
HAL Id: hal-04528898
https://hal.science/hal-04528898

Preprint submitted on 5 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalized performance criteria for identified models
Bernard Vau, Henri Bourlès

To cite this version:
Bernard Vau, Henri Bourlès. Generalized performance criteria for identified models. 2024. �hal-
04528898�

https://hal.science/hal-04528898
https://hal.archives-ouvertes.fr


Generalized performance criteria for
identified models

Bernard Vau ∗ Henri Bourlès ∗∗

∗ Control Department, Exail, 94385 Bonneuil-sur-Marne, France
(bernard.vau@exail.com).

∗∗ SATIE, Ecole Normale Supérieure Paris-Saclay, 4 avenue des
sciences, 91190, Gif-sur-Yvette, France

(henri.bourles@satie.ens-cachan.fr)

Abstract: It is shown that some usual criteria evaluating the performances of an identified
model with respect to experimental data, like the FIT criterion, can be not well-suited to fast
sampled systems. This leads us to propose some generalized criteria where the signals are filtered
by transfer functions belonging to an orthonormal basis. An interpretation of this filtering in the
frequency domain is proposed. The basis poles selection is equivalent to making a specification
about the criteria in function of the expected use of the identified model.
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1. INTRODUCTION

In any system identification process, the step of model val-
idation and model performance assessment is crucial, since
it allows (or not) to retain this model for simulation and/or
prediction purposes, and for control law design. Numerous
validation methods have been associated for a long time to
classical identification approaches. The most well known
are the whiteness test of residuals and the cross corre-
lation test between the prediction error and the system
input (Söderström and Stoica (1989), Ljung (1999)), which
provide, by using statistical concepts, a binary response
about the model validity. Independently, the performance
of an identified model is most of the time evaluated by
computing the FIT which is an indicator depending on
the ratio between the sum of squares of residuals and
the sum of squares of the centred measured output. The
FIT (also called NRSME) yields a more qualitative indi-
cation about the model matching to experimental data,
and it is widely employed for comparing continuous-time
identification methods (Pascu et al. (2019)) or discrete-
time ones (Pillonetto et al. (2022)). Moreover some well-
known software packages (such as Matlab® Identification
Toolbox) provide also routines that compute it.
In (Muroi and Adachi (2015)) it is pointed out that the
FIT criterion is not without any shortcoming as it can
provide negative values in some cases, and that led the
authors to propose two other criteria in particular the tri-
angle criterion (based on the triangle inequality) denoted
as TRI in the sequel.
All these criteria make use of the sums of signals squares
(the system output, the model output, or the residual)
in time domain. These sums are asymptotically related
to the signals 2-norm, and by shifting in the frequency
domain that implies an integration of these signals power
spectrum density (PSD) implicitly carried out over a linear
frequency scale. This scale is not consistent with respect
to the logarithmic frequency scale which is employed es-

pecially for representing fast sampled models.
In (Vau and Bourlès (2022)) a similar remark has been
made about the validation test assessing the whiteness of
residuals which is well suited in practice only if one expects
to represent the model in a linear frequency scale. In the
same reference it is proposed a generalized whiteness test
using Generalized Orthonormal Bases of transfer Func-
tions (GOBF) so as to address the case of fast sampled
systems, or to validate reduced order models.
The purpose of the present article is to propose generalized
FIT and TRI criteria using some signal filtering by GOBF.
The basis poles selection of GOBF allows for adapting
the test in function of the expected use of the model. It
is shown that this basis poles selection entails implicitly
a distortion of the frequency scale on which the model
performance is assessed. Thus the basis poles of GOBF
play the role of tuning parameters allowing to specify
on which frequency band (either large or narrow) the
identified model performance is evaluated.

The paper is structured as follows:
In Section 2, the expressions of FIT and TRI criteria are
recalled, and an interpretation in the frequency domain
is provided. Then two examples show the limits of these
classical criteria when applied to fast sampled systems.
In Section 3, after a short presentation of GOBF and
their associated frequency (the Hambo frequency), two
new criteria called H-FIT and H-TRI are proposed. These
criteria use a filtering by orthonormal functions, and an
impact of this filtering in the frequency domain is analysed.
Finally, these new criteria are applied to the two examples
of the previous section.



2. ANALYSIS OF THE CLASSICAL MODEL
PERFORMANCE CRITERIA

2.1 FIT and TRI criteria

According to (Ljung (1999), p.500) the FIT is a normalized
criterion, defined as

FIT =

1−

√∑N
t=1 ε

2(t)√∑N
t=1 (y(t)− ȳ)

2

 .100 (1)

where {y(t)} is the measured output sequence, {ε(t)}
is the residual sequence with ε(t) = y(t) − ŷ(t), {ŷ(t)}
being the predicted output sequence of the model, and

ȳ = 1
N

∑N
t=1 y(t) the mean of {y(t)}, and N is the sample

number.

The FIT is expressed in percent, and its maximum value is
100% if the residual is identically null. Note that the FIT

takes negative values if
∑N
t=1 ε

2(t) >
∑N
t=1 (y(t)− ȳ)

2
.

In (Muroi and Adachi (2015)), a normalized criterion
called TRI is proposed where

TRI =

1−

√∑N
t=1 ε

2(t)√∑N
t=1 y

2(t) +
√∑N

t=1 ŷ
2(t)

 .100 (2)

Its value is guaranteed to be superior to 0% and inferior

to 100% owing to the triangle inequality (
√∑N

t=1 ε
2(t) <√∑N

t=1 y
2(t) +

√∑N
t=1 ŷ

2(t)).

2.2 Interpretation in the frequency domain

Let us consider the asymptotic expressions of these criteria
as N tends towards infinity, one obtains immediately

lim
N→∞

FIT =

1−

√∫ π
−π Φε(ω)dω√∫ π
−π Φy−ȳ(ω)dω

 .100 (3)

lim
N→∞

TRI =1−

√∫ π
−π Φε(ω)dω√∫ π

−π Φy(ω)dω +
√∫ π
−π Φŷ(ω)dω

 .100 (4)

where Φε, Φy−ȳ, are the Power spectrum Density (PSD)
of {ε(t)}, {y − ȳ(t)}, respectively. Equations (3) and (4)
imply a sum over the linear frequency scale ω.

If the system to be assessed is fast sampled, it will
be necessarily represented in a Bode diagram with a
logarithmic scale ω̄ = log(ω). In this case, the asymptotic
expressions of FIT and TRI become

lim
N→∞

FIT =

1−

√∫ π
−π Φε(eω̄)eω̄dω̄√∫ π
−π Φy−ȳ(eω̄)eω̄dω̄

 .100 (5)

lim
N→∞

TRI =1−

√∫ π
−π Φε(eω̄)eω̄dω̄√∫ π

−π Φy(eω̄)eω̄dω̄ +
√∫ π
−π Φŷ(eω̄)eω̄dω̄

 .100

(6)

and a weighting term eω̄ appears in the integral, showing
that the low frequencies are severely underweigted in
the criteria expressions. For this reason, the traditional
expressions of FIT and TRI are not consistent with respect
to the logarithmic frequency scale and are not always
relevant to assess fast sampled systems.

2.3 Two basic examples

Example 1: Consider the continuous-time ”‘true”’ system
G0 given by the following transfer function

G0(s) =
s2

s2 + 2.10−3s+ 10−6

s2

ω2
1

+ 2s
ω1

+ 1

s2

ω2
1

+ 0.01s
ω1

+ 1

s2

ω2
2

+ 0.01s
ω2

+ 1

s2

ω2
2

+ 2s
ω2

+ 1

(7)

where s ≡ d
dt , and ω1 = 0.0003rad/s, ω2 = 0.001rad/s.

Let us assume that the identification process yields a
second order model G such that

G(s) =
s2

s2 + 2.10−3s+ 10−6
(8)

One considers the discretized (with ZOH) counterparts of
G0 and G denoted as G0d and Gd, with a sampling period
Ts = 1. The Bode diagram of G0d and Gd are displayed in
Fig. 1

Fig. 1. Bode diagrams of G0d and Gd (first example)

The mismatch between the two systems in low frequency is
obvious if one observes the Bode diagram, however neither
the FIT criterion nor the TRI criterion 1 , which yield
values very close to 100%, inform the user of a major
matching default between these two systems (see Table 1).

1 In this paper all the FIT and TRI results have been obtained for
a centred and white system input



Table 1. Example 1: criteria values

Criterion Result (%)

FIT 98.1
TRI 99.1

The reason is that the misfit occurs in low frequency where
the weighting function eω̄ is close to 0 and where the
systems magnitude is not very large.

Example 2: The ”true” system G0 is now a model pro-
posed as a benchmark in the model reduction community
(Chahlaoui and Dooren (2002)), the system is sampled
yielding G0d, and the model Gd that we assume to be
identified differs from G0d only in high frequency, such that

Gd(q) = G0d(q)
1−0.4q−1

1
1−0.4q−1

z
1

0.62 , (q being the forward
shift operator), see in Fig. 2

Fig. 2. Bode diagrams of G0d and Gd (second example)

Even if the matching between the two systems is almost
perfect at the frequencies of almost all poles and zeros of
the system (between 2.10−2 rad/s and 3.10−1 rad/s) and
if the step responses of the two systems are hardly distin-
guishable as shown in Fig 3), the FIT criterion provides
a value generally considered as poor (in a deterministic
context): 59.8% (see Table 2)

Fig. 3. Step responses G0d and Gd (second example)

Table 2. Example 2: criteria values

Criterion Result (%)

FIT 59.8
TRI 80.8

These two examples highlight the lack of reliability of the
classical model performance criteria when applied to fast
sampled systems. Similarly, it has been shown in (Vau
and Bourlès (2022)) that the classical whiteness test of
residuals may be not reliable for validating fast sampled
models. In order to overcome this issue, an extension
of the classical whiteness test established on GOBF has
been proposed. In the sequel of the present paper we also
propose to apply GOBF to the FIT and TRI criteria so as
to make them more relevant in function of the expected
use of the model.

3. GENERALIZED PERFORMANCE CRITERIA

3.1 Review on GOBF and the Hambo frequency

Before describing the novel criteria proposed here, it is
necessary to recall some basic notions about GOBF and
the Hambo transform. The generalized bases of orthogonal
transfer function are generated from an all-pass transfer

function (Blashke product) Gb(z) =
∏np−1
j=0

−z.p̄j+1
z−pj where

pj (|pj | < 1) are the basis poles and np the basis
poles number. There exists an orthonormal state space
realization such thatGb(z) = Db+Cb (zI −Ab)−1

Bb, with
(see chap. 2 of (Heuberger et al. (2005))[

Ab Bb
Cb Db

] [
Ab Bb
Cb Db

]T
= I (9)

The orthonormal transfer function vectors Vk(z) with
k = 1, 2, · · · and of size (np, 1) are given by the relation

Vk(z) = (zI −Ab)−1
BbG

k−1
b (z). Orthonormality between

these functions holds, because of the orthonormal state
space realisation of Gb(z). Particular configurations of np
and pk correspond to well known cases: np = 1, p0 = 0
is the classical z−1, z−2, · · · basis, and np = 1, |p0| < 1
correspond to the Laguerre basis.

The Hambo operator λ is given by λ−1 = Gb(z). The
mapping λ 7→ z is np valued in a domain including the unit
circle, and the zj j = 1, · · ·np so that λ−1 = Gb(zj) are the
eigenvalues of N (1/λ) with N (λ) = Ab + (λ−Db)

−1Cb.
A transform is associated to GOBF: the Hambo transform.
Since Gb is all-pass, a function expressing the phase of
Gb(e

iω), called the function β was introduced in Shipp
et al. (1996). It can be associated to the operator λ, such
that β : [0, 2π[→ [0, 2πnp] with Gb(e

iω) = e−iβ(ω) for all

ω ∈ [0, 2π], and λ−1 = e−iβ(ω). The Hambo frequency ωλ
is by definition ωλ = β(ω), and it is shown in Shipp et al.
(1996) (see also Heuberger et al. (2005) chap. 8) that

ωλ = β(ω) =

np−1∑
k=0

ηk + 2 arctan

(
(
1 + ρk
1− ρk

) tan(
ω − ηk

2
)

)
(10)



where pk = ρke
iηk .

The derivative of function β plays a great role: this is the
distortion rate from ω to ωλ, and it is shown in (Heuberger
et al. (2005) (Chap.3)) that

β
′
(ω) =

dω

dωλ
= V T1 (eiω)V1(e−iω) (11)

moreover, V T1 (eiω)V1(e−iω) is a particular expression of
the reproducing kernel of the Hilbert space associated with
the GOBF.

3.2 Expressions of the generalized indicators

At first, one selects np basis poles of GOBF (the effect of
this selection will be discussed below), and one computes
Ab and Bb. Secondly, all the signals entering in the
expression of FIT and TRI are filtered by the first function
of the basis namely V1 with V1(z) = (zI −Ab)−1

Bb
according to

xf (t) = V1(q)x
′
(t) (12)

with x
′
(t) = x(t) if 0 ≤ t ≤ N and x

′
(t) = 0 if t > N ,

where x = y, ŷ, ε. Note that yf (t), ŷf (t) and εf (t) are
column vectors of size np.

The generalized indicators called H-FIT and H-TRI are
defined as follows

H − FIT =

lim
Nh→∞

1−

√∑Nh
t=1 ε

T
f (t)εf (t)√∑N

t=1 (yf (t)− ȳf )
T

(yf (t)− ȳf )

 .100

(13)

H − TRI =

lim
Nh→∞

1−

√∑Nh
t=1 ε

T
f (t)εf (t)√∑N

t=1 y
T
f (t)yf (t) +

√∑N
t=1 ŷ

T
f (t)ŷf (t)

 .100

(14)

In practice H-FIT and H-TRI are computed by truncating
the sums of (13) and (14) to a finite number of terms Nh �
N . This approximation is valid since V1 is necessarily
stable in (12).

3.3 Interpretation of the filtering effect

Now, let us define the sequence {xf (t)} such that xf (t) =
V1(q)x(t). One has immediately

lim
N→∞

N∑
t=1

xTf (t)xf (t) =
1

2π

∫ π

−π
Φx(ω)V T1 (eiω)V1(e−iω)dω

(15)

and according to the function β in (10) and (11) one can
write

lim
N→∞

N∑
t=1

xTf (t)xf (t) =
1

2π

∫ π

−π
Φx(ω)β(ω)dω =

1

2π

∫ π

−π
Φ̃x(ωλ)dωλ (16)

where 2 Φ̃x(ωλ) = Φx(ω)|ω=β−1(ωλ)

Thus one verifies that the signals filtering by V1 in the
H-FIT and H-TRI expressions (13), (14), is equivalent
to transpose the original criteria (3), (4) in the Hambo
frequency scale.
The function β for Laguerre bases (np = 1) has been
provided in Oliveira (1995) and one displays it for various
basis poles in Fig 4.

Fig. 4. Function β for various Laguerre bases

Let us go back to Example 1 of Subsection 2.3. One rep-
resents also in Fig. 5 Φy(ωλ) (over the Hambo frequency).

Fig. 5. Φ̃y(ωλ) in the Hambo (Laguerre) frequency scale

According to (3) and (4) the integration in FIT and
TRI is performed over the linear frequency scale. In

2 Φ̃x(ωλ) is not a power spectral density in the Hambo domain as
defined in chap.3 of (Heuberger et al. (2005)) but its trace



this scale, corresponding to p = 0, the system modes
are almost invisible (see Fig. 5): that explains why FIT
yields a so misleading value. As p tends towards 1, these
modes appears more clearly in the diagram expressed over
the Hambo (Laguerre) frequency scale, and accordingly
the values provided by H-FIT and H-TRI become more
relevant.

Table 3. System of Example 1: criteria values of
H-FIT and H-TRI for various Laguerre bases

Basis pole p=0 p=0.95 p=0.995 p=0.9995

H-FIT (%) 98.1 88.2 62.0 10.6
H-TRI (%) 99.1 94.1 81.8 55.9

One can also employ a basis with more poles, for example
p = [0.5 0.95 0.995 0.9995], and again one represents

Φ̃(ωλ) in function of ωλ in Fig. 6. The corresponding
criteria results are displayed in Table 4, giving a more
global appreciation of the model matching over a large
band.

Fig. 6. Φ̃y(ωλ) in the Hambo frequency scale for p =
[0.5 0.95 0.995 0.9995]

Table 4. System of Example 1: criteria values
of H-FIT and H-TRI for a four basis poles

(0.5 0.95 0.995 0.9995)

Basis poles p = [0.5 0.954 0.995 0.9995]

H-FIT (%) 79.7

H-TRI (%) 89.8

Since the fast sampled linear systems are usually rep-
resented over the logarithmic frequency scale necessarily
different from the Hambo scale on which is implicitly per-
formed the integration in H-FIT and H-TRI, an indicator
is necessary to characterize the weighting effect induced by
the use of GBOF. This indicator is the distortion rate from
the logarithmic frequency scale ω̄ to the Hambo frequency
scale ωλ. This distortion rate is known as the function χ
and has been introduced in (Vau and Bourlès (2021)) with

χ(ω) =
1

π
ωβ
′
(ω) =

1

π
ωV T1 (eiω)V1(e−iω) (17)

Note that the term 1
π has been introduced for a normal-

ization purpose. One has also

χ(eω̄) =
1

π
eω̄

np−1∑
j=0

1− |pj |2

|1− p̄jeieω̄ |2
(18)

Nice properties have been presented in (Vau and Bourlès
(2021)):

• a conservation principle holds (which is a consequence
of the orthonormality of the basis functions)∫ log(π)

−∞
χ(eω̄)dω̄ (19)

• If pj is real and sufficiently close to the unit circle,

the function ω̄ 7→ eω̄
1−|pj |2

|1−p̄jeieω̄ |2 has a maximum at a

frequency close to the pole frequency.

the proofs can be found in (Vau and Bourlès (2021)).

Φ(ω) is represented in the top graph of Fig. 7, whereas the
functions χ corresponding to the basis poles employed so
far are displayed in the bottom graph. The conservation
principle can be observed since the area below the curves
in the bottom plot are the same.

Fig. 7. System magnitude (example 1) (top), and functions
χ for various basis poles

Let us use now H-FIT and H-TRI to assess the system
corresponding to the second example of Subsection 2.3.
Since most of the poles and zeros of the system are located
within a decade around 7.10−2rad/s, this suggests to
propose a two poles basis (np = 2) with poles having a
frequency equal to 7.10−2, and a damping equal to 0.5,
corresponding p = 0.9638 ± 0.0585i. The corresponding



function χ is displayed in the bottom plot of Fig. 8.
The associated criteria values are provided in Table 5.
These values are coherent with the model matching at this
frequencies.

Fig. 8. System (example 2) magnitude (top), and function
χ for p = 0.9638± 0.0585i

Table 5. System of Example 2: criteria values
of H-FIT and H-TRI for a two poles basis

Basis pole p = 0.9638 ± 0.0585i

H-FIT (%) 91.5
H-TRI (%) 95.7

4. CONCLUDING REMARKS

The classical performance criteria for assessing identified
models, such as FIT and TRI are well suited for discrete-
time systems, if one expects to represent them on the
usual linear frequency scale. These criteria may lead to
a deceptive model evaluation for fast sampled systems.
Some generalized criteria H-FIT and H-TRI established
on Generalized Orthonormal Basis functions have been
introduced so as to provide more relevant indicators.
These novel criteria offer, via the basis poles selection,
a flexibility regarding the frequency band on which the
model is assessed. This band can be large, over several
decades, in accordance with Bode Diagrams represented
on a logarithmic frequency scale. The band can also be
narrow, which is useful for the performance evaluation
of reduced order models, or even very narrow to assess
”almost punctual’ models. Finally, we stress out that there
cannot exist an universal performance indicator, and the
criterion must necessarily be chosen in function of the
expected use of the model. This is the strength of H-FIT
and H-TRI to provide to the engineer or the researcher

some tuning parameters to specify beforehand what they
expect from this model.
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