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Abstract Acoustic liners are used to absorb sound waves in ducts with flow.
These liners can become unstable and some experiments have shown that in
this case they do not damp sound as they should. This situation is addressed
numerically. A turbulent plane channel flow at a friction Reynolds number of
about 400 is computed using direct numerical simulation of the compressible
Navier-Stokes equations. The channel is in spatial development, and the inflow
is fully turbulent, non-reflecting, and can inject an incident acoustic wave. The
liner is modeled by an acoustic impedance placed on a portion of the channel
bottom wall. Several liners are simulated, stable or unstable. Spatial instabil-
ities are observed and well modeled by a linear spatial stability analysis. The
scattering of the instability at the liner trailing edge triggers backpropagating
acoustic waves, as well as sound emission downstream of the liner. Backprop-
agating waves make a feedback loop possible on the liner, so that instabilities
are observed even in convectively unstable situations without excitation. The
effect of an incident acoustic wave is discussed.
Keywords: direct numerical simulation; turbulent channel flow; duct aeroacous-
tics; acoustic impedance

1 Introduction

Acoustic liners are used to absorb sound waves in ducts with flow, such as in
aircraft aeroengines [1, 2, 3, 4]. Occasionally, these liners can lead to flow in-
stability [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. This typically occurs when the
liners have a small resistance [16] and a thin boundary layer [9, 10, 12], since
this promotes momentum exchange between the material and the flow. Insta-
bilities have been observed over single-degree-of-freedom liners [5, 8] and over
porous surfaces [17]. A manifestation of instability is the existence of a surface
wave [18, 19] along the wall, which is mainly vortical and can be described by
incompressible equations [13]. Another effect is abnormal sound amplification
[5, 6, 8, 14] by the liner, meaning some energy of the flow is transferred to sound
waves. This amplification occurs close to the resonance frequency of the liner,
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that is, precisely in the range in which the liner is supposed to absorb sound.
While the instability wave itself is well documented, the mechanisms of sound
amplification are comparatively less studied.

Liner instability has been investigated by several means. Theoretical works
employ modal analysis including linear stability analysis and mode matching
[20, 18, 10, 13, 21] or derive stability properties from the analysis of the Green’s
function. In the latter case, non-modal contributions can also be accounted
for by doing an analysis of the critical layer, based on Frobenius expansions
about critical points [22, 23]. An early prediction of instability [20] used a plug
flow and the Myers boundary condition. The ill-posedness of the latter [24]
raised doubts about the existence of the instability. However, other theoretical
works get around this ill-posedness by considering a finite-thickness boundary
layer [9, 25, 12] and confirmed that instability is possible. By contrast, taking
into account viscosity but not the finite thickness of the boundary layer does
not fix the ill-posedness issue [10]. Experiments based on microphone measure-
ments and/or flow visualization techniques allowed to evidence an instability
[6, 8, 17]. Different numerical methods have also been used to investigate its
characteristics. The linearized Euler or Navier-Stokes equations can be solved
either in the time domain [26, 27, 28, 29, 30] or the frequency domain [14] to
characterize the instability as such [31, 14]. In the time domain, the instability,
not being saturated by nonlinear effects can invade the simulation domain and
affect the whole frequency range, so that its mitigation becomes necessary [32].
Given the hydrodynamic nature of the instability, it is appealing to perform
the simulation of the flow over the acoustic liner by using the full Navier-Stokes
equations, despite the computational cost it represents. Although not connected
to acoustics, an early step in this direction was the incompressible simulation
of the turbulent flow in a streamwise-periodic channel with porous walls [33], in
which unstable waves were observed. The walls were modelled by transpiration
surfaces having no resonance frequency. Simulations of a turbulent channel flow
with the compressible Navier-Stokes equations and a model surface impedance
possessing a resonance frequency [34, 16] also evidenced the presence of these
unstable waves, which in addition were responsible for a drag increase. These
simulations, while compressible, did not include any sound wave, either incident
or liner-produced, due to the imposed streamwise periodicity. The aforemen-
tioned simulations employ a modeled impedance, but in the case of liners made
of small cavities topped with a perforated sheet, it is possible to include the
liner geometry in the simulation [35, 36, 37, 38]. This, amongst other, is nec-
essary to account for the effect of the flow and nonlinearities on the acoustic
impedance, but no instability has been studied with such resolved geometries
yet. Tam et al [39] have reported an instability taking place in every liner cav-
ity, but this kind of whistling is different from the surface mode considered here.

The objective of the present work is to perform the direct numerical simula-
tion (DNS) of a turbulent channel flow with an acoustic liner on a portion of the
wall, in which the flow is in spatial development, that is, there is no periodicity
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assumed in the streamwise direction. The compressible Navier-Sokes equations
are computed and the liner is modeled by a surface impedance. While spatial
simulations based on the linearized Euler equations are natural for sound prop-
agation in ducts, they are less common for turbulent channel flow simulations.
Compared to simulations that are streamwise periodic [34, 16], spatial channel
simulations present several advantages. First, this better matches experimental
situations as well as the physics, since instabilities develop in space. By con-
trast, for a streamwise periodic channel the instability develops in time, and
while a comparison with a temporal linear stability analysis is possible it needs
to be done during the short initial linear growth stage [16]. This is avoided in
spatial simulations. Second, the spatial framework allows computing realistic
sound waves, either incident or generated within the domain. Including sound
waves to investigate their relation to the instability was an objective of the
present work. The same geometric configuration as studied here was considered
earlier using the linearized Euler equations [40] and the instability on the liner
produced backpropagating sound waves that reinforced the instability; in the
absence of saturation mechanisms, this feedback loop led to unlimited growth.
The use of nonlinear equations in the present work is expected to provide a
means to saturate the instability growth. Generally speaking, the nonlinear
character can arise from the governing equations, but also from the impedance
model itself, since resistance or admittance may be flow- or level-dependent [1].
Some models [41] or numerical implementations [42] include a nonlinear contri-
bution in the impedance model. In the present work, the nonlinear character
arises solely from the governing equations and the impedance model is linear to
keep the problem simple. Note that the liner used in the experiments in [8], for
which an instability was measured, is made of tightly spaced quarter-wavelength
resonators without any face sheet, and does typically have a linear behaviour.
This means that a linear impedance model coupled with nonlinear Navier-Stokes
equations not only is a convenient model but also exists in practice. It is worth
mentioning that some preliminary results for the present simulations were pre-
sented in [15]. Both the flow development and the non-reflective character were
then unperfect at inflow, and it was feared that a possible retroaction loop could
have affected the results. Hence, the strategy to simulate spatial flows has been
improved to fix these issues [43], and the simulations with liner have been re-
peated as well as new ones performed. Despites many changes in the equations,
boundary conditions, and forcing terms, the configurations shared between the
present work and [15] are in agreement.

The organization of the paper is as follows. In section 2 we present the
geometry of the channel, the governing equations and boundary conditions in-
cluding the impedance law, the numerical methods, and list the different cases
that are computed. In section 3 we present the simulation of a stable liner. The
objective is to verify that the numerical model satisfactorily accounts for wave
propagation in this situation. In section 4 we present the simulations of unstable
liners, and also discuss the presence of sound waves. Finally, conclusions are
given.
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2 Geometry and numerical model

In this section we discuss the geometry of the channel, the model, and the
numerical method. Except for the liner presence, methods are similar to those
given in [43] which can be referred to for more details.

2.1 Geometry

We consider a turbulent channel flow with an acoustic impedance on a part of
the bottom wall. The geometry is summarized in Fig. 1. The origin (0, 0, 0)

Figure 1: Geometry of the simulated channel (not to scale).

of the coordinate system is at point O. The channel walls are planes located
at y = ±H, where H is the channel half height (the full height is Ly = 2H).
These planes are rigid except for a lined portion located in the bottom plane
which is modeled by an impedance law. The liner leading edge is located at
x = xL = 34.4H, and the liner length in the streamwise direction is denoted by
L. The flow is introduced at the inflow plane located at x = 0 and leaves the
domain at the outflow at x = Lx. The domain length Lx = 88H is the same
for all simulations. Acoustic waves can eventually be injected at inflow, and
both the inflow and outflow are non-reflective to plane acoustic waves coming
from within the channel. Periodicity is used in the z-direction, and the length
in that direction is Lz ∼ 4.2H. Parameters specific to each of the simulations
are presented in Section 2.6.

2.2 Governing equations

The flow in the channel is computed using the compressible Navier-Stokes equa-
tions [43]:

∂ρ

∂t
+
∂ρuj
∂xj

= 0 (1)

∂ρui
∂t

+
∂ρuiuj
∂xj

+
∂p

∂xi
=
∂τij
∂xj

(2)

∂ρs

∂t
+
∂ρsuj
∂xj

=
1

T
(Φ−∇ · q) (3)
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where uj for j = 1, 2, 3 are the components of the velocity vector u = [u v w],
and ρ, p, s, T denote respectively density, pressure, entropy, and temperature.
τij are the components of the shear stress tensor τ . q is the heat flux, and
Φ = τij(∂ui/∂xj) is the viscous dissipation function. To close the equations,
we consider a thermodynamic ideal gas with equation of state p = ρrT , where
r = 287JK−1kg−1 is the ideal gas constant, as well as the following thermody-
namic relation: dp = c2dρ + p/cvds. The speed of sound is c =

√
γrT , and

γ = cp/cv is the heat capacity ratio, where cp = γr/(γ − 1) and γ = 1.4 for air.

2.3 Boundary conditions

At inflow (x = 0) a developed turbulent flow is injected. It is computed by run-
ning a second simulation, called precursor simulation, of a rigid-walled channel
using periodicity in the streamwise direction. At every time step, transverse
planes of the precursor simulation feed the main simulation [43], which includes
the acoustic liner. The precursor simulation is run at constant bulk density
ρb and bulk velocity ub, and has isothermal walls at temperature Tw,0, corre-
sponding to sound speed cw,0 and viscosity µw,0. The Mach number and bulk
Reynolds number defined by

M = ub/cw,0 Reb =
ρbubH

µw,0
(4)

govern the precursor simulation, and also characterize the inflow conditions in
the channel with liner. Another important quantity to characterize the flow is
the friction Reynolds number:

Reτ =
ρwHuτ
µw

(5)

where ρw is the wall mean density, µw the wall viscosity, and uτ the wall friction
velocity, defined from the wall friction τw by u2τ = τw/ρw. ρw and uτ are an
outcome of the simulation and result from an average over z and t, they possibly
depend on x. However, in the part of the channel located upstream of the liner
Reτ is streamwise independent and equal to its value in the precursor simu-
lation. Hence, the value of Reτ given below will also characterize the inflow.
Technically, the flow is injected in the domain with the method of characteristics
including a relaxation term [44, 45, 46]. This method is also used at outflow,
where the unique ingoing characteristics is prescribed and relaxes the pressure
to an imposed value. However, prior to relaxation plane wave masking [47] is
used at both inflow and outflow to guarantee that plane acoustic waves leave the
domain with minimal reflection [43]. Without such plane wave masking a mere
relaxation would be reflective to plane waves at low frequency [48]. Regard-
ing non-plane acoustic waves, the precise behaviour of the boundary condition
would have to be assessed but it would certainly be partially reflecting. This
is not a subject of concern in the simulations performed in this paper since no
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such non-plane waves hit the inflow or outflow boundaries. This is because the
frequency of the acoustic waves present remain well below the first transverse
mode cuton frequency and the distance between the inflow or outflow bound-
aries and the liner is large.

The boundary conditions at the walls need to be addressed. At the rigid
walls, a no-slip condition on velocity is used: u = v = w = 0. At the lined wall,
a simple mass-spring-damper model is employed, as in ref [16], which connects
the wall normal velocity and pressure through [26, 16]:

ML
d2v

dt2
+KLv +RL

dv

dt
= −dp

dt
y = −H,xL ≤ x ≤ xL + L (6)

where RL is the resistance, ML is the mass, and KL is the spring constant. This
model accounts for one resonance frequency of the liner. The implementation of
Eq. (6) differs from that in ref [16], since the governing equations are now written
in conservative form, Eqs. (1-3), rather than in characteristic form. While the
impedance boundary condition itself could still be written in characteristic form,
a direct implementation has proven to be stable and is preferred here for its
simplicity. Note that some stability issues with such a direct implementation
have been reported, refer to the discussion in Section 2.3.2 of [16]. Hence,
for example, Gabard and Brambley [30] report that a direct implementation is
unstable and fix this by using a characteristic formulation. While the method
of characteristics offers a systematic way to make the continuous problem well-
posed, a problem with boundary conditions not written in characteristic form
is not necessary ill-posed, as long as the direct imposition does not enforce
outgoing characteristics or leave entering ones unspecified (see [49], pp. 359-
365 and theorem 9.1.1). The convergence of our simulations indicate that we do
not have such problems. The fact that some authors obtain unstable behaviours
with direct imposition, and some others not, may be connected to the numerical
implementation (boundary schemes used for example) since well-posedness can
be destroyed by unstable numerical schemes. The implementation of Eq. (6)
classically splits the equation into a first order system:

dv

dt
= Q (7)

dQ

dt
=

1

ML

[
−dp

dt
−RLQ−KLv

]
(8)

where Q is an auxiliary variable defined at the liner. It can be updated with
∂p/∂t in Eq. (8) written as:

∂p

∂t
= c2

∂ρ

∂t
+
γp

cp

∂s

∂t
= c2(1− s

cp
)
∂ρ

∂t
+
c2

cp

∂ρs

∂t

where ∂ρ/∂t and ∂ρs/∂t are obtained from Eq. (1) and Eq. (3). In the direct
implementation, Eq. (7) is directly used to replace the wall-normal momentum
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equation (given by Eq. (2)) with:

∂ρv

∂t
= ρQ+ v

∂ρ

∂t

at the liner boundary. This implementation has been validated on the same test
case as in [16].
Some condition on temperature also needs to be imposed. The walls, both rigid
and lined, are isothermal with a temperature that decreases linearly in x start-
ing with value Tw,0 at x = 0. This is done to encourage a well-developed flow in
the channel [43]. The Mach number is moderate in the present work (M = 0.3),
and as a result the temperature drop between inflow and outflow is small, with
a variation of about 3%. Temperature is not a variable that can be controlled
directly but can be maintained at its initial value by enforcing the isothermal
relation: ∂s/∂t = −(r/ρ)∂ρ/∂t.

2.4 Numerical Schemes

The schemes are those used in [43]. The equations in skew-symmetric form [50]
are discretized in a collocated manner using a finite difference method. The first
derivatives are computed with a 6th order compact scheme for the central points,
a centered 4th order compact scheme for the grid point next to the boundary,
and a 3rd order compact upwind scheme at the boundary point. A similar
pattern is followed for the second derivative. All these schemes are from [51].
Since the centered scheme is non-dissipative, a selective filter taken from [52] is
used in general to avoid grid-to-grid oscillations. Finally, the time-advancement
relies on a classical fourth-order four-step Runge-Kutta method.

2.5 Normalization

In the sequel, all quantities are specified in normalized form: lengths are nor-
malized with H, density with ρb, flow speed with cw,0, pressure with ρbc

2
w,0. The

liner resistance, mass, and spring constant are normalized with ρbcw,0, ρbH, and
ρbc

2
w,0/H, respectively.

2.6 Configurations

The parameters for the different simulations are specified in Table 1. All simu-
lations share the same domain size (Lx = 88H, Lz = 4.18H), and the same flow
conditions (fixed Mach Number, M = 0.3, and fixed inflow friction Reynolds
number, Reτ = 411). They differ mainly by the characteristics of the liner and
the liner length. The liner mass and spring do not vary from case to case, which
fixes the radian resonance frequency of the liner:

ωr =

√
KL

ML
∼ 0.37 (9)
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Case R1 R023S R035 R035f R035S R035L R035SE
Reb 6900
M 0.3

Reτ (Re∗τ ) 411 (392)
Lx/H 88
Lz/H 4.18
L/H 14.7 5.3 14.7 14.7 5.3 26.9 5.3
nx 881 1181 1181 2001 1181 1181 1181
ny 101 171 171 171 171 171 171
nz 171 171 171 245 171 171 171

∆x+ 41 30 30 18 30 30 30
∆y+w 0.9 0.5 0.5 0.5 0.5 0.5 0.5
∆y+c 18.5 11 11 11 11 11 11
∆z+ 10 10 10 7 10 10 10
∆t 0.004 0.002 0.002 0.002 0.002 0.002 0.002

Nb iter 610e3 215e3 302e3 1e6 500e3 480e3 324e3
RL 1 0.23 0.35 0.35 0.35 0.35 0.35
ML 2.85
KL 0.39

Injected waves yes no no no no no yes

Table 1: Simulated Configurations.

This corresponds to an approximate value of frequency for peak sound absorp-
tion or for instability, even though the flow will modify this value. The liner
resistance is varied so that the flow is stable (RL = 1), convectively unstable
(RL = 0.35), or absolutely unstable (RL = 0.23). These results about stability
are specified in A. Three different liner lengths have also been used. Finally,
some acoustic waves are eventually injected at the inflow of the simulation. This
is the case for the stable liner (Case R1) in which wave absorption is investi-
gated, and also for an unstable one (case R035SE).

Table 1 also provides the number of grid points (nx, ny, nz), the correspond-
ing mesh sizes (∆x, ∆y, ∆z), and the time step (∆t). The present simulations
are coarsely resolved DNS, with a streamwise mesh resolution ∆x+ ∼ 30 in most
of the simulations, a spanwise resolution ∆z+ ∼ 10, and a wall normal resolution
ranging from ∆y+w ∼ 0.5 at the wall to ∆y+c ∼ 11 at the channel center (except
for case R1 which is less resolved in the wall normal direction). In [16], a peri-
odic simulation of ours was reported with similar resolution except ∆x+ ∼ 20
for a liner having characteristics similar to case R023. A resolution ∆x+ ∼ 20
was also used in coarsely-resolved DNS or well-resolved large-eddy simulation
in [34] for a channel with impedance walls, in [53] for turbulent boundary layers
with wall-suction or blowing, or in [52] for rigid walls with methods equivalent
to ours. Using ∆x+ = 30 is expected to be slightly less precise and we accept
this resolution here to limit the computational cost. In the physics involved,
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an instability develops along the liner, grows, and eventually breaks down into
turbulence, as we will see. One might infer that the lack of precision is going
to show up in this breakdown region on the liner. In order to verify the effect
of the mesh size on the results, the simulation R035f, a refined version of R035,
has been performed with ∆x+ = 18,∆z+ = 7. A comparison between cases
R035 and R035f is provided in B. This appendix shows that although some
small quantitative differences exist, as expected, the physics is well calculated
by our simulations using ∆x+ = 30.
To verify how good the flow arriving on the liner is, some statistics of the flow
in the channel for case R035 are compared to reference data [54] for an incom-
pressible flow at Reτ = 395 in Fig. 2. The figure presents the mean streamwise
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Figure 2: (a) Mean velocity profile ; (b) rms velocity; (c) Reynolds stress.
Incompressible reference Moser; precursor simulation; spatial simula-
tion, upstream of the liner.

velocity, the rms velocities, and the Reynolds stress for the precursor channel
used to feed the spatial channel, for the spatial channel at a position upstream
of the liner, and for the reference. Due to the non-negligible Mach number in
our compressible simulation, M = 0.3, the relevant Reynolds number is the
modified friction Reynolds Re∗τ = 392, which agrees with Reτ = 395 of the
incompressible reference. The regular friction Reynolds number is Reτ = 411.
The + units used to represent the present simulations in Fig. 2 are actually ∗
units (see [43] and references therein for more details about this scaling). The
figure shows that the incoming flow, if not perfect, is still very satisfying given
the mesh resolution.

2.7 Probe recording

Apart from periodic savings of the whole flow field, recordings are performed at
every time step at some probes located in the z = 0 plane. Prior to recording,
the fields are averaged in the z-direction to increase the signal-to-noise ratio
by averaging out turbulence [43]. This is justified because these probes are
used to educe characteristics of plane acoustic waves or instability waves that
are essentially two-dimensional, spanwise-independent. All ny positions in y
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are recorded. In the x-direction, probes are evenly spaced between x/H ∼ 20
(upstream of the liner) and x/H ∼ 80 (downstream of the liner): for case R1,
there 200 probes with a step δx/H = 0.3. For the other cases, there are 270
probes with a step δx/H = 0.22. The probes are recorded every 40 time steps.

3 Stable liner

A stable liner is first considered. This is case R1 in table 1, which corresponds
to the liner with resistance RL = 1. The objective is to investigate if sound
propagation and attenuation can be predicted with some accuracy when there
is no instability. To do this, mode characteristics are educed from the simula-
tions and compared to those given by a linear mode solver, which is the same
as the solver used to compute the unstable modes in A.

The mean flow in the x-direction, U , is shown in Fig. 3, it results from av-
eraging in time and in the homogeneous z-direction. It is mostly unaffected by

Figure 3: Mean streamwise velocity for case R1. Vertical lines indicates the
liner limits.

the liner presence and remains independent of the streamwise position. The
maximal value on the channel centerline is on the order of, and larger than, the
imposed bulk Mach number at inlet, M = 0.3. Note that given the streamwise
invariance of the flow, performing a local mode analysis is particularly relevant
in this case.

Nine acoustic waves are sent at the inflow of the channel, they span a fre-
quency range around the resonance frequency of the liner (given by Eq. (9)):
ω1 = 0.264, ω2 = 0.302, ω3 = 0.339, ω4 = 0.377, ω5 = 0.415, ω6 = 0.452,
ω7 = 0.49, ω8 = 0.522, ω9 = 0.553. Each incident wave has a sound pressure
level of about 140 dB. A gross indication of the liner behavior is provided by the
sound pressure level (SPL) at the probes located at the top wall of the channel.
This is shown in Fig. 4(a) for each of the frequencies. The incident waves are
partly reflected by the liner, which causes oscillations in the SPL in the part of
the channel located upstream of the liner (oscillations are around the imposed
incident value of 140 dB). The SPL drops in the lined section since the liner
absorbs the waves, and reaches a flat plateau downstream of the liner (with
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Figure 4: (a) Sound pressure level at the top channel wall (y = 1) as a function
of streamwise position, for different frequencies. The vertical lines indicate the
limits of the liner;(b) Sound attenuation by the liner as a function of the wave
frequency. Case R1.

small fluctuations due to a lack of statistical convergence). This is a clue that
the nonreflecting outflow boundary condition behaves properly. To verify this,
a plane wave decomposition is performed in the downstream part of the channel
in order to compute the reflection coefficient. Top wall pressure sensors are used
to build and solve an overdetermined system for the downstream and upstream
travelling plane acoustic waves [55]. The resulting reflection coefficient for plane
waves is shown in Fig. 5. This remains below 3% over the frequency range. As
explained in section 2.3 only plane waves reach the outflow boundary since the
maximal radian frequency, ω9, remains well below the cutoff frequency of the
first transverse mode, whose value is about π/2 in our normalization. The dif-
ference of SPL between the incident acoustic wave and the transmitted one is
shown in Fig. 4(b). Maximum attenuation occurs at the resonance frequency
around ω ∼ 0.43 for which the SPL is decreased by about 21 dB.

0.2 0.3 0.4 0.5 0.6
0

0.01

0.02

0.03

Figure 5: Reflection coefficient at the outflow. Case R1.
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To characterize more precisely the propagation in the lined portion of the
channel, we seek to compute the characteristics of the acoustic waves. A mode
decomposition of the sound field in the lined portion of the channel can be
written: [

p(x, y, t)
u(x, y, t)

]
=

∫ ∑
n

[
Pn(y, ω)
Un(y, ω)

]
ei(k

n
x (ω)x−ωt) 1

2π
dω (10)

where only the pressure and streamwise velocity are included for brevity. This
decomposition says that at each frequency ω, the field is a sum of modes in-
dexed by n that have a streamwise wavenumber knx (ω) and associated wave-
forms Pn(y, ω) and Un(y, ω). The objective is to educe these values based on
the recorded data p(xi, yj , tm) and u(xi, yj , tm) (probe positions where given
in section 2.7) and compare them to our mode solver. In the Fourier domain,
pressure in Eq. (10) becomes:

p(x, y, ω) =
∑
n

Pn(y, ω)eik
n
x (ω)x (11)

At given y and ω, this is a sum of complex exponentials in x, that is, a Prony
decomposition. A Prony-like method can be used to educe the characteristics
of these exponentials [56], as is often done in acoustic liner impedance eduction
methods [57]. Here, the Matrix-Pencil method is used [58]. A first step requires
Fourier transforming the recorded data, arranging them in two Hankel matrices,
and solve an eigenvalue problem to find the values of knx (Eqs(17-24) in ref [58]).
Once these are obtained, the waveforms are found in a second step by solving
a least square problem (Eq. (25) in ref [58]). To mitigate the effect of noise
during the first step, rank reduction of the Hankel matrices is performed by
eliminating singular values below a certain threshold [58]. The threshold value
is presently computed using the strategy in [59]. The Prony decomposition con-
cerns the x-direction, and here data at several y-positions are recorded. To take
advantage of this, a multi-sensor analysis could be performed [56, 60]. Another
option prefered here is to perform a Prony analysis for every y to find ny esti-
mations of knx , identify clusters, and average each cluster to obtain a mean knx .
The standard deviation within each cluster provides an estimation of the error
committed when computing knx . This will be shown as an errorbar in the plots
of the wavenumber.
The first step of the matrix pencil method is performed by using the pressure
signal, which offers a better signal to noise ratio compared to velocity [43].
There are about 50 probes in the x-direction in the liner region 35 < x < 49,
leading to Hankel matrices of size 31 × 16. The singular value threshold [59]
indicates a rank of 6, which provides 6 values of knx , n = 1...6. Only 2 among the
6 values seem sufficiently robust, in the sense that knx does not change too much
in y. These wavenumbers are the right- and left-going acoustic modes, and are
denoted k+(ω) and k−(ω), and we will focus only on them in the following. The
second step, which uses the educed values of k+ and k−, is performed on both
pressure and velocity at every y and provides the waveform for the downstream
mode, denoted by P+(y, ω) and U+(y, ω), and those for the upstream mode,
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denoted by P−(y, ω) and U−(y, ω).
The evolution of the educed wavenumber with frequency is presented in Fig. 6
for the downstream mode and is compared to the one obtained with a local
modal analysis based on the computed mean flow. The agreement is very good,
both on the real and imaginary part. The imaginary part, which corresponds
to damping, peaks at the same frequency as the one for which the largest at-
tenuation was observed in Fig. 4(b). The errorbar level is small, which means
that this mode is found in a robust manner by the Prony method. The educed
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Figure 6: (a) Real part and (b) imaginary part of the wavenumber, k+, of the
downstream-propagating acoustic mode in the lined part of the channel:
mode solver; educed from the simulation with a Prony-like method. Case
R1.

wavenumber for the upstream mode is shown in Fig. 7. This mode results from
reflections at the trailing edge of the liner, and its damping rate is important,
so that its amplitude is small compared to the downstream mode. As a result
this mode is more difficult to detect, and this shows up in the larger errorbar.
Despites this, both the real and imaginary part compare rather well to the mode
solver result.

Waveforms of pressure and velocity are shown in Fig. 8 for ω = 0.52. They
compare reasonably well with the result returned by the local mode solver.
The velocity for the upstream mode is somewhat noisy, with a peak value only
computed approximately. Since the amplitude of the mode is small, it is difficult
to separate it from noise, especially for velocity.

The streamwise reconstruction of pressure and velocity using the Prony de-
composition, Eq. (11), is performed by taking into account in the sum either
the downstream mode only, or both the downstream and upstream modes. The
result is plotted as a function of x for some given distance to the wall in Fig. 9.
It is seen that most of the amplitude is retrieved with the downstream mode
only. The effect of the upstream mode is to increase the signal amplitude at
the trailing edge of the liner (x ∼ 49) where it is generated. This is particularly
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Figure 7: (a) Real part and (b) imaginary part of the wavenumber, k−, of the
upstream-propagating acoustic mode in the lined part of the channel: mode
solver; educed from the simulation with a Prony-like method. Case R1.
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Figure 8: Modulus of the pressure waveform for (a) downstream- and (b)
upstream-travelling acoustic mode in the lined part of the channel. Correspond-
ing modulus of the velocity waveform for (c) downstream- and (d) upstream-
travelling mode. For each curve, normalization is done by the pressure at y = 0.
ω = 0.52. Case R1.

seen in the pressure signal at ω ∼ 0.26 in Fig. 9(a). Hence, the upstream mode
causes the SPL increasing at the liner trailing edge that is seen in Fig. 4(a).
Figure 9(a) shows that the reconstruction with two modes is good for pressure,
which is the reason why only these two modes are found by the algorithm. For
velocity in Fig. 9(b), the reconstruction is much more noisy, which again is due
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Figure 9: (a) Modulus of the pressure along the top wall (y = 1), for ω = 0.26;
(b) Modulus of the axial velocity (at y ∼ 0.99), for ω = 0.52. full sig-
nal recorded in the simulation, ····· reconstruction with only the downstream-
travelling acoustic mode, reconstruction with both the upstream- and
downstream-travelling acoustic modes. Case R1.

to lower signal-to-turbulence ratio compared with pressure [43].

In conclusion, for a stable liner, the wave propagation in the lined region
is computed in a satisfactory manner, with modes in agreement with those
computed by a linear modal analysis based on the computed mean flow. In the
next section we turn to unstable liners.

4 Unstable liner

4.1 Mean flow

We now consider the cases having a small enough resistance for the flow being
unstable (see A). The mean flow for these cases is shown in Fig. 10. Contrary
to the case R1 that was shown in Fig. 3, the mean flow is now disturbed in the
vicinity of the liner, and the smaller the resistance the larger the disturbance,
as seen by comparing Fig. 10(a) for R = 0.23 and Fig. 10(b) for R = 0.35.
Figures 10 (b-d) correspond to the same liner resistance, R = 0.35, but a varying
length of the liner. It is seen in Fig. 10(c) that the mean flow on the liner
may have several low speed bumps in the vicinity of the liner before reaching
eventually an established state, which seems to become the case in Fig. 10(d)
for the longest liner, with L/H = 26.9.
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Figure 10: Mean streamwise velocity for cases: (a) R023S ; (b) R035S; (c) R035;
(d) R035L. Vertical black lines indicate the liner limits. Axes not to scale.

4.2 Flow visualization

To complement the mean flow, an instantaneous visualization of the flow is
shown in Figure 11 for case R035. We will focus on this case in the following,
since qualitatively all cases have a similar development, except for the number
of bumps on the liner, which depends on the liner length. The lined section,
between x = 34.45 and x = 49.1, is indicated by a light white box. The back
plane (z = 0) shows the streamwise velocity (u) which corresponds to a typical
turbulent channel flow, the mean of which has been shown in Fig. 10(c) and
also in Fig. 2. Half of the bottom plane represents the streamwise velocity at
y = −0.98 (in wall units, y+ ∼ 8), the other half represents the wall-normal ve-
locity (v) at y = −1. The latter is zero outside the lined section due to the rigid
wall boundary condition at the channel wall. Both components of the velocity
show a wave above the liner, rooted in the unstable behavior. Figure 12 presents
a zoom of the previous figure in the lined region only. In the upstream part of
the liner, 35 < x < 36, the liner has not modified significantly the incident flow
and one can see the near-wall streaky structure in the u-component. Follows a
first region of instability for 36 < x < 42 where the instability grows and satu-
rates, leading to a modified mean flow. In an intermediate region, 42 < x < 44
the unstable wave tends to disappear while the mean flow reattaches to the
wall around x = 44, according to Fig. 10(c). The disappearance of the wave
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Figure 11: Instantaneous flow visualization. Case R035.

Figure 12: Zoom in of Fig. 11 in the lined section. White surfaces indicate a
pressure isoncontour. Case R035.

in 42 < x < 44 is not due the wave becoming linearly damped, but rather to
its breakdown into turbulence. Indeed, the linear stability analysis presented
below in Section 4.3 shows that the local mean flow profiles are unstable for
any streamwise position along the liner and that the wave has a positive growth
rate. In its initial stage, the wave grows quickly, reaching large amplitudes. A
typical saturation amplitude is 0.015, as seen in Fig. 12, which is about 5% of
the center velocity. At the liner surface, this corresponds to a normal displace-
ment d+a ∼ 15. This important wall-normal motion promotes the generation of
vortices and the breakdown of the wave into turbulence. Figure 13(a) shows
an instantaneous top view of isoconcontours of the Q-criterion (colored by wall
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normal velocity) showing the presence of vortices. Their number increases im-
portantly in the saturation region of the unstable wave. In the zoom shown in
Fig. 13(b) it is seen that the vortices are concentrated in the region where the
normal velocity changes from positive to negative (isocontours are colored in red
and then in blue as one moves in the streamwise direction), that is, where blow-
ing is followed by suction. This region also shows many hairpin-like or ring-like
vortices that are commonly observed in boundary layer transition [61, 62]. Due
to the large wall normal velocity, and the incident flow being fully turbulent, the
breakdown is violent, and the amplitude of the wave decreases rapidly in less
than two wave lengths. Following this breakdown, the mean flow is modified,
but is still unstable according to the analysis in Section 4.3, even if the growth
rate decreases. As a result, a second instability is taking place for 44 < x < 49.1.
Of course this region would not be observed for a shorter liner (case R035S),
and could evolve downstream for a longer liner (case R035L). What has been
referred to above as bumps are successive instability regions. Downstream of
the liner, the vortices created on the liner do not survive, and a return to normal
is approximately observed at a distance 6H from the liner trailing edge. This
will also be confirmed from the plots in Fig. 25 and Fig. B.3 which show that
Reτ retrieves its nominal value within 10H from the liner trailing edge.

To assess how fields vary in time, a time-space plot of pressure at y/H =
−0.96 is shown in Fig. 14. Pressure is averaged in the z-direction, and detrended
to remove the mean pressure drop in the x-direction. The two regions of in-
stability are seen, with peak amplitudes at x ∼ 40 and x ∼ 48, respectively.
The amplitude in the first region is larger than the one in the second region.
The first region oscillations in particular are very stable in time, which has been
observed for all computed cases. While such a clean auto-oscillation is expected
for an absolutely unstable flow possibly acting as an oscillator (R023), it was
not expected to occur in the absence of any acoustic excitation for a convec-
tively unstable flow such as R035. The resistance RL = 0.35 is not much larger
than the threshold value, RL ∼ 0.3, below which there is absolute instability
(see Fig. A.3). We have performed a simulation for a less unstable resistance
(far from the threshold), RL = 0.5, not listed in table 1, and the same auto-
oscillation occurred (not shown). We conclude that there must be a retroaction
loop by a left-propagating acoustic wave generated at the trailing edge of the
liner. Such a feedback loop has been observed in linear simulations [40] and also
confirmed by global linear stability analyses [63]. This point will deserve fur-
ther investigation in the future, and we will also come back to it in a subsequent
section below. Also shown in Fig. 14 are lines whose slopes are respectively the
flow speed, the right-going acoustic wave speed in rigid-walled sections, and the
instability phase speed, as computed in the next section. Downstream of the
liner x ≥ 49.1, we observe pressure ridges in the x − t plane that are aligned
with the acoustic speed, showing that some acoustic waves are generated by the
liner. In the following sections, we present more details on the instability wave
and on the acoustic wave.
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Figure 13: Isocontours of Q-criterion, colored with the wall-normal velocity. (a)
Top view (shown plane is x-z plane) with thick vertical lines indicating the liner
limits; (b) zoom in of the region around x ∼ 41 indicated by a dashed box in
(a). Circles indicate hairpin-like vortices. Case R035.

Figure 14: Time-space diagram of (detrended) pressure at y/H = −0.96. Case
R035. flow speed (slope M); right-going plane acoustic wave speed
(slope (1 +M)); instability phase speed. Arrows indicate the directions of
propagation. The two thin horizontal lines mark the limit of the lined region.
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4.3 Instability

In this section, the simulation results are used to compute the characteristics
of the observed instability, which are then compared with predictions from a
linear local stability analysis based on the computed mean flow.
The frequency at which oscillations are taking place is first identified. Figure 15
plots the near wall pressure spectrum at two points located in each of the in-
stability regions: x ∼ 37 in the first region, x ∼ 47.2 in the second region.
The frequencies for maximum oscillation amplitude are close but different in

10-1 100

10-5

Figure 15: Spectrum of pressure obtained at y = −0.96 for: x ∼ 37 (first
growth region); x ∼ 47.2 (second growth region).

the two regions: ω ∼ 0.43 in the first, ω ∼ 0.41 in the second. This change in
the maximally amplified frequency results from the mean flow being modified
downstream of the first instability breakdown. To see to what extent the physics
in these regions is governed by linear physics (such as a linear instability) the co-
herence, as defined on p. 172 of [64], is plotted at the frequency of the instability
between several sensor pairs in Fig. 16 (ω = 0.43 is shown and ω = 0.41 gives
similar plots). In Fig. 16(a) the coherence between the wall normal velocities at
any two points on the liner (y = −1, 35 < x < 50) is shown. Overall, two dif-
ferent coherent regions corresponding to the two instabilities are observed (with
respective locations 35 < x < 43 and 43 < x < 50). The coherence between
these regions is not completely negligible, as seen in Fig. 16(b), which presents
two cuts of the former color map at two positions, each located in one of the
unstable regions. For example, the coherence between the wall-normal velocity
on the liner and that at a reference point located in the second unstable re-
gions does not completely vanish in the first region. This is a clue that despite
the first instability breakdown, some perturbations in the unstable frequency
range reach the second instability region where they are amplified. Figure 16(c)
presents the coherence map between the near wall wall-normal velocity, and the
pressure on the top wall. It appears that the pressure downstream of the liner
is mainly coherent with the velocity at the very end of the liner. This will be
developped below.
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Figure 16: For a given angular frequency ω = 0.43: (a) Map of coherence
γ2v(x1)v(x2)

between v(x1) and v(x2), both taken on the bottom wall (y = −1).

(b) Coherence between v(x) and v(xa) at a reference location xa = 36.7
located in the first growth region (both at y = −1); Coherence between
v(x) and v(xb) at a reference location xb = 45.4 in the second growth region
(both at y = −1). (c) Map of coherence γ2v(x1)p(x2)

between v(x1) at y = −0.94

and p(x2) at y=1 (top wall); thin white lines indicate the liner limits. Case
R035.

We need to obtain the wavenumber k = kr + iki of the instability, described
by ei(kx−ωt), see A. To do this, we obtain the complex amplitude of the insta-
bility in each of the regions at the observed frequency, and make a fit to obtain
k. Since there is no external excitation, the amplitude is computed with respect
to a reference probe at x0. Using a cross spectrum between the sensor at x0
and the one at x, and denoting by H the transfer function between these two
locations, we compute: H(x, ω) = Sx0x(ω)/Sx0x0(ω), where the spectra Sxx can
be computed at any wall normal location (y) and for any variable. In addi-
tion, H has to be: H(x, ω) = eik(ω)(x−x0). Hence a fitting of H as a function
of x provides k. Actually, we fit a scaled version of H which corresponds to
the wave amplitude: A(x, ω) =

√
Sx0x0

H(x, ω). Figure 17 shows a fit of the
modulus A(x, ω) for pressure close to the liner (y = −0.96) and at frequency
of maximum oscillation amplitude, ω = 0.43. The synchronization position is
x0/H = 36. A(x, ω) is meaningful only for the positions x shown in the figure,
for which the coherence between x0 and x is large (this does not encompass the
second region). In this region, a linear trend is found corresponding to exponen-
tial growth, and the fit to this region is shown. This provides ki and a fit to the
phase (not shown) provides kr. Overall, the fit in the first region of instability
gives: k = 4.8− 2.2i. An equivalent fit in the second region (not shown) gives :
k = 4− 0.6i.

These frequencies and wavenumbers are now compared to those predicted
by a linear stability analysis. For the first growth region, the fit region is cen-
tered at x = 36. Hence, we perform the local stability analysis using the mean
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Figure 17: Fit of the amplitude of pressure in the first unstable region:
A(x, ω); fit. y/H = −0.96. ω = 0.43.

velocity profile at this position and calculate the unstable mode as a function
of frequency. Figure 18 presents the variation of the surface mode wavenumber
with frequency. The educed one as obtained above is shown as a symbol in the
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Figure 18: Wave number of the surface mode versus frequency. (a) real part;
(b) imaginary part. obtained with a local stability analysis based on the
mean flow profile at x ∼ 36H ; • postprocessing of numerical simulations (fit
around x ∼ 36H).

figure, it is found to fall on the stability curve, and corresponds to the most
amplified mode, that is, the one having the largest value of -ki in Fig. 18(b).
Thus, the observed instability frequency and wavenumber match the ones com-
puted with a local linear stability analysis based on the actual mean flow profile.
In addition, Fig. 19 shows that the waveforms associated with the instability,
extracted from the simulation at x ∼ 37 (at the end of the first exponential re-
gion), are also in agreement with the ones computed by using the linear stability
analysis.
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Figure 19: y-profiles of the instability. Norm of: (a) pressure; (b) axial velocity;
(c) wall-normal velocity. obtained from mode solver; from simulation.

The stability analysis has been repeated at several streamwise positions along
the liner and the characteristics of the unstable mode are shown in Fig. 20. Two
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Figure 20: Characteristics of the instability having maximal growth rate at each
streamwise station for case R035 : (a) ω; (b) kr; (c) −ki (growth rate).
local stability analysis based on the computed mean flow at x;  characteristics
educed in the first unstable region ; � characteristics educed in the second
unstable region. Also shown with dashed lines and × symbols are the results
obtained for case R035f.

growth regions are identified by the stability analysis, since there are two peaks
in the growth rate, one at x ∼ 36, the other at x ∼ 45. The second growth is
weaker than the first one. It also has a smaller angular frequency (0.41 versus
0.43 for the first region) and a smaller real part of the wavenumber (3.8 versus
4.7). These variations are observed in the unstable waves observed in the sim-
ulation (symbols). Hence, a local analysis based on the local computed mean
flow profile accounts for most of the phenomena observed in the liner region.
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For a longer liner, the growth rate would eventually vanish, and the flow reach
a developed state, as Fig. 10(d) seems to indicate.

4.4 Acoustic wave generated by the liner

In this section, the presence of acoustic waves is discussed. These waves were
evidenced in Fig. 14 in the downstream part of the channel past the liner. A
time-space diagram of the pressure but now at the top rigid wall of the channel
and for case R035S is shown in Fig. 21. Case R035S corresponds to a shorter
liner, which behaves just as the longer one but has only one region of instability
on the liner, with an observed (and predicted) oscillation at ω = 0.43. Several

Figure 21: Time-space diagram of (detrended) pressure at the top wall,
y/H = 1. Case R035S. flow speed (slope M); instability phase speed;

right-going plane acoustic wave speed (slope (1+M)); left-going plane
acoustic wave speed (slope −(1 − M)); on-liner left-going acoustic wave
speed (slope ω/k−r and ω = 0.43). Arrows indicate the directions of propaga-
tion. The two horizontal lines mark the limit of the lined region.

wave speeds are indicated by arrows in the figure (when they depend on fre-
quency, they are computed for ω = 0.43). The instability phase speed has no
signature in the upper plane (the instability wave is seen only close enough to
the liner, as in Fig. 14). However, acoustic waves are clearly seen downstream
of the liner, moving with speed (1 +M), and also upstream of the liner, moving
with speed −(1 −M). These waves are emitted by the liner. In the lined sec-
tion, and particularly near the trailing edge of the liner, that is for 38 < x < 40,
another acoustic wave is seen, the crests of which are connected to those of
the acoustic wave past the liner. The right-going and left-going plane acoustic
waves in the lined section can be computed by the mode solver, based on the
mean flow. Unlike the instability, their wavenumbers are almost independent
of this flow and thus of the streamwise location on the liner. At ω = 0.43 the
wavenumber for the downstream acoustic wave is k+ = k+r + ik+i ∼ 0.23 + 0.35i,
and for the upstream acoustic wave it is k− = k−r + ik−i ∼ −0.22 − 0.42i.
The imaginary part corresponds to damping by the liner. The short arrow in
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the lined region in Fig. 21 corresponds to the phase speed ω/k−r , it is aligned
with the wave crests in the vicinity of the liner trailing edge. Thus, this wave
is generated at the liner trailing edge and travels upstream while being damped.

The sound pressure level at ω = 0.43 is plotted in Fig. 22 versus the stream-
wise distance counted from the liner trailing edge, for cases corresponding to
different liner lengths, R035S, R035, and R035L. In all three cases, an acoustic
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Figure 22: Pressure level along the top wall (y = 1) vs streamwise distance
counted from the liner trailing edge, at ω = 0.43 : short liner (R035S);
nominal liner (R035); ····· long liner (R035L). The thick vertical line indicates the
position of the liner trailing edge. The other vertical lines indicates the different
liner leading edge positions and their line styles match the corresponding curves.
The thick dashed line ( ) indicates the decay rate of the acoustic wave
travelling upstream, it is computed from k−i .

wave is produced by the liner and observed downstream of it. However, the
wave has a larger pressure level for the shortest liner (∼ 132 dB) than for the
other two, which have a comparable level downstream (∼ 124 dB). A plane wave
decomposition in the rigid-walled part of the channel located downstream of the
liner has been performed to confirm that these pressure levels are indeed con-
nected to plane acoustic waves. In the lined section, the pressure level decreases
from the liner trailing edge, and the damping rate appears to be governed by
k−i (thick dashed line). Hence, it seems that the acoustic waves are generated
at the liner trailing edge by the scattering of the instability. In particular, they
are not produced along with the instability as the latter grows. For the short
liner, there is only one instability region. For a long liner, there are several
successive instabilities, but only the last one, which crosses the liner trailing
edge, is scattered into sound. The last region corresponds to a smaller insta-
bility amplitude compared with the first one (as discussed in connection with
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Fig. 14). This explains why the short liner emits more sound than the longer
ones: this is because the amplitude of the scattered instability is larger. In
addition, the shortest liner also produces a non-negligible sound level (∼ 120
dB) upstream of the liner. This is connected to the upstream-travelling acous-
tic wave generated at the liner trailing edge, which is not completely absorbed
by the short liner, and leaves the liner through the leading edge. This acous-
tic wave in the part of the channel upstream of the liner was observed in Fig. 21.

It has been conjectured in section 4.2 that an organized oscillation on the
liner for RL = 0.35 (corresponding to convective instability) is likely due to some
feedback by acoustic waves. Figure 22 shows that for a short liner (R035S) the
acoustic wave emitted at the liner trailing edge reaches the leading edge with a
non-negligible amplitude (∼ 120 dB). For longer liners, R035 and R035L, this
wave is damped over a longer distance and its amplitude at the liner leading
edge is much smaller, so that it is less likely to trigger instability. Figure 23
shows a time-space diagram of pressure for the longest liner. This shows that

Figure 23: Time-space diagram of (detrended) pressure at y/H = −0.96. Case
R035L. Horizontal lines indicate the liner limits.

the instabilities on this liner are sustained but in a more intermittent fashion
compared with shorter liners, R035 (see Fig. 14) or R035S (not shown). This
tends to back the conjecture above.

4.5 Effect of acoustic excitation

Finally, the effect of an incident acoustic wave is briefly discussed. In reference
[8], experiments were conducted with an unstable liner. It was observed that the
instability was more likely to be sustained in the presence of an incident acoustic
wave with frequency matching that of the instability. In addition, the acoustic
waves were sometimes amplified by the instability, instead of being damped by
the liner. In the present simulations, flow conditions and the liner differ from
that in the experiments, and the previous section has shown that the instability
could be sustained without incident wave. However, we still would like to know
what the effect of an incident wave is. To answer this question we have run
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case R035SE in table 1, which uses the same short liner as case R035S, but a
plane acoustic wave is sent at the inflow. The level of the incident wave is 140
dB, and its frequency is the same as the instability (ω = 0.43). If there were
no instability, this frequency would correspond to peak acoustic absorption by
the liner. Acoustic wave absorption was shown in Fig. 6(b) for RL = 1, and it
follows the same trend for RL = 0.35 (not shown), just with different wavenum-
ber values. Acoustic wavenumbers at ω = 0.43 for RL = 0.35 were specified
in the previous section (these are recalled: k+ = k+r + ik+i ∼ 0.23 + 0.35i,
k− = k−r + ik−i ∼ −0.22− 0.42i).

The mean flow in the vicinity of the liner is first considered. It is shown
with and without acoustic excitation in Fig. 24. It it seen that the mean flow

Figure 24: Mean velocity in the x-direction in the vicinity of the bottom wall:
(a) case R035S (without incident acoustic wave); (b) case R035SE (with incident
acoustic wave). Vertical lines mark the liner limits.

perturbation occurs more rapidly with acoustic excitation, which means that
the instability starts developing at a more upstream position. Figure 25 shows
the friction Reynolds number at the bottom wall of the channel. Upstream of
the liner, the Reynolds number at the rigid wall takes its target value (∼ 411),
as discussed in section 2.6. As a result of the instability, as for simulations with
streamwise periodicity [16], the friction increases on the liner, with Reτ up to
800. Again, the effect of acoustic excitation is to trigger this increase at a more
upstream position on the liner. However, the maximum increase in friction is
just slightly larger than without incident wave. Finally, Figure 26 shows the
sound pressure level at the top wall of the channel, at frequency ω = 0.43. The
curve for case R035S is the same as in Fig. 22, and the acoustic level downstream
or upstream of the liner is produced by the liner due to the instability. For case
R035SE with incident wave, the acoustic level upstream of the liner is mostly
due to the injected wave, and a standing wave pattern is seen. Downstream
of the liner, the acoustic level is about the same as without acoustic excitation
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Figure 25: Mean friction Reynolds number at the bottom wall: case R035SE
(with incident acoustic wave) R035S (without incident acoustic wave).
Vertical lines indicate the liner limits.
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Figure 26: Sound pressure level at top wall. case R035SE; case R035.
The thick lines indicate the rate of decay of the acoustic wave travelling upstream
( ) and of the one travelling downstream ( ). Vertical lines indicate the
liner limits.

(∼ 132 dB). On the liner it appears that the incident sound wave is damped,
and the damping rate corresponds to the one of the right-going acoustic wave
(computed from k+i and shown as a thick plain line). It reaches a plateau at
the trailing edge of the liner (38 < x < 40) probably due to the wave travelling
back from the liner extremity. The acoustic wave generated downstream is then
a product of the instability, and is not connected directly to the incident wave,
the latter being absorbed normally by the liner.

The conclusion of this and the previous section is the following. In the
experiments reported in [8], the convectively unstable liner was oscillating in a
sustained manner only under the action of incident acoustic waves. These waves
were amplified by the liner rather than damped when their frequency was in the
unstable range, which is also the acoustic absorption range. In the present sim-
ulations, with different flow conditions and liner characteristics, the instability
is sustained even without incident waves. This is likely due to the feedback
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loop by the acoustic wave generated at the liner trailing edge by scattering of
the instability wave. With longer liners than those simulated here, which would
absorb the backpropagating acoustic wave over a longer distance and reduce
its amplitude, it is possible that this feedback loop would be suppressed, and
the instability would be observed only with incident waves, as in the experi-
ments. The scattering of the instability at the liner trailing edge also produces
an acoustic wave downstream of the liner. The effect of an incident acoustic
wave is to move the triggering point of the instability upstream compared with
the unexcited case. This results in a modification of the mean flow on the liner,
and increases slightly the friction, but the effect is less spectacular than if the
incident wave were triggering the instability rather than moving it upstream.
The incident acoustic wave is indeed absorbed by the liner, and the downstream
propagating acoustic wave is again due to the scattering of the instability by
the liner trailing edge, that is, it is not directly connected to the incident wave.
In the case considered here, R035SE, the incident acoustic wave has a level of
140 dB, and the emitted wave level is 132 dB. Hence, the incident wave is not
amplified, it is just not as damped as is would be without instability. However,
it is inferred that if the incident level had been 120 dB, the downstream level
would still have been 132 dB, giving the impression that the incident wave is
amplified. All in all, the behaviors observed in the simulations are of a similar
nature as those observed experimentally.

5 Conclusion

The direct numerical simulation of a spatially developing turbulent channel flow
at Reτ ∼ 400 has been performed, in which a part of the bottom wall is covered
with an impedance representing an acoustic liner. The flow incident on the liner
is computed in a precursor simulation and is fully developed. Depending on its
resistance, the acoustic liner can be stable, convectively unstable, or absolutely
unstable, based on a local spatial linear stability analysis using as base flow the
simulated mean flow.
A stable liner has first been computed, excited by several incident plane acous-
tic waves having frequencies from below to above the liner resonance frequency.
Acoustic propagation and absorption by the liner have been verified by compar-
ing the educed wavenumbers and wave shapes to those predicted by the linear
mode solver.
Unstable liners have then been computed, with a special focus on convectively
unstable liners with resistance RL = 0.35. Instabilities develop on these liners,
with characteristics (frequency, wavenumber, waveforms) in agreement with the
linear stability analysis. For long liners, there exist several consecutive insta-
bilities in the streamwise direction, which all have the same nature but slightly
different characteristics due to the streamwise evolution of the mean flow on the
liner. This was also well captured by linear stability analyses made at several
streamwise stations on the liner, using the local computed mean flow. Well
sustained oscillations have been observed, and this was not expected for a con-
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vectively unstable situation. It seems that at least for short enough liners as
considered here, the acoustic wave travelling in the upstream direction creates
a feedback loop and thus a global mode on the liner. The unstable liner also
emits sound at the frequency of the instability in the downstream direction. It
is the scattering of the instability at the trailing edge of the liner that generates
both the upstream-propagating wave and the downstream acoustic wave. Thus,
the sound wave does not seem to increase in amplitude on the liner along with
the instability as the latter grows, at least in the present configuration.
The effect of an incident acoustic wave at the frequency of the instability has
been studied in one configuration. It promotes the instability in the sense that
it moves upstream the point at which the instability gains large amplitude, but
it does not increase its amplitude in a very important way, and consequently,
does not increase the level of the acoustic wave emitted downstream. If the liner
were not self-oscillating in the absence of an incident wave, it is likely that the
incident wave would bring more substantial changes to the system. The incident
wave itself is damped by the liner, as it should, it is again the scattering of the
instability at the liner trailing edge which produces sound downstream. Thus
the incident acoustic wave can affect the emitted sound wave inasmuch as it
modifies the instability wave on the liner.
In an on-going work, we attempt to use a global stability analysis and mode
matching to model the behavior observed in the present simulations and possi-
bly confirm the global mode of oscillation due to the backward acoustic wave.
The results in this paper are based on the use of a surface impedance. That
these results match existing experiments qualitatively is promessing. However,
more simulations of unstable liners with impedance walls replaced by the true
liner geometry are needed, and these are going to be performed in the near
future. This will make it possible also to compare both types of simulations.
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A Stability analysis

In this section, we give a few results on the stability analysis of the flow. The
purpose is to classify the different cases as stable (R1), absolutely unstable
(R023S), or convectively unstable (all other cases). The stability analysis is
local since the base flow consists of the mean flow profiles at a given streamwise
station x. These profiles (velocity, density, etc.) are obtained from the simula-
tions by averaging over z and t and their remaining dependence is on y only.
The equations for the stability problem are presented in [43] and applications
of stability analyses on lined channel can be found in [13]. The convention is
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that a wave is represented by ei(kx−ωt), with k = kr + iki and ω = ωr + iωi. In
this convention, a wave traveling toward x > 0 is spatially growing if ki < 0.
The first case considered is the one for the smallest resistance, R023S, and the
flow profiles at the liner leading edge are used (x ∼ xL ∼ 35H). First, ω is var-
ied along contours at constant ωi where ωi is decreased from a large value to 0,
and the unstable branches are monitored in the k-plane. The result, presented
in Fig. A.1, shows that a branch initially in the upper half-plane (marked as
C1) moves to the bottom half-plane as ωi decrases and stays there when ω is
real (marked as C2). This mode is then unstable. In addition the branch gets
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Figure A.1: Absolute instability at the liner leading edge (x = xL ∼ 35): (a)
Some contours in the ω-plane; and (b) their mapping in the k-plane (linestyles
are paired with those in (a)). Liner with RL = 0.23 (case R023S).

pinched by a branch coming from the bottom half-plane, forming a saddle point
pattern. Therefore, this case is absolutely unstable at the leading edge of the
liner. In the following, C1 (resp., C2) will be used to refer to a pre-prinching
(resp., post-pinching) branch. As the flow on the liner changes with position (as
observed in Fig. 10(a)) other positions should be also be checked for stability.
The unstable branch at several x are shown in Fig. A.2 for ω ∈ R. At positions
close to the leading edge (35 < x < 36) the unstable branch looks like a C1
branch and corresponds to absolute instability, while for downstream positions
(x ≥ 36.1) it is like a C2 branch, indicating that the instability is convective. The
convective branch moves upward as x increases, indicating a decreasing spatial
growth rate (−ki) when moving away from the leading edge. Hence, case R023S
has a pocket of absolute instability in the upstream part of the liner, and the
instability becomes convective in the downstream part. The spatial growth rate
decreases downstream. This has been generally observed for other liners as well,
even if for longer liners, it can re-increase slightly downstream.

To see what happens for other values of the liner resistance, the unstable
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Figure A.2: Unstable branch, obtained for real ω, at several streamwise positions
on the liner: x = 35 (liner leading edge); x = 35.7; · · · · · x = 36;
x = 36.1; x = 36.5; x = 38.7. Liner with RL = 0.23 (case R023S).

branch is computed for ω ∈ R and several RL. The base flow is taken to be the
one at the leading edge of the liner (x/H ∼ 35). Figure A.3 shows that the flow
is absolutely unstable for resistance smaller than RL = 0.29, and convectively
unstable in the range RL ∼ 0.3 − 0.6. For RL = 1, the branch lies completely
in the upper half-plane, and is therefore stable.
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Figure A.3: Evolution of the unstable branch in the k-plane as ω is varied (with
ω ∈ R), for several values of the liner resistance (RL) and for a flow profile at
the leading edge of the liner (x/H ∼ 35).

The conclusions of this appendix are thus the following. For a liner resistance
RL = 0.23, the flow is absolutely unstable in the upstream part of the liner, this
liner may therefore be auto-oscillating without any steady external triggering.
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For RL = 0.35, the liner is convectively unstable, it is not expected to oscillate
in the absence of external forcing, based on a local analysis. For RL = 1, the
liner is stable. Except for RL = 0.23, we have limited ourselves to a flow profile
at the leading edge of the liner, knowing that the flow gets more stable as we
move downstream on the liner. In the main text, the case RL = 0.35 at other
streamwise positions is investigated.

B Effect of mesh refinement

As indicated in Table 1 the mesh resolution in most of the simulations is
∆x+ ∼ 30 and ∆z+ ∼ 10, which is not a very fine mesh. To check the de-
pendence of the result on the grid, the simulation R035f in Table 1 has been
performed with a finer grid having ∆x+ ∼ 18 and ∆z+ ∼ 7. Except for the
finer mesh, case R035f is the same as R035, which allows a comparison between
the two simulations. The mean flow for both simulations are very close, and
we first compare the mean streamwise velocity profiles in the liner region in
Fig. B.1 (liner region for these cases is 35 ≤ x ≤ 50). The mean velocity profiles
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Figure B.1: Mean streamwise velocity profiles at several streamwise station
above the liner (time and spanwise averaged). Case R035f Case R035.

are almost unchanged, even if one can notice a difference at positions larger
than x = 42, and especially at x = 44, that is, downstream of the transition of
the unstable wave. This difference is probably due to the fact that finer mesh
increases the number of resolved small scales and affects the nonlinear satura-
tion and breakdown of the instability wave, with a small effect on the mean flow.

Concerning the unstable wave, a time-space diagram is given in Fig. B.2
for case R035f. This is very similar to the one for case R035 in Fig. 14 (of
course, processes are random, an a one-to-one correspondence is not expected).
However, one remarks a slightly more variable wave-pattern for case R035f,
which is probably related to the slightly different nonlinear breakdown of the
wave at higher spatial resolution. The computed and observed unstable wave
characteristics in the linear growth regions for cases R035 and R035f were shown
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Figure B.2: Time-space diagram of (detrended) pressure at y/H = −0.96. For
interpretation of the lines, see Fig. 14. Case R035f.

in Fig. 20. The computed characteristics depend on the local mean velocity
profiles shown themselves in Fig. B.1. Figure 20 shows that the linear growth is
not affected by the mesh size. Two quantities that are related to the amplitude of
the unstable waves are the friction Reynolds number and the root-mean-square
velocity on the liner, shown for both simulations in Fig. B.3. One observes a
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Figure B.3: (a) Friction Reynolds number on the bottom boundary; (b) root-
mean-square normal velocity on the liner. Case R035f Case R035.

qualitative agreement between the two simulations, although the amplitude of
the wave is slightly dependent on the meshsize. It is not surprising in the sense
that the wave is self excited. A change in the wave breakdown at x ∼ 42 due
to mesh refinement will modify the way a new wave is created in the second
instability region, which will modify the feedback loop trigerring the wave in
the first region. The wave amplitude at the end of the lined region at x = 50
is the same for both simulations, as seen in Fig. B.1(b). As a result, the sound
wave downstream of the liner, produced by scattering, has the same acoustic
level, as seen in Fig. B.4. Hence, except for some small quantitative differences,
which are not unexpected, the two simulations performed with two different
mesh resolutions provide close results.
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Figure B.4: Sound pressure level on the top rigid wall of the channel (y = 1).
Case R035f Case R035.
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