an alternating
minimization scheme that can optimally solve (25). To make
this point clear, next, we state and prove the convergence
to an optimal point of an alternating minimization approach
that relies on the solution of (27) and (28). This is often
encountered in the literature by the name block nonlinear
Gauss–Seidel method [35].

Theorem 5. (Convergence) Let the optimization problem (25)
be defined for finite distortion and perception levels (D,P ).
Let (D(0),P(0)) be an initial point and let the sequence
{(D(n),P(n)) : n = 1, 2, . . .} be the sequence obtained by
the alternating optimization of problems (27) and (28). Then
the sequence has a limit limn→∞(D(n),P(n)) = (D∗,P∗)
and the limit is an optimal solution of (25).

Proof: See Appendix D.
Subproblems (27) and (28), despite being more manageable

than the original problem (25), are still constrained optimiza-
tion problems whose solutions may not be easily obtained.
Therefore, to further simplify the optimization task, we define
the unconstrained optimization problem associated with (25).
Let s = (sD, sP ), with sD > 0 and sP > 0, be the vector of
Lagrangian multipliers associated with the distortion (i.e., sD)
and perception (i.e., sP ) constraints, respectively. Then, the
Lagrangian functional LRG(s) associated with (25) is defined
as:

min
D,P

LRG(D,P, s) ≜ min
D,P

[
N∑
i=1

RG
i (Di, Pi) + sD

N∑
i=1

g(Di)

+ sP

N∑
i=1

h(Pi)

]
.

(29)

Similarly to the constrained case, the optimal pair (D∗,P∗)
in (29) can be characterized through an alternate minimization
scheme. Hence, the associated subproblems are as follows:

• For fixed P,

min
D

N∑
i=1

RG
i (Di, Pi) + sD

N∑
i=1

g(Di). (30)

• For fixed D,

min
P

N∑
i=1

RG
i (Di, Pi) + sP

N∑
i=1

h(Pi). (31)

Assume the Lagrangian multiplier vector s is given and
let D∗

s and P∗
s be the optimal solutions obtained from the

Gauss-Seidel method employing subproblems (30) and (31),
respectively. Furthermore, let Ds =

∑N
i=1 g(D

∗
s,i) and Ps =



∑N
i=1 h(P

∗
s,i). Then, leveraging Lagrangian duality [41], we

can easily compute RG(Ds, Ps) as

RG(Ds, Ps) = LRG(D∗
s,P

∗
s, s)− sDDs − sPPs. (32)

Remark 4. The assumption of strictly positive Lagrangian
multipliers (sD, sP ) implies finite (D,P ) levels in Theorem 5,
hence guaranteeing the convergence of Algorithm 1. However,
under the assumption of bounded perception metric d(·||·),
the case sP = 0 does not violate the assumptions of Theorem
5. In this regime, the perception constraint of Problem 2 is
inactive, thus making the problem equivalent to the classical
RDF problem.

Algorithm 1 Algorithm of Theorem 5

Require: source distribution pX = N (µX ,ΣX) with ΣX ≻
0; Lagrangian parameters s = (sD, sP ) with sD > 0 and
sP > 0; error tolerances ϵ; initial point (D(0),P(0)).

1: n← 0, ω(0) ← +∞;
2: while ω(n) > ϵ do
3: n← n+ 1
4: D(n) ← Solution Problem (30) for (P(n−1), sD)
5: P(n) ← Solution Problem (31) for (D(n), sP )
6: ω(n) ← LRG(D(n−1),P(n−1))− LRG(D(n),P(n))
7: end while

Ensure: Ds =
∑N

i=1 g(D
(n)
i ), Ps =

∑N
i=1 h(P

(n)
i ),

RG(Ds, Ps) =
∑N

i=1 R
G
i (D

(n)
i , P

(n)
i ).

In Algorithm 1 we implement the alternating minimization
scheme of Theorem 5 using the unconstrained Lagrangian
formulation that was previously discussed, which allows for
the computation of any RG(D,P ) of the form characterized in
(23) as long as we can have a characterization of the problem
for the univariate case. In other words, we can always cast
the general jointly Gaussian problem into the optimization
problem in (25), which further means that the proposed
alternating minimization approach can be applied whenever
the RDPF can be obtained in closed-form for scalar-valued
Gaussian sources assuming jointly Gaussian reconstructions.

The computation of the optimal pair (D∗,P∗) via Algo-
rithm 1, can be used to obtain numerically the value of matri-
ces (A,ΣW ). This means that we can numerically compute the
linear realization X̂ = AX + W that achieves RG(D,P ) in
(23). On top of that, by leveraging the fact that (A,ΣW ,ΣX),
commute by pairs, we can expect that the aforementioned
design variables will be of the form:

A = V · diag
(
[λA,i]i=1:N

)
· V T ,

ΣW = V · diag
(
[λΣW ,i]i=1:N

)
· V T

where V ∈ RN×N is a non-singular orthogonal matrix, and
{(λA,i, λΣW ,i) : i = 1, 2, . . . , N} are both functions of
{(λX,i, Di, Pi) : i = 1, 2, . . . , N} which are associated
with the parameters for the associated stagewise solution of
RG(D,P ).

Analysis of Algorithm 1: To characterize the worst-case
performance of Algorithm 1, we provide an upper bound on
its convergence rate.

Theorem 6. (Upper bound on the Convergence Rate) Let
{(D(n),P(n))}n=0,...,T be the sequence of iterations gener-
ated by Algorithm 1 in T iterations and let (D∗,P∗) be a
minimizer of LRG(·, ·). Then, there exists positive and finite
constant C such that Alg. 1 guarantees that

LRG(D(T ),P(T ))− LRG(D∗,P∗) ≤ C

T
(33)

i.e., the asymptotic rate of convergence of Alg. 1 is upper
bounded by O

(
1
T

)
(sublinear convergence rate).

Proof: See Appendix E.
In what follows, we demonstrate experimentally that indeed

at worst Alg. 1 can achieve sublinear convergence, but depend-
ing on the value of the Lagrangian multipliers the performance
can significantly improve, achieving even a linear convergence
rate.

Example 1. Let X ∼ N (0,ΣX) with ΣX =
diag([1, 3, 5, 7, 10]), let Problem 2 be defined for
MSE distortion metric and W2

2 perception metric
and let ω(n) be defined as in Alg. 1, i.e., ω(n) =
LRG(D(n−1),P(n−1)) − LRG(D(n),P(n)). Then, Figure
1 shows the convergence rate of Alg. 1 for different values of
the Lagrangian multipliers sD ∈ {10−1, 10−2, 10−3, 10−4}
and sP ∈ {1, 10−1, 10−2, 10−3, 10−4}. Clearly, Fig. 1
illustrates that depending on the values of the Lagrangian
multipliers, the convergence rate of the algorithm can be
improved, achieving even linear convergence rates.
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Fig. 1: Experimental convergence rate of Alg. 1 for a 5-dimensional Gaussian
source.

B. Application of the Alternating Minimization Approach

In this subsection, we specialize the analysis of Subsection
IV-A to the MSE distortion constraint whereas as perception
constraint we consider the squared Wasserstein-2 distance.
We remark that similar specializations can be developed for
other divergence measures, under the assumption that a closed-
form solution for scalar-valued Gaussian RDPF, RG(D,P ), is



TABLE I: Closed-Form Solutions of Subproblem (30)

d(pX ||pX̂) D∗

DKL(pX ||pX̂) D∗
i = 1

2sD
+ λΣX ,i

(
1− 1

Z(Pi)

)
+ 1

Z(Pi)

√
Z(Pi)

(
Z(Pi)

4s2
D

− 4λ2
ΣX ,i

)
Z(Pi) = W−1

(
−e−(2Pi+1)

)
DKL(pX̂ ||pX) D∗

i = 1
2sD

+ λΣX ,i(1− Z(Pi))−
√

4λ2
ΣX ,i(−Z(Pi)) +

1
4s2

D

Z(Pi) = W0

(
−e−(2Pi+1)

)
H2(pX , pX̂) D∗

i = 1
2sD

+ 2Z(Pi)λΣX ,i −
√

1
4s2

D

+ 4λ2
ΣX ,i(2Z(Pi)− 1), Z(Pi) =

1−
√

1−(1−Pi
2

)4

(1−Pi
2

)4

DGJS(pX ||pX̂)
D∗

i = 1
2sD

− λΣX ,i

(
Z(Pi) +

√
Z(Pi)(Z(Pi) + 2)

)
−

√
1

4s2
D

− 4λ2
ΣX ,i

(
Z(Pi) +

√
Z(Pi)(Z(Pi) + 2) + 1

)
,

Z(Pi) = W−1

(
−e−(4Pi+2)

)

available (see e.g., Section III). We start by solving the sub-
problems (30) and (31). To this end, we leverage Lemma 1 to
characterize the function RG

i (Di, Pi), which is the stagewise
Gaussian RDPF for the ith dimension, under MSE distortion
metric and W2

2 perception metric, for a Gaussian source
Xi ∼ N (0, λΣX ,i). Furthermore, Lemma 1 and Proposition
3 defines the functional form of the auxiliary optimization
variables D = [Di]i∈1:N and P = [Pi]i∈1:N and of the
tensorization functions g(·) and h(·), introduced in (25), as
follows:

Di = E
[
||Xi − X̂i||2

]
= (1− λA,i)

2λΣX ,i + λΣW ,i

Pi = W2
2(pXi , pX̂i

) = λΣX ,i −
√

λA,i
2λΣX ,i + λΣW ,i

g(·) = h(·) = id(·)

where X̂i ∼ N (0, λΣXi
,i) is the stagewise linear realization

of the form X̂i = λA,iXi +Wi with Wi ∼ N (0, λΣW ,i).
In the following theorem we derive the characterization of

the optimal solution of the subproblem (30).

Theorem 7. Let the Lagrangian multiplier sD > 0 be given.
Then, for fixed P, the optimal stagewise distortions levels
D∗(P) = [D∗

i (Pi)]i∈i:N ∈ S achieving the minimum of (30)
are

D∗
i = Pi + 2

√
λΣX ,i

(√
λΣX ,i −

√
Pi

)
+

1

2sD

−

√
4λΣX ,i(

√
λΣX ,i −

√
Pi)2 +

1

4s2D
.

(34)

Proof: See Appendix F.
We remark that similar expressions to (34) can be derived

for other perception constraints. Such cases are reported in
Table I. We now move to the characterization of the optimal
solution of the subproblem (28).

Theorem 8. Let the Lagrangian multiplier sP > 0 be given.
Then, for fixed D, the optimal stagewise perception levels
P∗(D) = [P ∗

i (Di)]i∈i:N ∈ S achieving the minimum of
(31) can be characterized as the zeros of the vector function
T (·) : RN → RN where each component is defined as follows:

Ti(x) ≜
∂RG

i (Di, Pi)

∂Pi

∣∣∣∣∣
xi

+ sP (35)

∂RG
i (Di, Pi)

∂Pi
≜

1
2

(
√

λΣX,i−
√
Pi)

4−(λΣX,i−Di)
2

√
Pi(Di−Pi)(

√
Pi−
√

λΣX,i)(Di−(2
√

λΣX,i−
√
Pi)2)

if Pi ∈ S

0 if Pi ∈ Sc.
(36)

Proof: See Appendix G.

Remark 5. Similar expressions to (35) can be derived for the
direct DKL, reverse DKL and DGJS divergences cases. On
the contrary, the case of the H2 distance requires particular
care. Using Proposition 4, we can express the H2 tensorization
inequality as

H2(pX , pX̂) ≥ h−1

(
N∑
i=1

h
(
H2(pXi

, pX̂i
)
))

where h : [0, 2) → R+ is the convex strictly increasing
bijection defined as h(x) = − log(1−x

2 ) and h−1 is its inverse.
Therefore, the perception constraint in (24) can be expressed
as follows:

h−1

(
N∑
i=1

h
(
H2(pXi , pX̂i

)
))
≤ P

(a)
=⇒

N∑
i=1

h
(
H2(pXi

, pX̂i
)
)
≤ h(P ).

where (a) is due to the monotonicity of h. Using the modified
perception level P ′ = h(P ), the new formulation respects the
constraint format described in (25).

Corollary 2. Let Ti : RN → R be the ith component of
the vector function T (·) defined in Theorem 8. Then, Ti is a
continuous and non-decreasing function on R. Furthermore,
Ti has at least one root in S.

Proof: See Appendix H.
Although we are not able to derive a closed-form solution

for subproblem (28), the optimal P∗ can be found as zeros
of the functions {Ti}i∈1:N . Corollary 2 guarantees that the
functions {Ti}i∈1:N respect the assumptions required for the



application of the bisection method [42, Chapter 2.1]. More
refined root-finding methods, such as the Newton Method [42,
Chapter 2.3], are not applicable in this instance given the
requirement on the differentiability of Ti, which cannot be
guaranteed, in general.

C. Gaussian RDPF in the “Perfect Realism” regime

The results of Theorem 7 characterize the optimal distortion
vector D for a given perception vector P. As an additional
result, Theorem 7 gives the closed-form solution for the case
where P = 0 (all zeros vector), or equivalently d(pX ||pX̂) =
0, referred to as perfect realism [21], [24].

Corollary 3. Consider the optimization problem (29) for per-
ception level P = 0. Then, for a given Lagrangian multiplier
sD > 0, the optimal solution D∗ = [D∗

i ]i∈1:N is given by

D∗
i = 2λΣX ,i +

1

2sD
−

√
4λ2

ΣX ,i +
1

4s2D
(37)

such that the distortion level D =
∑N

i=1 D
∗
i .

Proof: (37) is obtained from (34) for Pi = 0.
We stress the following two technical remarks for Corollary

3.

Remark 6. The optimal solution D∗ is well defined in the
limit sD → 0, since limsD→0 D

∗
i = 2λΣX ,i.

Remark 7. In the water-filling solution of the classical
multivariate Gaussian RDF, the optimal solution D∗

RD =
[D∗

i,RD]i∈1:N for a Lagrangian multiplier sD > 0 is given
by

D∗
i,RD = min(w(sD), λΣX ,i) w(sD) =

1

2sD

where water-level w(sD) is dimension independent and the
min(·) operation is required to guarantee that D∗

i,RD belongs
to the constraint set. Heuristically, one can imagine that
the i-th source component is discarded in the reconstruction
whenever w(sD) ≥ λΣX ,i, upper bounding the maximum dis-
tortion observed in the i-th component by λΣX ,i. Conversely,
the solution identified in (37), and in general the results of
Theorem 7, can be interpreted as an adaptive water-level
solution. In fact, in (37), D∗

i gets adapted to each dimension,
guaranteeing that all source components are present in the
reconstructed signal. However, as already observed in [9,
Theorem 2], (37) suggests that the maximum distortion on the
i-th dimension is greater than λΣX ,i and is upper bounded by
2λΣX ,i.

V. NUMERICAL RESULTS

In this section, we provide numerical simulations based on
the findings of Sections III, IV.
A. Scalar-valued Gaussian Sources

Let X ∼ N (0, 1) be a scalar Gaussian source. Fig. 2
shows RG(D,P ) for X under MSE distortion measure and,
respectively, direct Kullback–Leibler divergence (2a), reverse
Kullback–Leibler divergence (2b), Geometric Jensen-Shannon

(a)

(b) (c)

(d) (e)

Fig. 2: RG(D,P ) for a Gaussian source X ∼ N (0, 1) source under (a)
direct DKL, (b) reverse DKL, (c) DGJS, (d) H2, and (e) W2

2 perception
constraints.

divergence (2c), squared Hellinger distance (2d), and squared
Wasserstein-2 distance (2e) perception measures. All the de-
rived Gaussian RDPFs share similarities in the structure of the
operating regions on the (D,P ) plane. We distinguish three
cases:

• Case I, where the RG(D,P ) is identically similar to the
associated RDF. In this regime, the perception constraint
is not met with equality.

• Case II, where, due to the distortion constraint not met
with equality, the RG(D,P ) is identically zero.

• Case III, where both the distortion and perception con-
straints are met with equality.

In our derivations, we identify the operating regions
{Case I} ∪ {Case II} = Sc and {Case III} = S, giving us
the closed-form solutions of their the operating regions.



(a)

(b) (c)

(d) (e)

Fig. 3: RG(D,P ) for a Gaussian source X ∼ N (0,ΣX) with ΣX =
diag([1, 3, 5]) under (a) W2

2 , (b) H2, (c) direct DKL , (d) reverse DKL, (d)
H2, and (e) DGJS perception constraints.

B. Multivariate Gaussian Sources

This section is devoted to the analysis of the numerical
results of Algorithm 1. All the numerical experiments in this
section have been conducted considering a multivariate Gaus-
sian source X ∼ N (0,ΣX) with ΣX = diag([1, 3, 5]) and set-
ting the initialization point for Algorithm 1 to (D(0),P(0)) =
(0, 0).

1) Gaussian RDPF Curves: In Fig. 3, we illustrate
RG(D,P ) for the perception metrics introduced in Section
III.

Focusing on Fig. 3a, we compare RG(D,P ) under the
squared Wasserstein-2 perception with the solution of the
classical RDF problem using the reverse water-filling algo-
rithm (black line) where for the classical case the perception
measure has been computed a posteriori using the same diver-
gence metric. The result confirms that for bounded divergence

measure the RD solution can be obtained as an extreme
case of RG(D,P ) surface, retrieving the boundary between
the regions of Case I and Case III. Moreover, the surface
region of Case I can be retrieved by the rigid translation of
the obtained boundary curve, since any (D,P ) point in this
region defines a Gaussian RDPF problem where the perception
constraint is not active, and thus equivalent to the classical
RDF problem. Similar remarks can be extended to the case of
the RG(D,P ) under H2 perception metric. In Figs. 3c, 3d, and
3e, we cannot proceed with the same kind of comparison due
to properties of the Kullback–Leibler and Geometric Jensen-
Shannon divergences; depending on the distortion level D, the
classical RDF solution may induce the variance of one of the
marginal distributions of the reconstructed source σ2

X̂i
→ 0.

In this condition, the absolute continuity between pX and
pX̂ is not guaranteed, causing the measured perception level
P → +∞. Since Algorithm 1 presents identical behavior to
the reverse water-filling algorithm for sP → 0 (equivalent to
P → ∞), for these cases, the various Gaussian RDPFs have
been computed bounding the maximum perception level P
imposing sP ≥ 10−3.

2) Adaptive Water-Level: In Fig. 4 we analyze the per-
dimension levels of distortion D∗

i and perception P ∗
i between

the source X and its reconstruction X̂ , comparing Algorithm
1 with the classical RD reverse water-filling solution. The
comparison has been conducted with a target distortion level
D = 6 and varying the target perception level P . The most
constrained case (P ≈ 0) provides a clear example of the
behavior mentioned in Remark 7, with D∗

i not following a
uniform water-level, but one that adapts to each marginal.
Similar behaviors are also present, although less pronounced,
in the remaining two cases (P ≈ 0.7 and P ≈ 2), where the
looser perception level P induces a more uniform repartition
of the per-dimension distortions D∗

i , thus demonstrating a
behavior that is closer to the classical reverse water-filling
solution.

Fig. 4: Comparison of the per-dimension distortion D∗
i and perception P ∗

i
measures for a fixed target distortion level D = 6 between the water-filling
solution and Algorithm 1.

APPENDIX A
USEFUL RESULTS OBTAINED VIA TENSORIZATION

In this Appendix, we state and when needed prove certain
useful results on tensorization of divergence functions and
information measures.



First, we state a proposition which demonstrates how
DKL(·||·) can be tensorized. For a proof, see for instance [39,
Proposition 4].
Proposition 1. Let ΣX ≻ 0 and ΣX̂ ≻ 0 on RN×N . Moreover,
let X ∼ N (0,ΣX) and X̂ ∼ N (0,ΣX̂). Then, DKL(pX ||pX̂)
can be bounded from below as follows:

DKL(pX ||pX̂) ≥
N∑
i=1

DKL(pXi
||pX̂i

)

and the inequality holds with equality iff ΣX and ΣX̂ are
commuting matrices3.

Similar to the case of KL divergence, the GJS divergence
can also be tensorized. This is stated and proved next.

Proposition 2. Let ΣX ≻ 0 and ΣX̂ ≻ 0 on RN×N . Moreover,
let X ∼ N (0,ΣX) and X̂ ∼ N (0,ΣX̂). Then, the GJS
divergence DGJS(pX ||pX̂) can be bounded from below as
follows:

DGJS(pX ||pX̂) ≥
N∑
i=1

DGJS(pXi ||pX̂i
)

and the inequality holds with equality iff ΣX and ΣX̂ are
commuting matrices.

Proof: The tensorization of the DGJS follows by ob-
serving that the geometric mean distribution pg , as stated
in Definition 4, is itself Gaussian. Hence, if ΣX and ΣX̂

commute, then Σg necessarily commutes by pairs [34, Section
0.7.7], thus allowing to directly apply [39, Proposition 4] to
(6) and obtain the result in question. This concludes the proof.

Similarly, one can show that W2
2 and H2 can be tensorized.

These two results are stated next without any proof (for
completeness one can check the supplementary material).

Proposition 3. Let ΣX ≻ 0 and ΣX̂ ≻ 0 on RN×N . Moreover,
let X ∼ N (0,ΣX) and X̂ ∼ N (0,ΣX̂). Then, W2

2(pX , pX̂)
can be bounded from below as follows:

W2
2(pX , pX̂) ≥

N∑
i=1

W2
2(pXi , pX̂i

)

and the inequality holds with equality iff ΣX and ΣX̂ are
commuting matrices.

Proposition 4. Let ΣX ≻ 0 and ΣX̂ ≻ 0 on RN×N . Moreover,
let X ∼ N (0,ΣX) and X̂ ∼ N (0,ΣX̂). Then, H2(pX , pX̂)
can be bounded from below as follows:

H2(pX , pX̂) ≥ 2

(
1−

N∏
i=1

(
1−

H2(pXi , pX̂i
)

2

))
(38)

and the inequality holds with equality iff ΣX and ΣX̂ are com-
muting matrices with increasing (or decreasing) eigenvalues
order.

Next, we derive a tensorization result for mutual information
of jointly Gaussian random vectors.

3The definition of commuting matrices can be found in [34, Section 0.7.7].

Lemma 2. Let (X, X̂) be jointly Gaussian random vectors on
RN , such that X ∼ N (0,ΣX) with ΣX ≻ 0 and X̂ = AX +
W , with A ∈ RN×N being invertible and diagonalizable, and
W ∼ N (0,ΣW ) with ΣW ≻ 0. Then, the mutual information
I(X, X̂) can be bounded from below as follows:

I(X, X̂) = log

(
|ΣX̂ |
|ΣX̂|X |

)
≥

N∑
i=1

log

(
1 +

λ2
A,iλΣX ,i

λΣW ,i

)
(39)

and the inequality holds with equality iff A is a symmetric
matrix and the matrices ΣX , ΣW and A commute by pairs.

Proof: Note that for jointly Gaussian random vectors
(X, X̂), mutual information between X and X̂ can be written
as follows:

I(X, X̂) = log

(
|ΣX̂ |
|ΣX̂|X |

)
= log

(
|AΣXAT +ΣW |

|ΣW |

)
= log

(
|I +Σ

− 1
2

W AΣXATΣ
− 1

2

W |
)

= log

(∣∣∣∣I + (Σ− 1
2

W AΣ
1
2

X

)(
Σ

− 1
2

W AΣ
1
2

X

)T ∣∣∣∣)
= log

(∣∣∣∣I + (Σ− 1
2

W AΣ
1
2

X

)T(
Σ

− 1
2

W AΣ
1
2

X

)∣∣∣∣)
(a)
=

N∑
i=1

log

(
1 + λi

[(
Σ

− 1
2

W AΣ
1
2

X

)T(
Σ

− 1
2

W AΣ
1
2

X

)])
(b)
=

N∑
i=1

log

(
1 +

(
si

[
Σ

− 1
2

W AΣ
1
2

X

])2)
(40)

where (a) follows from the fact that for any diagonalizable
matrix M the eigenvalues λI+M = 1 + λM and (b) follows
from the definition of singular values of a matrix. In addition,
we can also verify the following majorization inequality:

log
(
s
[
Σ

− 1
2

W AΣ
1
2

X

])
(c)
≻ log

(
s↓
[
Σ

− 1
2

W A
])

+ log
(
s↑
[
Σ

1
2

X

])
(d)
≻ log

(
s↓
[
Σ

− 1
2

W

])
+ log

(
s↑[A]

)
+ log

(
s↑
[
Σ

1
2

X

])
(e)
≻w log

(
λ↓
[
Σ

− 1
2

W

])
+ log

(
|λ↑[A]|

)
+ log

(
λ↑
[
Σ

1
2

X

])
= log

 1

λ↑
[
Σ

1
2

W

]
+ log

(
|λ↑

A|
)
+ log

(
λ↑
[
Σ

1
2

X

])
(41)

where (c) and (d) hold from Lidskii’s theorem [36, Theorem
3.4.6] and hold with equality for commuting matrices ΣX ,
ΣW and A with the correct singular value ordering, while (e)
follows from Weyl’s majorization theorem [36, Theorem 2.3.6]
and holds with equality if and only if ΣX , A, and ΣW are a
symmetric matrices.
Now, let f(·) to be the function defined as f(x) ≜ log(1 +
x2). Although f is not convex, we can readily show that the
composite function t −→ f(et) is convex and increasing on
R. Thus, we can invoke Weyl’s majorization theorem, which
states:

log(x) ≻w log(y) =⇒ f(x) ≻w f(y). (42)



Therefore, we obtain:

(40) =
N∑
i=1

f
(
si

[
Σ

− 1
2

W AΣ
1
2

X

])
(42)+(41)
≥

N∑
i=1

f

(
|λA,i

↑| ·
√
λΣX ,i

↑√
λΣW ,i

↑

)
= (39).

This concludes the proof.
We conclude this section by showing that the MSE admits

a lower bound via tensorization for jointly Gaussian random
vectors.

Lemma 3. Let (X, X̂) be jointly Gaussian random vectors
on RN such that X ∼ N (0,ΣX) and X̂ = AX + W ,
with A ∈ RN×N being invertible and diagonalizable, and
W ∼ N (0,ΣW ). Moreover, let ΣX and ΣW be positive
definite matrices. Then, the MSE can be bounded from below
as follows:

E
[
||X − X̂||2

]
≥

N∑
i=1

E
[
(Xi − X̂i)

2
]

whereas the inequality holds with equality if A is symmetric
and (A,ΣW ,ΣX) commute by pairs.

Proof: Note that we can expand the MSE as follows:

E
[
||X − X̂||2

]
= Tr

(
ΣX +ΣX̂ − 2AΣX

)
(a)
= Tr

[
(I −A)ΣX(I −A)T +ΣW

]
= Tr

[(
(I −A)Σ

1
2

X

)T(
(I −A)Σ

1
2

X

)
+ΣW

]
(b)
= ||(I −A)Σ

1
2

X ||
2
F +Tr[ΣW ] (43)

where (a) follows from the substitution ΣX̂ = AΣXAT +ΣW

and (b) follows from the definition of Frobenius norm || · ||F .
Moreover, from (43) we can derive

||(I −A)Σ
1
2

X ||
2
F =

N∑
i=1

s2i

[
(I −A)Σ

1
2

X

]
(c)

≥
N∑
i=1

(
s↓i [I −A]

)2
λ↑
i (ΣX)

(d)

≥
N∑
i=1

(
|λ↓

i [I −A]|
)2

λ↑
i (ΣX)

≥
N∑
i=1

(
|1− λ↑

i [A]|
)2

λ↑
i (ΣX)

where (c) follows from Lidskii’s theorem [36, Theorem 3.4.6]
and hold with equality for commuting matrices (A,ΣX) with
the correct singular value ordering, while (d) follows from
Weyl’s majorization theorem [36, Theorem 2.3.6] and holds
with equality if and only if A is a symmetric matrix. This
concludes the proof.

APPENDIX B
MEAN MATCHING FOR DIVERGENCE MEASURES

Lemma 4. (Mean matching) Let d(·||·) be a divergence
function chosen between direct DKL, reverse DKL, DGJS, H2,

and W2
2. Let p ∼ N (µp,Σp) and q ∼ N (µq,Σq) and let q̂ be

a shifted version of q such that the first moments of q̂ and p
match, i.e. q̂ ∼ N (µp,Σq). Then d(p||q) ≥ d(p||q̂).

Proof: The proof follows from the substitutions of the
analytical expressions of the considered divergences in the
Gaussian case, as verified in Table II.

TABLE II: Difference between the divergence d(p||q) of the mean unmatched
distributions and the divergence d(p||q̂) of the mean matched distributions.

d(·||·) d(p||q)− d(p||q̂)

direct DKL (µp − µq)TΣ−1
q (µp − µq)

reverse DKL (µq − µp)TΣ−1
p (µq − µp)

W2
2 ||µp − µq ||2

H2 2
|ΣpΣq|

1
4∣∣∣Σp+Σq

2

∣∣∣ 12
(
1− e−

1
4
(µp−µq)

T (Σp+Σq)
−1(µp−µq)

)

DGJS

1
2
(µg − µp)TΣ−1

g (µg − µp)

+ 1
2
(µg − µq)TΣ−1

g (µg − µq)

In particular, for the case of the DGJS divergence, µg and
Σg are respectively the mean and covariance matrix of the
geometric mean between the distributions p and q (see Section
II-B). This concludes the proof.

APPENDIX C
PROOF OF THEOREM 2

First note that once we substitute the functional form of the
direct DKL(pX ||pX̂) in (11), we obtain the following convex
optimization problem:

RG(D,P ) = min
a∈R,σ2

W≥0

1

2
log

(
1 + a2

σ2
X

σ2
W

)
. (44)

s.t. (1− a)2σ2
X + σ2

W ≤ D (45)

1

2

[
log

(
a2σ2

X + σ2
W

σ2
X

)
+

σ2
X

a2σ2
X + σ2

W

− 1

]
≤ P.

(46)

To solve the specific optimization problem, we invoke Karush-
Kuhn-Tucker (KKT) conditions [41]. Let sD ≥ 0 and sP ≥ 0
be the Lagrangian multipliers associated with the distortion
and perception constraint, respectively. The Lagrangian func-
tion L(a, σ2

W , sD, sP ) associated with (44)-(46) can give the
unconstrained optimization problem as follows:

L(a, σ2
W , sD, sP )

=
1

2
log

(
1 + a2

σ2
X

σ2
W

)
+ sD((1− a)2σ2

X + σ2
W −D)

+ sP

{
1

2

[
log

(
a2σ2

X + σ2
W

σ2
X

)
+

σ2
X

a2σ2
X + σ2

W

− 1

]
−P

}
.



The stationarity conditions and complementary slackness are
as follows:

∇(a,σ2
W )L(a, σ

2
W , sD, sP ) = 0 (stationarity condition) (47)

sD((1− a)2σ2
X + σ2

W −D) = 0 (48)

sP

{
1

2

[
log

(
a2σ2

X + σ2
W

σ2
X

)
+

σ2
X

a2σ2
X + σ2

W

− 1

]
−P

}
= 0.

(49)

Next, we obtain the complete closed-form solution for the
convex programming problem in (44)-(46) by breaking it into
three distinct cases.
Case I: Suppose that sD > 0 and sP = 0, namely, only
(45) is active in the optimization problem. Then, the problem
is equivalent to the classical RDF (see, e.g., [43]), which has
known optimal realization X̂ = aX+W with design variables
(a, σ2

W ) given as follows:

a =

(
1− D

σ2
X

)
, σ2

W = D − (1− a)2σ2
X . (50)

Case II: Let sD = 0 and sP > 0, namely, only (46) is active
in the optimization problem. Then, from (49), we obtain:

log

(
σ2
X̂

σ2
X

)
+

σ2
X

σ2
X̂

= 2P + 1

=⇒ − σ2
X

σ2
X̂

· e
−σ2

X
σ2
X̂ = −e−(2P+1)

=⇒ σ2
X

σ2
X̂

= −W
(
−e−(2P+1)

)
(51)

where (51) is obtained through the application of the Lambert
W function [37]. From (47) and (49), we can derive the
optimal (a, σ2

W ), resulting in:

a = 0, σ2
W = − σ2

X

W
(
−e−(2P+1)

) (52)

which, once substituted in (44), shows that the inactive
distortion constraint results in R(D,P ) = 0. Furthermore,
since the distortion level D is not met with equality, using
(52) we can characterize the maximum achievable distortion

as D̄(P ) = E
[
(X − X̂)2

]
=

(
1− σ2

X

W(−e−(2P+1))

)
σ2
X .

This allows us to express σ2
W , similarly to Case I, as

σ2
W = D̄(P )− (1− a)2σ2

X .

Case III: Suppose that sD > 0 and sP > 0, namely, both
(45) and (46) are active. Then, from (48) we have that a2σ2

X+
σ2
W = D+(2a− 1)σ2

X and by substituting in (49) we obtain:

log

(
D + (2a− 1)σ2

X

σ2
X

)
+

σ2
X

D + (2a− 1)σ2
X

= 2P + 1

=⇒ − σ2
X

D + (2a− 1)σ2
X

· e
− σ2

X
D+(2a−1)σ2

X = −e−(2P+1)

=⇒ D + (2a− 1)σ2
X

σ2
X

= −W(−e−(2P+1))

that, upon further simplifications, results into the following
choice of the design variables (a, σ2

W ):

a =
1

2

(
1− D

σ2
X

− 1

W(−e−(2P+1))

)
σ2
W = D − (1− a)2σ2

X ,

(53)

which once substituted in (44) give (12).
It remains to determine domain boundaries for each of

the three cases and to identify which branch of the Lambert
W function makes the derived R(D,P ) compatible with the
properties listed in Remark 1.

Note that the boundary between Case I and Case III can
be identified by considering only Case I and by substituting
its solutions in (46), which yields

− σ2
X

σ2
X −D

· e
− σ2

X
σ2
X

−D < −e−(2P+1). (54)

Applying the Lambert W function to inequality (54) requires
a decision between the distinct branches W0 and W−1, since
the two have opposite monotonic behaviors (that is, monoton-
ically increasing and monotonically decreasing, respectively).
However, invoking the continuity of the RDPF, we select the
branch of the LambertW function resulting in R(D,P ) being
continuous on the border. Of the two branches, only W−1

respects this continuity constraint. Therefore, (54) becomes

σ2
X

σ2
X −D

< −W−1

(
−e−(2P+1)

)
. (55)

Similarly, one can identify the boundary between Case II
and Case III by considering solely Case II and substituting
its solution in (45), which results into the following strict
inequality:

σ2
X

σ2
X −D

>W−1

(
−e−(2P+1)

)
. (56)

From inequalities (55) and (56) we can identify the joint region
of Case I and Case II on the (D,P ) plane, denoted by the
set Sc = {(D,P ) : (55) ∪ (56)}. Subsequently, the region of
Case III is identified as S = (Sc)c, resulting in (14). The
derived regions S and Sc are used to construct the function a
and σ2

W in (15) and (16), where the term min{D, D̄(P )} in
(16) is justified by observing that D ≤ D̄(P ) in Case I and
Case III while D ≥ D̄(P ) in Case II. This concludes the
proof.

APPENDIX D
PROOF OF THEOREM 5

To prove this result, we use some prior results of Grippo
and Sciandrone in [35] in the study of the 2-block non-linear
Gauss-Seidel method under convex constraints.

Let f(D,P) =
∑N

i=1 R
G
i (Di, Pi) and let the set L(D,P ) be

the set of level curves defined as follows:

L =
{
(D,P) ∈ C(D,P ) : f(D,P) ≤ f(D(0),P(0))

}
(57)

where C(D,P ) = {(D,P) ∈ R2N :
∑N

i=1 g(Di) ≤ D ∧∑N
i=1 h(Pi) ≤ P}. Since the pair (D,P ) is assumed to



be finite, we remark that C(D,P ) is a compact set, and, as
f(·) is a non-negative, continuous function in C(D,P ), the
curve level set L = f−1([0, f(D(0),P(0))]) ∩ C(D,P ) is also
a compact set. This result together with the convexity of
f(·) satisfy the assumption of [35, Proposition 6], which
guarantee that every limit point (D∗,P∗) of the sequence
{(D(n),P(n)) : n = 1, 2, . . .} is a global minimizer of (25).
This concludes the proof.

APPENDIX E
PROOF OF THEOREM 6

Let L(D,P) be the Lagrangian function defined in (29) for
fixed Lagrangian multipliers s. After T iterations, Algorithm
1 produces the sequences {D(n)}n=0,...,T and {P(n)}n=0,...,T

applying the alternating minimization scheme P(n−1) →
D(n) → P(n) obtained by the solutions of the optimization
problems (30) and (31). Therefore, by construction, L(·, ·) is
non-increasing along the produced sequence, i.e.,

L(D(n),P(n)) ≥ L(D(n+1),P(n)) ≥ L(D(n+1),P(n+1)).
(58)

Since RG
i (·, ·) is continuous with Lipschitz continuous gra-

dients in both arguments, there exists K ∈ R+ such
that the Lagrangian L(D,P) is continuous and its gradi-
ents ∇DL(·,P) and ∇Pf(D, ·) are K-Lipschitz continuous.
Therefore, ∀ D1,D2,P1,P2 ∈ Rd, it holds

L(D2,P1)− L(D1,P1) ≤

∇DL(D1,P1)
T (D2 −D1) +

K

2
||D2 −D1||22.

(59)

Considering iteration n, for fixed P(n) we define

D(n+1) = argmin
D

(30), D̃ = D(n) −∇DL(D(n),P(n))

for which, by construction, it holds

L(D(n),P(n)) ≥ L(D̃,P(n)) ≥ L(D(n+1),P(n)). (60)

From (58), (59), and (60) we can derive

L(D(n),P(n))− L(D(n+1),P(n+1))

≥ L(D(n),P(n))− L(D(n+1),P(n))

≥ L(D(n),P(n))− L(D̃,P(n))

≥ −∇Df(D(n),P(n))T (D̃−D(n))− K

2
||D̃−D(n)||22

≥ 1

2K
||∇DL(D(n),P(n))||22.

Furthermore, considering the complete gradient operator
∇ = (∇D,∇P ), the identity ||∇L(D(n),P(n))||2 =
||∇DL(D(n),P(n))||2 holds, since ||∇PL(D

(n),P(n))||2 = 0
due to P(n) being the minimizer for fixed D(n) in the
alternating minimization scheme. Therefore, we have that

L(D(n),P(n))− L(D(n+1),P(n+1))

≥ 1

2K
||∇L(D(n),P(n))||22.

(61)

Now, let z(n) = (D
(n)
1 , . . . , D

(n)
N , P

(n)
1 , . . . , P

(n)
N )T be the

column vector resulting from the stacking D and P and let
L(z(n)) = L(D(n),P(n)). Moreover, let Z∗ be the set of

minimizers of L(·) and, similarly to [44], let the maximal
distance M(ẑ) from the set Z∗ be defined as

M(ẑ) = max
z∈R2N

max
z∗∈Z∗

{||z− z∗||2 : L(z) ≤ L(ẑ)}.

From the definition M(ẑ), we have that L(ẑ) ≥ L(z̃) implies
M(ẑ) ≥ M(z̃). Then, from the convexity of L(·), for all
z∗ ∈ Z∗, we can derive

L(z(n))− L(z∗) ≤ ∇L(z(n))T (z(n) − z∗)

≤ ||∇L(z(n))|| · ||z(n) − z∗||
≤ ||∇L(z(n))||M(z(n))

≤ ||∇L(z(n))||M(z(0)). (62)

Furthermore, as a result of the descent lemma [41], the
following holds

L(z(0))− L(z∗) ≤ K

2
||z(0) − z∗||2 ≤ K

2
M2(z(0)). (63)

Leveraging (58), (61), (62) and (63), and defining An =
L(z(n))− L(z∗) and γ = 1

2KM2(z(0))
, we obtain

An

(58)
≥ An+1, An −An+1

(61)+(62)
≥ γA2

n, A0

(62)
≤ 1

4γ
.

(64)

Applying the relationships obtained in (64), we derive

1

An
− 1

An−1
=

An−1 −An

AnAn−1
≥ γ

A2
n−1

AnAn−1
= γ

An−1

An
≥ γ.

By summing for n = 1, . . . , T , we have

1

AT
− 1

A0
=

T∑
n=1

[
1

An
− 1

An−1

]
≥

T∑
n=1

γ = Tγ

=⇒ 1

AT
≥ 1

A0
+ Tγ ≥ (T + 4)γ ≥ Tγ

which further implies,

L(z(T ))− L(z∗) ≤ 2K ·M2(z(0))

T
≤ 2KC

T
(65)

with M2(z(0)) ≤ C <∞. This concludes the proof.
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Let L(D, sD) be the objective function of the unconstrained
optimization problem defined in (30). Imposing the stationar-
ity condition on L(D, sD) we obtain

∂L(D, sD)

∂Di

∣∣∣∣∣
D∗

i

=
∂RG

i (Di, Pi)

∂Di

∣∣∣∣∣
D∗

i

+ sD = 0 (66)

with

∂RG
i (Di, Pi)

∂Di
=−

1
2Di

(Di, Pi) ∈ Sc

− Di−Pi−2λΣX,i+2
√

PiλΣX,i

(Di−Pi)(Di−(2
√

λΣX,i−
√
Pi)2

(Di, Pi) ∈ S

where S is defined in Theorem 1. We can investigate the
optimal solution of (66) in the two sets S and Sc as follows:



• for (D∗
i , Pi) ∈ S we have that

− 1

2D∗
i

+ sD = 0 =⇒ D∗
i =

1

2sD

• for (D∗
i , Pi) ∈ Sc we have that

−
Di − Pi − 2λΣX ,i + 2

√
PiλΣX ,i

(Di − Pi)(Di − (2
√
λΣX ,i −

√
Pi)2

+ sD = 0

which admits the following two solutions:

D∗
i,1 = Pi + 2σX(σX −

√
Pi)

+

(
1

2sD
−

√
4σ2

X(σX −
√
Pi)2 +

1

4s2D

)
D∗

i,2 = Pi + 2σX(σX −
√
Pi)

+

(
1

2sD
+

√
4σ2

X(σX −
√
Pi)2 +

1

4s2D

)
.

We select the solution D∗
i = D∗

i,1 since D∗
i,1 < D∗

i,2,
minimizing D =

∑N
i=1 D

∗
i , and this guarantees conti-

nuity of the function D∗
i (sD) on S ∪ Sc = R2,+. This

completes the proof.
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Let L(P, sP ) be the objective function of the unconstrained
optimization problem defined in (31). We can characterize
the set of optimal solutions {P∗} imposing the stationarity
condition on L(P, sP ), thus obtaining

∂L(P, sP )

∂Pi

∣∣∣∣∣
P∗

i

=
∂RG

i (Di, Pi)

∂Pi

∣∣∣∣∣
P∗

i

+ sP = 0.

We notice that set {P∗} and the set of the zeros of T (·)
coincide. This concludes the proof.

H PROOF COROLLARY 2

Since RG
i (Di, Pi) is convex and differentiable in both

arguments, ∂RG
i (Di,Pi)
∂Pi

is necessarily continuous and non-
decreasing on R+

0 . From the definition of the set S, we can
characterize bi ≥ 0 such that S = [0, bi] and Sc = (bi,+∞).
Due to continuity, ∂RG

i (Di,bi)
∂Pi

= 0, thus implying Ti(bi) ≥ 0.

On the other hand, limPi→0
∂RG

i (Di,bi)
∂Pi

= −∞ implies the
existence of ai ∈ S such that Ti(ai) ≤ 0. Hence, since on
the extreme of the set [ai, bi] ⊆ S the continuous function Ti

has opposite signs, by the Intermediate Value Theorem [42,
Theorem 1.11] there exists at least one root in the set. This
concludes the proof.
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