

Role of Ice Mechanics on Snow Viscoplasticity

Louis Védrine, Pascal Hagenmuller, Lionel Gélébart, Maurine Montagnat, Antoine Bernard

▶ To cite this version:

Louis Védrine, Pascal Hagenmuller, Lionel Gélébart, Maurine Montagnat, Antoine Bernard. Role of Ice Mechanics on Snow Viscoplasticity. Geophysical Research Letters, 2024, 51 (7), pp.e2023GL107676. 10.1029/2023GL107676 . hal-04528866

HAL Id: hal-04528866 https://hal.science/hal-04528866

Submitted on 2 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Role of ice mechanics on snow viscoplasticity

Louis Védrine ^{1,2}, Pascal Hagenmuller ¹, Lionel Gélébart ³, Maurine Montagnat ^{1,4}, Antoine Bernard ^{1,4}

 ⁴ ¹Université Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d'Etudes de la Neige, Grenoble, France
 ⁵ ²Université Paris-Saclay, ENS Paris-Saclay, DER Génie Civil et Environnement, Gif-sur-Yvette, France
 ⁷ ³Université Paris-Saclay, CEA, Service de Recherches Métallurgiques Appliquées, 91191, Gif-sur-Yvette,
 ⁸ France
 ⁹ ⁴Univ. Grenoble Alpes, CNRS, IRD, G-INP, IGE, Grenoble, France

Key Points:

1

2

10

11	•	Ice in snow cannot be considered as homogeneous, individual crystals are shown
12		to impact snow creep.
13	•	The models shows that basal glide of a few ice zones supports most of the snow
14		deformation.

In the simulations, the contribution of the hard slip systems is negligible, and de formation accommodation is enabled by the pore space.

 $Corresponding \ author: \ Pascal \ Hagenmuller, \ \texttt{pascal.hagenmuller@meteo.fr}$

17 Abstract

The porous structure of snow becomes denser with time under gravity, primarily due to 18 the creep of its ice matrix with viscoplasticity. Despite investigation of this behaviour 19 at the macroscopic scale, the driving microscopic mechanisms are still not well under-20 stood. Thanks to high-performance computing and dedicated solvers, we modelled snow 21 elasto-viscoplasticity with 3D images of its microstructure and different mechanical mod-22 els of ice. The comparison of our numerical experiments to oedometric compression tests 23 measured by tomography showed that ice in snow rather behaves as a heterogeneous set 24 of ice crystals than as homogeneous polycrystalline ice. Similarly to dense ice, the basal 25 slip system contributed at most, in the simulations, to the total snow deformation. How-26 ever, in the model, the deformation accommodation between crystals was permitted by 27 the pore space and did not require any prismatic and pyramidal slips, whereas the lat-28 ter are pre-requisite for the simulation of dense ice. 29

30

Keywords: Viscoplasticity, Snow, Crystal, Microstructure, Tomography

³¹ Plain Language Summary

Knowledge of snow settlement is essential for many applications, such as paleocli-32 matology and avalanche forecasting. Snow densification is mainly driven by time depen-33 dent and irreversible deformations. Simulating this highly nonlinear behaviour for in-34 tricate microstructures is time-consuming, leading to a scarcity of studies and a limited 35 understanding of the underlying microscale mechanisms. In this study, we took advan-36 tage of an advanced numerical solver to calculate the behaviour of 3D imaged snow sam-37 ples and compared it with in situ experiments. Our analysis has shown that the crys-38 talline structure must be taken into account, but the discrepancy between experiments 39 and simulations suggests the existence of other mechanisms, particularly between snow 40 grains. Interestingly, deformation mechanisms other than those required to simulate dense 41 ice have been observed. 42

43 **1** Introduction

Once on the ground, snow naturally settles under its weight. Its density typically 44 increases from 100 kg m⁻³ just after its deposition on the ground to 550 kg m⁻³ at the 45 end of the winter season at mid-latitude regions, up to the density of ice, 917 kg m^{-3} , 46 for buried perennial snow on glaciers or ice sheets (Alley, 1987; Arnaud, Lipenkov, et 47 al., 1998). The primary driving mechanisms of this settlement are the deformation of the 48 ice skeleton of snow and the subsequent pore volume reduction (e.g., Yosida et al., 1958). 49 Understanding the viscoplastic behaviour of snow is crucial to predict its densification, 50 which is required to model the snowpack evolution (Lehning et al., 2002; Vionnet et al., 51 2012; Simson et al., 2021) or the pore close-off in ice cores (Gregory et al., 2014), which 52 in turn relates to many applications such as avalanche forecasting (Morin et al., 2020), 53 hydrology (DeBeer & Pomeroy, 2017) or paleo-climatology (Barnola et al., 1987). 54

The snow microstructure comprises open pores and sintered crystals of hexagonal 55 ice (Ih). From a mechanical standpoint, the contribution of air is negligible, and snow 56 mechanics thus depends solely on the spatial arrangement of these crystals and the de-57 formation mechanisms they undergo. Under an overburden, isolated ice crystals essen-58 tially deform plastically by gliding of basal dislocations (Duval et al., 1983b). Non-basal 59 dislocations were introduced in models to accommodate basal glide, but are poorly char-60 acterized (Hondoh, 2000). Their creep rate is at least two orders of magnitude lower than 61 the one of the basal glide (Duval et al., 1983b). Ice crystals thus exhibit an extremely 62 anisotropic viscoplastic behaviour. When the crystals are sintered together, the grain 63 boundaries act as obstacles for dislocation movement, which results in hardening and more 64 complex deformation mechanisms. For dense polycrystalline ice, these obstacles are max-65

imal, and the high stresses generated at the crystal boundaries are thought to initiate 66 recrystallization: new crystals are nucleated and crystal boundaries migrate to replace 67 the highly distorted zones (Meyssonnier et al., 2009b; Montagnat et al., 2015). With in-68 creasing porosity, the obstacles to dislocation at grain boundaries are successively reduced, and grains can deform more independently from each other with the free space permit-70 ted by the pores (Theile et al., 2011). For firn and snow with a density lower than 550 kg m⁻³. 71 an additional mechanism is thought to come into play: grain boundary sliding (Alley, 72 1987). It provides a convenient formalism for modeling firm densification (Lundin et al., 73 2017; Schultz et al., 2022) but lacks experimental evidence so far (Meyssonnier et al., 2009b). 74

For snow with even lower density, less attention was drawn to the crystalline na-75 ture of ice in snow (e.g., Shapiro et al., 1997). Only recently Riche et al. (2013); Calonne 76 et al. (2017); Montagnat et al. (2021) measured the crystallographic orientations statis-77 tically in snow. Indeed, the stress concentration in a few bearing force chains and bonds, 78 related to the shape and size of the ice skeleton (geometrical microstructure), is thought 79 to be the central control of the overall mechanical behaviour (Kry, 1975; Johnson & Hop-80 kins, 2005; Wautier et al., 2017). However, the geometrical microstructure alone appears 81 insufficient to describe the diverse creep rates observed on different snow types (Calonne 82 et al., 2020; Fourteau et al., 2022). Besides, the driving deformation mechanism at the 83 microscale, either inter-crystalline deformation (e.g., grain boundary sliding) or (ii) intra-84 crystalline deformation, remains a matter of debate because of a lack of experimental 85 evidence (Theile et al., 2011; Meyssonnier et al., 2009a; Sundu et al., 2024). 86

An alternative approach to understand and predict the mechanisms at play in snow 87 viscoplasticity relies on numerical experiments. The idea is to evaluate how different hy-88 pothetical mechanisms in ice would affect the overall mechanical behaviour of snow. Ex-89 perimental data, even if they do not exhibit the obvious signature of the involved mech-90 anisms, can then be used to discriminate the modeling assumptions. The main ingre-91 dients are the porous and crystalline microstructure of snow and the deformation mech-92 anisms active in ice crystals and at their boundaries. Different studies followed this mod-93 eling path in the last decades. Johnson and Hopkins (2005); Kabore et al. (2021) mod-94 eled the snow microstructure as a set of solid discrete elements interacting with each other 95 through an elastic viscous-plastic contact law. By definition, this method describes the 96 dominant mechanism as grain boundary sliding. The snow viscosity simulated by Johnson 97 and Hopkins (2005); Peters et al. (2021) required an important scaling to reproduce ex-98 perimental creep data of natural snow. However, the artificial microstructure used in the 99 simulation limits any 1:1 comparison to experimental data. In contrast, Theile et al. (2011); 100 Wautier et al. (2017) used a microstructure directly derived from tomographic data. They 101 only considered the deformation within the crystals and obtained a fair agreement with 102 experimental data. However, Theile et al. (2011) described the snow microstructure as 103 a collection of inter-connected finite element beams, which cannot reproduce deforma-104 tion obstacles at the crystal boundaries. Wautier et al. (2017) described ice in snow as 105 a homogeneous material, polycrystalline ice. This approach is not suited to account for 106 the free space around ice crystals in snow, which may favour basal dislocations glide, in 107 contrast to dense polycrystalline ice. 108

In line with these previous studies, we aim to quantify the effect of ice mechanics on snow viscoplasticity. We use time-series of three-dimensional images obtained via tomography during mechanical tests as direct inputs of a mechanical model. The material law for ice in the snow is either homogeneous polycrystalline ice (*ice foam model*), or each crystal is associated with a given crystal plasticity model (*sintered crystal model*). This general approach avoids any over-simplification of the snow microstructure and the ice mechanics.

Figure 1. Main workflow. (a) Schemes of the mechanical tests. (b) 3D snow microstructure image used for the simulation: binary ice-air image for the ice foam model (top), grain image for the sintered crystal model (bottom). (c) Numerical set-up and boundary conditions.

¹¹⁶ 2 Material and Methods

117 2.1 Experimental data

We used two different mechanical tests: a strain-rate-controlled experiment (Bernard, 118 2023) and a load-controlled experiment (Bernard et al., 2022) (Fig.1a). In these tests, 119 the macroscopic stress or strain was measured, and the microstructure was regularly scanned 120 at a micro-metric resolution in an X-ray tomograph (DeskTom130, RXSolutions). The 121 experiments were conducted under isothermal conditions on natural snow that was let 122 evolve in a cold room at respectively -20 °C and -6 °C for several weeks. Experimen-123 tal conditions and imaging setup are summarized in Table 1, and detailed in Bernard 124 et al. (2022); Bernard (2023). 125

The greyscale attenuation images measured by tomography were binary segmented 126 into pore space and a continuous ice matrix (Hagenmuller et al., 2013; Bernard et al., 127 2022) (Fig.1b top). This data does not contain any information about crystal bound-128 aries. The ice matrix was thus segmented into individual grains based on two geomet-129 rical criteria: negative minimal principal curvature and low contiguity between the grains 130 (Hagenmuller, Chambon, et al., 2014; Peinke et al., 2020) (Fig.1b bottom). We assumed 131 that the grains detected by the algorithm correspond to the ice crystals, which is rea-132 sonable for this type of snow according to Arnaud, Gay, et al. (1998). 133

134 2.2 Numerical model

135 2.2.1 Constitutive law for ice

A key ingredient of the numerical model is the elasto-viscoplastic law used for ice. The strain tensor in ice can be decomposed as the sum of an elastic and a viscoplastic part: $\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}^e + \boldsymbol{\varepsilon}^{vp}$. The elastic strain $\boldsymbol{\varepsilon}^e$ is related to the stress tensor $\boldsymbol{\sigma}$ and the stiffness tensor \mathbf{C} as $\boldsymbol{\sigma} = \mathbf{C}$: $\boldsymbol{\varepsilon}^e$. The viscoplastic strain rate $\dot{\boldsymbol{\varepsilon}}^{vp}$ is related to the stress

Table 1. Experimental conditions of the mechanical tests. The type of snow is defined according to (Fierz et al., 2009), where DF stands for Decomposing and Fragmented snow, and RG stands for Rounded Grains. The numbers shown in brackets, e.g., [a, b], mean that the parameter ranges between, e.g., a and b. Details can be found in the associated references.

Parameter	Load-controlled	Strain-rate-controlled
Temperature (°C)	-8 ± 0.5	-18.5 ± 0.5
Type of snow	DF	$\mathrm{DF/RG}$
Initial density (kg m^{-3})	230	206
Initial specific surface area $(m^2 kg^{-1})$	30	28
Test duration (days)	5	3.5
$\overline{\text{Strain rate } (s^{-1})}$	$[10^{-8}, 10^{-7}]$	1.8×10^{-6}
Stress (kPa)	2.1	[0, 300]
Sample size: diameter (mm) x height (mm)	35×38	14×14
Image cubic side-length (voxel)	900	800
Image resolution (μm)	8.5	8
X-ray voltage (kV)	50	50
X-ray current (μA)	160	160
Number of scans	14	11
Typical strain between scans $(\%)$	0.5	5
Reference	Bernard et al. (2022)	Bernard (2023)

tensor $\boldsymbol{\sigma}$ as $\dot{\boldsymbol{\varepsilon}}^{vp} = f(\boldsymbol{\sigma})$. The values of **C** or *f* depend on whether ice is considered a homogeneous material or a set of sintered single-crystals.

¹⁴² Ice foam model. Ice in snow can be considered homogeneous polycrystalline ice, where ¹⁴³ the contributions of each crystal are averaged as in dense ice (Mellor, 1975; Theile et al., ¹⁴⁴ 2011; Wautier et al., 2017). The elasticity tensor of the ice matrix **C** is then isotropic ¹⁴⁵ and described by the Young's modulus E = 9 GPa and the Poisson ratio $\nu = 0.3$ (Petrovic, ¹⁴⁶ 2003). The viscous part of pure dense ice is described by a 3D Norton-Hoff law as (Gagliardini ¹⁴⁷ & Meyssonnier, 1999):

$$\dot{\boldsymbol{\varepsilon}}^{vp} = \frac{3}{2} A \sigma_{eq}^{n-1} \boldsymbol{\sigma}' \tag{1}$$

where σ' is the deviatoric stress tensor and $\sigma_{eq} = \sqrt{\frac{3}{2}\sigma':\sigma'}$ is the Von Mises equivalent stress and $A = 7.8 \times 10^{-8}$ MPa⁻ⁿ s⁻¹ at -10°C and n = 3 (Budd & Jacka, 1989; Castelnau et al., 1997; Theile et al., 2011).

Sintered crystal model. Ice in snow can also be explicitly modelled as a set of in-151 dividual ice crystals sintered together, each characterized by a large viscoplastic anisotropy. 152 Since the crystalline orientation is not captured by tomography, it was randomly sam-153 pled in an isotropic distribution (see Text S3 and Fig. S4 for sensitivity analysis). The 154 elasticity tensor \mathbf{C} was supposed to be isotropic transverse in the crystal reference frame 155 and defined according to Gammon et al. (1983) ($C_{11} = 13.9$ GPa, $C_{33} = 15.0$ GPa, 156 $C_{44} = 3.0$ GPa, $C_{12} = 7.1$ GPa, $C_{13} = 5.8$ GPa). For the viscoplastic part, we used 157 the crystal plasticity model of Lebensohn et al. (2009). In this model, ice crystals can 158 deform through slip on three soft basal systems, three hard prismatic systems, and six 159 hard pyramidal systems (Montagnat et al., 2014). On the k-th system, the slip-rate $\dot{\gamma}^{(k)}$ 160

is related to the shear stress $\tau^{(k)}$ by

$$\dot{\gamma}^{(k)} = \dot{\gamma}_0^{(k)} \left(\frac{|\tau^{(k)}|}{\tau_0^{(k)}}\right)^{n^{(k)}} \operatorname{sign}(\tau^{(k)})$$
(2)

with $n^{(k)}$ the stress exponent, $\dot{\gamma}_0^{(k)}$ the reference shear-rate and $\tau_0^{(k)}$ the critical shear stress. The critical stresses $\tau_0^{(k)}$ for the prismatic and pyramidal systems were assumed to be constant (no hardening) and equal to 260 MPa, which is 20 times larger than the values chosen for the basal systems (13 MPa). For all systems, the creep exponent is $n^{(k)} =$ 3 and the reference shear-rate is $\dot{\gamma}_0^{(k)} = 1 \text{ s}^{-1}$. This setup enables to reproduce the behaviour of polycrystalline ice, when the single crystals are randomly arranged into a dense packing (Text. S1 in Supporting Information). This model, although simpler than Suquet et al. (2012), was preferred for the sintered crystal model, as it allows a simple comparison with the foam model, giving the same stress exponent n on the macroscopic scale.

To account for temperature effects on ice viscoplasticity, we scaled the pre-factor A of the ice foam model (Eq. 1) and the pre-factor $\dot{\gamma}_0^{(k)}$ of the crystal model (Eq. 2) by an Arrhenius relation: e^{-Q}_{RT} , with Q = 69.1 kJ mol⁻¹ the activation energy of ice, R =8.3 J (mol K)⁻¹ the universal gas constant and T the temperature (K) (Mellor & Testa, 1969). This scaling enables us to account for the different temperatures in the two experiments (-8 °C and -18.5 °C, Tab. 1).

2.2.2 Simulation set-up

177

The simulations were performed with the Fast Fourier Transform (FFT)-based solver 178 AMITEX_FFTP (Gélébart et al., 2020). This solver takes as direct input the 3D air-ice 179 image (ice foam model) or the 3D image of the crystal assembly (sintered crystal model). 180 The numerical model cannot account for topological change of the ice skeleton (e.g., new 181 contacts). The simulation of one experiment thus consists of several simulations of "in-182 stantaneous creep experiments" as in Theile et al. (2011), with initial conditions vary-183 ing through the test (re-set at each new image). The Norton-Hoff model and the crys-184 tal plasticity model were implemented through the MFront code generator (Helfer et al., 185 2015). The numerical integration of crystal plasticity is computationally expensive, but 186 the solver benefits from the MPI implementation. 187

Using an FFT-based solver involves using periodic boundary conditions. The boundary conditions were chosen to mimic the mechanical tests, where the snow sample cannot deform laterally and the axial friction on the sample holder is limited. Therefore, in the simulation, we imposed the average lateral deformation ($E_{xx} = E_{yy} = 0$) and the shear stress to zero ($\Sigma_{xy} = \Sigma_{yz} = \Sigma_{xz} = 0$), where E and Σ are respectively the volume average of strain and stress. The axial loading was imposed according to the type of test (Fig.1c).

To reduce the computation time, the simulations were not conducted on the en-195 tire scanned volume at the nominal image resolution. Instead, we reduced the resolu-196 tion by a factor of 2, i.e. to voxels of size 16 and 17 microns respectively for the strain-197 rate-controlled and load-controlled experiments, and we extracted a volume of $300 \times 300 \times$ 198 300 voxels inside the scans (Fig. 1). We performed a volume convergence analysis on one 199 sample and showed that the chosen volume and resolution are representative of the sam-200 ple. To fasten the solver convergence, we reduced the infinite mechanical contrast be-201 tween ice and air to $E_{\rm ice}/E_{\rm air} = 10^8$ by giving a very small stiffness to air. We observed 202 that this choice reduced the computing cost and did not affect the results (Fig. S2). 203

Figure 2. Comparison of the experimental and numerical results. (a) Evolution of the nonlinear viscosity and the yield stress as a function of strain (strain-rate-controlled). (b) Temporal evolution of the nonlinear viscosity and the strain rate (load-controlled)). The inset figures correspond to the simulated macroscopic stress or strain evolution for different constitutive materials for a given microstructure. The error bars are related to the limited simulation volume (error of \pm 14.9 %, Fig. S3), the resolution decrease (error \pm 16.4 %, Fig. S3) and uncertainties on temperature (error of \pm 6.2 % at -8 °C and \pm -6.8 % at -18.5 °C).

²⁰⁴ **3** Results and discussion

205

3.1 Simulated macroscopic stress-strain curve

We observe three different regimes of stress evolution with strain during the com-206 pression test at a constant strain-rate (Fig.2a inset). First, the stress increases linearly 207 with strain in an elastic regime characterized by a slope E. Then, the stress deviates from 208 elasticity with viscoplasticity progressively activated. After this transient regime, the stress 209 eventually reaches a constant value, the yield stress σ_Y , where the snow sample perfectly 210 flows (stationary creep). This yield stress depends on the constitutive law of ice and the 211 snow microstructure. Similarly, Figure 2b (inset) shows the time evolution of strain un-212 der constant stress. After a brief phase of pure elasticity during the numerical loading 213 of the sample (stress from 0 to 2.1 kPa in 1 s), the ice matrix starts to flow and the strain 214 rate increases to a constant value. 215

The permanent viscoplastic regime is reached after a typical strain of 0.1% (Fig. 216 2a) or a time of 10^4 s (Fig. 2b). The yield stress or flow rate are, hereafter, derived at 217 a simulation strain of 0.5% and a simulation time of 10^5 s. The time or strain required 218 to reach the stationary creep flow regime is relatively small compared to the time be-219 tween two scans (~ 8 h) or change in the microstructure. Therefore, the assumption that 220 221 mechanical creep experiments with an evolving microstructure can be decomposed into "instantaneous creep experiments" seems reasonable. In other words, this separation of 222 time scales enables us to compare the yield stress estimated numerically on a given mi-223 crostructure to the stress measured when the microstructure was captured (Theile et al., 224 2011). 225

The elastic and viscoplastic regimes were simulated with different models for ice. 226 The stiffness of the sample is not affected by the modelling assumptions, i.e. the slight 227 anisotropy of crystalline elasticity (30%) could be neglected. Indeed, a relative error of 228 0.5% is committed on the axial Young's modulus with the ice foam model compared to 229 the sintered crystal model. Therefore, assuming ice in snow as a foam of ice to study snow 230 elasticity (Schneebeli, 2004; Srivastava et al., 2010; Köchle & Schneebeli, 2014; Hagen-231 muller, Theile, & Schneebeli, 2014; Hagenmuller, Calonne, et al., 2014; Wautier et al., 232 2015; Reuter et al., 2019) appears reasonable, even never properly evaluated so far. In 233 contrast, the simulated viscoplastic regime is very different between the ice foam and the 234 sintered crystal models. For instance, at a strain rate of 1.8×10^{-6} s⁻¹, a yield stress 235 of 22.2 kPa and 8.7 kPa is obtained respectively for the ice foam and sintered crystal mod-236 els (Fig. 2a). As expected, the crystal model makes the snow sample flow more easily. 237 Interestingly, blocking the hard slip systems of the sintered crystal model (only basal glide) 238 does not significantly affect the macroscopic mechanical behaviour of the snow for both 239 experiments. 240

As the snow stress strain-rate relation is non-linear, the classical compactive viscosity cannot describe both tests (Kojima, 1967). The creep exponent of all slip systems is here constant (n = 3). Therefore, per homogenization, this exponent scales to the visco-plastic model of snow (Wautier et al., 2017) and we can identify the observed creep of snow by a Glen's law with a non-linear viscosity B:

$$\dot{\epsilon}_{snow} = \frac{1}{B} \sigma_Y^n \tag{3}$$

246

3.2 Evaluation of the numerical model with the experiments

In the strain-rate-controlled experiment, the measured non-linear viscosity B increases from 6.8×10^{-2} to 1.2×10^4 MPa⁻ⁿ s⁻¹, while the density increases from 206 to 458 kg m⁻³ (Fig. 2). The simulations well reproduce this trend with density, and the order of magnitude of B. For a similar density range, Scapozza and Bartelt (2003) obtained a viscosity change from 10^{-2} to 10^6 MPa⁻ⁿ s⁻¹ at a temperature of -12° C. Note that in this experiment, the exponent of Glen's law was identified experimentally, and varies from 1.7 for a density of 150 kg m⁻³ to 3.7 for a density of 423 kg m⁻³. In the load-controlled experiment, the increase of the non-linear viscosity with time is less pronounced, as the overall deformation or densification remains rather small ($\epsilon_z \leq 9.1\%$). However, the simulation also reproduces this tedious trend driven by microstructure evolution.

The simulations with the sintered crystal and the ice foam model respectively un-258 derestimate and overestimate B in the strain-rate-controlled experiment. The measured 259 and simulated value of B at the beginning of the experiment is uncertain due to the lim-260 ited resolution of the force sensor (± 4 kPa). However, for stresses higher than 25 kPa, 261 we observe that the sintered crystals model is closer to the experimental measurements, 262 than the foam model. Indeed, the mean absolute percentage error (MAPE) between sim-263 ulations and the experiments is equal to 414% for the ice foam model and to 62% for the 264 sintered crystal model. The difference between the sintered crystal and the ice foam mod-265 els reduces when density increases. The ratio decreases from 16.6 at a density of 206 kg m⁻³. 266 to 9.7 at a density of 458 kg m⁻³. This is consistent with the fact that the two models converge together when the porous structure becomes pure ice (see Supp. Inf. S1 and 268 A. Lebensohn (2001)). More generally, we expect that the models become closer when 269 the crystal boundaries become pre-dominant barriers to basal dislocation glide. 270

For the load-controlled experiment, the simulations based on the sintered crystal 271 model are closer to the experiment (over-estimation of B by an average factor of 8.9) com-272 pared to the ones based on the ice foam model (over-estimation of B by 157). Note that 273 the error factor estimated here on the non-linear viscosity are raised to the power of 3 274 compared to the errors computed on linear viscosity $(\eta = \frac{\sigma}{\epsilon})$, as it is presented by (Kojima, 275 1967; Theile et al., 2011). Experimental uncertainties also exist in the load-controlled 276 test (Figure 2b), but they are difficult to estimate and related to i) the measurement of 277 the strain rate and ii) the force effectively applied to the considered snow volume. Nev-278 ertheless, they can be estimated to be less than the ratio 8.9 between the best model and 279 the experiment. 280

Overall, for snow, here with a density in the range 206 to 458 kg m⁻³, the two models for ice yield very different viscoplastic properties, and the sintered crystal model appears to be closer to the experimental data. This observation agrees with the recent work of Fourteau et al. (2023), who shows that it is impossible to find a calibrated isotropic law to represent different types of microstructures, and questions the magnitude of nonlinear viscosity simulated by Wautier et al. (2017). Nevertheless, the significant discrepancies between the sintered crystal model and experiments show that some mechanisms may still be missing in this modelling.

289

3.3 Microscale drivers of snow viscoplasticity

In the sintered crystal model, we observe that a small deformation of the ice ma-290 trix yields important deformation of the pore space and the overall snow material. In-291 deed, the average deformation of the ice matrix is here typically 100 times smaller than 292 in the equivalent snow material (Fig. S4). In addition, the distribution of strain or stresses 293 in the ice matrix itself is highly heterogeneous (standard deviation of 30% on strain in 294 the ice matrix) and comprises both zones in tension and compression (noted with a pos-295 itive sign) (Fig. 3). For instance, 4% of the ice volume exhibits an axial deformation 10 296 times larger than the average ice deformation, while a significant part (e.g., 34.5%) of 297 the microstructure exhibits almost no deformation (e.g., $|\epsilon_z| \leq 0.1 \bar{\epsilon_z}$). This confirms 298 previous numerical observations on elastic properties (Hagenmuller, Theile, & Schnee-299 beli, 2014) but is here even more pronounced as the ice can locally undergo large vis-300 coplastic deformation. 301

Figure 3. Slice view of the tested sample shown in figure 1 and associated mechanical fields: (a) Von Mises equivalent stress σ_{eq} . (b) Equivalent viscoplastic basal slip. (c) Equivalent viscoplastic non basal slip. (d) Basal activity. Strain-rate-controlled experiment, axial stress corresponding to this microstructure of 8.7 kPa.

Interestingly, similarly to dense ice, the basal slip system contributes at most to 302 the total simulated plastic deformation of snow (90% in average for ice, 99% for snow, 303 see Fig. S4). However, the entanglement of slip system deformations appears to be dif-304 ferent between snow and dense ice. The model shows that the deformation accommo-305 dation between crystals is permitted by the pore space and does not require prismatic 306 and pyramidal slips, whereas the latters are pre-requisite for the simulation of any deformation in dense ice. In addition, blocking the hard slip systems of the sintered crys-308 tal model does not significantly affect the macroscopic mechanical behaviour of the snow 309 for both experiments (Fig. 2). Thus, a stronger effect of the basal system parameteri-310 zation on the macroscopic response of the snow can be expected. Indeed, the chosen pa-311 rameterization was mostly evaluated on pure ice experiments (Castelnau et al., 1996, 1997; 312 Mansuy et al., 2000), but different choice for the basal slip system (e.g., exponent n or 313 critical shear stress τ_0) might yield similar results for polycrystalline ice but not for snow 314 (Duval et al., 1983a; Suquet et al., 2012). 315

Stresses and strains are heterogeneously distributed in the microstructure and gen-316 erally located at necks between ice grains that participate in a force bearing chain (Fig. 317 3). These geometric necks also mainly correspond, here, to the crystal boundaries. The 318 grain boundaries (defined as a one voxel wide band on either side of the interface between 319 2 grains, which represent 11% of the ice volume fraction), concentrate 20.5% of the equiv-320 alent stress, 21% of basal equivalent strain and 22.2% of non-basal equivalent strain. When 321 we do not account anymore for the single crystals (i.e., foam model), the stress concen-322 tration reduces to 17% of the equivalent stress. This stress concentration is thus not only 323 linked to the geometry of the microstructure, but also to the mechanical model of ice. 324 Interestingly, the relative basal activity remains high everywhere. It is lower next to cer-325 tain crystal boundaries, where the stresses are the highest (Fig. 3d). Non-basal contri-326 butions also appear in crystals with very little plastic deformation but large stress con-327 centration (e.g., the grain circled in Fig. 3). This observation indicates that crystal bound-328 aries may slightly limit basal slip, but in a proportion that is not visible on the overall 329 viscous behaviour (here for a snow sample with a density of 235 kg m^{-3}). 330

331 4 Conclusion

We simulated the viscoplasticity of snow based on its 3D microstructure and different constitutive laws for the ice matrix. These numerical experiments were compared to cold-room in-tomograph experiments, either load-controlled or strain-rate-controlled. The macro-scale comparison revealed that ice in snow rather behaves as a set of sintered

crystals than a foam of polycrystalline ice. Moreover, we showed that the accommoda-336 tion of deformation by means of the hard non-basal slip systems is hardly needed, even 337 less than for bulk polycrystalline ice. This is attributed to the ability to relax strain in-338 compatibilities at ice / air interfaces. The residual mismatch between the measured and 339 the simulated viscosity tends to demonstrate that other mechanisms occurring, e.g., at 340 bonds need to be accounted for, such as, role of non-basal contributions with harden-341 ing (Duval et al., 1983a; Suquet et al., 2012), superplasticity (Alley, 1987; Raj & Ashby, 342 1971; Goldsby & Kohlstedt, 2001; Sundu et al., 2024), but also ductile failure (Kirchner 343 et al., 2001; Capelli et al., 2020). 344

³⁴⁵ Open Research

All materials used in this article (codes, segmented images, experimental and numerical values, etc.) are available on Zenodo at https://doi.org/10.5281/zenodo.10340967
 (Védrine et al., 2023).

349 Acknowledgments

TomoCold was funded by the CNRM and INSU-LEFE, Labex OSUG (ANR10 LABX56). This work has been supported by program (ANR15 IDEX02). The computations presented in this paper were performed using the GRICAD infrastructure (https://gricad .univ-grenoble-alpes.fr), which is supported by CNRS, University Grenoble Alpes and INRIA. We particularly thank Mr. Mondher CHEKKI for his help.

355 References

- A. Lebensohn, R. (2001). N-site modeling of a 3d viscoplastic polycrystal using fast
 fourier transform. Acta Materialia, 49(14), 2723-2737. doi: https://doi.org/
 https://doi.org/10.1016/S1359-6454(01)00172-0
- Alley, R. B. (1987, 3). Firn densification by grain-boundary sliding: a first model. *Le Journal de Physique Colloques*, 48(C1), 1-249. Retrieved from http://www
 .edpsciences.org/10.1051/jphyscol:1987135 doi: https://doi.org/10
 .1051/jphyscol:1987135
- Arnaud, L., Gay, M., Barnola, J.-M., & Duval, P. (1998, 1). Imaging of firn and bubbly ice in coaxial reflected light: a new technique for the characterization of these porous media. *Journal of Glaciology*, 44 (147), 326–332. doi: https://doi.org/10.3189/S0022143000002653
- Arnaud, L., Lipenkov, V., Barnola, J.-M., Gay, M., & Duval, P. (1998). Modelling of
 the densification of polar firn: characterization of the snow-firn transition. Annals of Glaciology, 26, 39-44.
- 370
 Barnola, J.-M., Raynaud, D., Korotkevich, Y. S., & Lorius, C. (1987). Vostok ice

 371
 core provides 160,000-year record of atmospheric CO2. Nature, 329(6138),

 372
 408-414. Retrieved from https://doi.org/10.1038/329408a0 doi:

 373
 https://doi.org/10.1038/329408a0
- Bernard, A. (2023). Etude multiéchelle de la transition ductile-fragile dans la neige
 (Doctoral dissertation, Université Grenoble Alpes). Retrieved from https://
 theses.hal.science/tel-04145610
- Bernard, A., Hagenmuller, P., Montagnat, M., & Chambon, G. (2022, 12). Disentangling creep and isothermal metamorphism during snow settlement with X-ray tomography. Journal of Glaciology, 1–12. Retrieved from https:// www.cambridge.org/core/product/identifier/S0022143022001095/type/ journal_article doi: https://doi.org/10.1017/jog.2022.109
- Budd, W., & Jacka, T. (1989, 7). A review of ice rheology for ice sheet mod elling. Cold Regions Science and Technology, 16(2), 107-144. Retrieved from
 https://linkinghub.elsevier.com/retrieve/pii/0165232X89900141 doi:

385	https://doi.org/10.1016/0165-232X(89)90014-1
386	Calonne, N., Montagnat, M., Matzl, M., & Schneebeli, M. (2017). The layered
387	evolution of fabric and microstructure of snow at point barnola, central
388	east antarctica. Earth and Planetary Science Letters, 460, 293-301. doi:
389	https://doi.org/https://doi.org/10.1016/j.epsl.2016.11.041
390	Calonne, N., Richter, B., Löwe, H., Cetti, C., Ter Schure, J., van Herwijnen, A.,
391	Schneebeli, M. (2020). The RHOSSA campaign: Multi-resolution
392	monitoring of the seasonal evolution of the structure and mechanical sta-
393	bility of an alpine snowpack. The Cryosphere, $14(6)$, $1829-1848$. doi:
394	https://doi.org/10.5194/tc-14-1829-2020
395	Capelli, A., Reiweger, I., & Schweizer, J. (2020, 7). Studying Snow Failure With
396	Fiber Bundle Models. Frontiers in Physics, 8(July), 1–12. Retrieved from
397	https://www.frontiersin.org/article/10.3389/fphy.2020.00236/full
398	doi: https://doi.org/10.3389/fphy.2020.00236
399	Castelnau, O., Canova, G. R., Lebensohn, R. A., & Duval, P. (1997). Modelling
400	viscoplastic behavior of anisotropic polycrystalline ice with a self-consistent ap-
401	proach. Acta Materialia, 45(11), 4823-4834. doi: https://doi.org/10.1016/
402	S1359-6454(97)00098-0
403	Castelnau, O., Duval, P., Lebensohn, R. A., & Canova, G. R. (1996). Viscoplastic
404	modeling of texture development in polycrystalline ice with a self-consistent
405	approach: Comparison with bound estimates. Journal of Geophysical Research:
406	Solid Earth, 101(B6), 13851–13868.
407	DeBeer, C. M., & Pomeroy, J. W. (2017, 10). Influence of snowpack and melt
408	energy heterogeneity on snow cover depletion and snowmelt runoff simu-
409	lation in a cold mountain environment. Journal of Hydrology, 553, 199–
410	213. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/
411	S0022169417305164 doi: https://doi.org/10.1016/j.jhydrol.2017.07
412	.051
412 413	Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the
412 413 414	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–
412 413 414 415	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074.
412 413 414 415 416	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes
412 413 414 415 416 417	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry,
412 413 414 415 416 417 418	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/
412 413 414 415 416 417 418 419	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014
412 413 414 415 416 417 418 419 420	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K.,
412 413 414 415 416 417 418 419 420 421	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K., Sokratov, S. A. (2009). The international classification for seasonal snow on
412 413 414 415 416 417 418 419 420 421 422	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K., Sokratov, S. A. (2009). The international classification for seasonal snow on the ground (Tech. Rep.). Paris: IHP-VII Technical Documents in Hydrology
412 413 414 415 416 417 418 419 420 421 422 423	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K., Sokratov, S. A. (2009). The international classification for seasonal snow on the ground (Tech. Rep.). Paris: IHP-VII Technical Documents in Hydrology N83, IACS Contribution N1, UNESCO-IHP.
412 413 414 415 416 417 418 419 420 421 422 423 424	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K., Sokratov, S. A. (2009). The international classification for seasonal snow on the ground (Tech. Rep.). Paris: IHP-VII Technical Documents in Hydrology N83, IACS Contribution N1, UNESCO-IHP. Fourteau, K., Freitag, J., Malinen, M., & Löwe, H. (2023). Microstructure-based
412 413 414 415 416 417 418 419 420 421 422 423 424 425	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K., Sokratov, S. A. (2009). The international classification for seasonal snow on the ground (Tech. Rep.). Paris: IHP-VII Technical Documents in Hydrology N83, IACS Contribution N1, UNESCO-IHP. Fourteau, K., Freitag, J., Malinen, M., & Löwe, H. (2023). Microstructure-based simulations of the viscous densification of snow and firn. EGUsphere, 2023, 1–
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K., Sokratov, S. A. (2009). The international classification for seasonal snow on the ground (Tech. Rep.). Paris: IHP-VII Technical Documents in Hydrology N83, IACS Contribution N1, UNESCO-IHP. Fourteau, K., Freitag, J., Malinen, M., & Löwe, H. (2023). Microstructure-based simulations of the viscous densification of snow and firn. EGUsphere, 2023, 1–26.
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K., Sokratov, S. A. (2009). The international classification for seasonal snow on the ground (Tech. Rep.). Paris: IHP-VII Technical Documents in Hydrology N83, IACS Contribution N1, UNESCO-IHP. Fourteau, K., Freitag, J., Malinen, M., & Löwe, H. (2023). Microstructure-based simulations of the viscous densification of snow and firn. EGUsphere, 2023, 1–26. Fourteau, K., Löwe, H., & Freitag, J. (2022). Microstructure-based simulations of
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K., Sokratov, S. A. (2009). The international classification for seasonal snow on the ground (Tech. Rep.). Paris: IHP-VII Technical Documents in Hydrology N83, IACS Contribution N1, UNESCO-IHP. Fourteau, K., Freitag, J., Malinen, M., & Löwe, H. (2023). Microstructure-based simulations of the viscous densification of snow and firm. EGUsphere, 2023, 1–26. Fourteau, K., Löwe, H., & Freitag, J. (2022). Microstructure-based simulations of the compactive viscosity of snow and firm with isotropic and anisotropic ma-
412 413 414 415 416 417 418 419 420 421 422 423 424 425 424 425 426 427 428 429	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K., Sokratov, S. A. (2009). The international classification for seasonal snow on the ground (Tech. Rep.). Paris: IHP-VII Technical Documents in Hydrology N83, IACS Contribution N1, UNESCO-IHP. Fourteau, K., Freitag, J., Malinen, M., & Löwe, H. (2023). Microstructure-based simulations of the viscous densification of snow and firn. EGUsphere, 2023, 1–26. Fourteau, K., Löwe, H., & Freitag, J. (2022). Microstructure-based simulations of the compactive viscosity of snow and firn with isotropic and anisotropic material laws. In International symposium on snow. Davos, Switzerland, 25-30
412 413 414 415 416 417 418 419 420 421 422 423 424 425 424 425 426 427 428 429 430	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K., Sokratov, S. A. (2009). The international classification for seasonal snow on the ground (Tech. Rep.). Paris: IHP-VII Technical Documents in Hydrology N83, IACS Contribution N1, UNESCO-IHP. Fourteau, K., Freitag, J., Malinen, M., & Löwe, H. (2023). Microstructure-based simulations of the viscous densification of snow and firn. EGUsphere, 2023, 1–26. Fourteau, K., Löwe, H., & Freitag, J. (2022). Microstructure-based simulations of the compactive viscosity of snow and firn with isotropic and anisotropic material laws. In International symposium on snow. Davos, Switzerland, 25-30 September 2022.
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K., Sokratov, S. A. (2009). The international classification for seasonal snow on the ground (Tech. Rep.). Paris: IHP-VII Technical Documents in Hydrology N83, IACS Contribution N1, UNESCO-IHP. Fourteau, K., Freitag, J., Malinen, M., & Löwe, H. (2023). Microstructure-based simulations of the viscous densification of snow and firm. EGUsphere, 2023, 1–26. Fourteau, K., Löwe, H., & Freitag, J. (2022). Microstructure-based simulations of the compactive viscosity of snow and firm with isotropic and anisotropic material laws. In International symposium on snow. Davos, Switzerland, 25-30 September 2022. Gagliardini, O., & Meyssonnier, J. (1999). Analytical derivations for the behav-
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K., Sokratov, S. A. (2009). The international classification for seasonal snow on the ground (Tech. Rep.). Paris: IHP-VII Technical Documents in Hydrology N83, IACS Contribution N1, UNESCO-IHP. Fourteau, K., Freitag, J., Malinen, M., & Löwe, H. (2023). Microstructure-based simulations of the viscous densification of snow and firn. EGUsphere, 2023, 1–26. Fourteau, K., Löwe, H., & Freitag, J. (2022). Microstructure-based simulations of the compactive viscosity of snow and firm with isotropic and anisotropic material laws. In International symposium on snow. Davos, Switzerland, 25-30 September 2022. Gagliardini, O., & Meyssonnier, J. (1999). Analytical derivations for the behavior and fabric evolution of a linear orthotropic ice polycrystal. Journal of Geo-
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K., Sokratov, S. A. (2009). The international classification for seasonal snow on the ground (Tech. Rep.). Paris: IHP-VII Technical Documents in Hydrology N83, IACS Contribution N1, UNESCO-IHP. Fourteau, K., Freitag, J., Malinen, M., & Löwe, H. (2023). Microstructure-based simulations of the viscous densification of snow and firn. EGUsphere, 2023, 1–26. Fourteau, K., Löwe, H., & Freitag, J. (2022). Microstructure-based simulations of the viscosity of snow and firn with isotropic and anisotropic material laws. In International symposium on snow. Davos, Switzerland, 25-30 September 2022. Gagliardini, O., & Meyssonnier, J. (1999). Analytical derivations for the behavior and fabric evolution of a linear orthotropic ice polycrystal. Journal of Geophysical Research: Solid Earth, 104 (B8), 17797-17809. doi: https://doi.org/
412 413 414 415 416 417 418 419 420 421 422 423 424 425 424 425 426 427 428 429 430 431 432 433	 Juval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K., Sokratov, S. A. (2009). The international classification for seasonal snow on the ground (Tech. Rep.). Paris: IHP-VII Technical Documents in Hydrology N83, IACS Contribution N1, UNESCO-IHP. Fourteau, K., Freitag, J., Malinen, M., & Löwe, H. (2023). Microstructure-based simulations of the viscous densification of snow and firn. EGUsphere, 2023, 1–26. Fourteau, K., Löwe, H., & Freitag, J. (2022). Microstructure-based simulations of the compactive viscosity of snow and firn with isotropic and anisotropic material laws. In International symposium on snow. Davos, Switzerland, 25-30 September 2022. Gagliardini, O., & Meyssonnier, J. (1999). Analytical derivations for the behavior and fabric evolution of a linear orthotropic ice polycrystal. Journal of Geophysical Research: Solid Earth, 104 (B8), 17797-17809. doi: https://doi.org/https://doi.org/10.1029/1999JB900146
412 413 414 415 416 417 418 419 420 421 422 423 424 425 424 425 426 427 428 429 430 431 432 433 434	 Juval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K., Sokratov, S. A. (2009). The international classification for seasonal snow on the ground (Tech. Rep.). Paris: IHP-VII Technical Documents in Hydrology N83, IACS Contribution N1, UNESCO-IHP. Fourteau, K., Freitag, J., Malinen, M., & Löwe, H. (2023). Microstructure-based simulations of the viscous densification of snow and firn. EGUsphere, 2023, 1–26. Fourteau, K., Löwe, H., & Freitag, J. (2022). Microstructure-based simulations of the compactive viscosity of snow and firn with isotropic and anisotropic material laws. In International symposium on snow. Davos, Switzerland, 25-30 September 2022. Gagliardini, O., & Meyssonnier, J. (1999). Analytical derivations for the behavior and fabric evolution of a linear orthotropic ice polycrystal. Journal of Geophysical Research: Solid Earth, 104 (B8), 17797-17809. doi: https://doi.org/https://doi.org/https://doi.org/10.1029/1999JB900146 Gammon, P. H., Kiefte, H., Clouter, M. J., & Denner, W. W. (1983). Elastic
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436	 Juval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K., Sokratov, S. A. (2009). The international classification for seasonal snow on the ground (Tech. Rep.). Paris: IHP-VII Technical Documents in Hydrology N83, IACS Contribution N1, UNESCO-IHP. Fourteau, K., Freitag, J., Malinen, M., & Löwe, H. (2023). Microstructure-based simulations of the viscous densification of snow and firn. EGUsphere, 2023, 1–26. Fourteau, K., Löwe, H., & Freitag, J. (2022). Microstructure-based simulations of the viscosity of snow and firn with isotropic and anisotropic material laws. In International symposium on snow. Davos, Switzerland, 25-30 September 2022. Gagliardini, O., & Meyssonnier, J. (1999). Analytical derivations for the behavior and fabric evolution of a linear orthotropic ice polycrystal. Journal of Geophysical Research: Solid Earth, 104(B8), 17797-17809. doi: https://doi.org/https://doi.org/https://doi.org/10.1029/1999JB900146 Gammon, P. H., Kiefte, H., Clouter, M. J., & Denner, W. W. (1983). Elastic constants of artificial and natural ice samples by Brillouin spectroscopy.
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K., Sokratov, S. A. (2009). The international classification for seasonal snow on the ground (Tech. Rep.). Paris: IHP-VII Technical Documents in Hydrology N83, IACS Contribution N1, UNESCO-IHP. Fourteau, K., Freitag, J., Malinen, M., & Löwe, H. (2023). Microstructure-based simulations of the viscous densification of snow and firn. EGUsphere, 2023, 1–26. Fourteau, K., Löwe, H., & Freitag, J. (2022). Microstructure-based simulations of the viscosity of snow and firn with isotropic and anisotropic material laws. In International symposium on snow. Davos, Switzerland, 25-30 September 2022. Gagliardini, O., & Meyssonnier, J. (1999). Analytical derivations for the behavior and fabric evolution of a linear orthotropic ice polycrystal. Journal of Geophysical Research: Solid Earth, 104(B8), 17797-17809. doi: https://doi.org/https://doi.org/https://doi.org/lo.1029/1999JB900146 Gammon, P. H., Kiefte, H., Clouter, M. J., & Denner, W. W. (1983). Elastic constants of artificial and natural ice samples by Brillouin spectroscopy. Journal of Glaciology, 29(103), 433-460. doi: https://doi.org/10.1017/
412 413 414 415 416 417 418 419 420 421 422 423 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438	 Duval, P., Ashby, M., & Anderman, I. (1983a). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Duval, P., Ashby, M. F., & Anderman, I. (1983b, 10). Rate-controlling processes in the creep of polycrystalline ice. The Journal of Physical Chemistry, 87(21), 4066–4074. Retrieved from https://pubs.acs.org/doi/10.1021/j100244a014 doi: https://doi.org/10.1021/j100244a014 Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D. M., Nishimura, K., Sokratov, S. A. (2009). The international classification for seasonal snow on the ground (Tech. Rep.). Paris: IHP-VII Technical Documents in Hydrology N83, IACS Contribution N1, UNESCO-IHP. Fourteau, K., Freitag, J., Malinen, M., & Löwe, H. (2023). Microstructure-based simulations of the viscous densification of snow and firn. EGUsphere, 2023, 1–26. Fourteau, K., Löwe, H., & Freitag, J. (2022). Microstructure-based simulations of the compactive viscosity of snow and firn with isotropic and anisotropic material laws. In International symposium on snow. Davos, Switzerland, 25-30 September 2022. Gagliardini, O., & Meyssonnier, J. (1999). Analytical derivations for the behavior and fabric evolution of a linear orthotropic ice polycrystal. Journal of Geophysical Research: Solid Earth, 104 (B8), 17797-17809. doi: https://doi.org/https://doi.org/10.1029/1999JB900146 Gammon, P. H., Kiefte, H., Clouter, M. J., & Denner, W. W. (1983). Elastic constants of artificial and natural ice samples by Brillouin spectroscopy. Journal of Glaciology, 29(103), 433-460. doi: https://doi.org/10.1017/S002214300030355

440	$(2020). AMITEX_FFTP.$
441	Goldsby, D., & Kohlstedt, D. L. (2001). Superplastic deformation of ice: Exper-
442	imental observations. Journal of Geophysical Research: Solid Earth, 106(B6),
443	11017–11030.
444	Gregory, S. A., Albert, M. R., & Baker, I. (2014). Impact of physical properties and
445	accumulation rate on pore close-off in layered firn. Cruosphere, 8(1), 91–105.
446	doi: https://doi.org/10.5194/tc-8-91-2014
447	Hagenmuller P Calonne N Chambon G Flin F Geindreau C & Naaim
448	M. (2014, 12). Characterization of the snow microstructural bonding sys-
440	tem through the minimum cut density Cold Regions Science and Tech-
450	nology 108 72-79 Retrieved from https://linkinghub elsevier.com/
450	retrieve/nji/S0165232X1400161X doi: https://doi org/10 1016/
451	i coldregions 2014 09 002
452	Hagenmuller P Chambon C Flin F Morin S & Naaim M (2014.8)
453	Snow as a granular material: assessment of a new grain segmentation al-
454	show as a granular material. assessment of a new grain segmentation ar- gorithm $Cranular Matter 16(A) (21-432)$ Botrioved from http://
455	link apringer com/10 1007/g10025-014-0502-7 doi: https://doi.org/
456	10. 1007/a10025_014_0502_7
457	Hagenmuller D. Chember C. Legeffre D. Elin E. & Nacire M. (2012)
458	7) Energy based binews compentation of grow microtone growthis in
459	(). Energy-based binary segmentation of show incrotomographic ini-
460	ages. Journal of Glaciology, 59(217), 859–875. Retrieved from https://
461	www.cambridge.org/core/product/identifier/S0022145000202052/type/
462	$\int \frac{\partial f(x)}{\partial x} = $
463	Hagenmuler, P., Thele, T. C., & Schneedell, M. (2014, 1). Numerical simulation
464	of microstructural damage and tensile strength of snow. Geophysical Research
465	Letters, $41(1)$, $86-89$. Retrieved from http://doi.wiley.com/10.1002/
466	2013GL058078 doi: https://doi.org/10.1002/2013GL058078
467	Helfer, T., Michel, B., Proix, J. M., Salvo, M., Sercombe, J., & Casella, M. (2015).
468	Introducing the open-source miront code generator: Application to mechanical
469	behaviours and material knowledge management within the PLEIADES fuel
470	element modelling platform. Computers and Mathematics with Applications,
471	70(5), 994-1023. Retrieved from http://dx.doi.org/10.1016/j.camwa.2015
472	.06.027 doi: https://doi.org/10.1016/j.camwa.2015.06.027
473	Hondoh, T. (2000). Nature and behavior of dislocations in ice. In T. Hondoh (Ed.),
474	Physics of ice core records (p. 2-34). Sapporo: Hokkaido University Press.
475	Johnson, J. B., & Hopkins, M. A. (2005, 9). Identifying microstructural deformation
476	mechanisms in snow using discrete-element modeling. Journal of Glaciol-
477	ogy, 51(174), 432-442. Retrieved from https://www.cambridge.org/core/
478	product/identifier/S002214300020950//type/journal_article doi:
479	https://doi.org/10.3189/1/2/56505/81829188
480	Kabore, B. W., Peters, B., Michael, M., & Nicot, F. (2021, 5). A discrete element
481	tramework for modeling the mechanical behaviour of snow—Part I: Mechan-
482	ical behaviour and numerical model. Granular Matter, $23(2)$, 42. Retrieved
483	from https://link.springer.com/10.1007/s10035-020-01083-1 doi:
484	https://doi.org/10.1007/s10035-020-01083-1
485	Kirchner, H. O., Michot, G., Narita, H., & Suzuki, T. (2001). Snow as a foam of
486	ice: Plasticity, fracture and the brittle-to-ductile transition. <i>Philosophical Mag-</i>
487	<i>azine A</i> , <i>81</i> (9), 2161–2181. Retrieved from http://dx.doi.org/10.1080/
488	01418610108217141 doi: https://doi.org/10.1080/01418610108217141
489	Köchle, B., & Schneebeli, M. (2014, 7). Three-dimensional microstructure and nu-
490	merical calculation of elastic properties of alpine snow with a focus on weak
491	layers. Journal of Glaciology, 60(222), 705–713. Retrieved from https://
492	www.cambridge.org/core/product/identifier/S0022143000203067/type/
493	journal_article doi: https://doi.org/10.3189/2014JoG13J220
494	Kojima, K. (1967). Densification of seasonal snow cover. <i>Physics of Snow and Ice:</i>

 Kry, P. R. (1975, 1). The Relationship between the Visco-Elastic and Structural Properties of Fine-Grained Snow. Journal of Glaciology, 14(72), 479-500. Retrieved from https://www.cambridge.org/core/product/identifier/ S0022143000021985/type/journal_article doi: https://doi.org/10.3189/S0022143000021985/type/journal_article doi: https://doi.org/10.3189/S0022143000021985/type/journal_article doi: https://doi.org/10.3189/S0022143000021985/type/journal_article doi: https://doi.org/10.3189/S0022143000021985/type/journal_article doi: https://doi.org/10.1016/j.actamat.2008.10.657 doi: https://doi.org/10.1016/j.actamat.2008.10.657 doi: https://doi.org/10.1016/j.actamat.2008.10.657 doi: https://doi.org/10.1016/j.actamat.2008.10.657 Lehning, M., Bartel, P., Brown, R., Fierz, C., & Satyawali, P. K. (2002, 11). A physical SNOWPACK model for the Swiss avalanche warning. Cold Regions Science and Technology, 35(3), 147-167. Retrieved from https://doi.org/10.1016/S0165-232X(02)00073-3 Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., LIGTENBERG, S. R., WADDINGTON, E. D. (2017, 6). Firn Model Intercomparison Experiment (FirnMICE). Journal of Glaciology, 63(239), 401-422. Retrieved from https://www.cambridge.org/core/product/identifier/ S002214301601143/type/journal_article doi: https://doi.org/10.1017/jog.2016.114 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain heterogenetics arising during deformation of ice. Annals of Glaciology, 30, 121-126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Phydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics, J-1-Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticy of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203-221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4(1.)9 Montagnat, M., Bourcier, M.		(1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
 KY, F. R. (1975, 1). The Relationship between the Visco-Listic and Structural Properties of Fine-Grained Sonw. Journal of Glaciology, 17(2), 479–500. Retrieved from https://www.cambridge.org/core/product/lidentifier/ S0022143000021985/tupe/journal.article doi: https://doi.org/10.3189/S0022143000021985 Lebensohn, R. A., Montagnat, M., Mansuy, P., Duval, P., Meyssonnier, J., & Philip, A. (2009). Modeling viscoplastic behavior and heterogeneous intracrystalline deformation of columnar ice polycrystals. Acta Materialia, 57(5), 1405–1415. Retrieved from http://dx.doi.org/10.1016/j.actamat.2008.10.057 Lehning, M., Bartelt, P., Brown, B., Fierz, C., & Satyawali, P. K. (2002, 11). A physical SNOWPACK model for the Swiss avalanche warning. Cold Regions Science and Technology, 35(3), 147–167. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S016523202000733 doi: https://doi.org/10.1016/S0165-2232(02)00073-3 Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., LIGTENNBERG, S. R., WADDINGTON, E. D. (2017, 6). Firm Model Intercomparison Experiment (FirnMICE). Journal of Glaciology, 30, 121–122. Retrieved from https://www.cambridge.org/core/product/identifier/ S0022143016001143/type/journal.article doi: https://doi.org/10.1011/j0g.2016.114 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain heterogeneities arising during deformation of ice. Annals of Glaciology, 30, 121–126. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Journal of Glaciology, 30, 121–126. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Jourology, 10(7)478-3-642-03578-4(L.)4 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203-221). Berlin, Heidelberg: Active di	495	proceedings, 1(2), 929-952.
 Properties of Fine-Grandet Snow. Journal of Glacology, 14 (12), 419-300. Retrieved from https://www.cambridge.org/core/product/identifier/ S0022143000021985 Lebensohn, R. A., Montagnat, M., Mansuy, P., Duval, P., Meyssonnier, J., & Philip, A. (2009). Modeling viscoplastic behavior and heterogeneous intracrystalline deformation of columnar ice polycrystals. Acta Materiala, 57(5), 1405-1415. Retrieved from http://dx.doi.org/10.1016/j.actamat.2008.10.057 Lehning, M., Bartel, P., Brown, R., & Satyawali, P. K. (2002, 11). A physical SNOWPACK model for the Swiss avalanche warning. Cold Regions Science and Technology, 35(3), 147-167. Retrieved from https://doi.org/10.1016/S0165-232X(02)00073-3 Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., LIGTENBERG, S. R., WADDINGTON, E. D. (2017, 6). Firn Model Intercomparison Experiment (FirnMICE). Journal of Claciology, 63(239), 401-422. Retrieved from https://www.cambridge.org/core/product/identifier/ S0022143016001143/type/journal.article doi: https://doi.org/ 10.1017/jog.2016.114 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain heterogenetics arising during deformation of ice. Annals of Glaciology, 30, 121-126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwall 1974 - Snow mechanics), 251-291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131-145. doi: https://doi.org/10.3189/s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticy of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203-221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4(J.)9 Montagnat, M., Capolo, L., & Mansuy, P.	496	Kry, P. R. (1975, 1). The Relationship between the Visco-Elastic and Structural
 Retreved from https://www.cambridge.org/core/product/identilier/ S002214300021985/type/journal.article doi: https://doi.org/ Lebensohn, R. A., Montagnat, M., Mansuy, P., Duval, P., Meyssonnier, J., & Philip, A. (2009). Modeling viscoplastic behavior and heterogeneous intracrystalline deformation of columnar ice polycrystals. Acta Materialia, 57(5), 1405–1415. Retrieved from http://dx.doi.org/10.1016/j.actamat.2008.10.057 Lehning, M., Bartelt, P., Brown, B., Fierz, C., & Satyawali, P. K. (2002, 11). A physical SNOWPACK model for the Swiss avalanche warning. <i>Cold Regions Science and Technology</i>, 35(3), 147–167. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0165232X02000733 doi: https://doi.org/10.1016/S0165-232X(02)0073-3 Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., LIGTENBERG, S. R., WADDINGTON, E. D. (2017, 6). Firm Model Intercomparison Experiment (FirnMICE). Journal of Glaciology, 63(239), 401–422. Retrieved from https://www.cambridge.org/core/product/identifier/ S0022143010001130/type/journal_article doi: https://doi.org/1 10.1017/jog.2016.114 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain heterogenetics arising during deformation of ice. Annals of Glaciology, 30, 121–126. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of lce. Journal of Idquirologial Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251–291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of lce. Journal of Glaciology, 8(52), 131–145. doi: https://doi.org/10.1037/978-3-642-03578-4(1, 54) Mechanics of natural solids (pp. 203-221). Berlin, Heidelberg, Scinger Berlin Heidelberg, Retrieved from https://doi.org/10.107/978-3-642-0357	497	Properties of Fine-Grained Snow. Journal of Glaciology, 14 (72), 479–500.
 S0022143000021985/type/journal.article doi: https://doi.org/ 10.3189/S0022143000021985 Lebensohn, R. A., Montagnat, M., Mansuy, P., Duval, P., Meysonnier, J., & Philip, A. (2009). Modeling viscoplastic behavior and heterogeneous intracrystalline deformation of columnar ice polycrystals. Acta Materialia, 57(5), 1405–1415. Retrieved from http://dx.doi.org/10.1016/j.actamat.2008.10.057 Lehning, M., Bartelt, P., Brown, B., Fierz, C., & Satyawali, P. K. (2002, 11). A physical SNOWPACK model for the Swiss avalanche warning. Cold Regions Science and Technology, 35(3), 147–167. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S016523200200733 doi: https://doi.org/10.1016/S0165-232X(02)00073-3 Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., LIGTENBERG, S. R., WADDINGTON, E. D. (2017, 6). Firm Model Intercomparison Experiment (FirmMICE). Journal of Glaciology, 63(23), 401–422. Retrieved from https://www.cambridge.org/core/product/identifier/ S00221430000200803 Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251–291. Mellor, M., & Tcata, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Claciology, 8(52), 131–145. doi: https://doi.org/10.3189/s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978–3-642-03578-4{_}9 Montagnat, M., Bourcier, M., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/1	498	Retrieved from https://www.cambridge.org/core/product/identifier/
 Lebensohn, R. A., Montagnat, M., Mansuy, P., Duval, P., Meyssonnier, J., & Philip, A. (2009). Modeling viscoplastic behavior and heterogeneous intracrystalline deformation of columnar ice polycrystals. Acta Materialia, 57(5), 1405–1415. Retrieved from http://dx.doi.org/10.1016/j.actamat.2008.10.057 doi: https://doi.org/10.1016/j.actamat.2008.10.057 doi: https://doi.org/10.1016/j.actamat.2008.10.057 Lehning, M., Bartelt, P., Brown, B., Fierz, C., & Satyawali, P. K. (2002, 11). A physical SNOWPACK model for the Swiss avalanche warning. Cold Regions Science and Technology, 35(3), 147–167. Retrieved from https://doi.org/10.1016/S0165-232X(02)00073-3 Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., LIGTENBERG, S. R., WADDINGTON, E. D. (2017, 6). Fim Model Intercomparison Experiment (FirnMICE). Journal of Glaciology, 63(239), 401–422. Retrieved from https://www.cambridge.org/core/product/identifier/S002214301601143/type/journal.article doi: https://doi.org/10.1017/jog.2016.114 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain heterogeneities arising during deformation of ice. Annals of Glaciology, 30, 121–126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251–291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131–145. doi: https://doi.org/10.3189/s0022143000220803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{.}9 Montagnat, M., Bourcier, M., Philip, A., Gons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some	499	S0022143000021985/type/journal_article doi: https://doi.org/
 Lebensohn, K. A., Montagnat, M., Mansuy, P., Duvai, P., Meyssonnier, J., & Philp, A. (2009). Modeling viscoplastic behavior and heterogeneous intracrystalline deformation of columnar ice polycrystals. Acta Materiadia, 57(5), 1405–1415. Retrieved from http://dx.doi.org/10.1016/j.actamat.2008.10.057 Lehning, M., Bartelt, P., Brown, B., Fierz, C., & Satyawali, P. K. (2002, 11). A physical SNOWPACK model for the Swiss avalanche warning. <i>Cold Regions Science and Technology</i>, 35(3), 147–167. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0165232X0200073-3 Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., LIGTENBERG, S. R., WADDINGTON, E. D. (2017, 6). Firn Model Intercomparison Experiment (FirnMICE). Journal of Glaciology, 63(239), 041–422. Re- trieved from https://www.cambridge.org/core/product/identifier/ S0022143016001143/type/journal.article doi: https://doi.org/ 10.1017/jog.2016.114 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain hetero- geneities arising during deformation of ice. Annals of Glaciology, 30, 121–126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114(Symposium at Grindelwald 1974 - Snow mechanics), 251–291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Claciology, 8(52), 131–145. doi: https://doi.org/10.3189/ s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_9} Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190–120	500	10.3189/S0022143000021985
 A. (2009). Modeling viscoplastic behavior and heterolia, 57(5), 1405-1415. Retrieved from http://dx.doi.org/10.1016/j.actamat.2008.10.057 Lehning, M., Bartel, P., Brown, B., Fierz, C., & Satyawali, P. K. (2002, 11). A physical SNOWPACK model for the Swiss avalanche warning. Cold Regions Science and Technology, 35(3), 147-167. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0165232X02000733 doi: https://doi.org/10.1016/S0165-232X(02)00073-3 Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., LIGTENBERG, S. R., WADDINGTON, E. D. (2017, 6). Firm Model Intercomparison Experiment (FirnMICE). Journal of Glaciology, 63(39), 401-422. Retrieved from https://www.cambridge.org/core/product/identifier/ S0022143016001143/type/journal.article doi: https://doi.org/ 0.1017/jog.2016.114 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain heterogeneities arising during deformation of ice. Annals of Glaciology, 30, 121-126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251-291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131-145. doi: https://doi.org/10.3189/ s0022143000020803 Meysonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticty of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203-221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_9} Montagnat, M., Bourcier, M., Philip, A., Coapolo, L., & Mansuy, P. (2009b). Experimental studies of the viscoplasticty of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203-221). Berlin, Heidelberg. Springer Berlin Heidelberg. Network of the viscoplastict	501	Lebensohn, R. A., Montagnat, M., Mansuy, P., Duval, P., Meyssonnier, J., & Philip,
 deformation of countmar ice polycrystams. Acta Maternana, 07(3), 1400–1415. Retrieved from http://dx.doi.org/10.1016/j.actamat.2008.10.057 Lehning, M., Bartelt, P., Brown, B., Fierz, C., & Satyawali, P. K. (2002, 11). A physical SNOWPACK model for the Swiss avalanche warning. <i>Cold Regions Science and Technology</i>, 35(3), 147–167. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0165232X02000733 Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., LIGTENBERG, S. R., WADDINGTON, E. D. (2017, 6). Firm Model Intercomparison Experiment (FirmMICE). Journal of Glaciology, 63(39), 401–422. Retrieved from https://www.cambridge.org/core/product/identifier/ S0022143016001143/type/journal_article doi: https://doi.org/10.1016/S0007 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain heterogeneities arising during deformation of ice. Annals of Glaciology, 30, 121–126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251–291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131–145. doi: https://doi.org/10.3189/ s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978–3-642-03578–4(\.)9 Mextanie, M., Castelnau, O., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190–1204. doi: https://doi.org/10.1017/978–3-642-03578–4.9. Montagnat, M., Bourcier, M., Philip, A.,	502	A. (2009). Modeling viscoplastic behavior and neterogeneous intracrystalline
 Retrieved from http://dx.doi.org/10.1016/j.actamat.2008.10.057 Lehning, M., Bartelt, P., Brown, B., Fierz, C., & Satyawali, P. K. (2002, 11). A physical SNOWPACK model for the Swiss avalanche warning. Cold Regions Science and Technology, 35(3), 147-167. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0165232X02000733 doi: https://doi.org/10.1016/S0165-232X(02)00073-3 Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., LIGTENBERG, S. R., WADDINGTON, E. D. (2017, 6). Firn Model Intercomparison Experiment (FirnMCE). Journal of Clacology, 63(239), 401-422. Retrieved from https://www.cambridge.org/core/product/identifier/ S0022143016001143/type/journal.article doi: https://doi.org/10.1017/jog.2016.114 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain heterogeneities arising during deformation of icc. Annals of Claciology, 30, 121-126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251-291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131-145. doi: https://doi.org/10.3189/s0022143000020803 Meysonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203-221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4(\.)9 Meysonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203-221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4.9 Mortagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., De	503	deformation of columnar ice polycrystals. Acta Materialia, $57(5)$, 1405–1415.
 https://doi.org/10.1016/j.actamat.2008.10.05/ Lehning, M., Bartelt, P., Brown, B., Fierz, C., & Satyawali, P. K. (2002, 11). A physical SNOWPACK model for the Swiss avalanche warning. Cold Regions Science and Technology, 35(3), 147–167. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S016523202000733 doi: https://doi.org/10.1016/S0165-232X(02)00073-3 Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., LIGTENBERG, S. R., WADDINGTON, E. D. (2017, 6). Firm Model Intercomparison Experiment (FirnMICE). Journal of Glaciology, 63(239), 401-422. Retrieved from https://www.cambridge.org/core/product/identifier/ S0022143016001143/type/journal.article doi: https://doi.org/ 10.1017/jog.2016.114 Mansuy, P., Phillp, A., & Meyssonnier, J. (2000). Identification of strain heterogeneities arising during deformation of ice. Annals of Glaciology, 30, 121–126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251–291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131–145. doi: https://doi.org/10.3189/ s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Springer Berlin Heidelberg, doi: https://doi.org/10.1007/978-3-642-03578-4(\.)9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4(\.)9 Metsgrant, M., Bourcier, M., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Text	504	Retrieved from $http://dx.doi.org/10.1016/j.actamat.2008.10.057 doi:$
 Leining, M., Bartelt, F., Brown, B., Fierz, C., & Satyawal, P. K. (2002, 11). A physical SNOWPACK model for the Swiss avalanche warning. <i>Cold Regions Science and Technology</i>, <i>35</i>(3), 147–167. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0165232X02000733 Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., LIGTENBERG, S. R., WADDINGTON, E. D. (2017, 6). Firn Model Intercomparison Experiment (FirnMICE). Journal of Glaciology, <i>63</i>(239), 401–422. Re- trieved from https://www.cambridge.org/core/product/identifier/ S0022143016001143/type/journal_article Mansuy, P., Philp, A., & Meyssonnier, J. (2000). Identification of strain hetero- geneities arising during deformation of ice. <i>Annals of Glaciology</i>, <i>30</i>, 121–126. Mellor, M. (1975). A review of basic snow mechanics. International Association of <i>Hydrological Sciences Publication</i>, <i>114</i> (Symposium at Grindelwald 1974 - Snow mechanics), 251–291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, <i>8</i>(52), 131–145. doi: https://doi.org/10.3189/ s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), <i>Mechanics of natural solids</i> (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{\.}9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large halistones with an automated technique. Journal of Glaciology, <i>67</i>(266), 1190–1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Castelnau, C., Borou, F., Tomma	505	nttps://doi.org/10.1016/j.actamat.2008.10.05/
 Appysical SNOWFACK model for the Swiss avalanche warming. Cold Regions Science and Technology, 35(3), 147-167. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0165232X02000733 doi: https://doi.org/10.1016/S0165-232X(02)00073-3 Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., LIGTENBERG, S. R., WADDINGTON, E. D. (2017, 6). Firn Model Intercomparison Experiment (FirnMICE). Journal of Glaciology, 63(239), 401-422. Retrieved from https://www.cambridge.org/core/product/identifier/ S0022143016001143/type/journal_article doi: https://doi.org/10.1017/jog.2016.114 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain heterogenetites arising during deformation of ice. Annals of Glaciology, 30, 121-126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251-291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131-145. doi: https://doi.org/10.3189/ s002214300020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203-221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203-221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4{_}9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large halistones with an automated technique. Journal of Glaciology,	506	Lehning, M., Bartelt, P., Brown, B., Fierz, C., & Satyawali, P. K. (2002,
 Cold Regions Science and Technology, 35(3), 147–167. Retrieved from https://doi.org/10.1016/S0165-232X(02)00073-3 doi: https://doi.org/10.1016/S0165-232X(02)00073-3 Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., LIGTENBERG, S. R., WADDINGTON, E. D. (2017, 6). Firm Model Intercomparison Experiment (FirnMICE). Journal of Glaciology, 63(239), 401–422. Retrieved from https://www.cambridge.org/core/product/identifier/ S0022143016001143/type/journal_article doi: https://doi.org/ 10.1017/jog.2016.114 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain heterogenetites arising during deformation of ice. Annals of Glaciology, 30, 121–126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251–291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131–145. doi: https://doi.org/10.3189/s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{\.}9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Berlin, Heidelberg. Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4{\.}9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciolo	507	11). A physical SNOWPACK model for the Swiss avalanche warning.
 https://linkinghub.elsevier.com/retrieve/pii/S01652320200733 https://doi.org/10.1016/S0165-3232(02)00073-3 Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., LIGTENBERG, S. R., WADDINGTON, E. D. (2017, 6). Firm Model Intercomparison Experiment (FirnMICE). Journal of Glaciology, 63(239), 401-422. Retrieved from https://www.cambridge.org/core/product/identifier/ S0022143016001143/type/journal.article doi: https://doi.org/10.1017/jog.2016.114 Mansuy, P., Philip, A., & Meysonnier, J. (2000). Identification of strain heterogeneities arising during deformation of ice. Annals of Glaciology, 30, 121-126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251-291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131-145. doi: https://doi.org/10.3189/ s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203-221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{\}9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of sone large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190-1204. doi: https://doi.org/10.1017/978-3-642-03578-4{\}9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of sone large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190-1204. doi: https://doi.org/10.1017/978-3-642-03578-4{\}9 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet-Chaulet, F., Su	508	Cold Regions Science and Technology, 35(3), 147–167. Retrieved from
 doi: https://doi.org/10.1016/S0165-232X(02)000/3-3 Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., LIGTENBERG, S. R., WADDINGTON, E. D. (2017, 6). Firm Model Intercomparison Experiment (FirnMICE). Journal of Glaciology, 63(239), 401-422. Retrieved from https://www.cambridge.org/core/product/identifier/ S0022143016001143/type/journal_article doi: https://doi.org/10.1017/jog.2016.114 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain heterogeneities arising during deformation of ice. Annals of Glaciology, 30, 121-126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251-291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131-145. doi: https://doi.org/10.3189/s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203-221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203-221). Berlin. Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4{_}9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190-1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet-Chaulet, F., Suquet, P. (2014). Multiscale	509	https://linkinghub.elsevier.com/retrieve/pii/S0165232X02000/33
 Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., LIGTENBERG, S. R., WADDINGTON, E. D. (2017, 6). Firn Model Intercomparison Experiment (FirnMICE). Journal of Glaciology, 63(239), 401–422. Re- trieved from https://www.cambridge.org/core/product/identifier/ S0022143016001143/type/journal_article doi: https://doi.org/ 10.1017/jog.2016.114 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain hetero- geneities arising during deformation of ice. Annals of Glaciology, 30, 121–126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251–291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131–145. doi: https://doi.org/10.3189/ s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), <i>Mechanics of natural solids</i> (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental stud- ies of the viscoplasticty of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), <i>Mechanics of natural solids</i> (pp. 203–221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4.9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Claciology, 67(266), 1190–1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol.	510	doi: https://doi.org/10.1016/S0165-232X(02)000/3-3
 S. K., WADDINGTON, E. D. (2017, 6). Firm Model Intercomparison Experiment (FirmMICE). Journal of Glaciology, 63(239), 401-422. Re- trieved from https://www.cambridge.org/core/product/identifier/ S0022143016001143/type/journal.article doi: https://doi.org/ 10.1017/jog.2016.114 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain hetero- geneities arising during deformation of ice. Annals of Glaciology, 30, 121-126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251-291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131-145. doi: https://doi.org/10.3189/ s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203-221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{\.}9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental studies ies of the viscoplasticty of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203-221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4{\.}9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190-1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chave, T., Barou, F., Tommasi, A., B	511	Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., LIGTENBERG,
 Experiment (FirmMICE). Journal of Glaciology, 53(239), 401-422. Retrieved from https://www.cambridge.org/core/product/identifier/ S0022143016001143/type/journal_article doi: https://doi.org/ 10.1017/jog.2016.114 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain heterogenetics arising during deformation of ice. Annals of Glaciology, 30, 121-126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251-291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131-145. doi: https://doi.org/10.3189/s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203-221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{\.}9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental studies of the viscoplasticty of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203-221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4{\.}9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190-1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet-Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chave, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). A	512	S. R., WADDINGTON, E. D. (2017, 6). Firm Model Intercomparison
 theved from https://www.cambridge.org/core/product/identifier/ S0022143016001143/type/journal_article doi: https://doi.org/ 10.1017/jog.2016.114 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain hetero- genetices arising during deformation of ice. Annals of Glaciology, 30, 121–126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251–291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131–145. doi: https://doi.org/10.3189/ s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Metchanics of natural solids (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4{_}9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190–1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet-Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: htttps://doi.org/10.1016/j.jsg.2021.05.002 Montagn	513	Experiment (FirnMICE). Journal of Glaciology, 63(239), 401–422. Re-
 S002143016001143/type/journal_art161e doi: https://doi.org/ 10.1017/jog.2016.114 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain hetero- geneities arising during deformation of ice. Annals of Glaciology, 30, 121–126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251–291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131–145. doi: https://doi.org/10.3189/ s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental stud- ies of the viscoplasticty of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4{_}9 doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190–1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, 3, 81. Morin, S., Horton, S., Techel, F., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Scien	514	trieved from https://www.cambridge.org/core/product/identifier/
 10.101//jog.2016.114 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain hetero- genetices arising during deformation of ice. Annals of Glaciology, 30, 121–126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251–291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131–145. doi: https://doi.org/10.3189/ s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental stud- ies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4.9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190–1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, 3, 81. Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Appli	515	S0022143016001143/type/journal_article doi: https://doi.org/
 Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain heterogeneities arising during deformation of ice. Annals of Glaciology, 30, 121–126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251–291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131–145. doi: https://doi.org/10.3189/ s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_99} Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental studies of the viscoplasticty of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4{_99} Moyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental studies of the viscoplasticty of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4{_99} Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190–1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet-Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chauve,	516	10.1017/jog.2016.114
 genetites arising during deformation of ice. Annals of Glaciology, 30, 121–126. Mellor, M. (1975). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251–291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131–145. doi: https://doi.org/10.3189/ s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental studies of the viscoplasticty of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4{_}9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190–1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, 3, 81. Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current	517	Mansuy, P., Philip, A., & Meyssonnier, J. (2000). Identification of strain hetero-
 Mellor, M. (1973). A review of basic snow mechanics. International Association of Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251–291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131–145. doi: https://doi.org/10.3189/ s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental stud- ies of the viscoplasticty of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4{_}9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190–1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, 3, 81. Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, v. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current im- plementations and prospects for the future. Cold Regions Science and Technology, 170(O	518	generities arising during deformation of ice. Annals of Glaciology, 30, 121–126.
 Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow mechanics), 251–291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131–145. doi: https://doi.org/10.3189/ s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4{_}9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstone with an automated technique. Journal of Glaciology, 67(266), 1190–1204. doi: https://doi.org/10.1017/j0g.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet-Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, 3, 81. Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current implementations and prospects for the future. Cold Regions Science and Science and Science and prospects for the future. Cold Regions Science and Science and Science and prosp	519	Mellor, M. (1975). A review of basic snow mechanics. International Association of
 mechanics), 251–291. Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131–145. doi: https://doi.org/10.3189/ s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_J9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental stud- ies of the viscoplasticty of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4.9 doi: https://doi.org/10.1007/978-3-642-03578-4.59 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190–1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, 3, 81. Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current im- plementations and prospects for the future. Cold Regions Science and Technology, 170(October 2019), 102910. Retrieved from http://www .sciencedirect.com/science/article/pii/S0165232X19302071https://	520	Hydrological Sciences Publication, 114 (Symposium at Grindelwald 1974 - Snow
 Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice. Journal of Glaciology, 8(52), 131-145. doi: https://doi.org/10.3189/ s0022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203-221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental stud- ies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203-221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4.9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190-1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, 3, 81. Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current im- plementations and prospects for the future. Cold Regions Science and Technology, 170(October 2019), 102910. Retrieved from http://www .sciencedirect.com/science/article/pii/S0165232X19302071https:// 	521	mechanics), $251-291$.
 Journal of Glaciology, 8(52), 131–145. doi: https://doi.org/10.3189/ so022143000020803 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), Mechanics of natural solids (pp. 203–221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4{_}9 doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190–1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet-Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, 3, 81. Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current implementations and prospects for the future. Cold Regions Science and Technology, 170(October 2019), 102910. Retrieved from http://www<td>522</td><td>Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice.</td>	522	Mellor, M., & Testa, R. (1969). Effect of Temperature on the Creep of Ice.
 ⁵²⁴ S002214300020803 ⁵²⁵ Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), <i>Mechanics of natural solids</i> (pp. 203–221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 ⁵²⁹ Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental stud- ies of the viscoplasticty of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), <i>Mechanics of natural solids</i> (pp. 203–221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4_9 ⁵³⁰ doi: https://doi.org/10.1007/978-3-642-03578-4_9 ⁵³¹ Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. <i>Journal of Glaciology</i>, <i>67</i>(266), 1190–1204. doi: https://doi.org/10.1017/jog.2021.66 ⁵³² Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- Chaulet, F., Suquet, P. (2014). <i>Multiscale modeling of ice deformation behavior</i> (Vol. 61). doi: https://doi.org/10.1016/j.jgg.2013.05.002 ⁵⁴³ Morin, S., Horton, S., Techel, F., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, <i>3</i>, 81. ⁵⁴⁴ Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current im- plementations and prospects for the future. <i>Cold Regions Science and Technology</i>, <i>170</i>(October 2019), 102910. Retrieved from http://www .sciencedirect.com/science/article/pii/S0165232X19302071https:// 	523	Journal of Glaciology, 8(52), 131-145. doi: https://doi.org/10.3189/
 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), <i>Mechanics of natural solids</i> (pp. 203-221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental stud- ies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), <i>Mechanics of natural solids</i> (pp. 203-221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4.9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. <i>Journal of Glaciology</i>, 67(266), 1190-1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- Chaulet, F., Suquet, P. (2014). <i>Multiscale modeling of ice deformation behavior</i> (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. <i>Frontiers in Earth Science</i>, <i>3</i>, 81. Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current im- plementations and prospects for the future. <i>Cold Regions Science and Technology</i>, <i>170</i>(October 2019), 102910. Retrieved from http://www .sciencedirect.com/science/article/pii/S0165232V19302071https:// 	524	s0022143000020803
 of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), <i>Mechanics of natural solids</i> (pp. 203-221). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental stud- ies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), <i>Mechanics of natural solids</i> (pp. 203-221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4{_}9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. <i>Journal of Glaciology</i>, 67(266), 1190-1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- Chaulet, F., Suquet, P. (2014). <i>Multiscale modeling of ice deformation behavior</i> (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. <i>Frontiers in Earth Science</i>, <i>3</i>, 81. Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current im- plementations and prospects for the future. <i>Cold Regions Science and Technology</i>, <i>170</i>(October 2019), 102910. Retrieved from http://www .sciencedirect.com/science/article/pii/S0165232N19302071https:// 	525	Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009a). Experimental studies
 Mechanics of natural solids (pp. 203-221). Springer Berlin Heldelberg. doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental stud- ies of the viscoplasticty of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), <i>Mechanics of natural solids</i> (pp. 203-221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4{_}9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. <i>Journal of Glaciology</i>, 67(266), 1190-1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- Chaulet, F., Suquet, P. (2014). <i>Multiscale modeling of ice deformation behavior</i> (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. <i>Frontiers in Earth Science</i>, <i>3</i>, 81. Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current im- plementations and prospects for the future. <i>Cold Regions Science and Technology</i>, 170(October 2019), 102910. Retrieved from http://www .sciencedirect.com/science/article/pii/S0165232X19302071https:// 	526	of the viscoplasticity of ice and show. In D. Kolymbas & G. Viggiani (Eds.),
 ⁵²⁸ https://doi.org/10.100//9/8-3-642-035/8-44(_}9 ⁵²⁹ Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental stud- ⁵³⁰ ies of the viscoplasticty of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), ⁵³¹ <i>Mechanics of natural solids</i> (pp. 203–221). Berlin, Heidelberg: Springer Berlin ⁵³² Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4.9 ⁵³³ doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 ⁵³⁴ Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., ⁵³⁵ & Hereil, P. (2021). Texture characterization of some large hailstones with ⁵³⁶ an automated technique. <i>Journal of Glaciology</i>, <i>67</i>(266), 1190–1204. doi: ⁵³⁷ https://doi.org/10.1017/jog.2021.66 ⁵³⁸ Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- ⁵⁴⁰ Chaulet, F., Suquet, P. (2014). <i>Multiscale modeling of ice deformation ⁵⁴¹ behavior</i> (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 ⁵⁴² Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, ⁵⁴³ C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation ⁵⁴⁴ mapping. <i>Frontiers in Earth Science</i>, <i>3</i>, 81. ⁵⁴⁵ Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, ⁵⁴⁶ V. (2020, 2). Application of physical snowpack models in support of ⁵⁴⁷ operational avalanche hazard forecasting: A status report on current im- ⁵⁴⁸ plementations and prospects for the future. <i>Cold Regions Science and</i> ⁵⁴⁹ <i>Technology</i>, <i>170</i>(October 2019), 102910. Retrieved from http://www ⁵⁴⁹ sciencedirect.com/science/article/pii/S0165232X19302071https:// 	527	Mechanics of natural solids (pp. 203–221). Springer Berlin Heidelberg. doi:
 Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental studies of the viscoplasticity of ice and snow. In D. Kolymbas & G. Viggiani (Eds.), <i>Mechanics of natural solids</i> (pp. 203–221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4_9 doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190–1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet-Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, 3, 81. Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current implementations and prospects for the future. Cold Regions Science and Technology, 170(October 2019), 102910. Retrieved from http://www 	528	$nttps://doi.org/10.100//9/8-3-642-035/8-4(1_)9$
 ⁵³⁰ Ies of the Viscoplasticity of ice and show. In D. Kolymbas & G. Viggani (Eds.), <i>Mechanics of natural solids</i> (pp. 203–221). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4{>9 ⁵³³ doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 ⁵³⁴ Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. <i>Journal of Glaciology</i>, 67(266), 1190–1204. doi: https://doi.org/10.1017/jog.2021.66 ⁵³⁶ Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- Chaulet, F., Suquet, P. (2014). <i>Multiscale modeling of ice deformation behavior</i> (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 ⁵⁴¹ Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. <i>Frontiers in Earth Science</i>, <i>3</i>, 81. ⁵⁴⁴ Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, ⁵⁴⁵ V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current im- plementations and prospects for the future. <i>Cold Regions Science and Technology</i>, <i>170</i>(October 2019), 102910. Retrieved from http://www .sciencedirect.com/science/article/pii/S0165232X19302071https:// 	529	Meyssonnier, J., Philip, A., Capolo, L., & Mansuy, P. (2009b). Experimental stud-
 Mechanics of natural solids (pp. 203-221). Bernin, Heidelberg: Springer Bernin Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-03578-4_9 doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190-1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, 3, 81. Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current im- plementations and prospects for the future. Cold Regions Science and Technology, 170(October 2019), 102910. Retrieved from http://www .sciencedirect.com/science/article/pii/S0165232X19302071https:// 	530	Machanica of natural solids (an. 202, 201) Dealin Heidelberge Caringen Dealin
 ⁵³² doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 ⁵³³ doi: https://doi.org/10.1007/978-3-642-03578-4{_}9 ⁵³⁴ Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., ⁵³⁵ & Hereil, P. (2021). Texture characterization of some large hailstones with ⁵³⁶ an automated technique. Journal of Glaciology, 67(266), 1190-1204. doi: ⁵³⁷ https://doi.org/10.1017/jog.2021.66 ⁵³⁸ Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- ⁵³⁹ Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation ⁵⁴⁰ behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 ⁵⁴¹ Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, ⁵⁴² C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation ⁵⁴³ mapping. Frontiers in Earth Science, 3, 81. ⁵⁴⁴ Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, ⁵⁴⁵ V. (2020, 2). Application of physical snowpack models in support of ⁵⁴⁶ operational avalanche hazard forecasting: A status report on current im- ⁵⁴⁷ plementations and prospects for the future. Cold Regions Science and ⁵⁴⁸ Technology, 170 (October 2019), 102910. Retrieved from http://www 	531	Mechanics of natural solids (pp. 205–221). Berlin, Heidelberg: Springer Berlin Heidelberg. Detrieved from https://doi.org/10.1007/078.2.640.02578.4.0
 Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconinck, P., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190–1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, 3, 81. Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current im- plementations and prospects for the future. Cold Regions Science and Technology, 170 (October 2019), 102910. Retrieved from http://www .sciencedirect.com/science/article/pii/S0165232X19302071https:// 	532	dei: https://doi.org/10.1007/978-3-642-03578-4_9
 Montagnat, M., Bourcler, M., Finip, A., Bons, F. D., Bauer, C. C., Deconnick, F., & Hereil, P. (2021). Texture characterization of some large hailstones with an automated technique. Journal of Glaciology, 67(266), 1190–1204. doi: https://doi.org/10.1017/jog.2021.66 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, 3, 81. Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current im- plementations and prospects for the future. Cold Regions Science and Technology, 170 (October 2019), 102910. Retrieved from http://www sciencedirect.com/science/article/pii/S0165232X19302071https:// 	533	Montagmat M = Baumain M = Bhilin A = Bana B = D = Bauan C = C = Dacaminal B
 ⁵³⁵ & & Herell, F. (2021). Texture characterization of some large nanstones with an automated technique. Journal of Glaciology, 67(266), 1190–1204. doi: https://doi.org/10.1017/jog.2021.66 ⁵³⁸ Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 ⁵⁴⁰ Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, 3, 81. ⁵⁴⁴ Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, ⁵⁴⁵ V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current im- plementations and prospects for the future. Cold Regions Science and Technology, 170 (October 2019), 102910. Retrieved from http://www .sciencedirect.com/science/article/pii/S0165232X19302071https:// 	534	Montagnat, M., Bourcier, M., Philip, A., Bons, P. D., Bauer, C. C., Deconnick, P.,
 ⁵³⁶ an automated technique. <i>Journal of Glaciology</i>, 07(200), 1190–1204. doi: https://doi.org/10.1017/jog.2021.66 ⁵³⁷ Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- ⁵³⁹ Chaulet, F., Suquet, P. (2014). <i>Multiscale modeling of ice deformation</i> <i>behavior</i> (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 ⁵⁴¹ Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. <i>Frontiers in Earth Science</i>, <i>3</i>, 81. ⁵⁴⁴ Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, ⁵⁴⁵ V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current im- ⁵⁴⁶ plementations and prospects for the future. <i>Cold Regions Science and</i> <i>Technology</i>, 170(October 2019), 102910. Retrieved from http://www .sciencedirect.com/science/article/pii/S0165232X19302071https:// 	535	& Herein, F. (2021). Texture characterization of some large nanstones with an automated technique — Learned of Classicleary 67(266) 1100–1204 — doi:
 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O., Gillet- Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, 3, 81. Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current im- plementations and prospects for the future. Cold Regions Science and Technology, 170 (October 2019), 102910. Retrieved from http://www .sciencedirect.com/science/article/pii/S0165232X19302071https:// 	536	an automated technique. $Journal of Glaciology, 07(200), 1190-1204.$ doi:
 Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagnardini, O., Ginet- Chaulet, F., Suquet, P. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, 3, 81. Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current im- plementations and prospects for the future. Cold Regions Science and Technology, 170 (October 2019), 102910. Retrieved from http://www .sciencedirect.com/science/article/pii/S0165232X19302071https:// 	537	Montagmat M. Castalnay, O. Bang D. D. Favia, S. H. Carliardini, O. Cillet
 ⁵³⁹ Chaulet, F., Suquet, F. (2014). Multiscale modeling of ice deformation behavior (Vol. 61). doi: https://doi.org/10.1016/j.jsg.2013.05.002 ⁵⁴¹ Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, 3, 81. ⁵⁴³ Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current im- plementations and prospects for the future. Cold Regions Science and Technology, 170 (October 2019), 102910. Retrieved from http://www .sciencedirect.com/science/article/pii/S0165232X19302071https:// 	538	Chaulat E Sucurat D (2014) Multiscale modeling of ice deformation
 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, 3, 81. Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current im- plementations and prospects for the future. Cold Regions Science and Technology, 170 (October 2019), 102910. Retrieved from http://www 	539	behavior (Vol. 61), doi: https://doi.org/10.1016/j.jog.2012.05.002
 Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., & Fressengeas, C. (2015). Analysis of dynamic recrystallization of ice from ebsd orientation mapping. Frontiers in Earth Science, 3, 81. Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, V. (2020, 2). Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current im- plementations and prospects for the future. Cold Regions Science and Technology, 170 (October 2019), 102910. Retrieved from http://www .sciencedirect.com/science/article/pii/S0165232X19302071https:// 	540	Mantagmat M. Chauna T. Danay E. Teremagi A. Dagugin D. & Enggan mag
 ⁵⁴² C. (2013). Analysis of dynamic recrystallization of ice from eosd orientation ⁵⁴³ mapping. Frontiers in Earth Science, 3, 81. ⁵⁴⁴ Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, ⁵⁴⁵ V. (2020, 2). Application of physical snowpack models in support of ⁵⁴⁶ operational avalanche hazard forecasting: A status report on current im- ⁵⁴⁷ plementations and prospects for the future. Cold Regions Science and ⁵⁴⁸ Technology, 170 (October 2019), 102910. Retrieved from http://www ⁵⁴⁹ .sciencedirect.com/science/article/pii/S0165232X19302071https:// 	541	C (2015) Analysis of dynamic reconstabilization of ico from obed evicentation
 ⁵⁴³ Inapping. Frontiers in Earth Science, 5, 81. ⁵⁴⁴ Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Vionnet, ⁵⁴⁵ V. (2020, 2). Application of physical snowpack models in support of ⁵⁴⁶ operational avalanche hazard forecasting: A status report on current im- ⁵⁴⁷ plementations and prospects for the future. Cold Regions Science and ⁵⁴⁸ Technology, 170 (October 2019), 102910. Retrieved from http://www ⁵⁴⁹ .sciencedirect.com/science/article/pii/S0165232X19302071https:// 	542	mapping Frontione in Farth Science 2 81
 ⁵⁴⁴ Inform, S., Horton, S., Techer, F., Bavay, M., Coleou, C., Flerz, C., Vionnet, ⁵⁴⁵ V. (2020, 2). Application of physical snowpack models in support of ⁵⁴⁶ operational avalanche hazard forecasting: A status report on current im- ⁵⁴⁷ plementations and prospects for the future. <i>Cold Regions Science and</i> ⁵⁴⁸ <i>Technology</i>, 170 (October 2019), 102910. Retrieved from http://www ⁵⁴⁹ .sciencedirect.com/science/article/pii/S0165232X19302071https:// 	543	mapping. Frontiers in Latific Science, 5, 61. Movin & Howton & Tochol F. Davoy, M. Colácy, C. Fierra, C. Missard, M.
545V.(2020, 2).Application of physical showpack models in support of546operational avalanche hazard forecasting: A status report on current im-547plementations and prospects for the future.Cold Regions Science and548Technology, 170 (October 2019), 102910.Retrieved from http://www549.sciencedirect.com/science/article/pii/S0165232X19302071https://	544	V (2020 2) Application of physical spowneds models in support of
 ⁵⁴⁶ operational avalance hazard forecasting. A status report on current liff- ⁵⁴⁷ plementations and prospects for the future. Cold Regions Science and ⁵⁴⁸ Technology, 170 (October 2019), 102910. Retrieved from http://www ⁵⁴⁹ sciencedirect.com/science/article/pii/S0165232X19302071https:// 	545	v. (2020, 2). Application of physical showpack models in support of operational avalanche bagard forecasting. A status report on support in
547prementations and prospects for the future.Cola Regions Science and548Technology, 170 (October 2019), 102910.Retrieved from http://www549.sciencedirect.com/science/article/pii/S0165232X19302071https://	546	plomontations and prospects for the future Cold Decione Science and
see sciencedirect.com/science/article/pii/S0165232X19302071https://	547	Technology 170 (October 2010) 102010 Betrioved from http://www.
	549	.sciencedirect.com/science/article/pii/S0165232X19302071https://

550	linkinghub.elsevier.com/retrieve/pii/S0165232X19302071https://
551	doi.org/10.1016/j.coldregions.2019.102910 doi: https://doi.org/
552	10.1016/j.coldregions.2019.102910
553	Peinke, I., Hagenmuller, P., Andò, E., Chambon, G., Flin, F., & Roulle, J. (2020,
554	3). Experimental Study of Cone Penetration in Snow Using X-Ray To-
555	mography. Frontiers in Earth Science, 8, 63. Retrieved from https://
556	www.frontiersin.org/article/10.3389/feart.2020.00063https://
557	www.frontiersin.org/article/10.3389/feart.2020.00063/full doi:
558	https://doi.org/10.3389/feart.2020.00063
559	Peters, B., Kabore, B. W., Michael, M., & Nicot, F. (2021). A discrete ele-
560	ment framework for modeling the mechanical behaviour of snow Part II:
561	model validation. <i>Granular Matter</i> , 23(2). Retrieved from https://
562	doi.org/10.1007/s10035-020-01084-0 doi: https://doi.org/10.1007/
563	s10035-020-01084-0
564	Petrovic, J. J. (2003). Mechanical properties of ice and snow. Journal of Materials
565	Science, 38, 1–6.
566	Rai, R., & Ashby, M. (1971). On grain boundary sliding and diffusional creep. Met-
567	alluraical transactions, 2, 1113–1127.
569	Reuter B Proksch M Löwe H van Herwijnen A & Schweizer J (2019)
500	2) Comparing measurements of snow mechanical properties relevant
570	for slab avalanche release <i>Journal of Glaciology</i> 65(249) 55–67 Re-
571	trieved from https://www.cambridge.org/core/product/identifier/
572	S002214301800093X/type/journal article doi: https://doi.org/
573	10.1017/jog.2018.93
574	Riche F Montagnat M & Schneebeli M (2013) Evolution of crystal orienta-
574	tion in snow during temperature gradient metamorphism Journal of Glaciol-
575	aau = 59(213) = 47-55 doi: https://doi org/10.3189/2013.JoG12.J116
570	Scapozza C & Bartelt P (2003) Triaxial tests on snow at low strain rate part ii
577	$Constitutive behaviour Journal of Claciology \sqrt{9(164)} 91–101 doi: https://$
570	doi org/10 3189/172756503781830890
579	Schneebeli M $(2004, 0)$ Numerical simulation of elastic stress in the microstruc-
580	ture of snow Annals of Clasiology 38, 339–342 Betrieved from https://
201	www.cambridge.org/core/product/identifier/S0260305500256231/type/
583	iournal article doi: https://doi org/10.3189/172756404781815284
505	Schultz T Müller B Gross D & Humbert A (2022) On the contribution
504	of grain boundary sliding type creep to firm densification - An assessment
505	using an optimization approach $The Cruosnhere 16(1)$ 143–158 doi:
500	https://doi org/10 5194/tc=16=143=2022
500	Shapiro I. H. Johnson I. B. Sturm M. & Blaisdell G. L. (1997) Snow me-
500	chanics - Review of the state of knowledge and applications CRREL Report
509	07(3)
590	Simson A Löwe H & Kowalski I (2021) Elements of future snowpack model-
591	ing - part 2: A modular and extendable cularian-lagrangian numerical scheme
592	for coupled transport phase changes and settling processes The Crucenhere
593	15(12) $5423-5445$ Betrieved from https://tc.conernicus.org/articles/
594	15/5423/2021/ doi: https://doi org/10/5194/tc=15-5423-2021
595	Srivestava P K Mahajan P Satvawali P K l_r Kumar V (2010.0) Obsor
596	vation of tomporature gradient metamorphism in snow by X ray computed
597	microtomography: measurement of microstructure parameters and simula
290	tion of linear elastic properties $Annals$ of Classiclosu 51(54), 73–89 doi:
299	https://doi org/10.3189/172756410791386571
000	Sundu K Ottersherg R Jaggi M & Löwe H (2024) A grain size driven transi
001	tion in the deformation mechanism in slow snow compression Acta Materialia
603	262 119359
604	Sucuet P. Moulinec H. Castelnau O. Montagnat M. Labollog N. Cronnerat
004	buquet, 1., mounnee, 11., Casteman, O., montagnat, M., Danenee, M., Glennerat,

605	F., Brenner, R. (2012). Multi-scale modeling of the mechanical behavior
606	of polycrystalline ice under transient creep. Procedia IUTAM, 3, 76–90. doi:
607	https://doi.org/10.1016/j.piutam.2012.03.006
608	Theile, T., Löwe, H., Theile, T., & Schneebeli, M. (2011). Simulating creep of snow
609	based on microstructure and the anisotropic deformation of ice. Acta Materi-
610	$alia,\ 59(18),\ 7104-7113.$
611	Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P.,
612	Willemet, JM. (2012). The detailed snowpack scheme Crocus and its imple-
613	mentation in SURFEX v7 . 2. Geoscientific Model Development, 5, 773–791.
614	doi: https://doi.org/10.5194/gmd-5-773-2012
615	Védrine, L., Hagenmuller, P., Gélébart, L., Montagnat, M., & Bernard, A. (2023,
616	December). Supplementary data for "Role of ice mechanics on snow vis-
617	coplasticity" [Dataset, Codes and Sofware]. Zenodo. Retrieved from
618	https://doi.org/10.5281/zenodo.10340967 doi: https://doi.org/
618 619	https://doi.org/10.5281/zenodo.10340967 doi: https://doi.org/ 10.5281/zenodo.10340967
618 619 620	https://doi.org/10.5281/zenodo.10340967doi: https://doi.org/10.5281/zenodo.10340967Wautier, A., Geindreau, C., & Flin, F. (2015). Linking snow microstructure to its
618 619 620 621	 https://doi.org/10.5281/zenodo.10340967 doi: https://doi.org/10.5281/zenodo.10340967 Wautier, A., Geindreau, C., & Flin, F. (2015). Linking snow microstructure to its macroscopic elastic stiffness tensor: A numerical homogenization method and
618 619 620 621 622	 https://doi.org/10.5281/zenodo.10340967 doi: https://doi.org/10.5281/zenodo.10340967 Wautier, A., Geindreau, C., & Flin, F. (2015). Linking snow microstructure to its macroscopic elastic stiffness tensor: A numerical homogenization method and its application to 3-D images from X-ray tomography. Geophysical Research
618 619 620 621 622 623	 https://doi.org/10.5281/zenodo.10340967 doi: https://doi.org/10.5281/zenodo.10340967 Wautier, A., Geindreau, C., & Flin, F. (2015). Linking snow microstructure to its macroscopic elastic stiffness tensor: A numerical homogenization method and its application to 3-D images from X-ray tomography. <i>Geophysical Research Letters</i>, 42(19), 8031–8041. doi: https://doi.org/10.1002/2015GL065227
618 619 620 621 622 623 624	 https://doi.org/10.5281/zenodo.10340967 doi: https://doi.org/10.5281/zenodo.10340967 Wautier, A., Geindreau, C., & Flin, F. (2015). Linking snow microstructure to its macroscopic elastic stiffness tensor: A numerical homogenization method and its application to 3-D images from X-ray tomography. <i>Geophysical Research Letters</i>, 42(19), 8031–8041. doi: https://doi.org/10.1002/2015GL065227 Wautier, A., Geindreau, C., & Flin, F. (2017, 6). Numerical homogenization
618 619 620 621 622 623 624 625	 https://doi.org/10.5281/zenodo.10340967 doi: https://doi.org/10.5281/zenodo.10340967 Wautier, A., Geindreau, C., & Flin, F. (2015). Linking snow microstructure to its macroscopic elastic stiffness tensor: A numerical homogenization method and its application to 3-D images from X-ray tomography. Geophysical Research Letters, 42(19), 8031–8041. doi: https://doi.org/10.1002/2015GL065227 Wautier, A., Geindreau, C., & Flin, F. (2017, 6). Numerical homogenization of the viscoplastic behavior of snow based on X-ray tomography images.
618 619 620 621 622 623 624 625 626	 https://doi.org/10.5281/zenodo.10340967 doi: https://doi.org/10.5281/zenodo.10340967 Wautier, A., Geindreau, C., & Flin, F. (2015). Linking snow microstructure to its macroscopic elastic stiffness tensor: A numerical homogenization method and its application to 3-D images from X-ray tomography. <i>Geophysical Research Letters</i>, 42(19), 8031–8041. doi: https://doi.org/10.1002/2015GL065227 Wautier, A., Geindreau, C., & Flin, F. (2017, 6). Numerical homogenization of the viscoplastic behavior of snow based on X-ray tomography images. <i>The Cryosphere</i>, 11(3), 1465–1485. doi: https://doi.org/10.5194/
618 619 620 621 622 623 624 625 626 626 627	 https://doi.org/10.5281/zenodo.10340967 doi: https://doi.org/10.5281/zenodo.10340967 Wautier, A., Geindreau, C., & Flin, F. (2015). Linking snow microstructure to its macroscopic elastic stiffness tensor: A numerical homogenization method and its application to 3-D images from X-ray tomography. Geophysical Research Letters, 42(19), 8031–8041. doi: https://doi.org/10.1002/2015GL065227 Wautier, A., Geindreau, C., & Flin, F. (2017, 6). Numerical homogenization of the viscoplastic behavior of snow based on X-ray tomography images. The Cryosphere, 11(3), 1465–1485. doi: https://doi.org/10.5194/tc-11-1465-2017
618 619 620 621 622 623 624 625 626 627 628	 https://doi.org/10.5281/zenodo.10340967 doi: https://doi.org/10.5281/zenodo.10340967 Wautier, A., Geindreau, C., & Flin, F. (2015). Linking snow microstructure to its macroscopic elastic stiffness tensor: A numerical homogenization method and its application to 3-D images from X-ray tomography. <i>Geophysical Research Letters</i>, 42(19), 8031–8041. doi: https://doi.org/10.1002/2015GL065227 Wautier, A., Geindreau, C., & Flin, F. (2017, 6). Numerical homogenization of the viscoplastic behavior of snow based on X-ray tomography images. <i>The Cryosphere</i>, 11(3), 1465–1485. doi: https://doi.org/10.5194/tc-11-1465-2017 Yosida, Z., Oura, H., Kuroiwa, D., Tosio, H., Kenji, K., & Kinosita, S. (1958). Phys-
618 619 620 621 622 623 624 625 626 627 628 629	 https://doi.org/10.5281/zenodo.10340967 doi: https://doi.org/10.5281/zenodo.10340967 Wautier, A., Geindreau, C., & Flin, F. (2015). Linking snow microstructure to its macroscopic elastic stiffness tensor: A numerical homogenization method and its application to 3-D images from X-ray tomography. <i>Geophysical Research Letters</i>, 42(19), 8031–8041. doi: https://doi.org/10.1002/2015GL065227 Wautier, A., Geindreau, C., & Flin, F. (2017, 6). Numerical homogenization of the viscoplastic behavior of snow based on X-ray tomography images. <i>The Cryosphere</i>, 11(3), 1465–1485. doi: https://doi.org/10.5194/tc-11-1465-2017 Yosida, Z., Oura, H., Kuroiwa, D., Tosio, H., Kenji, K., & Kinosita, S. (1958). Physical studies on deposited snow. IV Mechanical properties (3). <i>Contributions</i>